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Conformal welding of Texas
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Hyperbolic geodesics in Texas
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Images by Chris Bishop,

Hyperbolic geodesics in inverted Texas
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using Toby Driscoll’s code
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MAIN RESULT

Every such h:S' — S! is called a
conformal welding.

NOT every ¢: S! — St is a welding.

Theorem (R. 2025)

Every circle homeomorphism is the
composition of two conformal
welding homeomorphisms.




WHEN WILL ¢: S' — S' BE A WELDING?

¢: St O is quasisymmetric if
there is M < oo s.t.

M~ < |o(1)l/I¢(I)] < M,
where /,J C S! are two adja-
cent arcs of equal length.

Theorem (Pfluger, 1960):
Every quasisymmetric ¢: St 9
is a welding.
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¢: St O is quasisymmetric if
there is M < oo s.t.

M~ < |o(1)l/I¢(I)] < M,
where /,J C S! are two adja-
cent arcs of equal length.
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Every quasisymmetric ¢: St 9
is a welding.

Non-example:

qb(x):{ x forx <0

x3 for x > 0.



¢: ST 9 is quasisymmetric if there is M < oo

s.t.
M~ < [o(N)l/¢(I)] < M,

where [, J C S! are two adjacent arcs of equal
length.

Theorem (Pfluger, 1960):
Every quasisymmetric ¢: S' () is a welding.

The Jordan curve is a quasicircle.

Conformal welding is important in:

Teichmiiller theory.
Kleinian groups.
Complex dynamics.

Random geometry (Gluing
of Liouville Quantum Gravity
disks and SLE).

Computer vision (work of
Mumford).
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REGULARITY OF THE WELDING

(n(D)]  w(z E,Q2)
7] w(¢, E,Q)
wa(E)

~ Theorem (F & M Riesz 1916):
If 02 is rectifiable, w(E) = 0 iff E
has zero length.

~
~

Theorem (Makarov 1985):
If 0Q is fractal, then w gives full
measure to a set of zero length.

Theorem (Bishop 1987):
wy L wpy iff tangents have zero

length.
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Theorem (Makarov 1985): 0Q fractal Theorem (Bishop 1987): w; L wy iff
= w full meas. in a zero length set. tangents have zero length.

Conformal welding of Von Koch Snowflake
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Image by Chris Bishop
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Let p finite compactly supp measure. Logarithmic capacity:

The logarithmic potential of p is
Cap(K) = e 1K),

U,(2) = [ log mdule).

Properties:
Energy integral: - (K) < ¢ iff Cap(K) > 0.
1 -Ki C Kh = "}/(Kl) > ’y(Kg) and
I(p) = // log mdﬂ(f)dﬂ(z)' Cap(K1) < Cap(Ka).
Robin’s constant of K € C: If E is Borel,

+(K) = inf{I(1): u € P(K)}. Cap(E) = sup{Cap(K): K C E compact}.
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LOGARITHMIC CAPACITY

Properties:

Energy integral: - y(K) < o iff Cap(K) > 0.

/ Iog w(€)du(z). - K1 € Ko = (K1) > ~v(K2) and
Cap(K1) < Cap(K2).
Robin’s constant of K € C;:

Y(K) = inf{l(u): p € P(K)}. /b
Logarithmic capacity: a

Cap(K) = 7110, Cap(D(a,r)) =r  Cap([a, b)) = |a — b|/4

Cap(E) = 0 = E has Hausdorff dim 0.
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LOGARITHMIC CAPACITY

Well-behaved ¢: S' — S! preserve zero

Energy integral: capacity sets.

I(1) :/ log 1 du(€)du(z). Lemma If for C < oo and o > 0

E!X—y\”“ < [p(x)—¢(y)| < Clx—y|*,

Robin’s constant of K € C:
then Cap(E) = 0 iff Cap(¢(E)) = 0.

Y(K) = inf{l(n): p € P(K)}. How do we prove:

Logarithmic capacity: Theorem (R. 2025)

ol _(K) Every circle homeomorphism is the
i) =& ’ composition of two conformal welding
homeomorphisms.
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LOG-SINGULAR CIRCLE HOMEOMORPHISMS

Energy integral' How do we prove:

(e

Every circle homeomorphism is the

Logarithmic capacity: composition of two conformal welding
Cap(K) = o~ inf{I(n): peP(K)} homeomorphisms.
Lemma If for C < oo and a > 0 Log-singular homeomorphisms:

h: St O s.t. there is E C S! Borel w/
- Cap(E) =0.
then Cap(E) = 0 iff Cap(¢(E)) = 0. - Cap(h(S*\ E)) = 0.

1
E\X—Hl/a < [p(x)—(y)| < Clx—y|%,



LOG-SINGULAR CIRCLE HOMEOMORPHISMS

Theorem (Bishop 2007):

How do we prove: Every log-singular h: St (9 is a welding.

Theorem (R. 2025)

h(Iy)

Every circle homeomorphism is the

composition of two conformal welding
homeomorphisms.

Log-singular homeomorphisms:
h: St O s.t. there is E C S Borel w/

- Cap(E) =0.
- Cap(h(S*\ E)) = 0.
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Theorem (R. 2025) Therefore, it suffices to prove

Every circle homeomorphism is the Theorem (R. 2025)

composition of two conformal welding

Every circle homeomorphism is the

homeomorphisms. composition of two log-singular maps.

Log-singular homeomorphisms:
h: St O s.t. there is E C S! Borel w/

- Cap(E) =0.
- Cap(h(S*\ E)) =0.

or
Theorem (R. 2025)

For every ¢: S* — S, there is
h: St — St log-singular so that
Theorem (Bishop 2007): ¢ o h™Y is log-singular.

Every log-singular h: S (9 is a welding.
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IS THE COMPOSITION OF TWO WELDINGS A WELDING?

Log-singular homeomorphisms: Non-example:
h: St O s.t. there is E C S! Borel w/ x forx<0
- Cap(E) =0. o) = x3 for x > 0.

- Cap(h(S*\ E)) = 0.

Theorem (Bishop 2007):
Every log-singular h: St (9 is a welding.

Theorem (R. 2025) then Cap(E) = 0 iff Cap(¢(E)) = 0.

For every ¢: St O, there is h: S* O For any log-singular h, ¢ o h™! is log-
log-singular s.t. ¢ o h=* is log-singular.  singylar.

Lemma If for C < oo and a > 0

1
E!X*y\l/a < [p(x)=o(y)| < Clx—yl%,



WELDINGS ARE NOT CLOSED UNDER COMPOSITION

Log-singular homeomorphisms: Non-example:
h: St O s.t. there is E C S! Borel w/ x forx<0
- Cap(E) =0. o) = x3 for x > 0.

- Cap(h(S*\ E)) =0.
ap(h(S™\ E)) Lemma If for C < oo and a > 0
Theorem (Bishop 2007): 1 1/a o
Every log-singular h: St O is a welding. E’Xiy‘ < [9(x)=¢)l < Clhe=yI%,

Theorem (R. 2025) then Cap(E) = 0 iff Cap(¢(E)) = 0.

For every ¢: S O, there is h: St © Corollary (Vainio 1985): Weldings are
log-singular s.t. ¢ © h=* is log-singular.| ot closed under composition.
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Log-singular homeomorphisms: E C S* log-singular set if Cap(E) = 0
h: St O s.t. there is E C S! Borel w/ and there is h: S O log-singular so that
- Cap(E) =0. Cap(h(S*\ E)) = 0.

- Cap(h(S*\ E)) = 0.

Theorem (Bishop 2007):
Every log-singular h: St (9 is a welding.

Theorem (R. 2025)

For every ¢: S' (9, there is h: St
log-singular s.t. ¢o h=' is log-singular.
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Log-singular homeomorphisms:
h: St O s.t. there is E C S* Borel w/

- Cap(E) =0.
- Cap(h(S*\ E)) = 0.

Theorem (Bishop 2007):
Every log-singular h: St (9 is a welding.

Theorem (R. 2025)

For every ¢: S' (9, there is h: St
log-singular s.t. ¢o h=' is log-singular.

E C S! log-singular set if Cap(E) = 0
and there is h: S! O log-singular so that
Cap(h(St\ E)) = 0.

GOAL: "Quantify" log-singular sets.

How? —

They encode partitions of intervals/arcs.

Ex: Dyadic partitions
. 11
{{a—i—;n,a—i—(b—a)J;} : 0§j<2"}.
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Theorem (R. 2025)

For every ¢: St (9, there is h: St
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and there is h: S (9 log-singular so that
Cap(h(S*\ E)) = 0.

GOAL: "Quantify" log-singular sets.

How? —
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Inso Inan 1{132} 1{133}

An={ar, -

Addresses: A, = {a1,ap,...,an} word

of length n. Suppose {/a,} are intervals.

- An# A= Ia,, I3 disjoint interior.

-n<mand Iy, C I;‘m. Then /~4m =
{a1,...,an,...}
- If Apo1 ={a1,--- ,an—1}, then the

union of all A,_1(a) is /a,.

,an} is the address of /4,

n
IA" = ﬂ I{alv'“vaj}'
j=1
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Lemma {/4,} partition of / C S. {Ja,}
partition of J C S'. Suppose that for
every € > 0 there is N s.t. for n > N,
[lan| + [Ja,| < €. If,

Ezmu(uTTmMJ

meNn>m \A,eA, Jj=1

F:UH(UTT%@Q

meNn>m \A,eA, j=1

have capacity zero, then there is a log-
singular h: | — J so that h(/\ E) = F.
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singular h: | — J so that h(/\ E) = F.
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Theorem (R
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every € > 0 there is N s.t. for n > N,
la,| + [Ja,| <e. If,

Ezmu(uﬁfme

meNn>m \A,eA, j=1

F:UH(UTTWMQ

meNn>m \A,cA, j=1

have capacity zero, then there is a log-
singular h: | — J so that h(/\ E) = F.

Theorem (R. 2025)

For every ¢: St O, there is h: St O
log-singular s.t. ¢ o h™1 is log-singular.

Let E be a log-singular set and
Cap(h(S'\ E)) =0. If

Cap(¢(E)) =0,
then ¢ o h™1 is log-singular.



Lemma {/a,} partition of | C St. {Ja,}
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|/An| + |JA,,| <e. If,
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meNn>m \A,eA, j=1

have capacity zero, then there is a log-
singular h: | — J so that h(/\ E) = F.
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Let E be a log-singular set and
Cap(h(S*\ E)) = 0. If
Cap(¢(E)) =0,

then ¢ o h™1 is log-singular.

Theorem (R. 2025)




Theorem (R. 2025)

Let E be a log-singular
Cap(h(S*\ E)) = 0. If

Cap(¢(E)) =0,
then ¢ o h™1 is log-singular.

Lemma (R. 2025)

set and



OPEN PROBLEMS

Characterize a-singular curves.

How bad can a curve with bi-Holder
welding be?

Is the composition of two bi-Hdlder
weldings a welding?

Is the set of weldings Borel?






Non-example: | /_/\/

</>(X):{ x forx<0

x3 for x > 0.

Argument from Peter Lin's thesis. Originally proved by Oikawa.



