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Conformal welding of Texas

Image by Chris Bishop



Hyperbolic geodesics in Texas

Hyperbolic geodesics in inverted Texas

Images by Chris Bishop, using Toby Driscoll’s code



MAIN RESULT

Every such h : S1 æ S1 is called a
conformal welding.

NOT every „ : S1 æ S1 is a welding.

Theorem (R. 2025)
Every circle homeomorphism is the
composition of two conformal
welding homeomorphisms.
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WHEN WILL „ : S1 æ S1 BE A WELDING?

„ : S1  is quasisymmetric if
there is M < Œ s.t.

M≠1 Æ |„(I)|/|„(J)| Æ M,

where I, J µ S1 are two adja-
cent arcs of equal length.
Theorem (Pfluger, 1960):
Every quasisymmetric „ : S1  
is a welding.

Non-example:

„(x) =
I

x for x Æ 0
x3 for x Ø 0.
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„ : S1  is quasisymmetric if there is M < Œ
s.t.

M≠1 Æ |„(I)|/|„(J)| Æ M,

where I, J µ S1 are two adjacent arcs of equal
length.

Theorem (Pfluger, 1960):
Every quasisymmetric „ : S1  is a welding.
The Jordan curve is a quasicircle.

Conformal welding is important in:
- Teichmüller theory.
- Kleinian groups.
- Complex dynamics.
- Random geometry (Gluing

of Liouville Quantum Gravity
disks and SLE).

- Computer vision (work of
Mumford).



REGULARITY OF THE WELDING

Harmonic measure:
hitting distribution of
Brownian motion.

Ê(z , E , �) = proba-
bility BM starting at z
first hits ˆ� in E .

BM is conformally
invariant.
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Theorem (F & M Riesz 1916):
If ˆ� is rectifiable, Ê(E ) = 0 i� E
has zero length.

Theorem (Makarov 1985):
If ˆ� is fractal, then Ê gives full
measure to a set of zero length.

Theorem (Bishop 1987):
Ê1 ‹ Ê2 i� tangents have zero
length.
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Theorem (Makarov 1985): ˆ� fractal
=∆ Ê full meas. in a zero length set.

Theorem (Bishop 1987): Ê1 ‹ Ê2 i�
tangents have zero length.
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Conformal welding of Von Koch Snowflake

Image by Chris Bishop



LOGARITHMIC CAPACITY

Let µ finite compactly supp measure.
The logarithmic potential of µ is

Uµ(z) =
⁄

log 1
|› ≠ z |dµ(›).

Energy integral:

I(µ) =
⁄⁄

log 1
|z ≠ ›|dµ(›)dµ(z).

Robin’s constant of K b C:

“(K ) = inf{I(µ) : µ œ P(K )}.

Logarithmic capacity:

Cap(K ) = e≠“(K).

Properties:
- “(K ) < Œ i� Cap(K ) > 0.
- K1 µ K2 =∆ “(K1) Ø “(K2) and

Cap(K1) Æ Cap(K2).

If E is Borel,

Cap(E ) = sup{Cap(K ) : K µ E compact}.
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LOG-SINGULAR SETS

Log-singular homeomorphisms:
h : S1  s.t. there is E µ S1 Borel w/
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For every „ : S1  , there is h : S1  
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Cap(h(S1 \ E )) = 0.

GOAL: "Quantify" log-singular sets.

How? æ Addresses
They encode partitions of intervals/arcs.

Ex: Dyadic partitions
;5

a + j
2n , a + (b ≠ a) j + 1

2n

6
: 0 Æ j < 2n

<
.
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For every „ : S1  , there is h : S1  
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Let E be a log-singular set and
Cap(h(S1 \ E )) = 0. If
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OPEN PROBLEMS

Characterize –-singular curves.

How bad can a curve with bi-Hölder
welding be?

Is the composition of two bi-Hölder
weldings a welding?

Is the set of weldings Borel?





Non-example:

„(x) =
I

x for x Æ 0
x3 for x Ø 0.

Argument from Peter Lin’s thesis. Originally proved by Oikawa.


