MAT 362 SPRING 05 HOMEWORK 3

Due Thursday, Feb. 23

- 1. Let S_1 and S_2 be smooth surfaces. Prove that the "intrinsic" definition of a smooth map $F: S_1 \to S_2$ is independent of any choice of local charts.
- 2. Show that the paraboloid $z = z^2 + y^2$ is diffeomorphic to the plane.
- 3. Let $f(x,y,z)=z^2$. Prove that 0 is not a regular value and yet $f^{-1}(0)$ is a regular surface.
- 4. Consider the set of points S in \mathbb{R}^3 given by $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
 - (a). Prove that S is a smooth surface.
 - (b). Show that

$$\sigma(u, v) = (au\cos v, bu\sin v, u^2), \ u > 0$$

is a local chart for S, omitting only one point.

- (c). Set $a=1,\ b=2$ and sketch the surface. Sketch on the surfaces the lines where u=const and v=const, i.e. the local coordinate curves on S induced by σ .
- 5. Show that the antipodal map A(x, y, z) = (-x, -y, -z) is a diffeomorphism of the sphere $S^2(1)$ into itself. You can use either the intrinsic or extrinsic definition of smooth maps. How is A related to A^{-1} ?