

EVERY CIRCLE HOMEOMORPHISM IS THE COMPOSITION OF TWO CONFORMAL WELDINGS

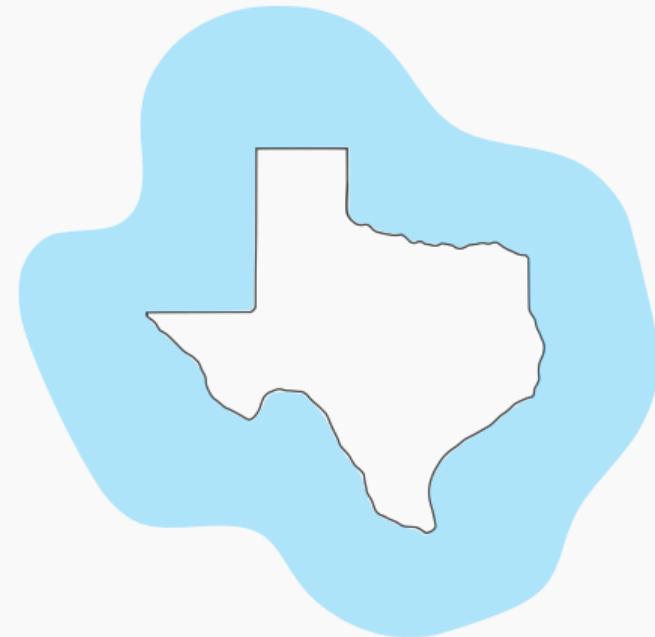
Alex Rodriguez

- Advisor: Chris Bishop -

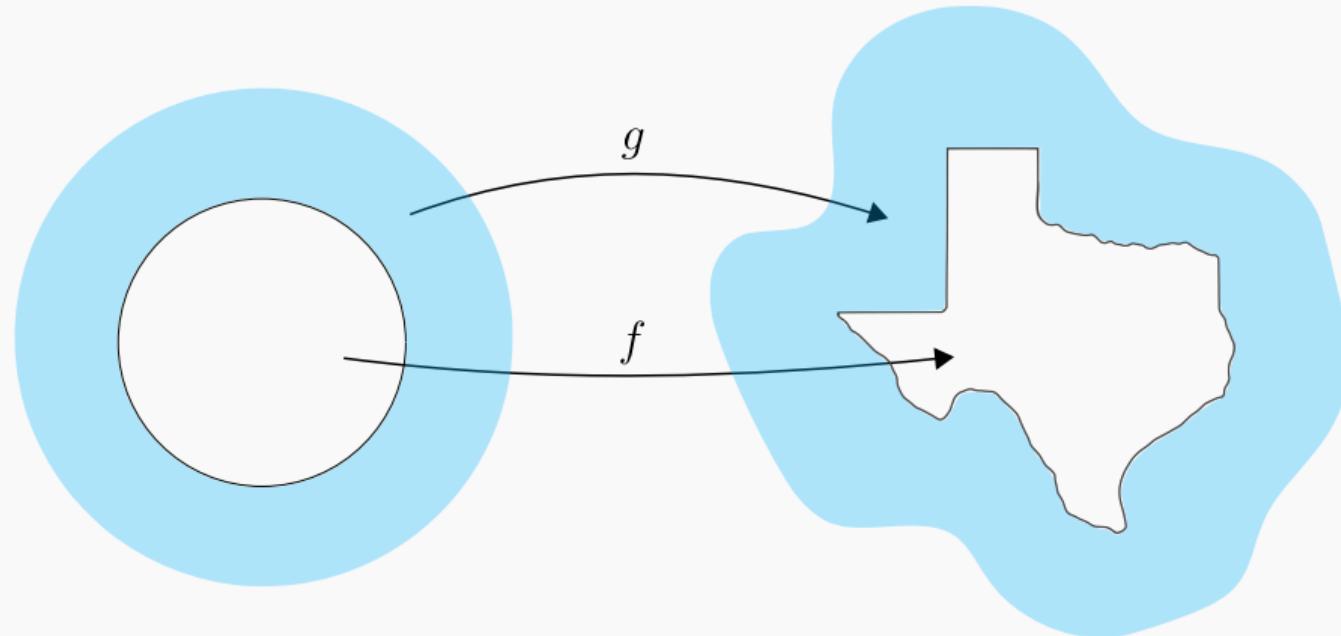
Dallas - February 19, 2025

Stony Brook University

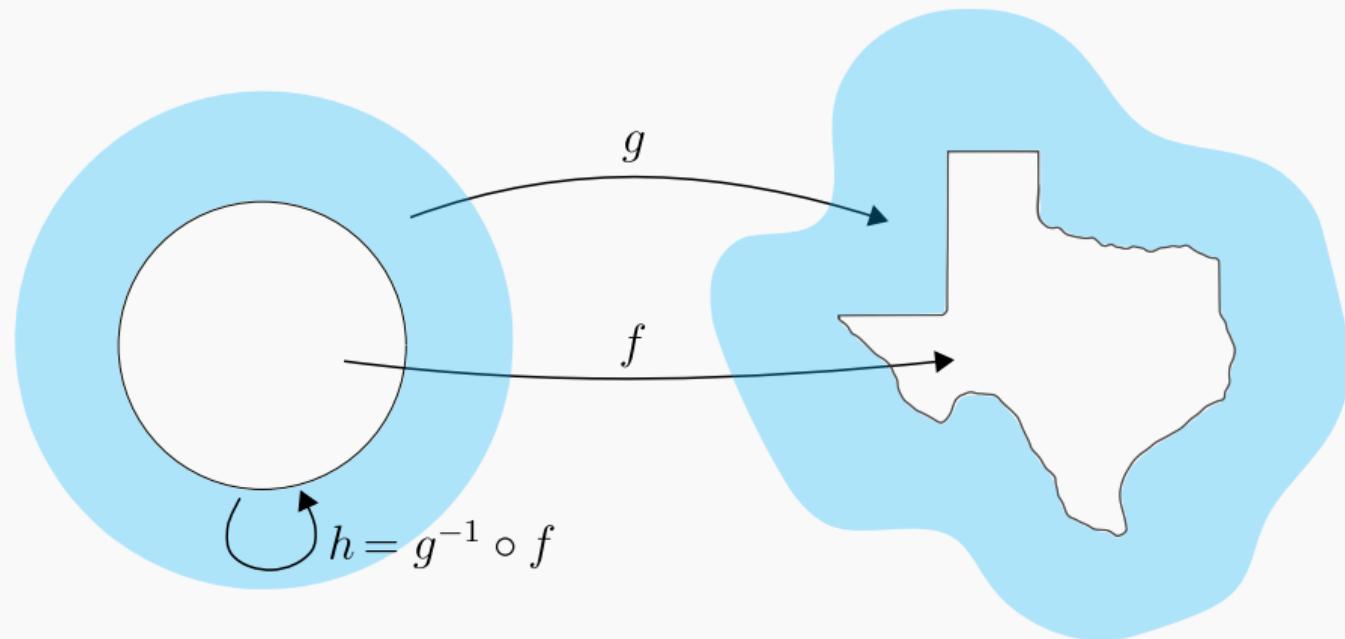
CONFORMAL WELDING HOMEOMORPHISMS



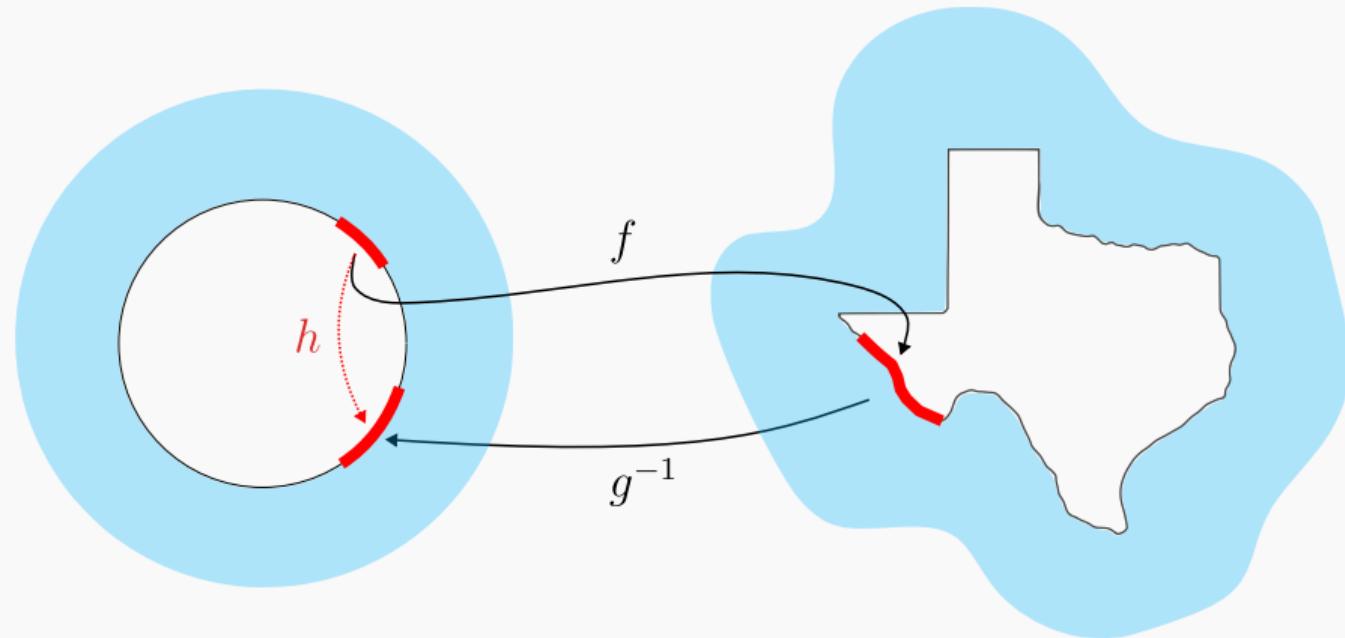
CONFORMAL WELDING HOMEOMORPHISMS



CONFORMAL WELDING HOMEOMORPHISMS



CONFORMAL WELDING HOMEOMORPHISMS



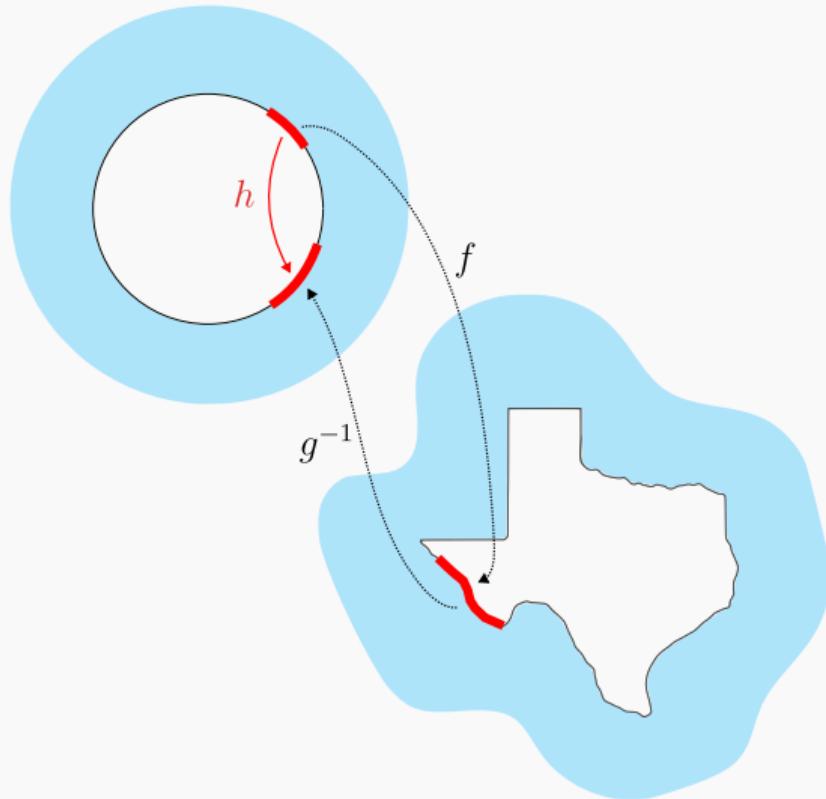
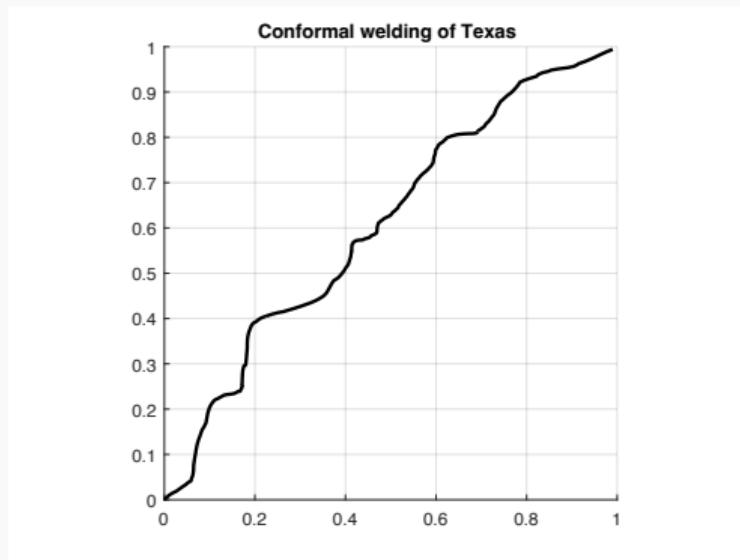
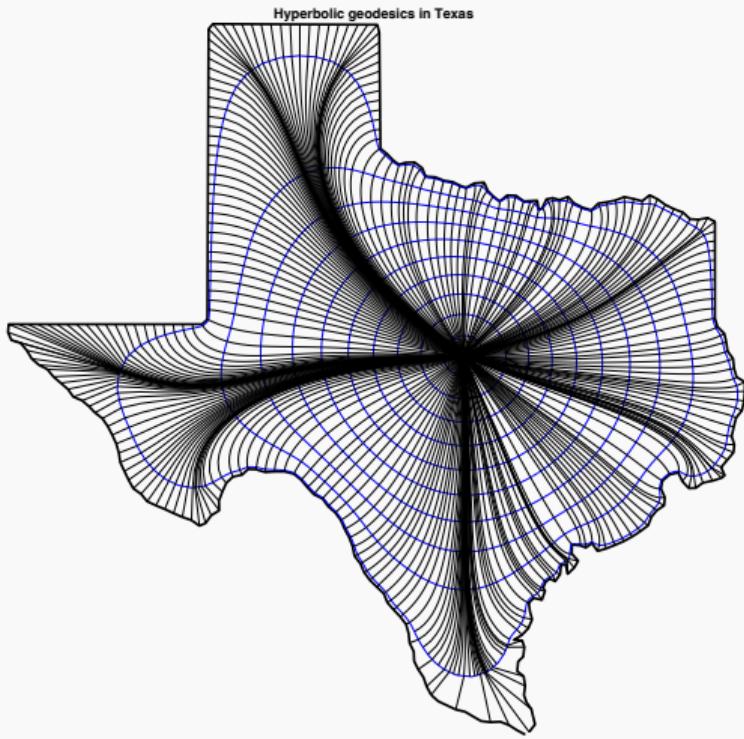
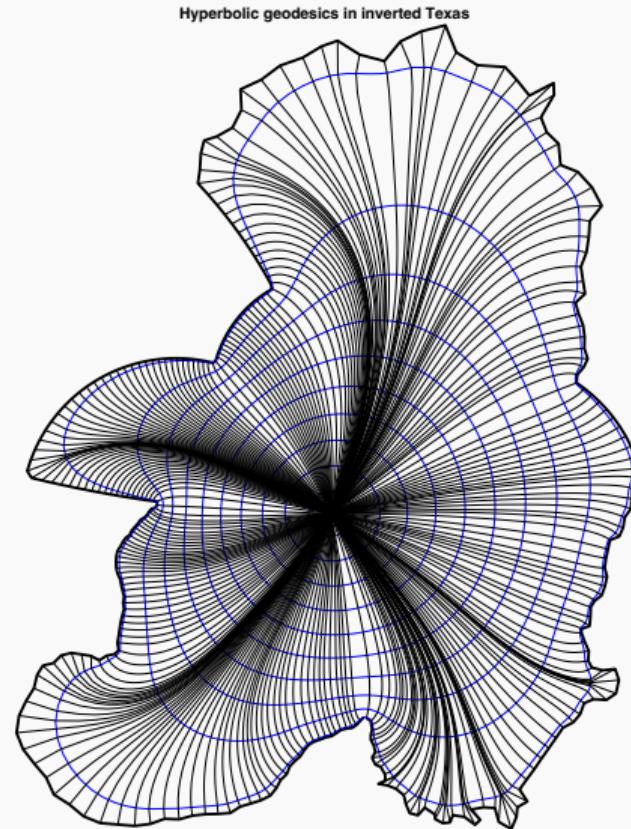
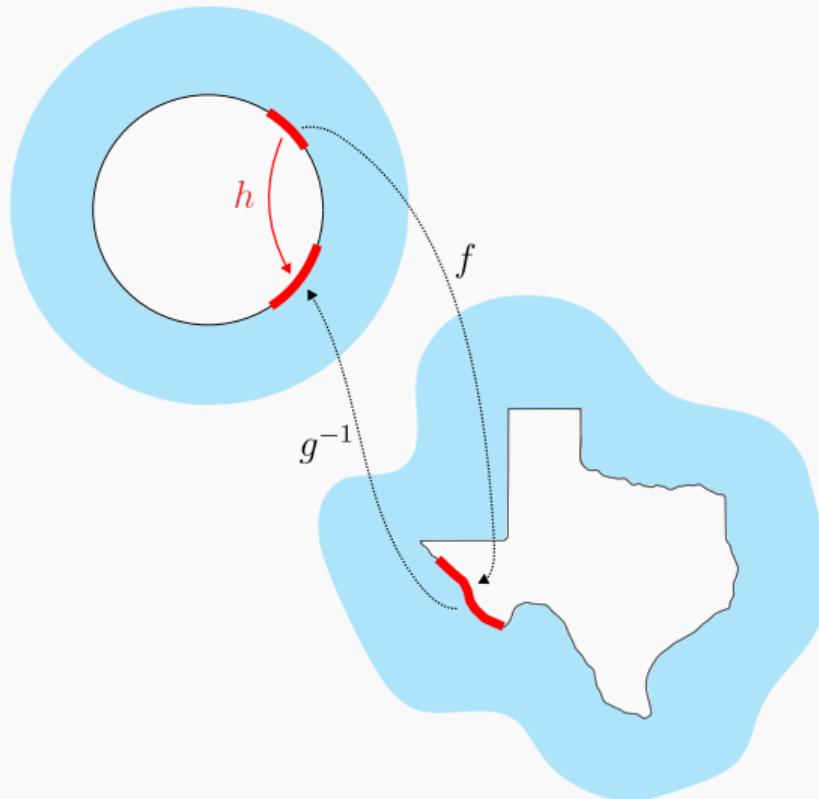


Image by Chris Bishop



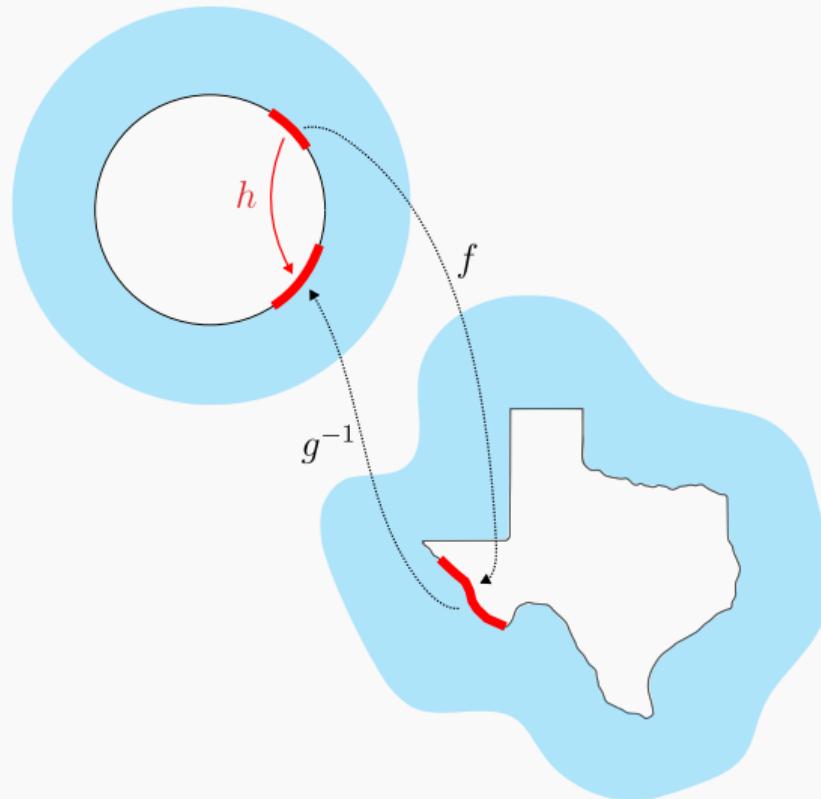
Images by Chris Bishop, using Toby Driscoll's code

MAIN RESULT



Every such $h: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is called a **conformal welding**.

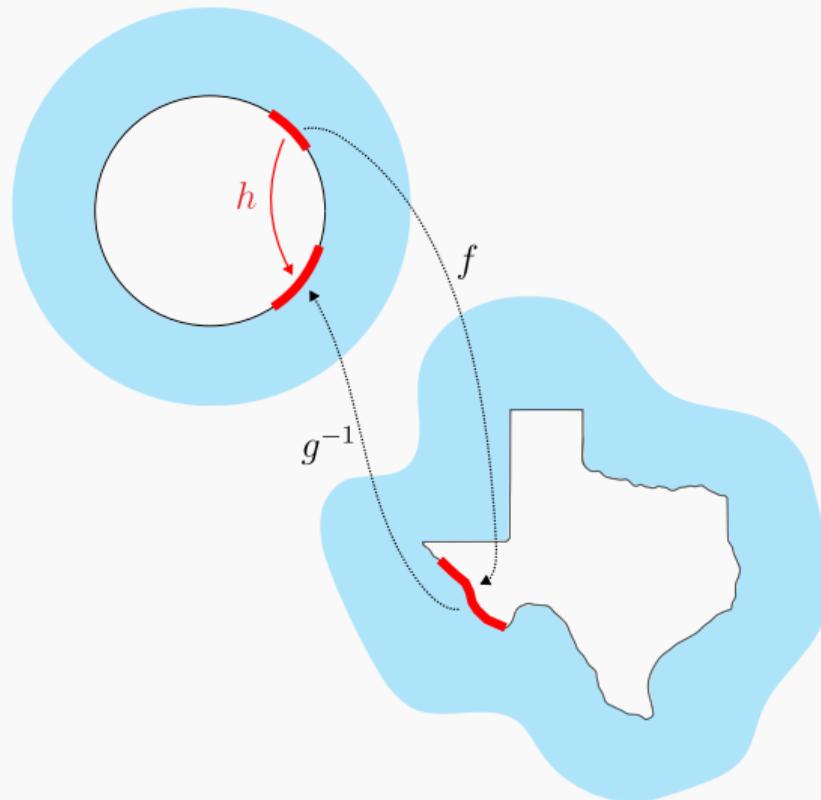
MAIN RESULT



Every such $h: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is called a **conformal welding**.

NOT every $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is a welding.

MAIN RESULT



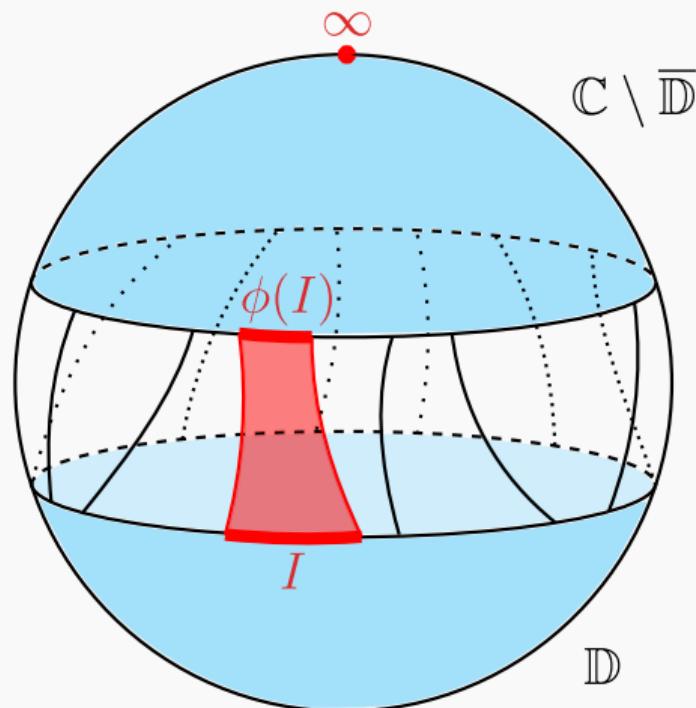
Every such $h: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is called a **conformal welding**.

NOT every $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is a welding.

Theorem (R. 2025)

Every circle homeomorphism is the composition of two conformal welding homeomorphisms.

WHEN WILL $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ BE A WELDING?



$\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is quasimöbius if there is $M < \infty$ s.t.

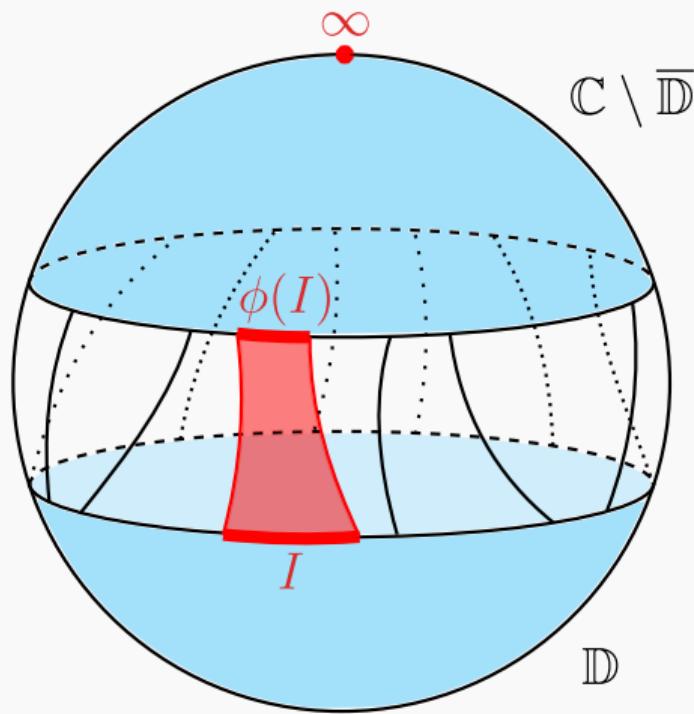
$$M^{-1} \leq |\phi(I)|/|\phi(J)| \leq M,$$

where $I, J \subset \mathbb{S}^1$ are two adjacent arcs of equal length.

Theorem (Pfluger, 1960):

Every quasimöbius $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is a welding.

WHEN WILL $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ BE A WELDING?



$\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is quasimöbius if there is $M < \infty$ s.t.

$$M^{-1} \leq |\phi(I)|/|\phi(J)| \leq M,$$

where $I, J \subset \mathbb{S}^1$ are two adjacent arcs of equal length.

Theorem (Pfluger, 1960):

Every quasimöbius $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ is a welding.

Non-example:

$$\phi(x) = \begin{cases} x & \text{for } x \leq 0 \\ x^3 & \text{for } x \geq 0. \end{cases}$$

$\phi: \mathbb{S}^1 \setminus \circlearrowleft$ is quasisymmetric if there is $M < \infty$

s.t.

$$M^{-1} \leq |\phi(I)|/|\phi(J)| \leq M,$$

where $I, J \subset \mathbb{S}^1$ are two adjacent arcs of equal length.

Theorem (Pfluger, 1960):

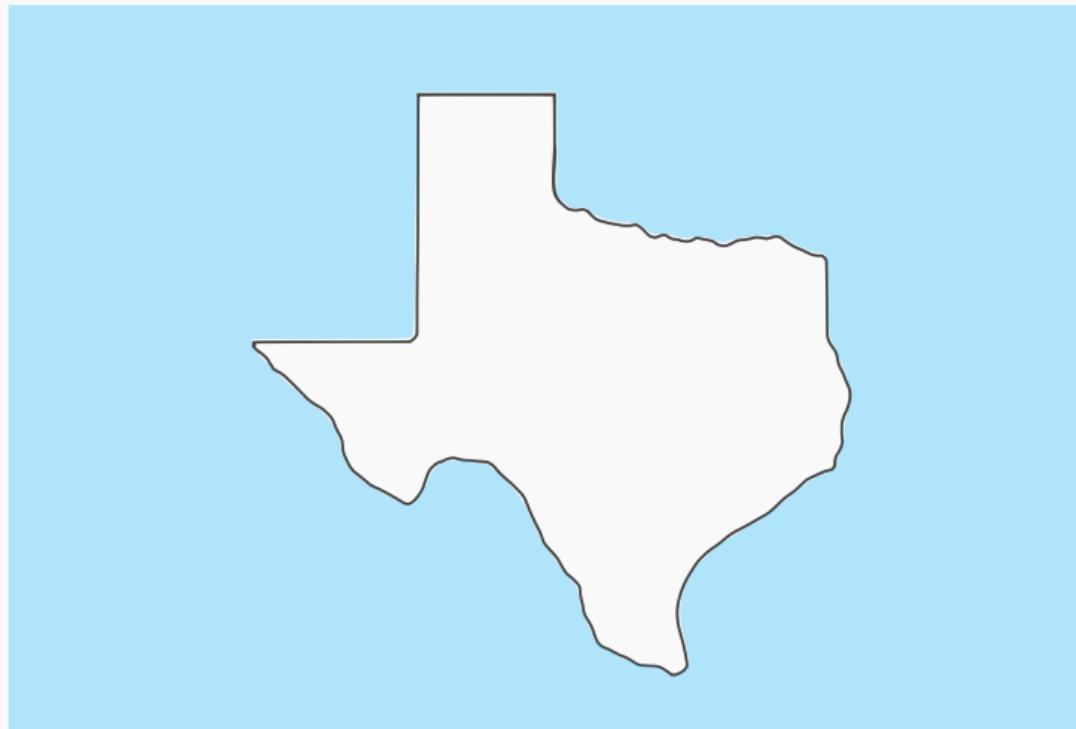
Every quasisymmetric $\phi: \mathbb{S}^1 \setminus \circlearrowleft$ is a welding.

The Jordan curve is a quasicircle.

Conformal welding is important in:

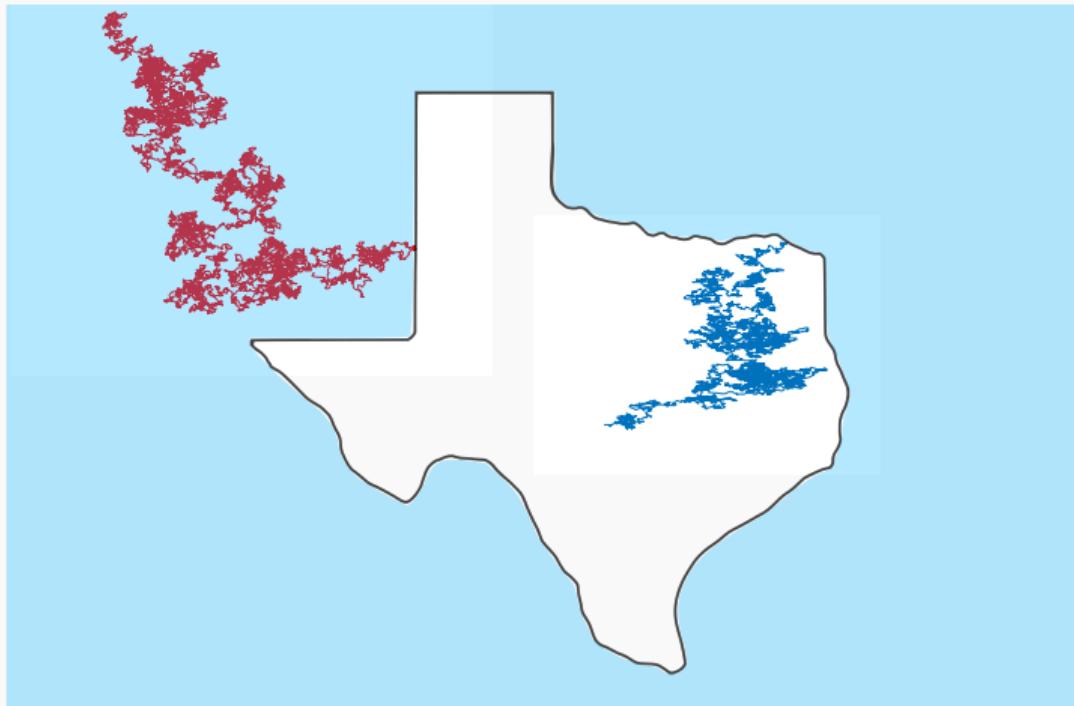
- Teichmüller theory.
- Kleinian groups.
- Complex dynamics.
- Random geometry (Gluing of Liouville Quantum Gravity disks and SLE).
- Computer vision (work of Mumford).

REGULARITY OF THE WELDING



Harmonic measure:
hitting distribution of
Brownian motion.

REGULARITY OF THE WELDING



Harmonic measure:
hitting distribution of
Brownian motion.

$\omega(z, E, \Omega)$ = proba-
bility BM starting at z
first hits $\partial\Omega$ in E .

BM is **conformally**
invariant.

REGULARITY OF THE WELDING

Harmonic measure: hitting distribution of Brownian motion.

$\omega(z, E, \Omega) =$ probability BM starting at z first hits $\partial\Omega$ in E .

BM is **conformally invariant**:

REGULARITY OF THE WELDING

Harmonic measure: hitting distribution of Brownian motion.

$\omega(z, E, \Omega) =$ probability BM starting at z first hits $\partial\Omega$ in E .

BM is **conformally invariant**:

Normalized arc-length on \mathbb{S}^1 maps to harmonic measure.

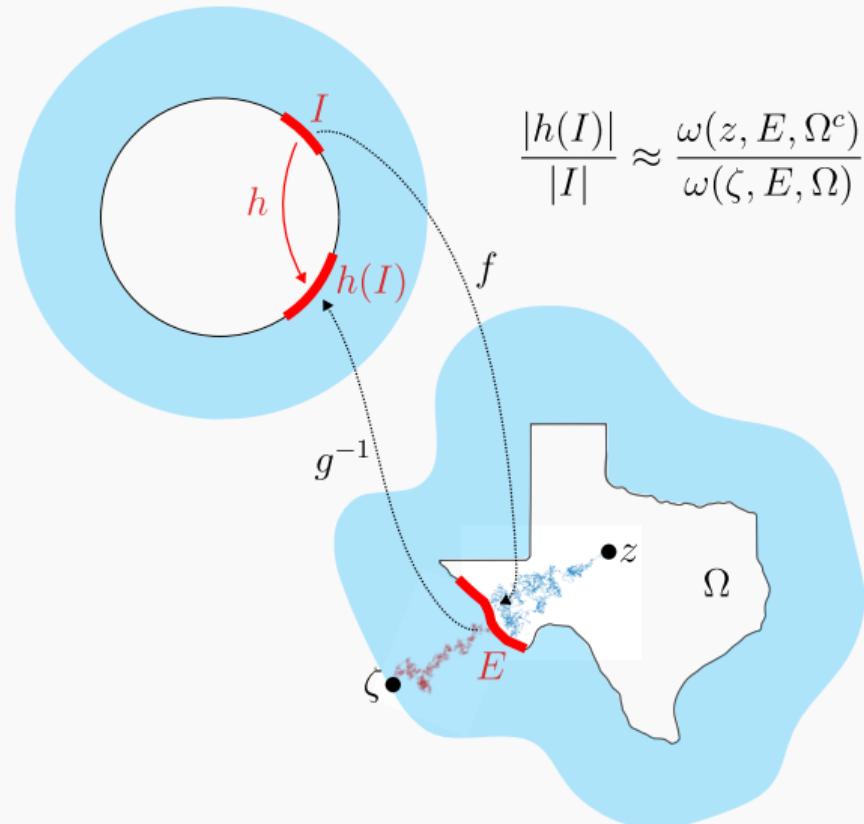
REGULARITY OF THE WELDING

Harmonic measure: hitting distribution of Brownian motion.

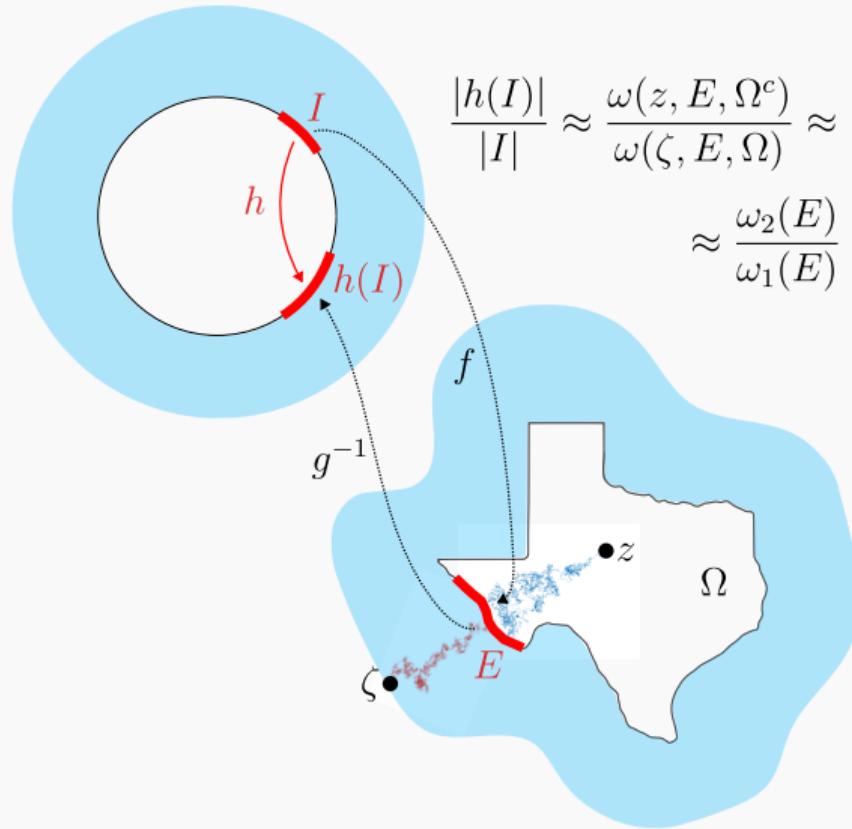
$\omega(z, E, \Omega) =$ probability BM starting at z first hits $\partial\Omega$ in E .

BM is **conformally invariant**:

Normalized arc-length on \mathbb{S}^1 maps to harmonic measure.

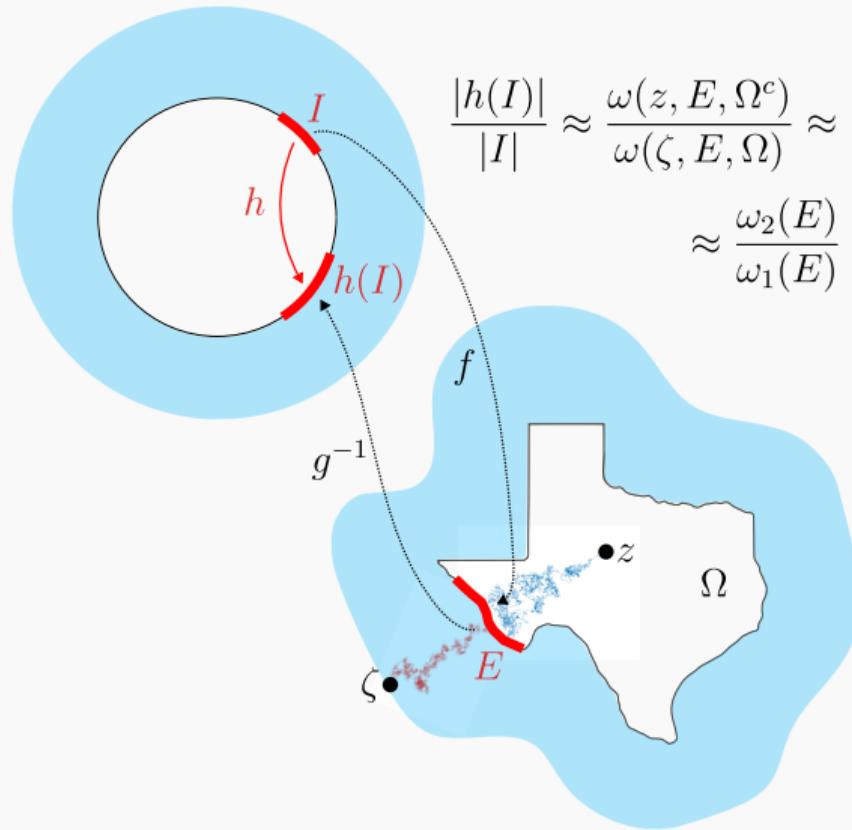


REGULARITY OF THE WELDING



$$\frac{|h(I)|}{|I|} \approx \frac{\omega(z, E, \Omega^c)}{\omega(\zeta, E, \Omega)} \approx \frac{\omega_2(E)}{\omega_1(E)}$$

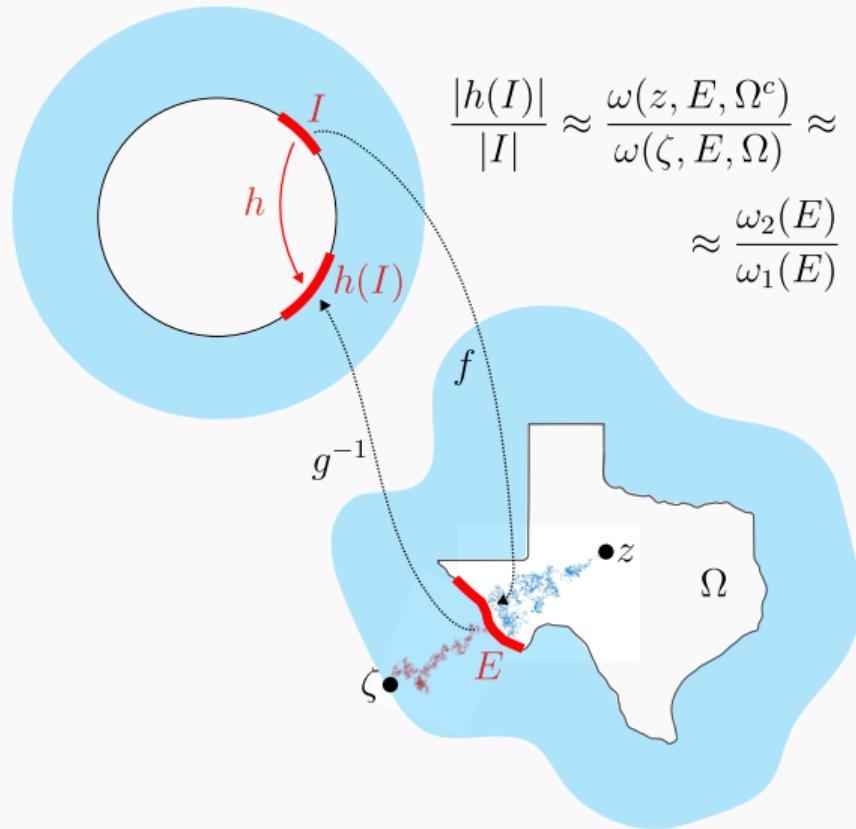
REGULARITY OF THE WELDING



$$\frac{|h(I)|}{|I|} \approx \frac{\omega(z, E, \Omega^c)}{\omega(\zeta, E, \Omega)} \approx \frac{\omega_2(E)}{\omega_1(E)}$$

Theorem (F & M Riesz 1916):
If $\partial\Omega$ is rectifiable, $\omega(E) = 0$ iff E has zero length.

REGULARITY OF THE WELDING

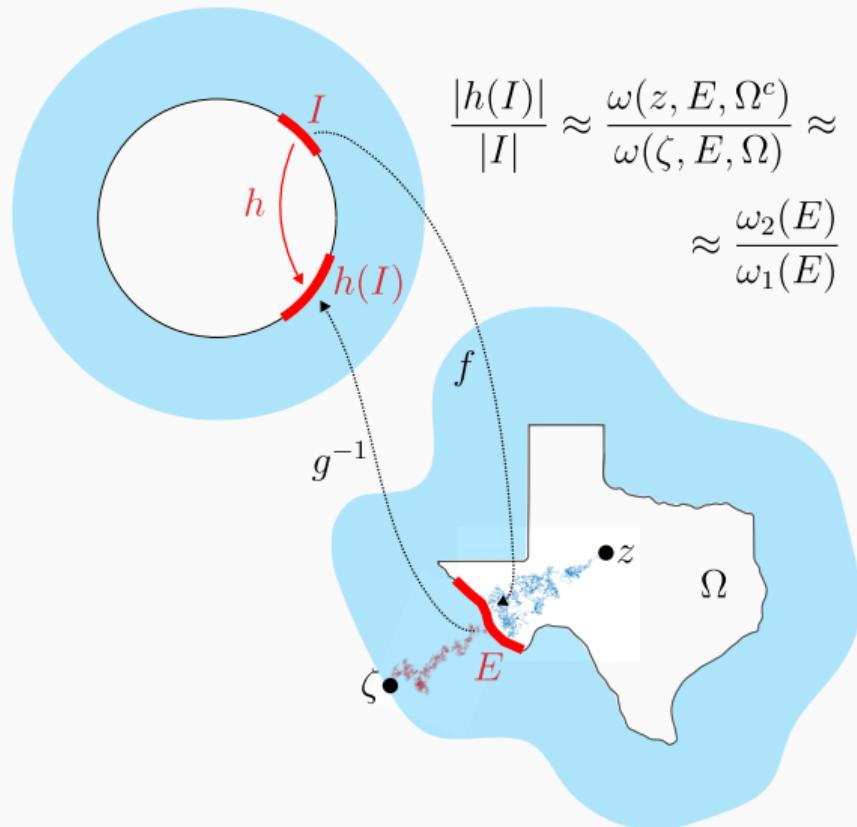


$$\frac{|h(I)|}{|I|} \approx \frac{\omega(z, E, \Omega^c)}{\omega(\zeta, E, \Omega)} \approx \frac{\omega_2(E)}{\omega_1(E)}$$

Theorem (F & M Riesz 1916):
If $\partial\Omega$ is rectifiable, $\omega(E) = 0$ iff E has zero length.

Theorem (Makarov 1985):
If $\partial\Omega$ is fractal, then ω gives full measure to a set of zero length.

REGULARITY OF THE WELDING



$$\frac{|h(I)|}{|I|} \approx \frac{\omega(z, E, \Omega^c)}{\omega(\zeta, E, \Omega)} \approx$$

$$\approx \frac{\omega_2(E)}{\omega_1(E)}$$

Theorem (F & M Riesz 1916):

If $\partial\Omega$ is rectifiable, $\omega(E) = 0$ iff E has zero length.

Theorem (Makarov 1985):

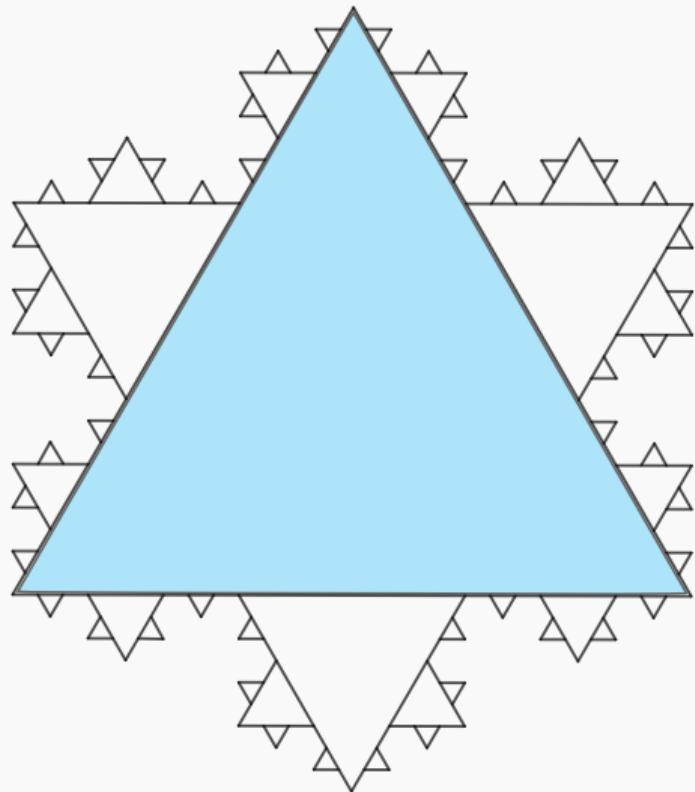
If $\partial\Omega$ is fractal, then ω gives full measure to a set of zero length.

Theorem (Bishop 1987):

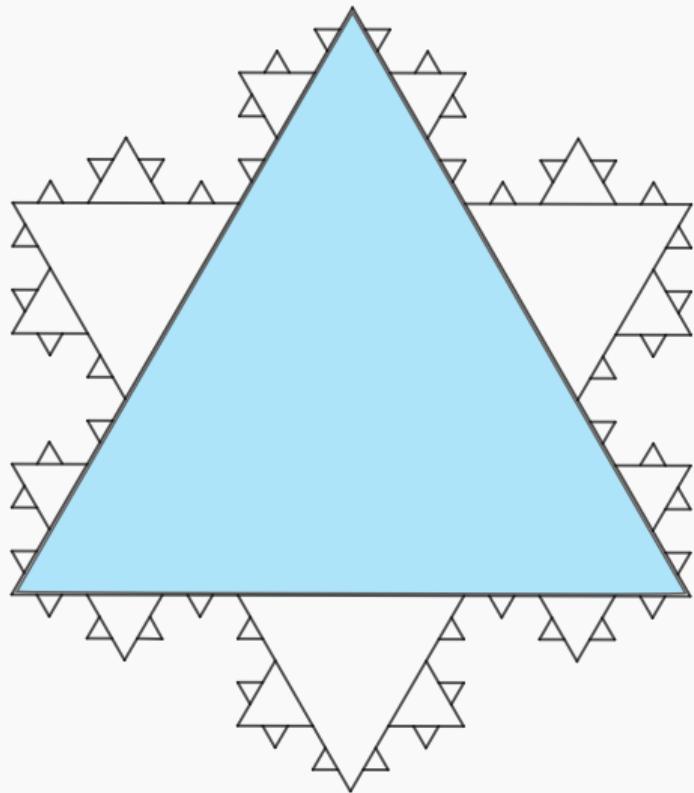
$\omega_1 \perp \omega_2$ iff tangents have zero length.

Theorem (Makarov 1985): $\partial\Omega$ fractal
 $\implies \omega$ full meas. to a zero length set.

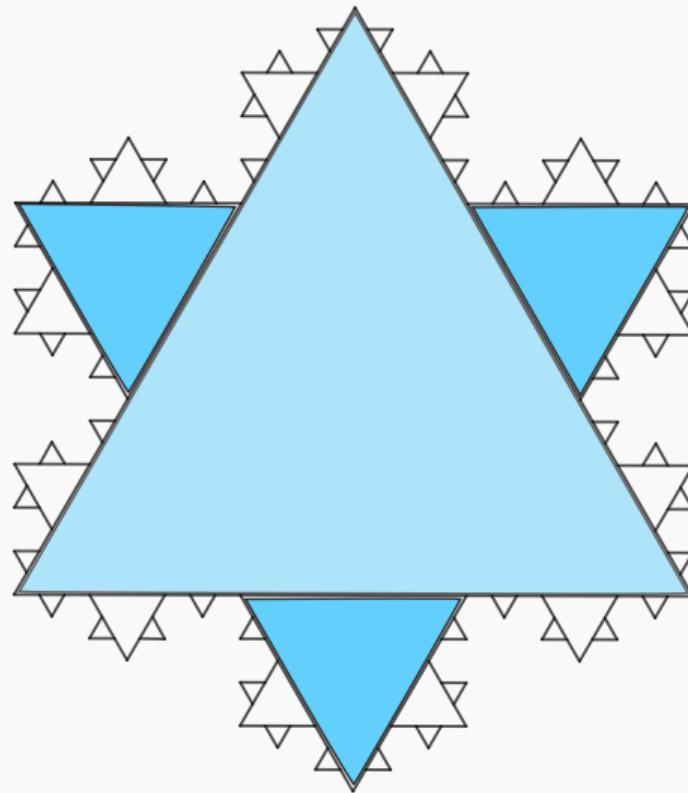
Theorem (Bishop 1987): $\omega_1 \perp \omega_2$ iff
tangents have zero length.



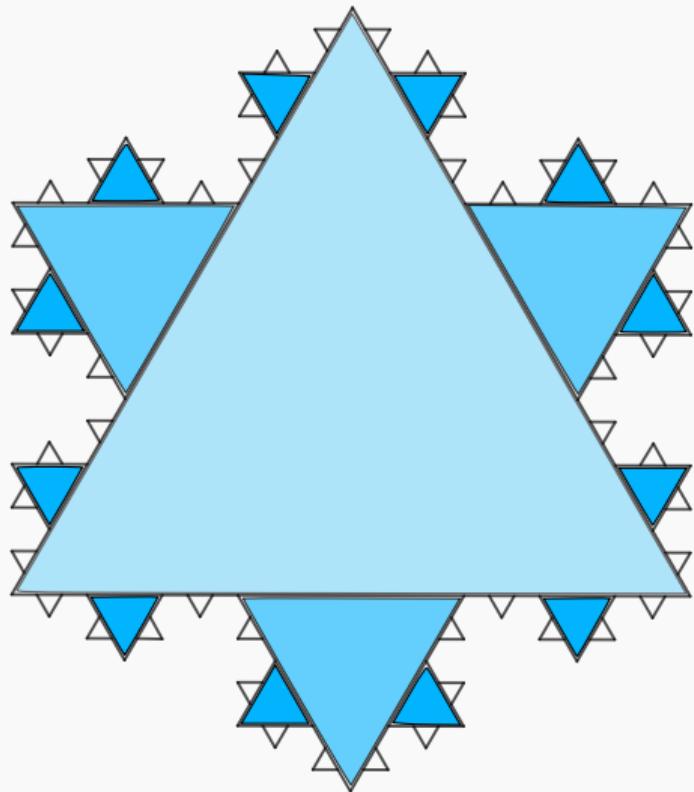
Theorem (Makarov 1985): $\partial\Omega$ fractal
 $\implies \omega$ full meas. to a zero length set.



Theorem (Bishop 1987): $\omega_1 \perp \omega_2$ iff
tangents have zero length.

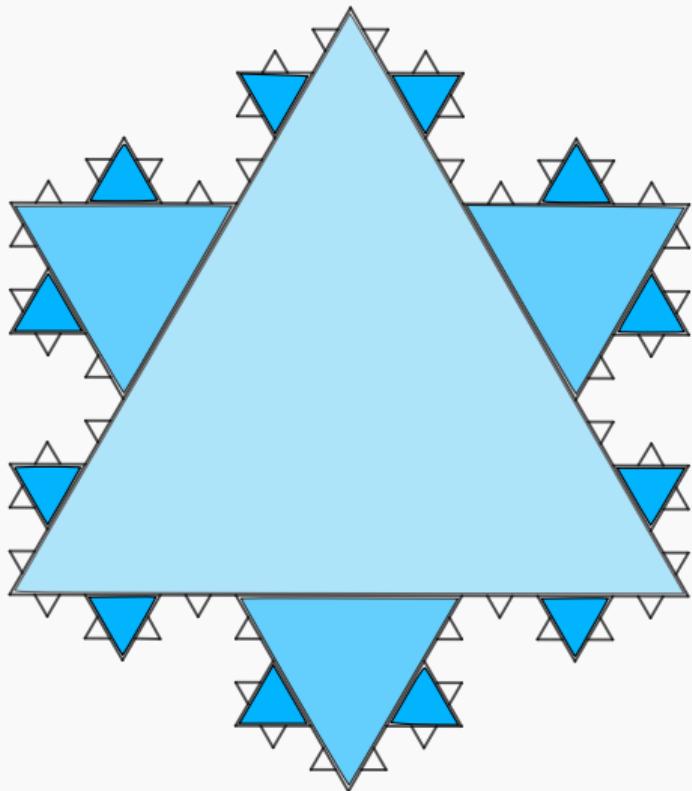


Theorem (Makarov 1985): $\partial\Omega$ fractal
 $\implies \omega$ full meas. in a zero length set.

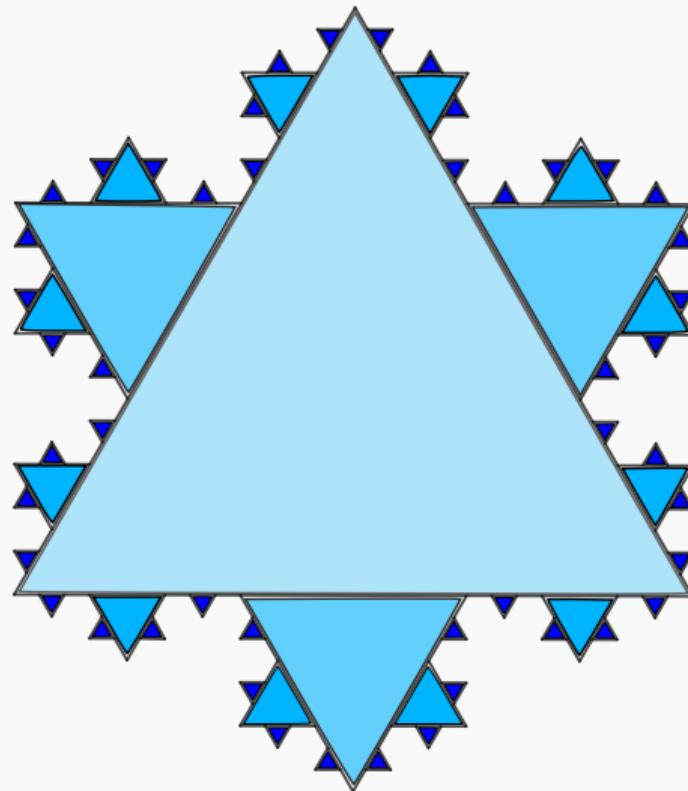


Theorem (Bishop 1987): $\omega_1 \perp \omega_2$ iff
tangents have zero length.

Theorem (Makarov 1985): $\partial\Omega$ fractal
 $\implies \omega$ full meas. in a zero length set.



Theorem (Bishop 1987): $\omega_1 \perp \omega_2$ iff
tangents have zero length.



Theorem (Makarov 1985): $\partial\Omega$ fractal
 $\implies \omega$ full meas. in a zero length set.

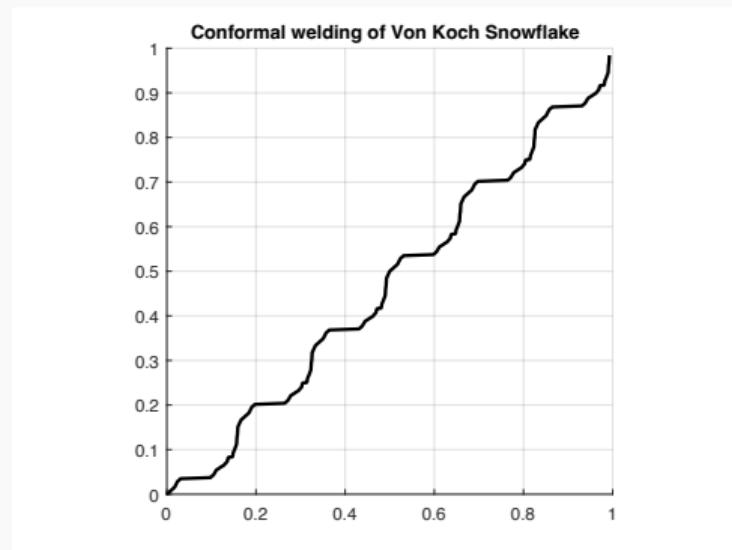
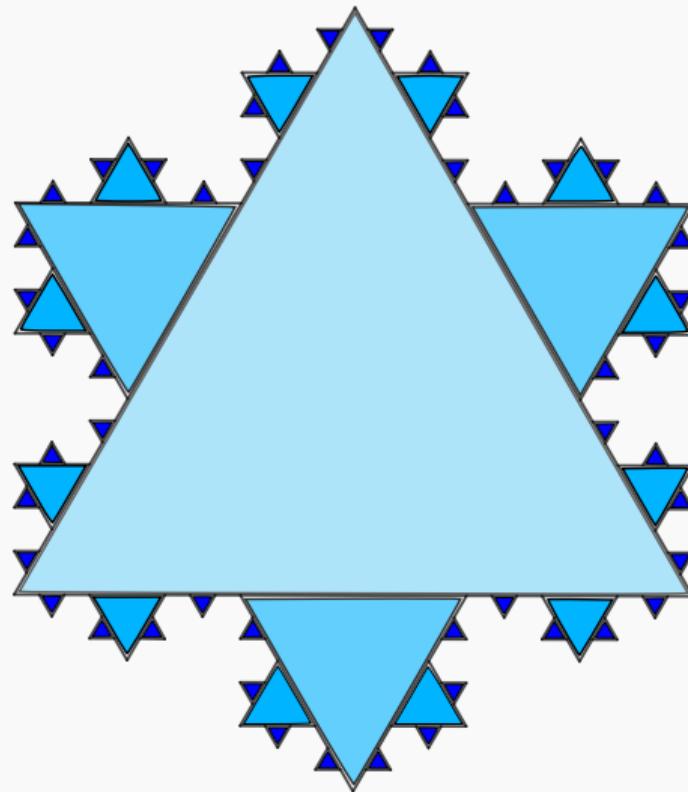


Image by Chris Bishop

Theorem (Bishop 1987): $\omega_1 \perp \omega_2$ iff
tangents have zero length.



LOGARITHMIC CAPACITY

Let μ finite compactly supp measure.

The **logarithmic potential** of μ is

$$U_\mu(z) = \int \log \frac{1}{|\xi - z|} d\mu(\xi).$$

LOGARITHMIC CAPACITY

Let μ finite compactly supp measure.

The **logarithmic potential** of μ is

$$U_\mu(z) = \int \log \frac{1}{|\xi - z|} d\mu(\xi).$$

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \in \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu) : \mu \in P(K)\}.$$

LOGARITHMIC CAPACITY

Let μ finite compactly supp measure.

The **logarithmic potential** of μ is

$$U_\mu(z) = \int \log \frac{1}{|\xi - z|} d\mu(\xi).$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \Subset \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu) : \mu \in P(K)\}.$$

LOGARITHMIC CAPACITY

Let μ finite compactly supp measure.

The **logarithmic potential** of μ is

$$U_\mu(z) = \int \log \frac{1}{|\xi - z|} d\mu(\xi).$$

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \in \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu) : \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Properties:

- $\gamma(K) < \infty$ iff $\text{Cap}(K) > 0$.
- $K_1 \subset K_2 \implies \gamma(K_1) \geq \gamma(K_2)$ and $\text{Cap}(K_1) \leq \text{Cap}(K_2)$.

LOGARITHMIC CAPACITY

Let μ finite compactly supp measure.

The **logarithmic potential** of μ is

$$U_\mu(z) = \int \log \frac{1}{|\xi - z|} d\mu(\xi).$$

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \Subset \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Properties:

- $\gamma(K) < \infty$ iff $\text{Cap}(K) > 0$.
- $K_1 \subset K_2 \implies \gamma(K_1) \geq \gamma(K_2)$ and $\text{Cap}(K_1) \leq \text{Cap}(K_2)$.

If E is Borel,

$$\text{Cap}(E) = \sup\{\text{Cap}(K): K \subset E \text{ compact}\}.$$

LOGARITHMIC CAPACITY

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \in \mathbb{C}$:

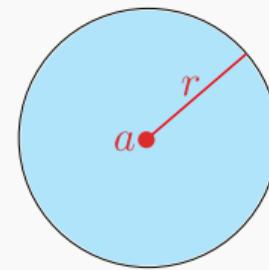
$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Properties:

- $\gamma(K) < \infty$ iff $\text{Cap}(K) > 0$.
- $K_1 \subset K_2 \implies \gamma(K_1) \geq \gamma(K_2)$ and $\text{Cap}(K_1) \leq \text{Cap}(K_2)$.



$$\text{Cap}(\mathbb{D}(a, r)) = r$$

LOGARITHMIC CAPACITY

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \in \mathbb{C}$:

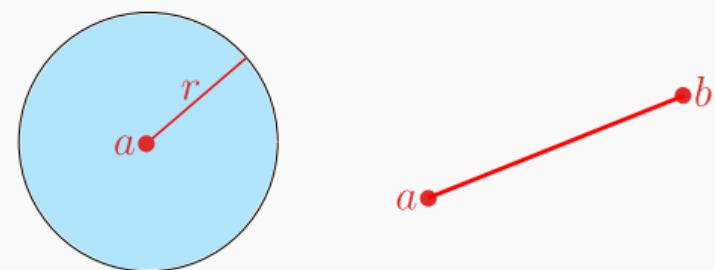
$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Properties:

- $\gamma(K) < \infty$ iff $\text{Cap}(K) > 0$.
- $K_1 \subset K_2 \implies \gamma(K_1) \geq \gamma(K_2)$ and $\text{Cap}(K_1) \leq \text{Cap}(K_2)$.



$$\text{Cap}(\mathbb{D}(a, r)) = r \quad \text{Cap}([a, b]) = |a - b|/4$$

LOGARITHMIC CAPACITY

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \in \mathbb{C}$:

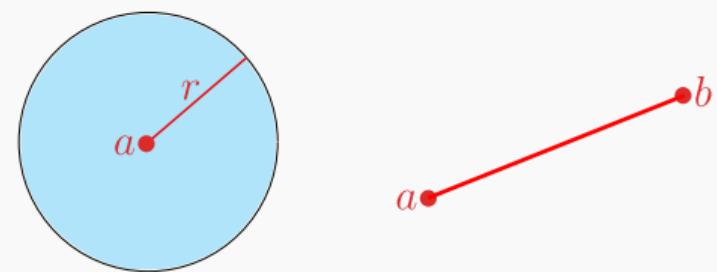
$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Properties:

- $\gamma(K) < \infty$ iff $\text{Cap}(K) > 0$.
- $K_1 \subset K_2 \implies \gamma(K_1) \geq \gamma(K_2)$ and $\text{Cap}(K_1) \leq \text{Cap}(K_2)$.



$$\text{Cap}(\mathbb{D}(a, r)) = r \quad \text{Cap}([a, b]) = |a - b|/4$$

$$\text{Cap}(E) = 0 \implies E \text{ has Hausdorff dim 0.}$$

LOGARITHMIC CAPACITY

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \Subset \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

LOGARITHMIC CAPACITY

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \Subset \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Well-behaved $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ preserve zero capacity sets.

LOGARITHMIC CAPACITY

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \Subset \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Well-behaved $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ preserve zero capacity sets.

Lemma If for $C < \infty$ and $\alpha > 0$

$$\frac{1}{C} |x - y|^{1/\alpha} \leq |\phi(x) - \phi(y)| \leq C |x - y|^\alpha,$$

then $\text{Cap}(E) = 0$ iff $\text{Cap}(\phi(E)) = 0$.

LOGARITHMIC CAPACITY

Energy integral:

$$I(\mu) = \iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Robin's constant of $K \Subset \mathbb{C}$:

$$\gamma(K) = \inf\{I(\mu): \mu \in P(K)\}.$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\gamma(K)}.$$

Well-behaved $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ preserve zero capacity sets.

Lemma If for $C < \infty$ and $\alpha > 0$

$$\frac{1}{C} |x - y|^{1/\alpha} \leq |\phi(x) - \phi(y)| \leq C |x - y|^\alpha,$$

then $\text{Cap}(E) = 0$ iff $\text{Cap}(\phi(E)) = 0$.

How do we prove:

Theorem (R. 2025)

Every circle homeomorphism is the composition of two conformal welding homeomorphisms.

LOG-SINGULAR CIRCLE HOMEOMORPHISMS

Energy integral:

$$\iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\inf\{I(\mu) : \mu \in \mathcal{P}(K)\}}.$$

Lemma If for $C < \infty$ and $\alpha > 0$

$$\frac{1}{C} |x - y|^{1/\alpha} \leq |\phi(x) - \phi(y)| \leq C |x - y|^\alpha,$$

then $\text{Cap}(E) = 0$ iff $\text{Cap}(\phi(E)) = 0$.

How do we prove:

Theorem (R. 2025)

Every circle homeomorphism is the composition of two conformal welding homeomorphisms.

LOG-SINGULAR CIRCLE HOMEOMORPHISMS

Energy integral:

$$\iint \log \frac{1}{|z - \xi|} d\mu(\xi) d\mu(z).$$

Logarithmic capacity:

$$\text{Cap}(K) = e^{-\inf\{I(\mu) : \mu \in \mathcal{P}(K)\}}.$$

Lemma If for $C < \infty$ and $\alpha > 0$

$$\frac{1}{C} |x - y|^{1/\alpha} \leq |\phi(x) - \phi(y)| \leq C |x - y|^\alpha,$$

then $\text{Cap}(E) = 0$ iff $\text{Cap}(\phi(E)) = 0$.

How do we prove:

Theorem (R. 2025)

Every circle homeomorphism is the composition of two conformal welding homeomorphisms.

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.

- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

LOG-SINGULAR CIRCLE HOMEOMORPHISMS

How do we prove:

Theorem (R. 2025)

Every circle homeomorphism is the composition of two conformal welding homeomorphisms.

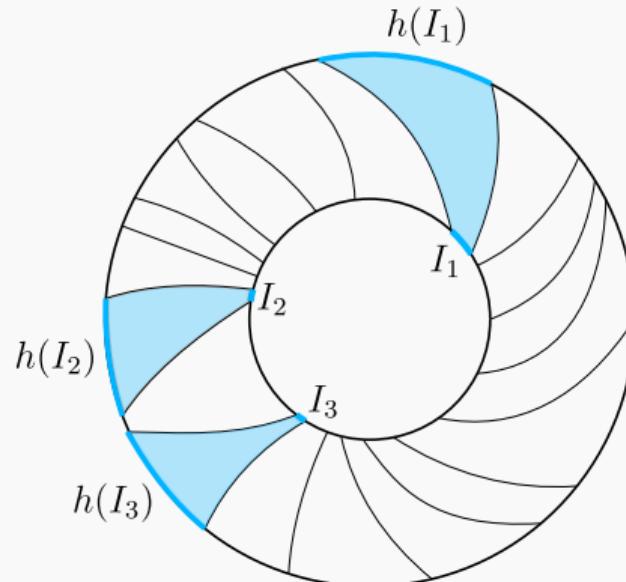
Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.



LOG-SINGULAR CIRCLE HOMEOMORPHISMS

Theorem (R. 2025)

Every circle homeomorphism is the composition of two conformal welding homeomorphisms.

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Therefore, it suffices to prove

Theorem (R. 2025)

Every circle homeomorphism is the composition of two log-singular maps.

LOG-SINGULAR CIRCLE HOMEOMORPHISMS

Theorem (R. 2025)

Every circle homeomorphism is the composition of two conformal welding homeomorphisms.

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Therefore, it suffices to prove

Theorem (R. 2025)

Every circle homeomorphism is the composition of two log-singular maps.

or

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \rightarrow \mathbb{S}^1$, there is $h: \mathbb{S}^1 \rightarrow \mathbb{S}^1$ log-singular so that $\phi \circ h^{-1}$ is log-singular.

IS THE COMPOSITION OF TWO WELDINGS A WELDING?

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

IS THE COMPOSITION OF TWO WELDINGS A WELDING?

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Non-example:

$$\phi(x) = \begin{cases} x & \text{for } x \leq 0 \\ x^3 & \text{for } x \geq 0. \end{cases}$$

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

IS THE COMPOSITION OF TWO WELDINGS A WELDING?

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

Non-example:

$$\phi(x) = \begin{cases} x & \text{for } x \leq 0 \\ x^3 & \text{for } x \geq 0. \end{cases}$$

Lemma If for $C < \infty$ and $\alpha > 0$

$$\frac{1}{C}|x-y|^{1/\alpha} \leq |\phi(x)-\phi(y)| \leq C|x-y|^\alpha,$$

then $\text{Cap}(E) = 0$ iff $\text{Cap}(\phi(E)) = 0$.

IS THE COMPOSITION OF TWO WELDINGS A WELDING?

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

Non-example:

$$\phi(x) = \begin{cases} x & \text{for } x \leq 0 \\ x^3 & \text{for } x \geq 0. \end{cases}$$

Lemma If for $C < \infty$ and $\alpha > 0$

$$\frac{1}{C}|x-y|^{1/\alpha} \leq |\phi(x)-\phi(y)| \leq C|x-y|^\alpha,$$

then $\text{Cap}(E) = 0$ iff $\text{Cap}(\phi(E)) = 0$.

For any log-singular h , $\phi \circ h^{-1}$ is log-singular.

WELDINGS ARE NOT CLOSED UNDER COMPOSITION

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

Non-example:

$$\phi(x) = \begin{cases} x & \text{for } x \leq 0 \\ x^3 & \text{for } x \geq 0. \end{cases}$$

Lemma If for $C < \infty$ and $\alpha > 0$

$$\frac{1}{C}|x-y|^{1/\alpha} \leq |\phi(x)-\phi(y)| \leq C|x-y|^\alpha,$$

then $\text{Cap}(E) = 0$ iff $\text{Cap}(\phi(E)) = 0$.

Corollary (Vainio 1985): Weldings are not closed under composition.

LOG-SINGULAR SETS

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.

- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

$E \subset \mathbb{S}^1$ **log-singular set** if $\text{Cap}(E) = 0$ and there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular so that $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

LOG-SINGULAR SETS

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

$E \subset \mathbb{S}^1$ **log-singular set** if $\text{Cap}(E) = 0$ and there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular so that $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

GOAL: "Quantify" log-singular sets.

How?

LOG-SINGULAR SETS

Log-singular homeomorphisms:

$h: \mathbb{S}^1 \circlearrowleft$ s.t. there is $E \subset \mathbb{S}^1$ Borel w/

- $\text{Cap}(E) = 0$.
- $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

Theorem (Bishop 2007):

Every log-singular $h: \mathbb{S}^1 \circlearrowleft$ is a welding.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

$E \subset \mathbb{S}^1$ **log-singular set** if $\text{Cap}(E) = 0$ and there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular so that $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

GOAL: "Quantify" log-singular sets.

How? \rightarrow **Addresses**

They encode partitions of intervals/arcs.

Ex: Dyadic partitions

$$\left\{ \left[a + \frac{j}{2^n}, a + (b - a) \frac{j + 1}{2^n} \right] : 0 \leq j < 2^n \right\}.$$

LOG-SINGULAR SETS

I

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

$E \subset \mathbb{S}^1$ **log-singular set** if $\text{Cap}(E) = 0$
and there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular so that
 $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

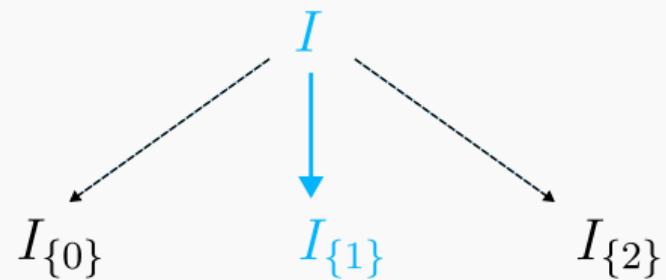
GOAL: "Quantify" log-singular sets.

How? \rightarrow Addresses

LOG-SINGULAR SETS

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.



$E \subset \mathbb{S}^1$ **log-singular set** if $\text{Cap}(E) = 0$
and there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular so that
 $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

GOAL: "Quantify" log-singular sets.

How? \rightarrow Addresses

LOG-SINGULAR SETS

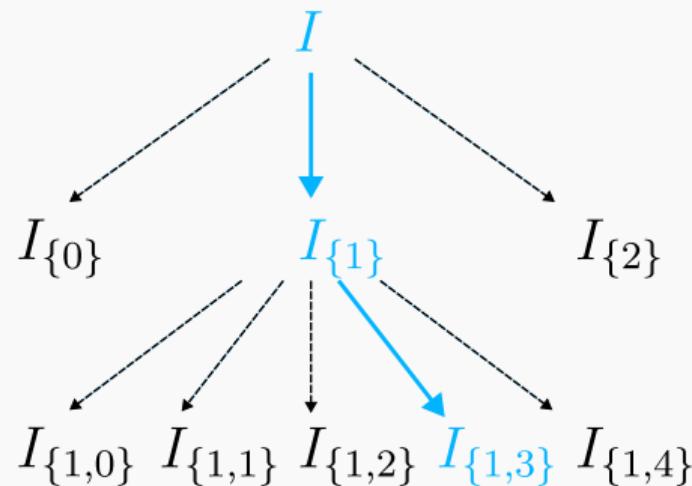
Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

$E \subset \mathbb{S}^1$ **log-singular set** if $\text{Cap}(E) = 0$
 and there is $h: \mathbb{S}^1 \setminus E$ log-singular so that
 $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

GOAL: "Quantify" log-singular sets.

How? → Addresses



LOG-SINGULAR SETS

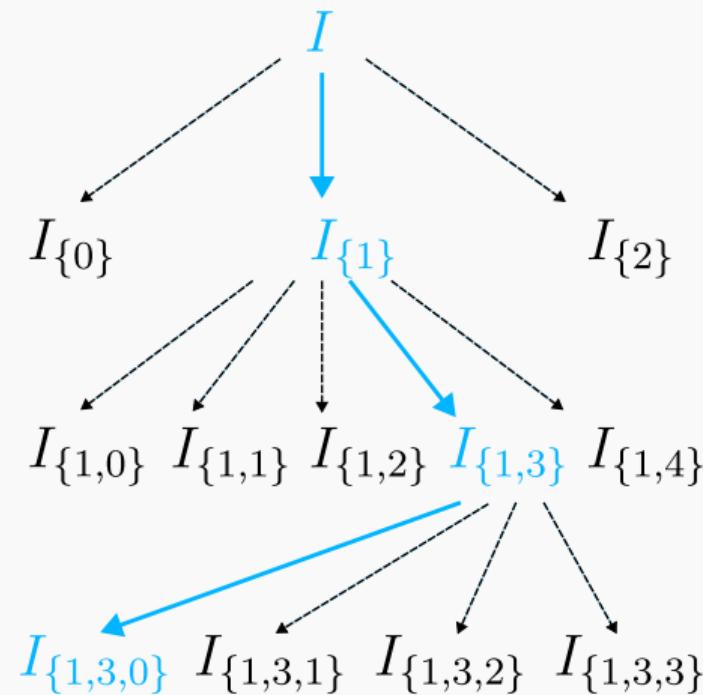
Theorem (R. 2025)

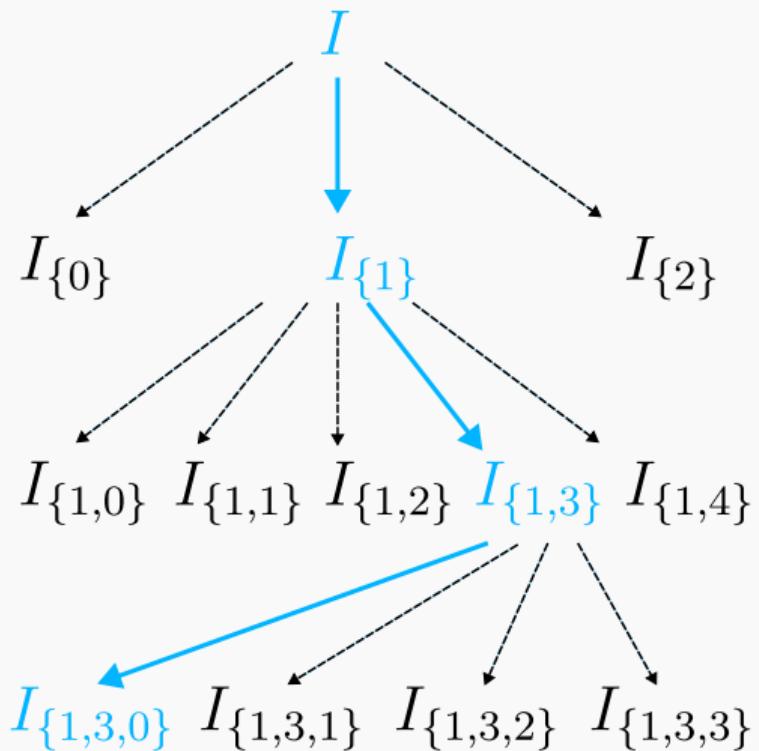
For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

$E \subset \mathbb{S}^1$ **log-singular set** if $\text{Cap}(E) = 0$ and there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular so that $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$.

GOAL: "Quantify" log-singular sets.

How? \rightarrow **Addresses**



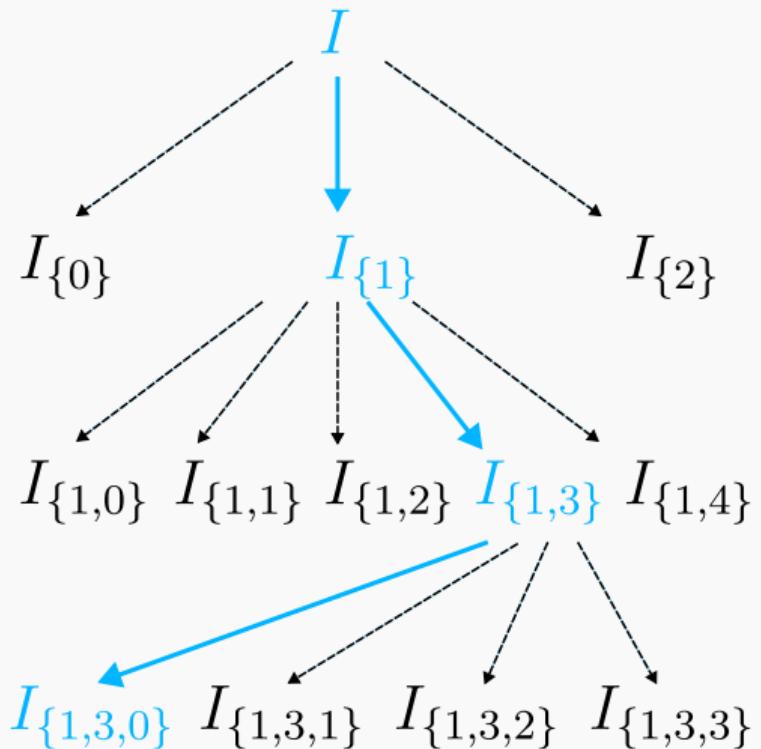


Addresses: $A_n = \{a_1, a_2, \dots, a_n\}$ word of length n . Suppose $\{I_{A_n}\}$ are intervals.

- $A_n \neq \tilde{A}_n \Rightarrow I_{A_n}, I_{\tilde{A}_n}$ disjoint interior.
- $n \leq m$ and $I_{A_n} \subset I_{\tilde{A}_m}$. Then $\tilde{A}_m = \{a_1, \dots, a_n, \dots\}$
- If $A_{n-1} = \{a_1, \dots, a_{n-1}\}$, then the union of all $A_{n-1}(a)$ is I_{A_n} .

$A_n = \{a_1, \dots, a_n\}$ is the **address** of I_{A_n} ,

$$I_{A_n} = \bigcap_{j=1}^n I_{\{a_1, \dots, a_j\}}.$$

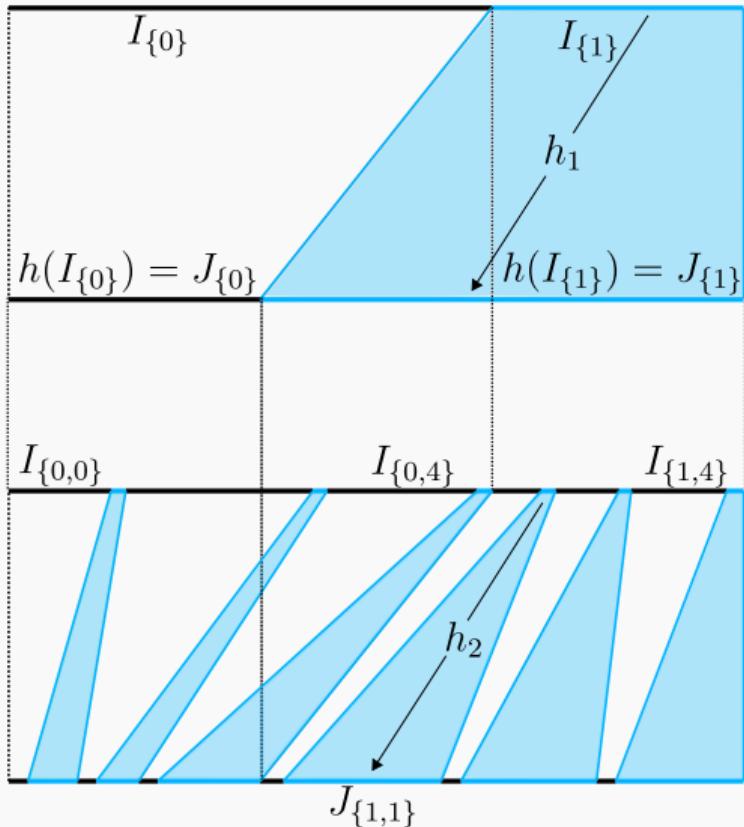


Lemma $\{I_{A_n}\}$ partition of $I \subset \mathbb{S}^1$. $\{J_{A_n}\}$ partition of $J \subset \mathbb{S}^1$. Suppose that for every $\varepsilon > 0$ there is N s.t. for $n \geq N$, $|I_{A_n}| + |J_{A_n}| < \varepsilon$. If,

$$E = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} I_{A_n(2j-1)} \right),$$

$$F = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} J_{A_n(2j-2)} \right)$$

have capacity zero, then there is a log-singular $h: I \rightarrow J$ so that $h(I \setminus E) = F$.



Lemma $\{I_{A_n}\}$ partition of $I \subset \mathbb{S}^1$. $\{J_{A_n}\}$ partition of $J \subset \mathbb{S}^1$. Suppose that for every $\varepsilon > 0$ there is N s.t. for $n \geq N$, $|I_{A_n}| + |J_{A_n}| < \varepsilon$. If,

$$E = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} I_{A_n(2j-1)} \right),$$

$$F = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} J_{A_n(2j-2)} \right)$$

have capacity zero, then there is a log-singular $h: I \rightarrow J$ so that $h(I \setminus E) = F$.

Lemma $\{I_{A_n}\}$ partition of $I \subset \mathbb{S}^1$. $\{J_{A_n}\}$ partition of $J \subset \mathbb{S}^1$. Suppose that for every $\varepsilon > 0$ there is N s.t. for $n \geq N$, $|I_{A_n}| + |J_{A_n}| < \varepsilon$. If,

$$E = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} I_{A_n(2j-1)} \right),$$

$$F = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} J_{A_n(2j-2)} \right)$$

have capacity zero, then there is a log-singular $h: I \rightarrow J$ so that $h(I \setminus E) = F$.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

Lemma $\{I_{A_n}\}$ partition of $I \subset \mathbb{S}^1$. $\{J_{A_n}\}$ partition of $J \subset \mathbb{S}^1$. Suppose that for every $\varepsilon > 0$ there is N s.t. for $n \geq N$, $|I_{A_n}| + |J_{A_n}| < \varepsilon$. If,

$$E = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} I_{A_n(2j-1)} \right),$$

$$F = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} J_{A_n(2j-2)} \right)$$

have capacity zero, then there is a log-singular $h: I \rightarrow J$ so that $h(I \setminus E) = F$.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

Let E be a log-singular set and $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$. If
 $\text{Cap}(\phi(E)) = 0$,
then $\phi \circ h^{-1}$ is log-singular.

Lemma $\{I_{A_n}\}$ partition of $I \subset \mathbb{S}^1$. $\{J_{A_n}\}$ partition of $J \subset \mathbb{S}^1$. Suppose that for every $\varepsilon > 0$ there is N s.t. for $n \geq N$, $|I_{A_n}| + |J_{A_n}| < \varepsilon$. If,

$$E = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} I_{A_n(2j-1)} \right),$$

$$F = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \left(\bigcup_{A_n \in \mathcal{A}_n} \bigcup_{j=1}^{L_{n+1}/2} J_{A_n(2j-2)} \right)$$

have capacity zero, then there is a log-singular $h: I \rightarrow J$ so that $h(I \setminus E) = F$.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is $h: \mathbb{S}^1 \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

Let E be a log-singular set and $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$. If
 $\text{Cap}(\phi(E)) = 0$,
then $\phi \circ h^{-1}$ is log-singular.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \circlearrowleft$, there is E log-singular so that $\text{Cap}(\phi(E)) = 0$.

Theorem (R. 2025)

For every $\phi: \mathbb{S}^1 \setminus \circlearrowleft$, there is $h: \mathbb{S}^1 \setminus \circlearrowleft$ log-singular s.t. $\phi \circ h^{-1}$ is log-singular.

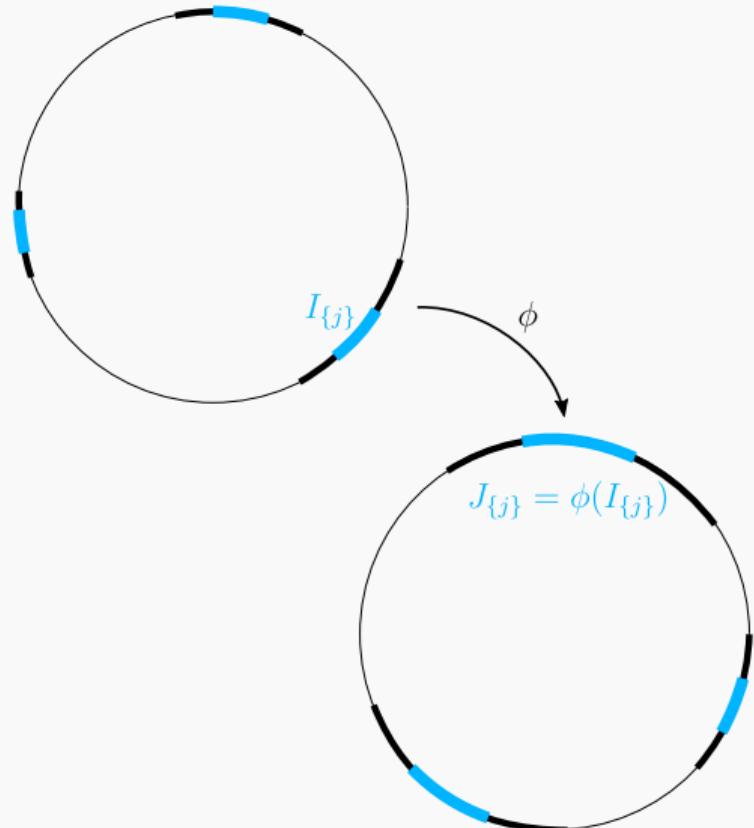
Let E be a log-singular set and $\text{Cap}(h(\mathbb{S}^1 \setminus E)) = 0$. If

$$\text{Cap}(\phi(E)) = 0,$$

then $\phi \circ h^{-1}$ is log-singular.

Lemma (R. 2025)

For every $\phi: \mathbb{S}^1 \setminus \circlearrowleft$, there is E log-singular so that $\text{Cap}(\phi(E)) = 0$.



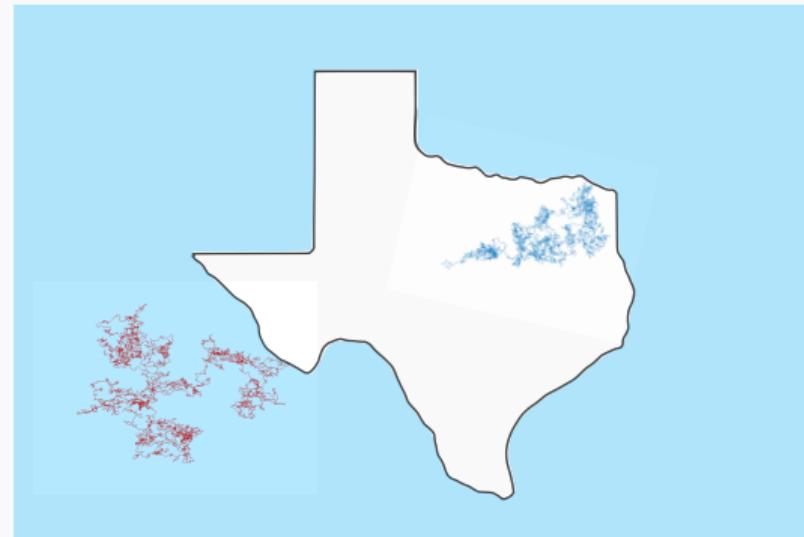
OPEN PROBLEMS

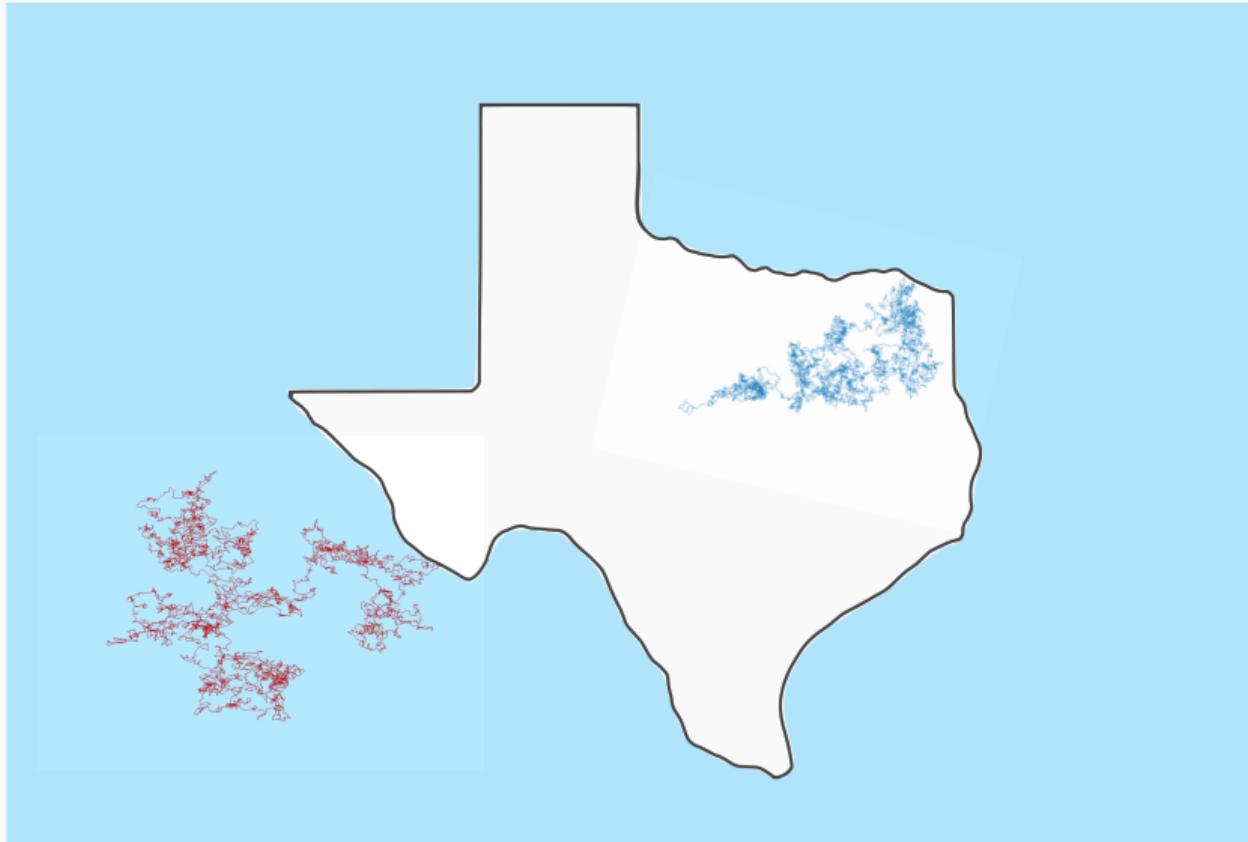
Characterize α -singular curves.

How bad can a curve with bi-Hölder welding be?

Is the composition of two bi-Hölder weldings a welding?

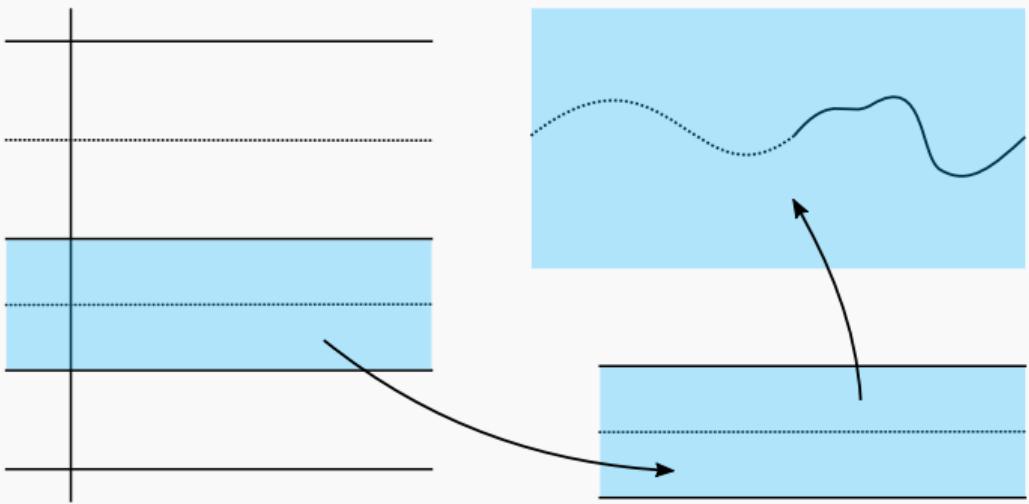
Is the set of weldings Borel?





Non-example:

$$\phi(x) = \begin{cases} x & \text{for } x \leq 0 \\ x^3 & \text{for } x \geq 0. \end{cases}$$



Argument from Peter Lin's thesis. Originally proved by Oikawa.