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Abstract

We study the convergence behavior of a learning model with generalized Hebbian
synapses.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Inspired by the anatomy and physiology of our brain, artificial neural networks
are mathematical models that attempt to mimic specific brain functions, such as
learning. A neural network architecture consists of several additive processing
units (neurons) interconnected by channels (synapses). Quantifiable information
flowing through the synapses changes via multiplicative factors, designated
connecting weights. These weights reflect the relationship between pre- and post-
synaptic neural activities, also referred as incoming and outgoing signals.

Learning is a brain process by which the connecting weights undergo a
sequence of changes due to outside stimulation. This network’s internal response
enables an environmental adaptation and facilitates the development of problem-
solving skills. In colloquial terms, we may say that, after being exposed to a list
of problems and their respective solutions, we expect to be equipped to solve
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not only a familiar problem (one from the list) but also a spectrum of new
ones. Algorithms, implementable as neural networks, that attempt to perform this
function have been proposed by several researchers, among them we list Hebb,
Kohonen, Oja, and Adams (cf. [1,6,12,19]).

According to the Hebbian postulate of learning, the synaptic adjustments
are given by scaled products of the incoming and outgoing signals. Such an
algorithm leads to an exponential growth and therefore synaptic saturation. In
1988, Kohonen introduced a forgetting term that limits the synaptic weight growth
and consequently ameliorates this saturation problem (cf. [12]). The use of a
nonlinear correcting term incorporated into the synaptic changes results in a
negatively accelerated synaptic modification curve. Kohonen’s learning rule aims
to reduce the dimension of incoming signal patterns. Along this line of thought
Oja, in [19], introduced a network that behaves as a selective learning process by
filtering information and therefore adapting from an internally selected subset of
inputs. This approach was based on the principal component analyzer statistical
method (cf. [5]). Recently, Kingsley and Adams proposed a generalization of
Oja’s rule (cf. [7]) by incorporating a probabilistic component at the synaptic
level (cf. [11]). Biological observations suggest that synaptic changes occur not
only between co-active pairs of neurons but between a neuron from the pair and
its immediate neighbors. This fact is referred as “volume learning” (cf. [16]).

In this paper, we study Adams learning model following a similar approach to
the one used by Oja (cf. [17,18]). This learning rule incorporates a Hebbian type
of synapses where the updating relies upon a synaptic replication. We answer a
question posed by P. Adams: “Will a stable weight vector emerge and how will it
be related to the network’s parameters?”

Convergence of this model is reduced to the stability behavior of the equilib-
rium points of a nonlinear system of differential equations. This study allows us
to establish conditions for the algorithm to converge.

In Section 2, we define the learning rule, introduce notation to be used
throughout the paper, and reduce the problem to solving a matrix equation. In
Section 3, we solve a particular case where the weight matrix is a correlation
matrix of independent random variables. The general case is studied in Section 4.
The stability behavior is also analyzed in Section 4 (4.3), and sufficient conditions
for convergence are derived. In Section 5, we summarize and interpret the main
results of the paper.

2. Background and notation

Adams learning rule is implemented in a feedforward neural network withn

input neurons and one output neuron whose architecture is shown in the picture
below.
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The input vector, denoted byξ , represents ann-dimensional random vector
following a joint probability distribution. The output value, denoted byV, is the
outcome of the network’s action onξ . As the information travels through the
synapses, it changes linearly via a multiplication byωj , the connecting weight
for the synapse attached to the input neuronj . The connecting weight vector is
denoted byω. The summation of all these altered input components,

∑n
j=1ωj ξj ,

is the value ofV . The main goal is to define a converging algorithm that performs
the network’s adaptation without any outside interference. Such network is often
called unsupervised learning rule. If convergence occurs, the network is fully
characterized and ready to perform as an “educated” device. In [11], Kingsley
and Adams consider that, in a learning process, new synapses may be created
under a constant error rate, denoted byE. This learning rule relies upon a
generalized type of Hebbian synapses that incorporates a synaptic replication and
uses a correcting nonlinear term, cf. [19]. The updating for a Hebbian synapse is
proportional to the product of the pre- and post-synaptic activities. More precisely,
the change for the connecting weightωi isλξiV . Here, we allow synaptic changes
to follow a probabilistic correlation rule between pre-synaptic and post-synaptic
activities. In fact, as learning progresses, a synaptic strength may capture nearby
activity. This is done by the creation of temporary synapses from the closest
neurons to the output one. The synaptic corrections are therefore given by

∆ωi = V

(
(1−E)ξi + 1

2
Eξi+1 + 1

2
Eξi−1 − Vωi

)
,

for i = 2, . . . , n− 1,

or

∆ωi = V

(
(1−E)ξi + 1

2
Eξi±1 − Vωi

)
, for i = 1 orn,
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respectively. As mentioned before, the network’s outcoming signal is given by
V =∑n

j=1ωj ξj . Substituting the value ofV in the expression of∆ωi , we obtain:

∆ωi =




(1−E)
∑n

j=1ωj ξj ξi + 1
2E

∑n
j=1ωjξj ξi+1

+ 1
2E

∑n
j=1ωj ξj ξi−1 −∑

j, k ωjωkξj ξkωi, i �= 1 andn,

(1−E)
∑n

j=1ωj ξj ξi + 1
2E

∑n
j=1ωjξj ξi±1

−∑
j, k ωjωkξj ξkωi, i = 1 orn.

The expected synaptic updating follows the vector equationωnew = ωold +∆ω.
Therefore, it can be represented by the cubic vector-valued polynomialTCω −
(ω ·Cω)ω, whereC = [ξiξj ]ij , andT is the tridiagonal matrix

tij =
{

1−E if i = j,

E/2 if |i − j | = 1,
0 otherwise.

At the equilibrium points, where the algorithm converges, we expect the synaptic
changes to average zero,〈∆ω〉 = 0. Therefore, we reduce the problem to solving
the equation

T Cω− (ω ·Cω)ω = 0, (1)

with C now representing a correlation matrix of expected values, i.e.C =
[〈ξiξj 〉]ij , and “· ” the standard inner product inRn.

The next two propositions state properties of the matrixT to be applied in
subsequent results.

Proposition 2.1. (1) The eigenvalues of matrixT are λk = 1 − E + E cos(kπ/
(n+ 1)), with k = 1, . . . , n.

(2) T is positive if and only if

E � 1

2
or E >

1

2
and n�

cos−1
(
1− 1

E

)
π − cos−1

(
1− 1

E

) .
Proof. (1) The matrixT is symmetric, therefore all its eigenvalues are real.
We notice thatT = (1 − E)I + 1

2EA, where I is the identity andA is the
tridiagonal matrix with zeros along the diagonal, 1’s right above and right below
the main diagonal. It is shown in [3] that the eigenvalues ofA are equal to
2 cos( kπ

n+1), for k = 1, . . . , n. This implies that the eigenvalues ofT are equal

to 1−E +E cos( kπ
n+1), for k = 1, . . . , n.

(2) T is positive if and only if all its eigenvalues are nonnegative. This is
equivalent to 1−E +E cos( nπ

n+1)� 0 or cos( nπ
n+1)� 1− 1

E
. This last inequality

is clearly true forE � 1
2. If E > 1

2, then cos( nπ
n+1) � 1 − 1

E
or equivalently

n� cos−1(1− 1
E
)/(π − cos−1(1− 1

E
)). ✷
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The next proposition collects some well-known results in linear algebra. For a
proof we refer the reader to [4] or [9]. We remark thatQt represents the transpose
of Q.

Proposition 2.2. (1) All eigenvalues ofT are simple and ifT is singular its kernel
is one-dimensional.

(2) T is diagonalizable, i.e. there exists an orthonormal matrix of eigenvectors
of T , Q, such thatQtTQ=D with D = diag(λ1, λ2, . . . , λn).

(3) If T is positive then its square root,
√
T , is a real matrix equal to

Qdiag
(√

λ1,
√
λ2, . . . ,

√
λk
)
Qt.

(4) If T is not positive then its square root is a complex-valued matrix equal to

Qdiag
(√

λ1,
√
λ2, . . . ,

√
λk, i

√
λk+1, . . . , i

√
λn
)
Qt,

whereλ1, . . . , λk are the nonnegative eigenvalues ofT .

3. A particular case: Independent inputs

In this section we solve the equationT Cω − (ω · Cω)ω = 0 assuming
that the input vectorξ = [ξ1, . . . ξn] is ann-dimensional random variable with
independent components. This means that the joint distribution function for
ξ factorizes into a product ofn marginal density functions,f (ξ1, . . . , ξn) =∏n

i=1fi(ξi). The correlation matrixC is now given by the productξ tξ . Given
k vectors inRn, {v1, . . . , vk}, we denote by{v1, . . . , vk} the vector space spanned
by {v1, . . . , vk}, and by Ker(C) the kernel ofC.

Proposition 3.1. The matrix C defines an orthogonal invariant splitting ofRn,
Rn = Ker(C)⊕ {ξ}.

Proof. The matrixC is symmetric and has two eigenvaluesλ0 = 0 andλ1 =
ξ2
1 + ξ2

2 + · · · + ξ2
n−1 + ξ2

n . The eigenspace associated withλ1 is spanned by{ξ},
and Ker(C) has dimensionn− 1. ✷
3.1. SolvingT Cω− (ω ·Cω)ω = 0

Our goal is to determine the solution set,S, of the matrix equation above. We
start by noticing that Ker(C) ⊂ S. Vectors inS that are not in Ker(C) are of the
form η+ tξ with η ∈ Ker(C) andt a real number. Moreover,S is invariant under
Z2 actions, meaning that ifx ∈ S so is−x.

Let φ(ω)= T Cω− (ω ·Cω)ω, then

φ(η+ tξ)= tλ1T (ξ)− t3λ1‖ξ‖2ξ − t2λ1‖ξ‖2η.
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We conclude thatφ(η+ tξ) = 0 if and only if t = 0 or T (ξ) = t‖ξ‖2(η+ tξ). If
T (ξ)= t‖ξ‖2(η+ tξ) then

ξ · T (ξ)= ξ · t‖ξ‖2(η+ tξ) = t2‖ξ‖4 (
where‖ξ‖2 = ξ · ξ).

This implies thatt = ±(ξ · T (ξ))1/2/‖ξ‖2 wheneverξ · T (ξ) is nonnegative
which allows us to write the following set relations:

Ker(C)⊆ S ⊆ Ker(C)∪
[
Ker(C)±

(
(ξ · T (ξ))1/2

‖ξ‖2
ξ

)]
.

Proposition 3.2. If ξ · T (ξ) > 0 then there exists a uniqueη ∈ Ker(C) such that

S = Ker(C) ∪
{
±
(
η+ (ξ · T (ξ))1/2

‖ξ‖2
ξ

)}
.

If ξ · T (ξ)� 0 thenS = Ker(C).

Proof. The kernel ofC is clearly contained inS so additional solutions are of the
form η+ tξ for someη ∈ Ker(C) andt �= 0.

It was shown before thatt = ±(T ξ · ξ)1/2/‖ξ‖2. We also notice that

φ

(
(T ξ · ξ)1/2

‖ξ‖2 ξ

)
∈ Ker(C)

since

φ

(
(T ξ · ξ)1/2

‖ξ‖2
ξ

)
· ξ =

(
(T ξ · ξ)1/2

‖ξ‖2
λ1T (ξ)− (T ξ · ξ)3/2

‖ξ‖6
λ1‖ξ‖2ξ

)
· ξ

= 0.

If

φ

(
(T ξ · ξ)1/2

‖ξ‖2 ξ

)
= 0

then

φ

(
− (T ξ · ξ)1/2

‖ξ‖2 ξ

)
= 0

and therefore

φ

(
η± (T ξ · ξ)1/2

‖ξ‖2
ξ

)

= ± (T ξ · ξ)1/2
‖ξ‖2 λ1T (ξ)∓ (T ξ · ξ)3/2

‖ξ‖6 λ1‖ξ‖2ξ − (T ξ · ξ)
‖ξ‖4 λ1‖ξ‖2η

= φ

(
± (T ξ · ξ)1/2

‖ξ‖2 ξ

)
− (T ξ · ξ)η= −(T ξ · ξ)η �= 0,
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for η �=O . If

φ

(
(T ξ · ξ)1/2

‖ξ‖2
ξ

)
�= 0

then we determineη0 ∈ Ker(C) such that

φ

(
η0 ± (T ξ · ξ)1/2

‖ξ‖2 ξ

)
= 0

or equivalently

±φ
(
(T ξ · ξ)1/2

‖ξ‖2
ξ

)
− (

T (ξ) · ξ)η0 = 0.

It follows that

η0 = ± 1

(T ξ · ξ) φ
(
(T ξ · ξ)1/2

‖ξ‖2 ξ

)
= ± 1

(T ξ · ξ)1/2
(
T ξ − (T ξ · ξ)

‖ξ‖2 ξ

)
,

and therefore

η= 1

(T ξ · ξ) φ
(
(T ξ · ξ)1/2

‖ξ‖2 ξ

)
. ✷

3.2. Stability study

Following the ideas presented in [19], the stability of the discussed algorithm
is studied by considering the differential equation

dω

dt
= TCω− (ω ·Cω)ω. (2)

We recall that ifT ξ · ξ > 0 then equilibrium set of the equation above is Ker(C)

together with two additional isolated points, see Proposition 3.2.
First, we show that the hyperplane Ker(C) is repelling. In fact, the derivative

of φ at a generic pointη ∈ Ker(C) is a linear transformation inRn given by
Dφ(η)(v) = T Cv, wherev is ann-vector. The matrixT C has two eigenvalues.
One eigenvalue is equal to 0 with an(n − 1)-dimensional eigenspace, Ker(C).
The additional eigenvalue, denoted byµ1, has an associated eigenvector, denoted
by η1 + t1ξ , with t1 �= 0. This is translated in the following equation

Dφ(η)(η1 + t1ξ)= µ1(η1 + t1ξ),

or equivalently

TC(η)(η1 + t1ξ)= t1λ1T (ξ)= µ1(η1 + t1ξ).

This implies thatµ1 = T ξ · ξ(> 0).
We consider one of the isolated equilibrium points,

P = η+ (ξ · T (ξ))1/2
‖ξ‖2

ξ,
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as described in the Proposition 3.2. The linearization of the equation in a neigh-
borhood of this point is given by

dω

dt
=Dφ(P)(ω − P).

We now determine the linear transformationDφ(P). Let v be a genericn-vector,
then

Dφ(P)(v) = lim
t→0

φ
(
η+ (ξ ·T (ξ))1/2

‖ξ‖2 ξ + tv
)− φ

(
η+ (ξ ·T (ξ))1/2

‖ξ‖2 ξ
)

t
.

We apply the definition ofφ, the properties of inner product, and the assumption
thatφ(P )= 0 to conclude that

Dφ(P)(v) =Dφ

(
η+ (ξ · T (ξ))1/2

‖ξ‖2
ξ

)
(v)

= TCv − 2
(ξ · T (ξ))1/2

‖ξ‖2 λ1(v · ξ)
(
η+ (ξ · T (ξ))1/2

‖ξ‖2 ξ

)

−
(
η+ (ξ · T (ξ))1/2

‖ξ‖2 ξ

)
·C
(
η+ (ξ · T (ξ))1/2

‖ξ‖2 ξ

)
v.

We notice that ifv ∈ Ker(C) thenv is an eigenvector ofDφ(P) with eigenvalue
−(T ξ · ξ). Therefore, the eigenspace associated with−(T ξ · ξ) has dimension
n− 1. As before, we determine the missing real eigenvalue, denoted byµ1. We
represent byη1 + t1ξ an associated eigenvector. We have the equation

Dφ(P)(η1 + t1ξ)= µ1(η1 + t1ξ),

straightforward computations imply thatµ1 = −2(T ξ ·ξ). These allow us to write
the next proposition, but before we review the definition of attracting and repelling
invariant space (cf. [2,8]).

Definition 3.1. SupposeA is an invariant space of the differential equation
x ′ = f (x), wheref is a differentiable map defined inRn. The spaceA is said
to beattracting if there exists an open neighborhood ofA, U , such that every
solutionx(t), with x(0) ∈U , approachesA ast increases. The spaceA is said to
be repelling if for every open neighborhoodU of A there exist a neighborhood
U0 contained inU and t0 ∈ R+ such that every solutionx(t), with x(0) ∈ U0,
x(t) /∈ U for t � t0. An invariant space that is neither attracting nor repelling is
said to be ofsaddle-type. The basin of attraction of an attracting invariant space
A is the set of all points that evolve towardA as time increases.

If A reduces to a single point then we refer toA as being an attracting, repel-
ling, or saddle equilibrium point.
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Proposition 3.3. If ξ · T (ξ) > 0 then system(2) has two attracting equilibrium
points. The basin of attraction of each equilibrium point is the half space
containing the point and bounded byKer(C).

Proof. The matrixC is symmetric so it is diagonalizable via an orthonormal
matrixM (Antonne’s theorem, see [9]). LetD be the diagonal matrix with zeros
along the diagonal except for the last entry which is equal toλ1 = ‖ξ‖2. The
change of variablesω =My allows us to rewrite system (2) as follows:

dy

dt
= BDy − (y ·Dy)y, (3)

where

B =M tTM = [bij ]i,j=1,...,n.

Componentwise, after a convenient time rescaling, this system becomes

dyi

dt
= binyn − y2

nyi if i �= n,
dyn

dt
= bnnyn − y3

n. (4)

This system has the following qualitative dynamical behavior:

(1) yn-direction is invariant.
(2) There are at most 3 equilibrium points and exactly three iffbnn > 0.
(3) The hyperplaneyn = √

bnn (andyn = −√
bnn ) is invariant and stable.

(4) Initial conditions with nonzeronth-component evolve toward one of the
hyperplanesyn = √

bnn or yn = −√
bnn depending on the sign of the initial

condition’snth-component.

Systems (2) and (3) are topologically equivalent or qualitatively similar (cf. [15]).
This completes the proof of the proposition.✷
Remark 3.1. It also follows from previous arguments that ifT ξ · ξ < 0 then
Ker(C), the solution set of Eq. (1), is attracting. We notice thatT ξ · ξ = bnn.

4. General case

This section is divided into three parts. First, we solve Eq. (1) withC sym-
metric andT positive. Second, we solve the given equation for a matrixT with
negative eigenvalues together with additional symmetry assumptions. Finally,
we study the stability behavior of solutions and establish conditions that assure
convergence of the algorithm.
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4.1. T is positive

We recall thatT is said to be positive if and only if all its eigenvalues are
nonnegative (cf. [20]). As stated in Proposition 2.2(3),T has real square root

√
T

given by

Qdiag
(√

λ1,
√
λ2, . . . ,

√
λn
)
Qt.

We notice that
√
T is symmetric therefore the change of variablesω = √

T y

transforms Eq. (1) into√
T
(√

TC
√
T y − (

y · √T C
√
T y
)
y
)= 0. (5)

The solution setS of Eq. (5) consists of the set of all vectorsy such that√
T C

√
T y − (y · √T C

√
T y)y is in the Ker(

√
T ).

The following lemma states a splitting ofRn naturally induced by a general
symmetric matrix. For a proof we refer the reader to [4].

Lemma 4.1. LetA be a symmetricn-dimensional matrix ands the number of its
distinct eigenvalues. The matrixA defines an orthogonal splitting ofRn into a
direct sum of invariant eigenspaces,Rn =⊕s

i=1Ei .

The next theorem determines the solution set of Eq. (5) assumingT nonsin-
gular.

Lemma 4.1 implies the existence of an invariant splitting ofRn, determined by√
T C

√
T , into orthogonal eigenspacesEi , i = 1, . . . , s, wheres is the number

of distinct eigenvalues of
√
T C

√
T . Letαi be the eigenvalue associated withEi .

We use the standard notation for the unit sphere inRn, Sn−1.

Theorem 4.1. If T is nonsingular and positive andC is symmetric theny is a
solution of√

T
(√

TC
√
T y − (

y · √T C
√
T y
)
y
)= 0

if and only if

y ∈ Ker
(√

T C
√
T
)∪

(
s⋃

i=1

Ei ∩ Sn−1

)
.

Proof. A vector y can be uniquely decomposed into the sum
∑s

i=1 yi , with
yi ∈Ei for eachi. Then, we have

√
T
(√

TC
√
T y − (

y · √T C
√
T y
)
y
)

= √
T

(√
TC

√
T

(
s∑

i=1

yi

)
−
((

s∑
i=1

yi

)
· √TC

√
T

(
s∑

i=1

yi

))
s∑

i=1

yi

)

= 0
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if and only if

s∑
i=1

αiyi =
(

s∑
i=1

αiyi · yi
)

s∑
i=1

yi.

The orthogonality of the eigenspaces{Ei}i=1,...,s implies that everyi for which
αi �= 0 andyi �=O we have

αi =
s∑

i=1

αiyi · yi.

Thereforey ∈ Ker(
√
T C

√
T ) or there existsi, with αi �= 0, such thaty ∈ Ei . In

this latter case, we have that(‖y‖2 =) y · y = 1. ✷
Theorem 4.2. If T is positive andC symmetric theny is a solution of

√
T
(√

T C
√
T y − (

y · √T C
√
T y
)
y
)= 0

if and only if

y ∈ Ker
(√

T C
√
T
)∪

(
Ker(T )+

(
s⋃

i=1

Ei ∩ Sn−1

))
.

Proof. Propositions 2.1 and 2.2 imply that Ker(T ) = Ker(
√
T ) is trivial or has

dimension one. We consider the splitting ofRn described in the Lemma 4.1 and
we follow the notation used in the previous theorem. If Ker(T ) is nontrivial then
we may assume, without loss of generality, thatα1 is equal to zero andu1 is
a unit vector spanning Ker(T ), i.e. Ker(T ) = {u1}. The Ker(T ) is therefore a
subspace ofE1. A vectory has a unique decomposition

∑s
i=1 yi , with yi ∈ Ei .

Consequently, a vectory, not in the Ker(
√
T C

√
T ), is a solution to the given

equation if and only if

s∑
i=1

αiyi −
(

s∑
i=1

αiyi · yi
)

s∑
i=1

yi ∈ Ker(T ).

As in the proof of the Theorem 4.1, there exists a uniquei0 such thaty = y1+yi0,
wherey1 ∈ Ker(T ), yi0 ∈Ei0, andyi0 · yi0 = 1. ✷

The next corollary states the relationship between the solution set of Eq. (1),
denoted bySω, and the solution set of Eq. (5), denoted bySy . The image ofSy
under

√
T is denoted by

√
T Sy .

Proposition 4.1. If T is singular thenSω = KerC ∪ √
T Sy , otherwiseSω =√

T Sy .
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Proof. We notice that ify0 ∈ Sy then
√
T y0 ∈ Sω, and whenevery0 ∈ KerC we

also have thaty0 ∈ Sω. If T is nonsingular then

Sy = {
y:

√
TC

√
T y − (

y · √TC
√
T y
)
y = 0

}
.

Equation (1) is now equivalent to Eq. (5), since the change of variablesω= √
T y

is an isomorphism. Therefore, we have thatSω = √
T Sy . If T is singular, KerT

has dimension 1 (cf. Proposition 2.2), KerT = {u} where‖u‖ = 1. We recall that
KerT = Ker

√
T andRn = Im

√
T ⊕Ker

√
T . Letω0 ∈ Sω, ω0 = ωI +ωK where

ωI ∈ Im
√
T andωK ∈ Ker

√
T . If ωK = 0 thenω0 = ωI = √

T y0, which implies
that √

T
(√

TC
√
T y0 − (

y0 · √TC
√
T y0

)
y0
)= 0, y0 ∈ Sy,

andω0 ∈ √
tSy . If ωK �= 0 thenTCω0 − (ω0 · Cω0)ω0 = 0 implies thatTCω0 ·

ωK − (ω0 ·Cω0)(ω0 ·ωK)= 0 andω0 ·Cω0 = 0. Sinceω0 ∈ Sω andω0 ·Cω0 = 0
we have thatCω0 ∈ KerT . ThereforeCω0 = λu, for some scalarλ. We conclude
that λ = 0 since the inner productω0 · Cω0 = ω0 · λu = (ωK + ωI ) · (λu) =
λ(ωK · u)= 0. This proves that ifω0 ∈ Sω andω0 /∈ Im

√
T thenω0 ∈ KerC. ✷

4.2. T is not positive

Throughout this section we assume that the matrixT has some negative
eigenvalue. Proposition 2.2(4) states that there exits an orthonormal matrix of
eigenvaluesQ such that

QtTQ= diag
(
λ2

1, . . . , λ
2
k,−λ2

k+1, . . . ,−λ2
n

)
.

We consider twon-dimensional diagonal matrices with real entries,

DR = diag(λ1, . . . , λk,0, . . . ,0) and

DI = diag(0, . . . ,0, λk+1, . . . , λn).

The square root ofT is a complex matrix given by
√
T =QDRQ

t + iQDIQ
t.

We set notation as follows:R =QDRQ
t, I =QDIQ

t, and

B = {
Qe1Q

t, . . . ,QekQ
t,Qek+1Q

t, . . . ,QenQ
t},

an orthonormal basis forRn, with ei a unitn-vector with all its components equal
to zero, except for theith one. For simplicity of notation, we setvi =QeiQ

t, for
eachi. The next lemma collects properties ofR andI to be used in forthcoming
analysis.

Lemma 4.2. (1) The range ofR is spanned by{v1, . . . , vk} and its kernel by
{vk+1, . . . , vn}.
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(2) The range ofI is spanned by{vk+1, . . . , vn} and its kernel by{v1, . . . , vk}.
(3) RI = IR = 0.

Proof. Statements (1)–(3) are straightforward consequences of the following:

R(vi)=
{
λivi for i = 1, . . . , k,
0 for i = k + 1, . . . , n,

and

I (vi)=
{

0 for i = 1, . . . , k,
λivi for i = k + 1, . . . , n.

✷
Remark 4.1. The matricesR andI are respectively represented by the diagonal
matricesDR andDI , relatively to the basisB.

Now, we introduce the change of variablesω = (R + iI )y, wherey is a
complexn-vector. Lety = y1 + iy2, with y1 and y2 in Rn. It is entrained in
this change of variables thatω = Ry1 − Iy2 and Iy1 + Ry2 = 0. The relation
Iy1 +Ry2 = 0 implies thatIy1 =Ry2 = 0, since

Iy1,Ry2 ∈ {v1, v2, . . . , vk} ∩ {vk+1, . . . , vn}
(= {O}).

This shows thaty has the following representation inB:

y =
k∑

j=1

y ′
j vj + i

n∑
j=k+1

y ′′
j vj .

LetC0 be the set of all complex vectors whose real part and imaginary part are in
{v1, v2, . . . , vk} and in{vk+1, . . . , vn}, respectively. Similar reasoning also shows
thatRy1 − Iy2 �= 0 is equivalent to Ker(

√
T )∩C0 = {O}.

The next theorem reduces Eq. (1) to a real system iny1 andy2.

Theorem 4.3. If C and ICR are symmetric matrices andT is a nonsingular
matrix then Eq.(1) is equivalent to{

RCRy1 − (y1 ·RCRy1 − y2 · ICIy2)y1 = 0,
−ICIy2 − (y1 ·RCRy1 − y2 · ICIy2)y2 = 0,

(6)

wherey1 ∈ {v1, v2, . . . , vk} andy2 ∈ {vk+1, . . . , vn}.

Proof. Equation (1) becomes
√
T
(√

T C
√
T y − (

y · √T C
√
T y
)
y
)= 0,

whenω = √
T y andy ∈ C0. We recall that Ker

√
T ∩ C0 = {O}. Therefore, we

are reduced to solve√
TC

√
T y − (

y · √TC
√
T y
)
y = 0, for y ∈ C0. (7)
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On the other hand, we have that
√
T C

√
T = (RCR − ICI)+ i(ICR +RCI)

and
√
T C

√
T y = (RCRy1 −RCIy2)+ i(ICRy1 − ICIy2).

Therefore

y · √T C
√
T y = y1 · (RCRy1 − ICIy2)+ y2 · (ICRy1 − ICIy2).

Equation (7) is equivalent to the system

RCRy1 −RCIy2

− (
y1 · (RCRy1 −RCIy2)+ y2 · (ICRy1 − ICIy2)

)
y1 = 0,

ICRy1 − ICIy2
− (

y1 · (RCRy1 −RCIy2)+ y2 · (ICRy1 − ICIy2)
)
y2 = 0.

(8)

The matrix ICR is symmetric, thenRCIy2 = ICRy2 = 0 and ICRy1 =
RCIy1 = 0. Consequently, the system above simplifies to the one in the statement
of the theorem. ✷

We are ready to solve system (6). We represent byp and q the number
of distinct nonzero eigenvalues ofRCR and ICI , respectively. LetEi with
i = 1, . . . , p andFi with i = 1, . . . , q be the associated eigenspaces as described
in Lemma 4.1. Letαi andβi be the eigenvalues associated toEi and toFi , re-
spectively.

Theorem 4.4. The pair(y1, y2) is a solution of system(6) if and only if one of the
following statements holds:

(1) y1 ∈ Ker(RCR) andy2 ∈ Ker(ICI),
(2) y1 ∈Ei ∩ Sn−1, for somei = 1, . . . , p, andy2 = 0,
(3) y1 = 0 andy2 ∈ Fi ∩ Sn−1, for somei = 1, . . . , q ,
(4) (y1, y2) ∈Ei ×Fj , for somei = 1, . . . , p andj = 1, . . . , q , withαi +βj = 0,

αiβj �= 0, andy1 · y1 + y2 · y2 = 1.

Proof. Let (y1, y2) be a solution of system (6). We apply Lemma 4.1 to define a
splitting ofRn associated toRCR andICI , more preciselyRn =⊕p

i=1Ei and
Rn =⊕q

i=1Fi . Letα1, . . . , αp be the (pairwise distinct) eigenvalues ofRCR and
β1, . . . , βq be the (pairwise distinct) eigenvalues ofICI . Both y1 andy2 have
unique decompositionsy1 =∑p

i=1y
′
i andy2 =∑q

i=1y
′′
i , respectively. Since

y1 ·RCRy1 − y2 · ICIy2 =
p∑
i=1

αiy
′
i · y ′

i −
q∑
i=1

βiy
′′
i · y ′′

i ,
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we rewrite system (6) as follows:{∑p

i=1αiy
′
i −

(∑p

i=1αiy
′
i · y ′

i −
∑q

i=1βiy
′′
i · y ′′

i

)∑p

i=1 y
′
i = 0,

−∑q

i=1βiy
′′
i − (∑p

i=1αiy
′
i · y ′

i −
∑q

i=1βiy
′′
i · y ′′

i

)∑q

i=1 y
′′
i = 0.

(9)

This implies that ifαi �= 0 andy ′
i �=O (βi �= 0 andy ′′

i �=O) then

αi =
p∑
i=1

αiy
′
i · y ′

i −
q∑
i=1

βiy
′′
i · y ′′

i

(−βi = ∑p

i=1αiy
′
i · y ′

i − ∑q

i=1βiy
′′
i · y ′′

i , respectively). Therefore, there exist
at most two indicesi0 ∈ {1, . . . , p} and j0 ∈ {1, . . . , q} such thatαi0βj0 �= 0
and‖y ′

i0
‖‖y ′′

j0
‖ �= 0. This implies thaty1 = y ′

1 + y ′
i0

andy2 = y ′′
1 + y ′′

j0
where

y ′
1 ∈ Ker(RCR) andy ′′

1 ∈ Ker(ICI). Therefore system (9) becomes{
αi0y

′
i0

− (∑p

i=1αiy
′
i · y ′

i −
∑q

i=1βiy
′′
i · y ′′

i

)(
y ′

1 + y ′
i0

)= 0,

−βj0y
′′
j0

− (∑p

i=1αiy
′
i · y ′

i −
∑q

i=1βiy
′′
i · y ′′

i

)(
y ′′

1 + y ′′
j0

)= 0.
(10)

Then, clearly‖y ′
1‖‖y ′

i0
‖ = 0 since otherwise

∑p

i=1αiy
′
i · y ′

i −
∑q

i=1βiy
′′
i · y ′′

i = 0
andαi0 = 0 which contradictsαi0 �= 0. Similar reasoning shows that we also have
‖y ′′

1‖‖y ′′
j0

‖ = 0. Therefore, if‖y ′
1‖ = 0 and‖y ′′

1‖ = 0 theny1 = y ′
i0

andy2 = y ′′
j0

,
whereαi0 +βj0 = 0 andy1 ·y1+y2 ·y2 = 1, as stated in case (4). If‖y ′

1‖ �= 0 then
y1 = y ′

1 and eithery2 = y ′′
1 or y2 = y ′′

j0
. These are listed in case (1) or in case (3),

respectively. In fact, ify1 = y ′
1 andy2 = y ′′

j0
then system (10) reduces to{

βj0‖y ′′
j0

‖2y ′
1 = 0,

−βj0y
′′
j0

+ βj0‖y ′′
j0

‖2y ′′
j0

= 0.

Consequently, we havey ′
1 = 0 and‖y ′′

j0
‖ = 1.

The remaining possibility, i.e.‖y ′′
1‖ �= 0 and y1 = y ′

i0
, is equivalent to

case (2). These considerations prove that if(y1, y2) is a solution of system (6)
then it satisfies one of the 4 listed cases. The other implication follows from
straightforward calculations.✷
Remark 4.2. (1) We notice that if eitherR or I commutes withC then the con-
dition of Theorem 4.3 is satisfied. This is so becauseRI = IR. Moreover, we can
say that ifT commutes withC, C can be written as a polynomial inT , therefore
in

√
T . This implies thatC commutes with bothR andI .

(2) We point out that the general system (8) remains to be solved however
the same previous techniques may still be applied under some restrictions. For
example, if we assumey1 = 0, system (8) reduces to{

RCIy2 = 0,
ICIy2 − (y2 · ICIy2)y2 = 0.
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We apply Theorem 4.1 to conclude that the solution set of the system is given by
the intersection

Ker(RCI) ∩
s⋃

i=1

(
Ei ∩ Sn−1),

wheres is the number of distinct eigenvalues ofICI . We encounter a similar
situation if we assumey2 =O .

4.3. Stability study

The zeros of Eq. (1) are those weight values expected to remain unchanged
under the algorithm’s action. This is due to the fact thatT Cω − (ω · Cω)ω
represents the expected weight change. Given an initial weightω0, the new value
is determine by the formula

ω1 = ω0 +∆ω0,

where∆ω0 = TCω0 − (ω0 ·Cω0)ω0. To identify those initial weights for which
the iterative process stabilizes is desirable since this amounts to saying that the
network has learned and may perform as an educated device. It is a standard
procedure to consider the differential equation

dω

dt
= T Cω− (ω ·Cω)ω,

and study the stability behavior of each equilibrium point. The equilibria of
this equation, under some symmetry assumptions, were determined in Theo-
rems 4.1, 4.2, and 4.4. The strategy is to linearize the system around each equi-
librium point and apply classical results in dynamical systems to conclude its sta-
bility behavior. As followed before, we first considerT positive and nonsingular.
The differential equation to be studied is

dy

dt
= (√

T C
√
T y − (

y · √TC
√
T y
)
y
)
, whereω= √

T y. (11)

The equilibria of Eq. (11) is given in Theorem 4.1. As in Section 3.1, let

φ(y)= √
T C

√
T y − (

y · √T C
√
T y
)
y

andy0 some vector inRn, the derivative ofψ at y0 in the direction of a vector
v ∈Rn is given by

Dφ(y0)(v)= √
TC

√
T v − 2

(
v · √T C

√
T y0

)
y0 − (

y0 · √T C
√
T y0

)
v.

Remark 4.3. If y0 ∈ Ker(
√
T C

√
T ) then Dφ(y0) = √

T C
√
T . Therefore,

Ker(
√
T C

√
T ) is attracting, repelling, or saddle-type if and only if the eigenval-

ues of
√
TC

√
T are all negative, all positive, or there are two eigenvalues whose

product is negative, respectively.
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Lemma 4.3. If C is positive then
√
TC

√
T is positive.

Proof. For every vectory we havey · √TC
√
T y = √

T y ·C√
T y � 0. ✷

Proposition 4.2. If T andC are positive,T is nonsingular, andC is symmetric
theny0 is an attracting equilibrium point of Eq.(11) if and only if it is a unit
eigenvector associated to the largest simple eigenvalue of

√
TC

√
T .

Proof. Let {α1, . . . , αt } be the simple eigenvalues of
√
TC

√
T and{β1, . . . , βk}

those eigenvalues with higher multiplicity,{n1, . . . , nk}, respectively. Attached to
the set of eigenvalues we define an orthonormal basis of eigenvectors denoted by

B = {
uα1, . . . , uαt , u

β1
1 , . . . , uβ1

n1
, . . . , u

βk
1 , . . . , uβknk

}
.

We assume thaty0 is one of the eigenvectors associated to a simple eigenvalue,
sayy0 = uαj . The matrix representingDφ(y0), relatively toB, is diagonal, with
diagonal entries given by

dii =


αi − αj , if i �= j andi = 1, . . . , t,
−2αj , if i = j,

βi − αj , if i = t + 1, . . . , n.

Therefore,y0 is an attracting equilibrium point if and only ifαj is the largest

eigenvalue. Lety0 =∑n1
i=1aiu

β1
i where

∑n1
i=1a

2
i = 1 (ory0 · y0 = 1). The matrix

representingDφ(y0), relatively toB, is a block matrix of the following form:[
A O O

O B O

O O C

]
.

The t-matrixA is diagonal whoseith-diagonal entry is equal toαi − β1, B is a
n1-matrix given by

−2β1


 a1

...

an1


 [a1, . . . , an1],

andC is an diagonal matrix, of dimensionn−n1− t , composed byk−1 diagonal
blocksCi with i = 2, . . . , k. EachCi has all the diagonal entries equal toβi − β1,
with i = 2, . . . , k. The linear transformationDφ(y0) has an eigenvalue equal to 1,
namely

∑n1
i=1a

2
i = 1. This implies thaty0 is not stable. This completes the proof

of the theorem. ✷
Remark 4.4. From arguments presented in the proof above, the invariant sphere
defined by

∑n1
i=1aiu

β1
i , where

∑n1
i=1 a

2
i = 1, is stable if and only ifβ1 is the

largest eigenvalue of
√
T C

√
T .
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5. Conclusions

In this paper we have studied a learning rule proposed by P. Adams. This rule
involves synaptic adjustments that incorporate both, a probabilistic component
representing synaptic replication and a nonlinear forgetting term.

A learning rule is interpreted as an algorithm that searches for a natural weight
vector whose components are assigned as synaptic weights to the underlying
network. This algorithm relies upon a selection based on an iterative action on a
collection of inputs. A selection may be achieved when an iterative rule stabilizes.
We deduce the rule in Section 2 and reduce the problem to solving the matrix
equation (1) and studying the stability type of its solutions. The solution set of
Eq. (1), generically, consists of an hyperplane (kernel of resulting correlation
matrix), a set of isolated points (unit eigenvectors of the same resulting matrix),
and a set of spheres (nonisolated unit eigenvectors of the same matrix). At each
one of these vectors the algorithm halts. The identification of those stable ones is
desirable since the probability of choosing one such vector is extremely small. The
hope is to increase such probability allowing the algorithm to run for sometime
and observe convergence. This study is done in Section 4.3 where we show that
under some conditions we observe convergence to a principal component. In
addition, this allows us to conclude that, Adams’ model acts as an information
filter as in Oja’s proposed model. Furthermore, when spheres exist, considered
as invariant spaces, the analysis of their stability follows a similar behavior as
the one presented for isolated vectors. The biological interpretation of this seems
unclear at this point, but this fact might bring an enriched filtering performance.
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