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Abstract

The goal of learning is to produce such a configuration of the synap-
tic weights in a network that roughly encodes the properties of the
object to be learned. Unsupervised learning relies on two factors: the
input data and the network internal processing, with no external re-
port on the state of synapses. Although it initially appeared that
some systems have no internal objective monitor, a more careful anal-
ysis showed that even they acquire some self organization through an
objective internal function. consider, for instance, a network that ad-
just the weights according to Oja’s rule, which is a normalized version
of Hebb’s postulate of learning. The system will try to extract from
the set of input data whatever it seems to find there on a systematic
base.

In the present paper, we discuss how this classical result changes
in a more realistic context that includes noise. The modified linear
network tends to extract as an answer the principal component of an
input correlation matrix that includes possible errors due to informa-
tion leaks. The probability of such leaks is expressed in average by a
parameter intrinsic to the network, called the quality of the system.
We analyze the dependence between the accuracy of the answer and
the quality value, for different degrees of input correlations and for
various network sizes. This behavior, studied analytically as well as
through Matlab simulations, is surprisingly similar to the Eigen error
catastrophe model (see [E]).

1 Introduction to the model and previous work

We consider the simple neuron model, linear in the sense that the model output
is a linear combination of its inputs. The neuron receives a set of n input signals
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x1, x2, ..., xn from a collection of neurons, through corresponding connections with
synaptic weights w1, ..., wn respectively. The resulting output is defined as the sum
of inputs weighted by the strengths:

η =
n∑

i=1

xiwi

We consider the input column vector x = (x1...xn)t to be a randomly drawn
from a probability distribution P(x), x ∈ Rn.

In accordance to Hebb’s postulate of learning, a synaptic weight wi will strengthen
when xi and η coincide in sign. Specifically:

wi(s + 1) = wi(s) + γη(s)xi(s)

where γ is a time independent learning parameter that describes the learning ca-
pability of the network and the argument s represents the dependence on time, or
the input draw.

This learning rule in its basic form could clearly be leading to unlimited growth
of the synaptic weight wi, which is unacceptable physically. So a normalization was
incorporated, the effect being to introduce some ”competition” among the synapses
of a neuron over limited resources, condition which will be essential for stabilization
and hence learning.

In 1982, Oja simply normalized the weight vector w with respect to the Eu-
clidean metric on Rn:

wi(s + 1) =
wi(s) + γη(s)xi(s)
‖ w(s) + γη(s)x(s) ‖

then expanded in Taylor series for γ. Justifiably ignoring the O(γ2) term, for γ
sufficiently small, the result was:

w(s + 1) = w(s) + γη(s)[x(s)− η(s)w(s)]

The equation can be rewritten as:

w(s + 1) = w(s) + γ
[
x(s)xt(s)w(s)− (

wt(s)x(s)xt(s)w(s)
)
w(s)

]

where xt denotes transposition of vectors.
A convergence analysis of a such stochastic, time varying difference equation is

in general nontrivial. Define the correlation matrix C of the distribution P(x) to be
the expected value of the matrix xs(xs)t. Clearly C is symmetric and semipositive
definite. The work has been done under the following additional assumptions:

• the learning process is slow enough for w to be treated as stationary;

• C has distinct eigenvalues;

• x(s) and w(s) are statistically independent.

Under these conditions, we can take conditional expectation over P(x) and
rewrite the learning rule as:

E(w(s + 1)/w(s)) = w(s) + γ
[
Cw(s)− (

wt(s)Cw(s)
)
w(s)

]
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The conclusion was that, in case w(s) converges as s → ∞, the limit is one
of the two normalized eigenvectors corresponding to the maximal eigenvalue of C.
(We call the direction of this vector the principal component of the matrix C.)

The purpose of this paper is to prove that, in some more realistic conditions,
the linear network governed by the self-organizing rule we have described still tends
to extract the principal component of a (this time) ”modified” correlation matrix
of the input patterns.

What we have in mind is a modification based on the possible imperfections of
the mechanical-chemical hardware that supports learning. Namely: the request to
modify the i-th component wi of the weight vector could ”leak” from the neighbor-
ing synaptic contacts. Therefore, each wi will receive direct information from xi in
some proportion Q and information from its neighbors in proportion 1−Q. In this
context, we will need to carefully define what we mean by “neighbors”.

We will again try to analyze the convergence of the weight vector w, where the
new stochastic learning equation can be obtained in the same way as Oja’s rule,
under the same assumption of stationary process.

wi(s + 1) = wi(s) + γη(s)[Tx(s)]i ⇒

E(w(s + 1)/w(s)) = w(s) + γ [TCw(s)− (wt(s)Cw(s)) w(s)]

T ∈ Mn(R) is an error matrix (or noise matrix) that could be assumed to be
symmetric and with positive entries. T will depend on the value of Q, hence will
reflect directly the quality of the information transfer in the network. We also make
the obvious requirement that T is the identity in case of no error (i.e. Q = 1).

In section 4 we will present a few particular examples of such network geometries
which we considered plausible.

2 A dynamical analysis

Let us first analyze the trivial case when the error matrix T is the identity
matrix. In other words, we look at the classical deterministic Oja model, with zero
error.

For a fixed size n ∈ N, n ≥ 2, we want to know if our linear network with
learning constant γ > 0 is able to learn a probability distribution P with correlation
matrix C. That is, we want to see if relevant information on the input distribution
P is reflected into the values of the synaptic-strength vector w, provided the process
of reading from P and adjusting w is allowed to run long enough.

Namely, our objective is to research if a vector w ∈ Rn could stabilize under
iterations of the function:

f : Rn −→ Rn

f(w) = w + γ[Cw − (wtCw)w]

We expect the discussion to involve the properties of the distribution to be
learned (through properties of the symmetric, positive definite matrix C), as well
as the magnitude of γ.
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In even more precise terms, we are looking to find out if f has any hyperbolic
attracting fixed points (see [?]).

The condition for w to be fixed by f is:

f(w) = w + γ[Cw − (wtCw)w] = w ⇔ Cw = (wtCw)w

An equivalent set of conditions is:
{

Cw = λww
λw = wtCw

⇔
{

Cw = λww
λw = λwwtw

In case C is invertible (i.e. all its eigenvalues are nonzero), these conditions
translate as: “w is an eigenvector of C with unit Euclidean norm”.

A such vector w is a hyperbolic attractor for f if all eigenvalues of the differential
matrix Dfw are less than one in absolute value. We calculate Dfw, for a fixed vector
w:

Lemma 2.1. Dfw = I + γ [C − 2w(Cw)t − (wtCw)I]

Proof. Call g(w) = (wtCw)w , so f(w) = w + γ(Cw − g(w))

gi(w) = (wtCw)wi

If i 6= j:

∂gi

∂wj
(w) =

∂

∂wj
(
∑

k,l

Cklwkwl)wi = 2(
∑

k

Ckjwk)wi = 2(Cw)jwi

If i = j:

∂gi

∂wi
(w) =

∂

∂wi
(
∑

k,l

Cklwkwl)wi +
∑

k,l

Cklwkwl = 2(
∑

k

Ckiwk)wi+

+wtCw = 2(Cw)iwi + wtCw

So:
Dgw = 2w(Cw)t + (wtCw)I

2

Take now an orthonormal basis B of eigenvectors of C ( with respect to the
Euclidean norm ‖ · ‖ on Rn).Fix a vector w ∈ B. Pick any v ∈ B, v 6= w. Call λw

and λv their corresponding eigenvalues.

Dfw(v) = v + γ[Cv − 2w(Cw)tv − (wtCw)v] =
= v + γ[Cv − 2wwtCv − (wtCw)w] =
= v + γ[λvv − 2wwtλvv − λww] = (1− γ[λw − λv])v

Dfw(w) = w + γ[Cw − 2w(Cw)tw − (wtCw)] =
= w + γ[λww − 2wwtλww − λww] =
= w + γ[−2λw‖w‖w] = [1− 2λw]w
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So B is also a basis of eigenvectors for Dfw.
We want w to be an attracting hyperbolic fixed point (hence an attracting fixed

point in the topological sense). The equivalent set of conditions on Dfw is that the
eigenvalues all have absolute values strictly less than 1:

| 1− γ(λw − λv) |< 1 , ∀ v ∈ B , v 6= w

| 1− 2γλw |< 1

So w is a hyperbolic fixed point of f if and only if:

(1) λw > λv , ∀ v 6= w (i.e. λw is the maximal eigenvalue)

(2) γ < 1
λw

(3) γ < 2
λw−λv

, ∀v 6= w (weaker than (2))

These conditions are always satisfied provided: (I) C has a maximal eigenvalue of
multiplicity one and (II) γ is small enough (γ < 1

λw
).

Conclusion. We have shown that, under the conditions (I) and (II), the network
will “learn” the principal component of the correlation matrix C.

The result is certainly not surprising and not new in the literature (see, for
example [?]). However, this method brings with itself a fairly easy extension that
will encompass more general settings.

3 An extension

Our next goal is to generalize this argument for an iteration function that
includes errors. The new model introduces an error matrix, T ∈ Mn(R) that has
positive entries, is symmetric and equal to the identity matrix I ∈ Mn(R) in case
the error is zero.

fT (w) = w + γ[TCw − (wtCw)w]

We will work from now under the assumption that TC has a unique
principal eigenvalue.

Note that the symmetric, positive definite matrix C ∈ Mn(R) defines a dot
product in Rn as:

〈v, w〉C = vtCw

If v and w are eigenvectors of TC corresponding to the eigenvalues λv 6= λw, then
they are orthogonal with respect to the dot product 〈, 〉C . Indeed:

TCv = λvv ⇒ 〈w, TCv〉C = λv〈w, v〉C

TCw = λww ⇒ 〈v, TCw〉C = λw〈v, w〉C
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Hence λv〈v, w〉C = λw〈v, w〉C . As λv 6= λw, it follows that 〈v, w〉C = 0, hence v
and w are orthogonal with respect to the given dot product.

A fixed point for fT is a vector w = (w1...wn)t such that TCw = (wtCw)w.
In other words, w is fixed by fT if and only if it is an eigenvector of TC (with
corresponding eigenvalue µ), normalized such that ‖ w ‖C= µ. Clearly, this is
possible when µ > 0 and only then.

Hence for any positive eigenvalue of TC, we can find a fixed vector defined as
above. Consider then µ > 0 an eigenvalue of TC (suppose TC has at least one
positive eigenvalue) and call w its corresponding fixed vector w:

TCw = µw, ‖w‖C = µ

If the multiplicity of µ is one, then w is orthogonal in 〈, 〉C to all other eigenvectors
of TC.

Recall that

Dfw = I + γ[TC − 2w(Cw)t − (wtCw)I]

Take w to be a fixed point of fT . w will hence be an eigenvector of TC, with
eigenvalue λw = (wtCw)w > 0. Calculate:

Dfww = w + γ[TCw − 2w(Cw)tw − (wtCw)w] =
= w + γ[−2wwtCw] = [1− 2γλw]w

Dfwv = v + γ[TCv − 2wwtCv − λwv] =
= v + γ[(λv − λw)v − 2〈w, v〉Cw] = (1− γ[λw − λv])v

for any other eigenvector v of TC with eigenvalue λv 6= λw:

It is fairly easy to see that Dfw has all eigenvalues less than one in absolute
value if and only if λw is the principal eigenvalue of TC and γ < 1

λw
.

In conclusion: Suppose the matrix TC has a positive eigenvalue µ with multi-
plicity one. Then its corresponding eigenvector w normalized as ‖w‖C = µ is the
only hyperbolic attracting fixed vector of fT , provided that γ is smaller than the
inverse of the eigenvalue µ.

4 The error matrix and the output performance

Recall that, in the absence of error, the network set to learn the distribu-
tion with correlation C converges to the principal eigenvector of C, which is w =
(100..0)t.

Consider:

cos(θ) =
〈wC , wTC〉

‖wC‖ · ‖wTC‖
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the cosine of the angle between the attractor wC in the zero error case and the
attractor wTC in the case described in this section. As mentioned before, wC =
(10...0)t. Hence:

cos(θ) =
| wTC

1 |
‖wTC‖

can be considered a reasonable measure of the output error for a given error matrix
T .

We are interested in seeing how this output error angle changes with
the quality of information transfer, for various sizes of the network n ≥ 2
and a fixed correlation λ > 1.

From now on, we will consider the inputs to be uncorrelated and such that one
neuron in the network has a preferential treatment to all others, namely we take C
to be a diagonal n× n matrix of the form:

C =




λ 0 0 · · 0
0 1 0 0 · 0
0 0 1 0 · 0
· · · · · ·
0 · · 0 1 0
0 0 · · 0 1




where λ > 1.

The construction of T involves a number q ∈ [0, 1] that we will refer to as
the “quality” of the network. q measures, as its name suggests, the accuracy of
information transfer in the network and is independent of the size n of the network.
In the error-matrices T we consider, each change in the synaptic-strength vector
“reaches” its target in a proportion of Q = qn and “misses” it in a proportion of
1−Q = 1− qn. The probability for a synaptic contact to be mistaken to any of its
neighbors is the same, in other words the error 1−Q is in average evenly distributed
to all neighbors of the target. It remains to define how a network understands the
notion of “neighboring cell”. We will describe in this section three such examples,
and plot the results we obtained by Matlab calculations in each case. The next
section is dedicated to a detailed analytic analysis of the most plausible model.

Error model 1: Each synapse has two neighbours, hence a change directed to the
component wi of the weight vector will be in proportion 1 − Q due to leaks from
wi−1 and wi+1. (Here, we consider the indexes modulo n, so that w1 = wn+1 is
a neighbour of wn and wn = w0 is a neighbour of w1.) The corresponding error
matrix will be:

T =




Q ε 0 · · ε
ε Q ε 0 · 0
0 ε Q ε · 0
· · · · · ·
0 · · ε Q ε
ε 0 · · ε Q




= QI + ε(P + P−1)

where
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P =




0 1 0 · · 0
0 0 1 0 · 0
0 0 0 1 · 0
· · · · · ·
0 · · 0 0 1
1 0 · · 0 0




and the leak to each neighbour ε = 1−Q
2 .

Figure 1: Model 1: We plot cos(θ(q)) (vertical axis) against q (horizontal axis),
for values of n from 5 to 20 neurons (each graph correspondes to a value of n). The
maximal eigenvalue of C is fixed to λ = 10. For all n, cos(θ) increases from about
0.3 to 1, as the quality increases from worst (q = 0) to perfect (q = 1). All graphs
show a slow change for small q and a sudden increase on a small interval before
q = 1. The plots are lower and the change is steeper as n gets larger. Note that
the worst angle output error for each n (i.e. the value cos(θ(0))) does not show
significant dependence on the size n.

Let θ(q) be, as before, the angle between the principal component of C and the
principal component of TC, for a given quality q. We use a Matlab computation
to obtain the eigenspaces of TC and plot cos(θ) with respect to q (see figure 1).

Error model 2: The incoming leaks from neighbours decrease exponentially with
the distance to the correct synapse. In other words:
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T =




Q ε
2

ε
22 · ε

22
ε
2

ε
2 Q ε

2
ε
22 · ε

22
ε
22

ε
2 Q ε

2 · ·
· · · · · ·
ε
22 · · ε

2 Q ε
2

ε
2

ε
22 · · ε

2 Q




Figure 2: Model 2: We plot cos(θ) against q, for fixed correlation factor
λ = 10 and n from 5 to 20 neurons (each curve corresponds to a size n, lower
curves correspond to larger n). For all n, cos(θ) increases from small values to 1,
as the quality increases from 0 to 1. The change is slow for small values of q. For
q approaching 1, there is a sudden raise to cos(θ) = 1 (perfect output). This raise
gets steeper as n gets larger. The small starting values cos(θ(0)) are slightly more
scattered than in model 1 for various sizes n.

T =





QI + ε
2 (P + P−1) + ... + ε

2k (P k + P−k), if n = 2k + 1

QI + ε
2 (P + P−1) + ... + ε

2k−1 (P k−1 + P−(k−1)) + ε
2k P k, if n = 2k

for k ≥ 1, where ε is such that the sum of all leaks into a synaptic contact from
other synapses is 1−Q:

2(
ε

2
+ ... +

ε

2k
) = 1−Q, if n = 2k + 1

2(
ε

2
+ ... +

ε

2k−1
) +

ε

2k
= 1−Q, if n = 2k
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Error model 3: Each synapse in the network receives leaks in equal proportion
from all others, hence the individual error ε = 1−Q

n−1 and the matrix T is given by:

T =




Q ε ε · · ε
ε Q ε ε · ε
ε ε Q ε · ε
· · · · · ·
ε · · ε Q ε
ε ε · · ε Q




= QI + ε[P + P 2 + ... + P (n−1)]

Figure 3: Model 3: The plot of cosine of the error angle against the quality q

has mainly the same shape (we ahow plots for λ = 10 and n from 5 to 20 neurons).
However, the values cos(θ(0)) are clearly more scattered for various sizes n than
in the previous plots. In fact, as n gets arbitrarily large, cos(θ(0)) approaches zero
(see the proof in section 5 and the discussion in section 6).

5 Plotting the output performance

The purpose of this section is to give an analytical explanation for the plots
obtained for model 3. Appendix A should give some indication of why it is inter-
esting to look at the case where all input cells are equal neighbors. The appendix
also shows why our particular choice of the dependence Q = qn is not arbitrary,
but motivated by a detailed analysis of the geometry of the network and of the
synaptic mechanisms.

The characteristic polynomial of T is easy to calculate:

PT (x) = det(T − xI) = (Q− ε− x)(n−1)(1− x)
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Hence T is invertible, except when Q− ε = 0, i.e. when q = 1
n
√

n
.

Similarly, the characteristic polynomial of TC is:

PTC(x) = det(TC − xI) = (Q− ε− x)n−2[x2 − x(λ + 1 + ε(λ− 1− nλ)) + λ− nλε]

Hence TC has three distinct eigenvalues: Q− ε = nqn−1
n−1 with multiplicity n−2

and the two real roots of the quadratic equation:

S(x) = x2 − x(λ + 1 + ε(λ− 1− nλ)) + λ− nλε = 0

Call µ the larger solution of the two. µ is also the maximal eigenvalue of TC
(as shown in lemma 5.2):

µ =
1
2
[B +

√
∆]

where B = λ + 1 + ε(λ − 1 − nλ) and ∆ = B2 − 4λ(1 − nε). Recall that ε = ε(q)
and so µ = µ(q). Clearly Q− ε = nqn−1

n−1 < 1, hence:

1 < µ < λ

The hyperbolic attractor of the dynamical system defined by fT is an eigen-
vector of TC with eigenvalue µ. So we are interested in emphasizing briefly some
properties of µ, as a start.

Lemma 5.1.
λn

λ(n− 1) + 1
< µ < λ

Proof. A simple calculation shows that:

S(
λn

λ(n− 1) + 1
) =

−λ(λ− 1)2(n− 1)
[λ(n− 1) + 1]2

< 0

and

S(λ) = ελ(λ− 1)(n− 1) > 0

Therefore the largest root µ of S(x) = 0 is situated between these two values. 2

Lemma 5.2. µ = µ(q) is the maximal eigenvalue of TC and has multiplicity one,
for any 0 < q < 1.

Proof. Clearly Q − ε < 1 < µ, so all we need to show is that the equation
S(x) = 0 has two distinct roots. Indeed:

∆ = B2 − 4(λ− λnε) = [λ + 1 + ε(λ− 1− λn)]2 − 4(λ− λnε) =

= [(λ− 1) + ε(λ− 1− λn)]2 + 4ε(λ− 1)

Hence µ is an eigenvalue of multiplicity one. 2
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Let’s take a brief look at how the analysis in section 3 works in this case. Note
that TC is not symmetric, may not be positive definite, or even invertible. But its
maximal eigenvalue is strictly positive and has multiplicity one.

A fixed point for fT is a vector w = (w1...wn) such that TCw = (wtCw)w.
With our present choice for C:

wtCw = λw2
1 + w2

2 + ... + w2
n ≥ 0

So, if ν is a strictly positive eigenvalue of TC, then the eigenvector corresponding
to ν, normalized such that λw2

1 + w2
2 + ... + w2

n = ν is a fixed vector for fT .

det(TC − xI) = (Q− ε− x)n−2S(x)

and Q − ε ≤ 0 for q ≤ 1
n
√

n
. So we may not have n distinct fixed vectors for fT .

But the maximal eigenvalue µ > 0. We apply the results in section 3 and we obtain
that the principal eigenvector w , normalized such that λw2

1 + ... + w2
n = µ is the

only attractor for fT .
We will be looking for the direction of the principal component of TC:




λQ ε ε · · ε
λε Q ε ε · ε
λε ε Q ε · ε
· · · · · ·

λε · · ε Q ε
λε ε · · ε Q







w1

w2

·
·
·

wn




= µ




w1

w2

·
·
·

wn




If we fix w1 = 1
λ , we can calculate:

wj =
1
λ

µ− λ(Q− ε)
µ− (Q− ε)

The norm of w is:

‖w‖2 =
1
λ2

[
1 + (n− 1)(

µ− λ(Q− ε)
µ− (Q− ε)

)2
]

Hence the error angle we defined in the last section is given by:

cos(θ) =
w1

‖ w ‖
Only for computation simplicity, we prefer to look instead at:

| tan(θ) |= √
n− 1

µ− λ(Q− ε)
µ− (Q− ε)

=
√

n− 1
µ− λ(1− nε)
µ− (1− nε)

But µ is solution of S(x) = 0, which gives us:

µ− λ(1− nε) = µ(λ−1)ε
µ−1 and µ− (1− nε) = µε(n−1)(λ−1)

λ−µ

Hence:

| tan(θ) |= 1√
n− 1

λ− µ

µ− 1
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where µ = µ(q), for q ∈ [0, 1].
From now on, for a fixed n ≥ 2 and λ > 1, this will be the function of q we will

study:

h(q) =| tan(θ(q)) |= 1√
n− 1

λ− µ(q)
µ(q)− 1

where µ = µ(q) is the larger root of the equation S(x) = 0 (recall that the coeffi-
cients of S(x) depend on q).

Figure 4: The plot shows the behavior of the function h(q) =| tan(θ(q)) |=
1√
n−1

λ−µ(q)
µ(q)−1 for values of n from 5 to 20. For each n, h(q) decreases slowly for q

between q = 0 and q = q0, then has a sudden drop from h(q0) to zero for q between
q = q0 and q = 1. The value h(0) =| tan(θ(0)) | approaches ∞ (i.e. cos(θ(0)) gets
close to zero) when n goes to ∞. Also, the drop gets arbitrarily steep and narrow
as n gets arbitrarily large.

Step 1: We would like first to evaluate h at q = 0 (maximum error, all information
transfer goes “wrong”) and at q = 1 (quality 1, no error).

If q = 1, then ε(q) = 0, so S(x) = x2 − (λ + 1)x + λ. Hence µ(1) = λ, so
h(1) = 0. This is the expected result: the output error angle θ should be zero when
the quality is perfect.

If q = 0, then ε(q) = 1
n−1 . This gives us:

µ(0) =
n− 2 +

√
(n− 2)2 + 4λ(n− 1)
2(n− 1)
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Clearly:

µ(0) −→ 1 as n −→∞ and

√
n− 1(µ(0)− 1) = 4(λ−1)

√
n−1

n+
√

(n−2)2+4λ(n−1)
−→ 0 as n −→∞

Hence h(0) =
1√

n− 1
λ− µ

µ− 1
approaches ∞ as n goes to ∞.

Step 2: We analyze the behavior of the derivative h′(q). We calculate:

h′(q) = − λ− 1√
n− 1

µ′(q)
(µ(q)− 1)2

By implicit differentiation with respect to q of the equation S(µ(q)) = 0 we get
that:

µ′(q)[2µ(q)−B] = −ε′(q)[µ(q)(λn− λ + 1)− λn]

Recall that we called B = B(q) = λ+1+ ε(λ−1−λn) and we showed that µ > B
2 ,

hence 2µ−B > 0, ∀ q ∈ [0, 1]. We have also showed that µ > λn
λn−λ+1 , ∀ q ∈ [0, 1].

Moreover, ε′(q) = − n
n−1qn−1 ≤ 0, where equality happens for q = 0.

In conclusion µ′(q) ≥ 0, ∀q ∈ [0, 1], with equality when q = 0. This means that
h′(0) < 0 for 0 < q ≤ 1 and h′(q) = 0 if q = 0, which tells us that, as q goes from 0
to 1, the function h decreases from the initial value h(0) to zero.

Moreover: µ(1) = λ, hence µ′(1) = nλ.

h′(1) = − λ

λ− 1
n√

n− 1
−→∞ as n −→∞

So the graph of h is flat at q = 0 for any value of n, but decreases with a steeper
slope at q = 1 as n gets larger.

Step 3: The second derivative of h is (the prime symbol means derivative with
respect to q):

h′′(q) = − λ− 1√
n− 1

µ′′(µ− 1)− 2(µ′)2

(µ− 1)2

Again by implicit differentiation,we can calculate:

µ′′(2µ−B) = −2(µ′)2 − 2ε′µ′(λn− λ + 1)− ε′′[µ(λn− λ + 1)− λn]

Clearly at q = 0 we have an inflection point.
At q = 1:

µ′′(1) =
2n2λ

(n− 1)(λ− 1)
+ nλ(n− 1) > 0

and

h′′(1) =
λ− 1√
n− 1

nλ

n− 1
[(n− 2)2 + λ(n2 − 1− 3] < 0 for n ≤ 2

It follows that h is concave up at q = 1.
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It is fairly easy to show that h has at most one inflection point between q = 0
and q = 1. We do not aim for its exact value, but for a good estimate that would
permit us to compare the behavior of the function h(q) for various values of the
size n.

An interesting point to test is q0 = 1
n
√

n
. This is the value of q that makes the

matrix T noninvertible, in other words it is the quality of the network of size n
where the information is distributed evenly among all neurons (i.e. Q = ε). We
would expect the learning process to perform very poorly for values of q less than
q0, so we foresee a steep drop in the graph between q0 = 1

n
√

n
and q = 1 (from

bad performance to perfect performance h(1) = 0). If n −→ ∞, then q0 −→ 1,
so the transition from h(q0) =

√
n− 1 to h(1) = 0 gets more sudden with the size

increase. Indeed:

ε(q0) = 1
n , B = 1 + λ−1

n

µ(q0) = 1 +
λ− 1

n

h(q0) =
√

n− 1

µ′(q0) = −ε′(n− 1)(λ− 1)2

n + λ− 1

h′(q0) = − n n
√

n(λ− 1)2

(n + λ− 1)
√

n− 1

µ′′(q0)(µ(q0)− 1)− 2(µ′(q0))2 =

=
(n− 1)(λ− 1)3

n + λ− 1

(
2(ε′(q0))2[n2 + (λ− 1)2]

(n + λ− 1)2
− ε′′(q0)

n

)
> 0

Hence:

h′′(q0) = − λ− 1√
n− 1

µ′′(q0)(µ(q0)− 1)− 2(µ′(q0))2

(µ′(q0)− 1)2
< 0

So h′′(q0) < 0 and h′′(1) > 0, hence there is an inflection point between q0 and
1. Also, note that the value of h at q = q0 is still quite large, and the derivative
h′(q0) quite small (in fact, h′(q0) −→ 0 as n −→ ∞). So, after decreasing fairly
slowly for 0 < q < q0, the graph has indeed a steep drop from h(q0) =

√
n− 1 to

h(1) = 0 between q = q0 and q = 1, passing through an inflection stage.

6 Discussion and conclusions

The molecular quasispecies model of Eigen describes the stationary distribution
of polynucleotides maintained by chemical reactions (affecting error-prone replica-
tion) and by transportation processes. This distribution shows a sharp transition
between a drifting population of essentially random macromolecular sequences and
a localized population of close relatives. This transition at a threshold value of the
error was found to depend on sequence length, distributions of selective values and
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population sizes. The error threshold seems to set a limit to the genome length of
several classes of RNA viruses.

Comparing Oja’s evolution equation for synaptic weights with Eigen’s equation
for prebiotic evolution, [S1] observed the formal equivalence of the two. which
was not too surprising. We hope that this paper underlines the deeper structural
similarities between the two models, as well as their relevant differences. The
conclusion to our discussion is aimed in the same direction as Eigen’s: could we
find a threshold that sets a limit for the size of a functional learning network?

All examples we considered in this paper have a common feature: the accuracy
of information transfer within the network Q depends exponentially on the size n
of the network. The base of the exponential is a parameter q ∈ [0, 1], characteris-
tic of the network alone and size-independent. Due to this dependence, the plots
of cos(θ) against q have similar shape in all three cases. Moreover, this particu-
lar property makes our models fairly similar to Eigen’s model of self-replicating
symbol-sequences. The plots of our results show therefore a notably similar error
catastrophe.

However, there are considerable differences between examples 1,2 and 3, that
reflect the degree of scattering of the error within our linear system. The notion
of “neighbor” of a synapse is totally distinct in each of the three cases. In model
1, each synapse has two equivalent neighbors. In model 3, each synapse has all
others as neighbors equally participating to the inward information leak. In model
2, we are looking at an intermediate case: for a fixed synapse, all other synapses are
neighbors of different degrees, the degree being given by the distance to the fixed
cell. The leak into the given synapse decreases exponentially with the distance.
Hence all cells in the network are mutual neighbors, but less related if more distant.

A.

1

2

3
4

n
B.

1

2

3
4

n
C.

n
1

2

3
4

Figure 5: The meaning of neighbours in out three models. I the three schemata,
we emphasize the neighbors of cell 1: In figure A. (model 1) the cell has two equal
neighbours (in red). In figure B. (model 2), the cell has all others as neighbours of
different degrees: degree 1 (closest, red), degree 2 (blue), degree 3 (green). Figure
C. shows the schema for model 3, in which all cells are equal neighbors (cyan).

The pictures (see figure 6) show distinctly that the larger the error diffusion, the
more significant the scatter of the values of the maximal output error cos(θ(0)). To
clarify, let’s fix a correlation factor λ > 1. In the models with more error diffusion
(2 and 3), the maximal output angle error for a given n can get arbitrary small
with increasing n, as opposed to model 1, where the maximal output error does not
seem to depend on the value n of the size.
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In conclusion: Suppose the quality q is very poor, i.e. close to zero. If leaks
are fairly localized (model 1), the answer obtained through learning does not get
significantly further from the truth with an increase in the size of the network. On
the contrary, if leaks have high diffusion, large values of n lead to a totally wrong
answer (cos(θ(0)) ' 0).

An equally interesting remark concerns the high-quality interval, i.e. values of
q close to 1. All three families of graphs present a sudden rise in the very high-
quality range, rise that becomes almost vertical for large values of n. Recall that
for model 3 we have an analytic interpretation for this phenomenon: for values of
q smaller than q0 = 1

n
√

n
, the synapse gets more information from each individual

leak than from its source, so a network with quality poorer than q0 is unable to
learn anything close to the correct answer in this case.

This sudden change from bad answer to good answer within a very narrow qual-
ity range close to 1 is the remarkable similarity with the error catastrophe found
by Eigen in the replication of molecules.

To relate this discussion to the properties of the distribution to be learned,
let’s tune the correlation factor λ > 1.We notice that the curves get lower with a
decrease of λ. The meaning of this is the following: the more similar the inputs
are on the n neurons, the larger the effect of the error (on a learning system with
fixed quality q). In other words,the same network learns easier an uncorrelated
distribution on inputs if the predominant input variance λ is larger. This is hardly
a surprise.

In conclusion: A linear network of size n with information leaks is still capable of
learning an input distribution in a quite large variety of settings. However, we were
able to show that, if three distinct plausible contexts, if the network is too large it
needs almost perfect quality of information transfer in order to provide an outcome
reasonably close to the correct one. Otherwise, what it learns is, depending on the
case, partially of totally wrong.

This could equip us with a reason why networks are never larger than a universal
upper-bound N ' 10, 000 neurons, although there would be no strict geometric
constrains for obtaining larger ones. A system with an intrinsic, built-in quality
shows a sharper learning capability if it does not exceed a certain size. Bigger is
not always better.
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Appendix

Figure 6: The plots of cos(θ) against q for model 1 (top row), model 2 (middle
row) and model 3 (bottom row), for the correlation factor λ = 10 (left column)
and λ = 2 (right column).
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