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Abstract

We study the convergence behavior of a learning model with generalized Hebbian
synapses.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Inspired by the anatomy and physiology of our brain, artificial neural networks
are mathematical models that attempt to mimic specific brain functions, such as
learning. A neural network architecture consists of several additive processing
units (neurons) interconnected by channels (synapses). Quantifiable information
flowing through the synapses changes via multiplicative factors, designated
connecting weights. These weights reflect the relationship between pre- and post-
synaptic neural activities, also referred as incoming and outgoing signals.

Learning is a brain process by which the connecting weights undergo a
sequence of changes due to outside stimulation. This network’s internal response
enables an environmental adaptation and facilitates the development of problem-
solving skills. In colloquial terms, we may say that, after being exposed to a list
of problems and their respective solutions, we expect to be equipped to solve
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not only a familiar problem (one from the list) but also a spectrum of new
ones. Algorithms, implementable as neural networks, that attempt to perform this
function have been proposed by several researchers, among them we list Hebb,
Kohonen, Oja, and Adams (cf. [1,6,12,19]).

According to the Hebbian postulate of learning, the synaptic adjustments
are given by scaled products of the incoming and outgoing signals. Such an
algorithm leads to an exponential growth and therefore synaptic saturation. In
1988, Kohonen introduced a forgetting term that limits the synaptic weight growth
and consequently ameliorates this saturation problem (cf. [12]). The use of a
nonlinear correcting term incorporated into the synaptic changes results in a
negatively accelerated synaptic modification curve. Kohonen’s learning rule aims
to reduce the dimension of incoming signal patterns. Along this line of thought
Oja, in [19], introduced a network that behaves as a selective learning process by
filtering information and therefore adapting from an internally selected subset of
inputs. This approach was based on the principal component analyzer statistical
method (cf. [5]). Recently, Kingsley and Adams proposed a generalization of
Oja’s rule (cf. [7]) by incorporating a probabilistic component at the synaptic
level (cf. [11]). Biological observations suggest that synaptic changes occur not
only between co-active pairs of neurons but between a neuron from the pair and
its immediate neighbors. This fact is referred as “volume learning” (cf. [16]).

In this paper, we study Adams learning model following a similar approach to
the one used by Oja (cf. [17,18]). This learning rule incorporates a Hebbian type
of synapses where the updating relies upon a synaptic replication. We answer a
guestion posed by P. Adams: “Will a stable weight vector emerge and how will it
be related to the network’s parameters?”

Convergence of this model is reduced to the stability behavior of the equilib-
rium points of a nonlinear system of differential equations. This study allows us
to establish conditions for the algorithm to converge.

In Section 2, we define the learning rule, introduce notation to be used
throughout the paper, and reduce the problem to solving a matrix equation. In
Section 3, we solve a particular case where the weight matrix is a correlation
matrix of independent random variables. The general case is studied in Section 4.
The stability behavior is also analyzed in Section 4 (4.3), and sufficient conditions
for convergence are derived. In Section 5, we summarize and interpret the main
results of the paper.

2. Background and notation

Adams learning rule is implemented in a feedforward neural network avith
input neurons and one output neuron whose architecture is shown in the picture
below.
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The input vector, denoted by, represents an-dimensional random vector
following a joint probability distribution. The output value, denotedWyis the
outcome of the network’s action an As the information travels through the
synapses, it changes linearly via a multiplicationdsy, the connecting weight
for the synapse attached to the input neujoifhe connecting weight vector is
denoted byw. The summation of all these altered input componeﬁlﬁ_b1 wj&;,
is the value ofV. The main goal is to define a converging algorithm that performs
the network’s adaptation without any outside interference. Such network is often
called unsupervised learning rule. If convergence occurs, the network is fully
characterized and ready to perform as an “educated” device. In [11], Kingsley
and Adams consider that, in a learning process, new synapses may be created
under a constant error rate, denoted By This learning rule relies upon a
generalized type of Hebbian synapses that incorporates a synaptic replication and
uses a correcting nonlinear term, cf. [19]. The updating for a Hebbian synapse is
proportional to the product of the pre- and post-synaptic activities. More precisely,
the change for the connecting weightis A&; V. Here, we allow synaptic changes
to follow a probabilistic correlation rule between pre-synaptic and post-synaptic
activities. In fact, as learning progresses, a synaptic strength may capture nearby
activity. This is done by the creation of temporary synapses from the closest
neurons to the output one. The synaptic corrections are therefore given by

G |
ONO ()

1 1
Aw; = V((l— E)é + §E§i+1+ éEéifl - Vwi),
fori=2,...,n—1,

or

1
Aw; = V((l— E)¢ + EESiil - Va)i), fori =1 orn,
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respectively. As mentioned before, the network’s outcoming signal is given by
V= Z;:l w;&;. Substituting the value df in the expression of\w;, we obtain:

(1= E)3 j 10§56 + 3E Yic1wiEjiva

+ %E Y wjgjgi-1— Y cwjongjgkwi, i #1andn,
(1= E)3j 10§56 + 3E Y i—1wigjin

=2k wjorjfrwi, i=1orn.
The expected synaptic updating follows the vector equatiQR, = wold + Aw.

Therefore, it can be represented by the cubic vector-valued polyndraial —
(w - Cw)w, whereC = [£;&;];j, andT is the tridiagonal matrix

1-E ifi=j,
fijZ:E/Z if i —j|l=1,
0 otherwise
At the equilibrium points, where the algorithm converges, we expect the synaptic

changes to average zei@lw) = 0. Therefore, we reduce the problem to solving
the equation

Aw; =

TCw— (w-Cw)w=0, 1)

with C now representing a correlation matrix of expected values,@.e=
[(5&;)];;, and “- " the standard inner product iR".

The next two propositions state properties of the malttixo be applied in
subsequent results.

Proposition 2.1. (1) The eigenvalues of matrik are Ay =1 — E + E coSkmn/
(n+1),withk=1,...,n

(2) T is positive if and only if

cost(1- 1)
m—cosi(l-1)

E<1 or E ! and <
X A > = X
2 2 "

Proof. (1) The matrixT is symmetric, therefore all its eigenvalues are real.
We notice thatT = (1 — E)I + %EA, where I is the identity andA is the
tridiagonal matrix with zeros along the diagonal, 1's right above and right below
the main diagonal. It is shown in [3] that the eigenvaluesdofire equal to
2cos{n+1) fork=1,...,n. This implies that the eigenvalues &f are equal
tol— E+Ecos( 1) fork 1,.

) T is posmve if and only |f aII |ts eigenvalues are nonnegative. This is
equivalentto - E + E cos( 1) = 0 or cos; ) >1— 1 . This last inequality
is clearly true forE < 5. If E > % then cos 1) = 1-— L or equivalently

E
n<cost(l—4)/(r - c0§1(1 ). o
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The next proposition collects some well-known results in linear algebra. For a
proof we refer the reader to [4] or [9]. We remark ti@trepresents the transpose

of 0.

Proposition 2.2. (1) All eigenvalues of" are simple and if”" is singular its kernel
is one-dimensional.

(2) T is diagonalizable, i.e. there exists an orthonormal matrix of eigenvectors
of T, Q, such thatQ'T Q = D with D =diag(A1, A2, ..., Ay).

(3) If T is positive then its square rooY/T , is a real matrix equal to

o diag(v/a1, V22, ..., v/ ) O

(4 If T is not positive then its square root is a complex-valued matrix equal to

o diagva1, VA2, ..o VA i A1, i/ A ) O,

whereis, ..., A; are the nonnegative eigenvaluesiof

3. A particular case: Independent inputs

In this section we solve the equatidhCw — (v - Cw)w = 0 assuming
that the input vectot = [£1, ... &,] is ann-dimensional random variable with
independent components. This means that the joint distribution function for
& factorizes into a product of marginal density functionsf (¢1,...,&,) =
[T, fi(&). The correlation matrixC is now given by the product's. Given
k vectors inR", {v1, ..., vt}, we denote byfvy, ..., vx} the vector space spanned
by {v1, ..., v}, and by Ke(C) the kernel ofC.

Proposition 3.1. The matrix C defines an orthogonal invariant splitting &,
R" =Ker(C) & {§}.

Proof. The matrixC is symmetric and has two eigenvalugs= 0 andi1 =
E2 4+ €2 +---+ &2 | +£2. The eigenspace associated withis spanned by¢},
and Ke(C) has dimension — 1. O

3.1. SolvingTCw — (w - Cw)w =0

Our goal is to determine the solution s&t,of the matrix equation above. We
start by noticing that KéC) C S. Vectors inS that are not in KgiC) are of the
form n + t& with n € Ker(C) andr a real number. Moreoves, is invariant under
Z» actions, meaning thatif € S so is—x.

Letp(w) =TCw — (v - Cw)w, then

P +18) = 01T () — 2r|€)1%€ — 21 )E1%n.
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We conclude thap (y + &) = 0 if and only ifr = 0 or T (&) = t[|£[|?(n + 1£). If
T (&) =t]|&]%(n +1t&) then

£-TE) =& -tlEI12(n+18) =2)|&|*  (where|g)|® =& - &).

This implies thatr = +(& - T(£))Y2/||€||2 whenever¢ - T'(¢) is nonnegative
which allows us to write the following set relations:

(& TENY? )}
€12
Proposition 3.2. If £ - T (¢) > 0 then there exists a uniqugee Ker(C) such that

(& - T(E)Y? )}
HE ’

Ker(C) € S CKer(C) U [Ker(C) + <

S=Ker(C)U {i(n +
If £ T(&)<0thenS =Ker(C).
Proof. The kernel ofC is clearly contained irf so additional solutions are of the

form n + t& for somen € Ker(C) andr # 0.
It was shown before that= +(T'¢ - £)1/2/|/£||2. We also notice that

CeN1/2
¢<%s> e Ker(C)
since
(Ts- )17, ) << £ 52 (T& - £)32 2)
MT(E) — ——5—A :
d’( HE gz T 6 - e MlElE )
=0.
If
(Ts's>1/2>
B — =0
¢< G
then
(T& - £)1/? )
"’( T f)<
and therefore
(Té-é‘)m)
422 2
¢<” GHES
(T§-§)Y? (T& - £)32 (TE - £)
=t———7—nmT S TST _ N
g T F e g - gl

12
:(p(i(Té £)

HE $> —(T§-&)n=—(T&-En#0,
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forn# 0. If

C£y1/2
o Saire) o

then we determingg € Ker(C) such that
(TE - §)Y? )
+-——-£]=0
¢("° g
or equivalently
(TE - §)Y?
i¢<7
€112
It follows that

1 (T& - &)Y/ ) 1 < (T&-§) )
::l': ::’: T - )
o (T§-§)¢< €112 ; (T&-§)1/2 5 €112 5
and therefore

1 (Té’é)l/z)
"‘(Ts-s>¢( ez ) °

3.2. Stability study

é) —(T©&)-&)no=0.

Following the ideas presented in [19], the stability of the discussed algorithm
is studied by considering the differential equation

d—w:TCa)—(a)-Ca))a). (2)

dt
We recall that ifT¢ - € > 0 then equilibrium set of the equation above is &r
together with two additional isolated points, see Proposition 3.2.

First, we show that the hyperplane K€ is repelling. In fact, the derivative

of ¢ at a generic poing € Ker(C) is a linear transformation iR"” given by
D¢ (n)(v) = T Cv, wherev is ann-vector. The matrix’ C has two eigenvalues.
One eigenvalue is equal to 0 with & — 1)-dimensional eigenspace, Ke€Y).
The additional eigenvalue, denoted py, has an associated eigenvector, denoted
by n1 + 11§, with 11 # 0. This is translated in the following equation

Do (m)(n1 + 118) = p1(n1 +116),
or equivalently

TCm(m+né) =nrTE) = pni(n1+né).
This implies thatu1 = T& - £(> 0).
We consider one of the isolated equilibrium points,
(- TE)Y?

=+ ,
HE
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as described in the Proposition 3.2. The linearization of the equation in a neigh-
borhood of this point is given by
dw
— =D¢p(P — P).
o ¢(P)(w — P)
We now determine the linear transformatibi (P). Let v be a generia-vector,
then

. 1/2 . 1/2
g+ ETE e ) — g+ ETE
D¢ (P)(v) = I|m0
t—

t

We apply the definition o, the properties of inner product, and the assumption
that¢ (P) = 0 to conclude that

T2
D¢(me::D¢(n+£§__§2L_§)@)

HE
. 1/2 . 1/2
:TCU_Z(:‘;‘ T(é‘;) /\1(v-$)<n+(§ T(é‘;) )
1 1
.T 1/2 T 1/2
_(”+(§n;?) 5>'C<”+(§n;?) 5)”

We notice that ifv € Ker(C) thenv is an eigenvector oD¢ (P) with eigenvalue
—(T¢ - &). Therefore, the eigenspace associated witlf ¢ - £) has dimension
n — 1. As before, we determine the missing real eigenvalue, denoted bye
represent byy; + 11& an associated eigenvector. We have the equation

D¢ (PY(m + 116) = pa(n1 + 11§),

straightforward computations imply thaf = —2(T¢ -£). These allow us to write
the next proposition, but before we review the definition of attracting and repelling
invariant space (cf. [2,8]).

Definition 3.1. SupposeA is an invariant space of the differential equation
x' = f(x), where f is a differentiable map defined iR". The spaced is said

to beattracting if there exists an open neighborhood 4f U, such that every
solutionx(¢), with x(0) € U, approached ast increases. The spackis said to

be repellingif for every open neighborhoot! of A there exist a neighborhood
Up contained inU andty € R4+ such that every solution(t), with x(0) € U,
x(t) ¢ U for t > tp. An invariant space that is neither attracting nor repelling is
said to be ofsaddle-typeThe basin of attraction of an attracting invariant space
A is the set of all points that evolve towardas time increases.

If A reduces to a single point then we referAas being an attracting, repel-
ling, or saddle equilibrium point.
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Proposition 3.3. If £ - T (&) > 0 then systeng2) has two attracting equilibrium
points. The basin of attraction of each equilibrium point is the half space
containing the point and bounded Kgr(C).

Proof. The matrixC is symmetric so it is diagonalizable via an orthonormal
matrix M (Antonne’s theorem, see [9]). L& be the diagonal matrix with zeros
along the diagonal except for the last entry which is equalite= ||€]|2. The
change of variable® = My allows us to rewrite system (2) as follows:

d
d—f =BDy — (y- Dy)y, 3

where

Componentwise, after a convenient time rescaling, this system becomes

dy; o dy
d_tl =Dbinyn — ysyi if i #n, dl‘n

This system has the following qualitative dynamical behavior:

=Dbunyn — y3~ 4)

(1) y,-direction is invariant.

(2) There are at most 3 equilibrium points and exactly threk,jff> 0.

(3) The hyperplane, = +/b,, (andy, = —/b,,, ) is invariant and stable.

(4) Initial conditions with nonzeraith-component evolve toward one of the
hyperplanes, = +/b,, or y, = —/b,, depending on the sign of the initial
condition’snth-component.

Systems (2) and (3) are topologically equivalent or qualitatively similar (cf. [15]).
This completes the proof of the propositiona

Remark 3.1. It also follows from previous arguments that%f - &€ < 0 then
Ker(C), the solution set of Eq. (1), is attracting. We notice thiat & = b,,,,.

4. General case

This section is divided into three parts. First, we solve Eq. (1) Withym-
metric andT positive. Second, we solve the given equation for a mdtrixith
negative eigenvalues together with additional symmetry assumptions. Finally,
we study the stability behavior of solutions and establish conditions that assure
convergence of the algorithm.
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4.1. T is positive

We recall thatT is said to be positive if and only if all its eigenvalues are
nonnegative (cf. [20]). As stated in Proposition 2.2(B)as real square roafT
given by

Qdiag(y/A1, Va2, ....v/An ) Q"

We notice thaty/7 is symmetric therefore the change of variables V/Ty
transforms Eq. (1) into

VT(VTCVTy — (y-VTCNTy)y) =0. (5)

The solution setS of Eqg. (5) consists of the set of all vectogssuch that
VTCVTy— (y-JTCVTy)yisinthe Ke(v/T).

The following lemma states a splitting & naturally induced by a general
symmetric matrix. For a proof we refer the reader to [4].

Lemma4.1. Let A be a symmetrie-dimensional matrix and the number of its
distinct eigenvalues. The matrix defines an orthogonal splitting at” into a
direct sum of invariant eigenspace®! = ;_; E;.

The next theorem determines the solution set of Eq. (5) assumimgnsin-
gular.

Lemma 4.1 implies the existence of an invariant splittingRdf determined by
JTCA/T, into orthogonal eigenspacés, i =1, ...,s, wheres is the number
of distinct eigenvalues of/ T C+/T . Letw; be the eigenvalue associated with
We use the standard notation for the unit spher®ins” 1.

Theorem 4.1. If T is nonsingular and positive and is symmetric thery is a
solution of

VT(VTCVTy - (y-VTCNTy)y) =0
if and only if

y eKer(vTCVT)U (LSJ EiN S”1>.
i=1

Proof. A vector y can be uniquely decomposed into the sQnj_; yi, with
y; € E; for eachi. Then, we have

VT(VTCVTy - (y -NTCNTy)y)
cofrea(E)- (&) we(g)5)

i=1 i=1 i=1 i=1
=0
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if and only if

N S S
> aiyi= (Zai}’i : yi) > v
i=1 i=1 i=1

The orthogonality of the eigenspacis;}i—1
a; # 0 andy; # O we have

N
O =) iy i
i=1

Thereforey e Ker(~/TC+/T) or there exists, with «; # 0, such thaty € E;. In
this latter case, we have th@ty||°=)y-y=1. O

s implies that every for which

.....

Theorem 4.2. If T is positive andC symmetric thery is a solution of
ﬁ(ﬁCﬁy—(y'ﬁCﬁy)y)zo
if and only if

yeKer(WTCVT)U (Ker(T) + (LSJE, N S”1>>.

i=1

Proof. Propositions 2.1 and 2.2 imply that K&t = Ker(+/T ) is trivial or has
dimension one. We consider the splitting ®f described in the Lemma 4.1 and
we follow the notation used in the previous theorem. If ®@®ris nontrivial then
we may assume, without loss of generality, thatis equal to zero and; is

a unit vector spanning KéF), i.e. KenT) = {u1}. The Ke(T) is therefore a
subspace of1. A vectory has a unique decompositidn;_; yi, with y; € E;.
Consequently, a vector, not in the Ket+/TC+/T), is a solution to the given
equation if and only if

N S S
> eiyi— (Zai)’i ')’i> > yi eKer(T).
i=1 i=1 i=1

As in the proof of the Theorem 4.1, there exists a unigleich thaty = y1 + yj,,
wherey; € Ker(T), yi, € Eiy, andy;, - yio =1. O

The next corollary states the relationship between the solution set of Eq. (1),
denoted bys,,, and the solution set of Eq. (5), denoted $)y The image ofS,
under+/T is denoted bw/T'S,.

Proposition 4.1. If T is singular thensS, = KerC U «/TS},, otherwisesS,, =

VTS
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Proof. We notice that ifyg € Sy then/Tyo € S,,, and wheneverg € KerC we
also have thagg € S,,. If T is nonsingular then

Sy={y: VTCVTy - (y-VTCVTy)y=0}.

Equation (1) is now equivalent to Eq. (5), since the change of variabtes/T y
is an isomorphism. Therefore, we have tligt= «/TS},. If T is singular, Kefl
has dimension 1 (cf. Proposition 2.2), Kee= {u} where|u| = 1. We recall that
KerT = Ker+/T andR"” = Im~«/T ®Ker«/T. Letwg € S,, wg = w; + wx Where
w; € Imy/T andwg € Kery/T. If wg =0 thenwp = w; = /T yo, which implies
that

ﬁ(ﬁCﬁyo - (yo . ﬁCﬁyo)yo) =0, yo€Sy,

andwo € v/1Sy. If wg # 0 thenT Cwg — (wo - Cwp)wp = 0 implies thatl Cawy -
wg — (wg- Cwo)(wo - wg) =0 andwg - Cwg = 0. Sincewg € S, andwg - Cawg =0
we have thaCwg € KerT. ThereforeCwg = Au, for some scalak. We conclude
that A = 0 since the inner produebg - Cwo = wo - Au = (wg + wy) - (Au) =
Mok -u) = 0. This proves that ifxg € S, andwo ¢ Im+/T thenwg € KerC. O

4.2. T is not positive

Throughout this section we assume that the malffihas some negative
eigenvalue. Proposition 2.2(4) states that there exits an orthonormal matrix of
eigenvalueg such that

O'TQ =diag(As, ..., 22, =22 4, ..., —A2).

We consider twa-dimensional diagonal matrices with real entries,
Dg =diag(A1, ..., A, 0,...,0) and
Dy =diagO, ...,0, a1, ..., An).

The square root of is a complex matrix given by
VT =0DrQ'+iQD; 0"

We set notation as followsR = QDr Q', I = O D; O!, and
B={Qe10',..., 0er 0", Qer 410", ..., Qe, 0},

an orthonormal basis fak”, with e; a unitn-vector with all its components equal
to zero, except for theth one. For simplicity of notation, we set = Qe; Qt, for
eachi. The next lemma collects properties®fand! to be used in forthcoming
analysis.

Lemma 4.2. (1) The range ofR is spanned byvs, ..., vt} and its kernel by
{Vk+1, .-+, vn ).
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(2) The range of is spanned byvi1, ..., v,} and its kernel byvs, ..., vt}.
(3) RI=IR=0.

Proof. Statements (1)—(3) are straightforward consequences of the following:

N ) Aiv fori=1,...,k,
R(“l)—{o fori=k+1.....n,

and

0 fori=1,...,k,

rvp fori=k+1,...,n. H

I(Ui):{

Remark 4.1. The matricesk and! are respectively represented by the diagonal
matricesDg and Dy, relatively to the basis.

Now, we introduce the change of variables= (R + il)y, wherey is a
complexn-vector. Lety = y1 + iyp, with y1 andy2 in R". It is entrained in
this change of variables that= Ry; — Iy and Iy1 + Ry> = 0. The relation
Iy1 4+ Ry2 =0 implies that/y; = Ry> =0, since

Iy1, Rys € {v1,v2, ..., vk} N {Vk41, ..., Up} (: {O})
This shows thab has the following representation 1

k n
y=2 vuiti ) v
=1

j=k+1

Let Cop be the set of all complex vectors whose real part and imaginary part are in
{v1, v2,..., v} and in{vgy1, ..., v, }, respectively. Similar reasoning also shows
that Ry; — Iy» # 0 is equivalent to Ken/T ) N Co = {O}.

The next theorem reduces Eq. (1) to a real system andy>.

Theorem 4.3. If C and ICR are symmetric matrices andl is a nonsingular
matrix then Eq(1) is equivalent to

{RCRm— (y1-RCRy1 —y2-IClyz)y1=0, (©)
—I1Cly2 — (y1- RCRy1 — y2-I1CIy2)y2=0,

whereyy € {v1, v, ..., v} andyz € {vky1, ..., Un ).

Proof. Equation (1) becomes
ﬁ(ﬁCﬁy—(y'ﬁCﬁy)y)zo,

whenw = /Ty andy € Co. We recall that Kex/T N Co = {0}. Therefore, we
are reduced to solve

«/TC«/Ty—(yw/TCﬁy)y:O, for y € Co. @)
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On the other hand, we have that

VTCNT =(RCR - ICI)+i(ICR+ RCI)
and

VTCNTy=(RCRy1 — RCIy) +i(ICRyy — ICIyp).
Therefore

y-vVTCNTy=y1-(RCRy1— ICIy2) + yo- (ICRy1 — ICIy»).
Equation (7) is equivalent to the system

RCRy; — RClIy;

— (y1: (RCRy1 — RCIy2) + y2- (ICRy1 — ICly2))y1 =0, @®)
ICRy1— ICly;

— (y1-(RCRy1— RCIy2) + y2- (ICRy1 — ICIy2))y2 =0.

The matrix ICR is symmetric, thenRCIy, = ICRy, = 0 and ICRy; =
RC1Iy; = 0. Consequently, the system above simplifies to the one in the statement
of the theorem. O

We are ready to solve system (6). We representpbgnd ¢ the number
of distinct nonzero eigenvalues ®&CR and IC1, respectively. LetE; with
i=1...,pandF; withi=1,...,q be the associated eigenspaces as described
in Lemma 4.1. Lety; and 8; be the eigenvalues associatedBpand to F;, re-
spectively.

Theorem 4.4. The pair(y1, y2) is a solution of systetf®) if and only if one of the
following statements holds

(1) y1 e Ker(RCR) andy; € Ker(ICI),

(2) yre E;ns" 1 forsome =1,..., p,andy, =0,

(3) yr=0andyz e F,ns" 1 forsome =1,...,q,

(4) (y1,y2) € E; x Fj,forsome =1,...,pandj=1,...,q,withe; + 8; =0,
a;ifj #0,andyr-y1+yz2-y2=1.

Proof. Let (y1, y2) be a solution of system (6). We apply Lemma 4.1 to define a
splitting of R" associated t’CR andIC1I, more precisehlR" = B!_; E; and

R" = @f’zl F;.Letoay, ..., o), be the (pairwise distinct) eigenvaluesR€ R and

B1, ..., By be the (pairwise distinct) eigenvalues bf' 7. Both y; andy, have
unique decompositiong = Y/, y/ andy2=Y"7_; v/, respectively. Since

p q
Y1+ RCRy1 —y2 - ICIya=) iy} -y{ = Biv/ ¥/,
i=1 i=1
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we rewrite system (6) as follows:
Yiigeny; = (Xigenyi v = iy Byl - y]) Xy vi =0,
=2 By = (Xiiyeny) i = X B y)) iy =0.
This implies that ifo; # 0 andy! # O (B; # 0 andy;’ # 0) then

p q

li / 4 4

o = Zaiyi Y~ Z,Biyi Vi
i=1 i=1

(=Bi =X F jaiyl -yl = >0, Biv!' - ¥/, respectively). Therefore, there exist
at most two indiceso € {1,..., p} and jo € {1,..., ¢} such thata;,8;, # 0
and ||y | ||y;fo|| # 0. This implies thaty; = y; + y; andyz = y] + y;’o where
y1 € Ker(RCR) andy; € Ker(I1C1I). Therefore system (9) becomes

)

oy, — (g iy -yl = Xy By - ) (i +¥},) =0,
—Bjo¥y — (Cigeiyi -y = X By -y (61 + 7)) =0.

Then, clearlyly;|llly; || = 0 since otherwis&~_ a;y; - y/ = >1_; Biy/ - v/ =0
ando;, = 0 which contradicts;, # 0. Similar reasoning shows that we also have
Iy 11y} Il = 0. Therefore, ifijy; || = 0 and||y{ | = 0 theny; = y; andyz =y,
wherea;, + 8, = 0 andy1- y1 +y2- y2 = 1, as stated in case (4).[I§] || # 0 then
y1=y; and eitheryz = yJ or yo = y;/o These are listed in case (1) or in case (3),
respectively. In fact, ify; = y; andyz = y;’o then system (10) reduces to

(10)

Biolly}iI7¥4 =0,
2
_ﬂjoy}; + ﬂ]o”y;o” y;o =0.

4

Consequently, we hawg =0 and|ly} Il =1.

The remaining possibility, i.elly{|l # 0 and y1 = y/ , is equivalent to
case (2). These considerations prove thawif, y2) is a so?ution of system (6)
then it satisfies one of the 4 listed cases. The other implication follows from
straightforward calculations.

Remark 4.2. (1) We notice that if eitheiR or I/ commutes withC then the con-
dition of Theorem 4.3 is satisfied. This is so becalge= I R. Moreover, we can
say that ifT commutes withC, C can be written as a polynomial iR, therefore
in /T. This implies thalC commutes with bottk and1.

(2) We point out that the general system (8) remains to be solved however
the same previous techniques may still be applied under some restrictions. For
example, if we assumg = 0, system (8) reduces to

RCIy; =0,
ICIy, — (y2-ICly2)y2=0.
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We apply Theorem 4.1 to conclude that the solution set of the system is given by
the intersection

S
Ker(RCT) N J(E: ns"Y),
i=1
wheres is the number of distinct eigenvalues b€ 7. We encounter a similar
situation if we assume; = O.

4.3. Stability study

The zeros of Eq. (1) are those weight values expected to remain unchanged
under the algorithm’s action. This is due to the fact thidfw — (0 - Cw)w
represents the expected weight change. Given an initial weighhe new value
is determine by the formula

w1 = wo + Awo,

whereAwg = TCwo — (wo - Cwp)wo. To identify those initial weights for which

the iterative process stabilizes is desirable since this amounts to saying that the
network has learned and may perform as an educated device. It is a standard
procedure to consider the differential equation

9 o (- Co)
— = w—(v-Cow,
dt

and study the stability behavior of each equilibrium point. The equilibria of
this equation, under some symmetry assumptions, were determined in Theo-
rems 4.1, 4.2, and 4.4. The strategy is to linearize the system around each equi-
librium point and apply classical results in dynamical systems to conclude its sta-
bility behavior. As followed before, we first considErpositive and nonsingular.

The differential equation to be studied is

Z—f = (VTCVTy—(y-~TCVTy)y), wherew=~Ty. (11)
The equilibria of Eq. (11) is given in Theorem 4.1. As in Section 3.1, let
¢(y)=ﬁCﬁy—(y’ﬁCﬁy)y

and yp some vector inR", the derivative ofy at yp in the direction of a vector
v € R" is given by

D¢ (o) (v) = VTCVTv — 2(v - VT CVT yo) yo — (yo - VT CVT yo)v.

Remark 4.3. If yp € Ker(v'TC+/T) then D¢ (yo) = ~VTC~/T. Therefore,
Ker(~TC+/T) is attracting, repelling, or saddle-type if and only if the eigenval-
ues of/TC+/T are all negative, all positive, or there are two eigenvalues whose
product is negative, respectively.
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Lemma 4.3. If C is positive then/T C+/T is positive.
Proof. For every vectoy we havey - TCv/Ty =+/Ty-C/Ty>0. 0O

Proposition 4.2. If T and C are positive,T is nonsingular, andC is symmetric
then yp is an attracting equilibrium point of Eq11) if and only if it is a unit
eigenvector associated to the largest simple eigenvalwéfat /T .

Proof. Let {a1,...,a,} be the simple eigenvalues AT C~/T and{B, ..., i}
those eigenvalues with higher multiplicitys1, . . ., ni }, respectively. Attached to
the set of eigenvalues we define an orthonormal basis of eigenvectors denoted by

o o, B1 Bk .
B:{u Lo u™uy ,...,ufi,...,ul ,,ugi}

We assume thatp is one of the eigenvectors associated to a simple eigenvalue,
sayyo = u% . The matrix representingp¢ (yo), relatively tos, is diagonal, with
diagonal entries given by

o —aj, ifijandi=1,...,1,
Bi —aj, ifi=¢tr+1,...,n.
Therefore,yg is an attracting equilibrium point if and only i; is the largest
eigenvalue. Levo = Y"1, aiuiﬂl where3""*, a? =1 (or yo - yo = 1). The matrix
representindd¢ (yo), relatively to3, is a block matrix of the following form:
A O O
[o 5 0} |
O 0 C
The t-matrix A is diagonal whoséth-diagonal entry is equal t®;, — 81, B is a
ni-matrix given by
ai
_2/31 ' [alv"'5al’ll]a
ap,

andC is an diagonal matrix, of dimensien-n1 — ¢, composed by — 1 diagonal
blocksC; withi =2, ..., k. EachC; has all the diagonal entries equalgo— B1,
withi =2, ..., k. The linear transformatio®¢ (yo) has an eigenvalue equalto 1,
namely>""%, ai2 = 1. This implies thatyg is not stable. This completes the proof
of the theorem. O

Remark 4.4. From arguments presented in the proof above, the invariant sphere
defined byZ?ilaiufl, where} ', a? = 1, is stable if and only ifg; is the
largest eigenvalue of TC/T.
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5. Conclusions

In this paper we have studied a learning rule proposed by P. Adams. This rule
involves synaptic adjustments that incorporate both, a probabilistic component
representing synaptic replication and a nonlinear forgetting term.

A learning rule is interpreted as an algorithm that searches for a natural weight
vector whose components are assigned as synaptic weights to the underlying
network. This algorithm relies upon a selection based on an iterative action on a
collection of inputs. A selection may be achieved when an iterative rule stabilizes.
We deduce the rule in Section 2 and reduce the problem to solving the matrix
equation (1) and studying the stability type of its solutions. The solution set of
Eg. (1), generically, consists of an hyperplane (kernel of resulting correlation
matrix), a set of isolated points (unit eigenvectors of the same resulting matrix),
and a set of spheres (nonisolated unit eigenvectors of the same matrix). At each
one of these vectors the algorithm halts. The identification of those stable ones is
desirable since the probability of choosing one such vector is extremely small. The
hope is to increase such probability allowing the algorithm to run for sometime
and observe convergence. This study is done in Section 4.3 where we show that
under some conditions we observe convergence to a principal component. In
addition, this allows us to conclude that, Adams’ model acts as an information
filter as in Oja’s proposed model. Furthermore, when spheres exist, considered
as invariant spaces, the analysis of their stability follows a similar behavior as
the one presented for isolated vectors. The biological interpretation of this seems
unclear at this point, but this fact might bring an enriched filtering performance.
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