VOGAN'S ALGORITHM FOR COMPUTING COMPOSITION SERIES

M. W. Baldoni-Silva and A. W. Knapp**

Building on joint work [8] with B. Speh, D. A. Vogan [9,10] has
obtained an algorithm for computing composition series of the standard
induced representations of a semisimple Lie group G. The algorithm
takes a particularly simple form in the case that the representations
are induced from a maximal parabolic subgroup.

on the one hand, this algorithm does not seem to be widely known,
possibly because the emphasis in the Vogan papers is somewhat
different. And on the other hand, the algorithm is particularly well
suited to deciding some irreducibility gquestions that arise in our
paper [1], which settles the contribution to the unitary dual of a
linear connected G by Langlands guotients obtained from maximal
parabolic subgroups. Thus it seems expedient to provide an exposition
of Vogan's algorithm in the context of the examples needed for [1].

This approach to our irreducibility questions was suggested to
us by Vogan, and it overlaps with the joint work of Barbasch and
Vogan [3], which uses the algorithm to decide irreducibility in
"eritical cases" for classical groups. (In fact, the specific results
that we give here for classical groups are some of the critical cases
for Barbasch and Vogan, although our approach may be more direct.)
Calculations with the algorithm appear in other papers as well, for

example in [2].

The present paper is organized as follows. Section 1 collects
some results from [8] and [9] and sketches the steps of the algorithm.

Section 2 establishes a theorem that gives an efficient starting point
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for use of the algorithm. And Sections 3-7 show how éhe algorithm
works in S0(2n-1,2) , Sp(3,R), SO (10), SO (2n) , and some
exceptional groups of type E, respectively. The worked examples
are exactly the ones needed for [1]. We proceed only in the
generality needed for our examples—induction from a maximal
parabolic subgroup, G linear and connected, rank G = rank K,
integral infinitesimal character. Readers interested in relaxing
any of these assumptions should consult [8,9,10], particularly
pp. 293-294 of [8], §6 of [9], and all of [10].

We are indebted to Vogan for several valuable conversations on
this topic and to Barbasch and Vogan for sharing with us the details

of their work announced as [3].

1. Notation and algorithm

Let G be a linear connected semisimple group with a simply-
connected complexification, let @ Dbe a Cartan involution, let K
be the corresponding maximal compact subgroup, and assume that
rank G = rank K. TLet TA be a §-stable Cartan subgroup (with
TE€ K and A equal to a vector group), and let MA be the
corresponding Levi factor of the associated cuspidal parabolic
subgroups.

Let P = MAN be one of these parabolic subgroups. If o 1is a
discrete series representation of M or nondegenerate limit of

discrete series and if v is a real-valued linear functional on the
Lie algebra o of A, we let U(P,0,v) be the standard induced
representation given by unitary induction as

U(P,o,v) = indg(c ®2e’®1).

It is known that U(P,o,v) has a finite Jordan-Holder series, and
Vogan's algorithm addresses the problem of finding the irreducible

subguotients and their multiplicities. (We shall be addressing this
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problem only when dim A =1 and U(P,0,v) has integral
infinitesimal character.)

The algorithm takes place in three stages. 1In the first two
stages one considers the same problem for regular integral
infinitesimal character. In the first stage we identify some
U(P’Uk’“k) with the same infinitesimal character for which the
composition series is known. 1In the second stage we go through a
succession of wall-crossing operations, following what happens to the
decomposition. At the third stage we pass to our original parameters
by means of Zuckerman's ¢ functor [11].

%

Let us introduce more convenient notation. Let a(mc,t be

the set of roots of M, and let MO be the identity component of
M. Pick any irreducible constituent of c'M , and let

(N, a+(mc,18)) be its Harish-Chandra parameteg. Corresponding to
each real root B in &(gc,(tmu)c) is an element Yg of G that
is the image of (5 _01) in SL(2,R) under the homomorphism of
SL(2,R) into G built from p. Let F(T) be the finite abelian
group generated by the elements Yﬁ' The restriction of ¢ to the
M-central subgroup F(T) determines a character X , and

(A, A+(mc,tg)) and X together determine ¢ . Introduce a positive
system a+(gc,(1$n)c} for the roots of G containing A+(mc,tc)

such that A+v 1is dominant. (Such a system always exists; if

A+y is regular, it is unique.)

Adding to MN+v a sultable parameter u that is dominant
integral for A'(g¥, (182)®) and adjusting X compatibly, we are led
to a standard induced representation U(P,co,vo) whose infinitesimal
character Yo = A+v +u is regular ([5], Appendix B). Moreover,
the Zuckerman § functor [11] satisfies

Ay +H

U(P,0,v) = ¥, 0" " U(P,05,v5) -

We shall be working with several Cartan subgroups, and we need

to match carefully the corresponding root systems. Thus let us fix
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a compact Cartan subgroup B of G contained in K, and let b be
its Llie algebra. We may assume that all other Cartan subgroups of
interest are obtained by Cayley transform relative to a succession of
roots. 1In particular, for a as above, we can write a &« {...},
where {...} is an ordered set of roots of (gc,hc) with respect
to which we have formed Cayley transforms. Then there will be no
confusion if we refer parameters like Yo = A +v +4  to our compact
Cartan subalgebra without introducing new notation for them.

It is important to note that y,, @ < {...], and the adjusted

X determine the global character of U(P,UO,\J completely. In

o)

fact, we build t®a , transform Yo to it, decompose Yo = N +V

BRI

form %o introduce any N' making v dominant, and induce

6]
Y]

g,8e 981 to obtain a representation U(P',Uo,v This

o)
representation will have the same global character as U(P,Uo,vo) 5
We write n-(yo, ae{...}) for this global character, dropping the
adjusted X from the notation. (Vogan's notation differs slightly
from this: He uses @(-) for the character, suppressing the explicit
mention of a and instead carrying it in the domain of Yo Sk Al

our notation, note that w(y,,a<d) 1is a discrete series character
0

o G.

Under our assumption that Yo is regular, it follows essentially
from [4] that the representation U(P',Uo,vo) has a unique
irreducible quotient J(P',oo,vo) . We write F(YO, cef{...}) for
the global character of J(P‘,Go,voj . If N" is a second choice
of nilpotent subgroup such that Vo is dominant, then
J(P",0 O,vo) = J(P',o'o,vo) and consequently the global character
'T?(YO ,eel...}) is independent of the choice of N!'.

Now let us work with a character 7w(y,c&f...}) or
T(y ,ee{...}) such that y is regular and integral. Tet o be a

real root (relative to the specified choice of & ), and let X be
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the suppressed character of F(T) for this representation. We say
that o is a cotangent case for this representation if

2( Pa:a)/lale

(~1)

% ()

or g8 tangent case if

Il

2p_,a)/|al®
Sy ) Ry

Here p, is half the sum of the roots having positive inner product
with o. 1In either event, n = 2(7,&)/1a|2 is an integer. We say

that o satisfies the parity condition for the representation if

either
o d1is a cotangent case and n 1is even
or

o is a tangent case and n 1s odd.

If g 4is simple, it can be shown that the parity condition can fail

for integral y only if o is long and g = ¢p(n,R) for some n.
one starting place for the algorithm is the following character

identity due to Schmid [6,7]. See p. 271 of Speh-Vogan [8]; recall

we are assuming G 1s connected.

Theorem 1.1 (Schmid's identity). Let y be regular integral,
and let o be a simple noncompact root (for the system A+(gc,bc)
that makes ¥y dominant). If « satisfies the parity condition for

TI'('Y s @ “[{1}) ,» then
T(y ;e <> {a}) = T(y ,eefal) +7(y, s @8) +7T(s Y 5 0 &4) ,
where Sa denotes reflection in a.

When the parity condition is not satisfied, the corresponding

identity is as follows. (See Proposition 6.1 of Speh-Vogan [8].)

Theorem 1.2. Let y be regular integral, and let o be a
simple noncompact root. If o does not satisfy the parity condition

for w(y ,a<»{a}), then
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m(y ;e e@fal) = 7y, ae{al),

i.e., w(y,aeerf{al) is irreducible.

Next we recall the wall-crossing functors and the T-invariant.
Fix y regular integral, let o be a simple root in the system that
makes ¥y dominant, let ha be the fundamental weight corresponding
to a, and put n = 2y,a)/|a|®. In tems of Zuckerman's y  and
¢ functors, define

Y =Tict y

Y =
= ¢Y and @ = ¢Y

=305

The wall-crossing functor is given by

sq@ = cpaqia@ -8

for any virtual character @ whose infinitesimal character is vy ;
5, acts on the local expression for a global character by reflection
in « (see Appendix C of [5]). We say that a is in the T-invariant
of. m(Yisiveslsaa}l) 4F£ *aT(Y’ cedf...}) = 0.

For purposes of calculation, we shall want to regard the
T-invariant as a subset of integers, say of {1,...,4}, where 4
is the rank of g . To do so, we note that the only parameters of
interest will be the Cartan subgroups and the various wy with ¥
fixed and w in the Weyl group of gc. The positive root systems
for wy and y are canonically identified via w, and the root
systems for the different Cartan subgroups are all identified by our
system of Cayley transforms. Thus we can number the roots in a
single Dynkin diagram for gc and obtain consistent numberings of
the Dynkin diagrams of all the positive root systems we shall consider.
In this way the T-invariant of a character 7 can be regarded as a
subset of {1,...,4} . (This point will be clearer in the examples.)

If we replace y by wy and if o is a simple root for the
system that makes y dominant, then wa 1is simple for the system
making wy dominant. Moreover, as observed in [11], the functor

=Y =i Y
wa = wy—na is the same as the functor *wa = *wy—nwa . Similar
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remarks apply to ® , and thus 84 is the same functor as Swa
In keeping with the notation of the previous paragraph, we can thus
denote our wall-crossing functors unambiguously by S1 9 eve s 8y
The observations about ¢a in the previous paragraph make it
clear that the T-invariant is an invariant of the Langlands quotient
in question. In particular, we can detect inequivalence of two
Langlands quotients by seeing that their T-invariants are different.
The T-invariant controls what happens at the third stage of the
algorithm when we pass back to our original parameters by means of
the § functor ¢;‘++:+“ . Recall that A+y +u is dominant for the
system A+(gc,(:eu)c). From this positive system we obtain a set

of singular roots, namely those simple roots orthogonal to A +wv.

As usual, we may canonically identify the singular roots with a

subset of  {ly. el

Theorem 1.3 ([8], Theorems 5.15, 6.16, 6.18). Iet @ be an
irreducible character with regular integral infinitesimal character
Yy conjugate to A+y +p . Then #;::4*‘® is irreducible or 0.
It is 0 if and only if the set of singular roots for A+v has

nonempty intersection with the T-invariant of © .

Computation of T-invariants is a routine matter because of the

next theorem.

Theorem 1.4 ([8], Theorem 6.16). TLet y be regular integral,
let T(y,aef...}) be given, and let A (g%, (19)%) be the
corresponding positive system. Then a simple root o for this system
is in the T-invariant of T(y ,eef...}) if and only if o satisfies
one of the following:

(a) o is imaginary and m-compact

(b) o is complex and 6a is negative

(¢) o is real and satisfies the parity condition for

T(y ,oe{...1) .
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Now we turn to computation of the effect of the wall-crossing
functors. Theorem 1.5 will show the effect on a full induced
character. Then we consider the constituents. If ¢a® = 0/, then
it follows from the definition that saﬁ = - B®. Thus we have only
to know the effect of s, on ® in the case that a 3is not in the

T-invariant; this we write down in Theorem 1.6.

Theorem 1.5 ([8], Corollary 5.12). TLet y be regular integral,
let w(y ,ee{...}) be given, and let A (%, (122)%) be the

corresponding positive system. If «a is a complex simple root for

this system, then

s,y saef...]) =w(syy,ael...]).

Remark. Here o complex and simple makes the positive roots
vanishing on o be the same for y and sy . Hence this theorem
is indeed implied by Corollary 5.12 and the sentence before Lemma 5.8
in [8].

Theorem 1.6 ([8], Theorem 6.16, and [9], Theorem 4.12). TLet
y be regular integral, let T(y,eef{...}) be given, and let
&+(gc, (1@:)”) be the corresponding positive system. Suppose that o
is a simple root for this system that is not in the T -invariant of

7(y e e{...}) . Then the wall-crossing functor s, satisfies

s, Ty ,ee{...}) =T(y,oel...]) + U, (@ ,eel...1)),

where UG(F(Y ,a®{...})) is a sum of true characters as follows:

() If o is imaginary and m-noncompact, then

U Gily el ) Ty ,ee{...,a}) + 8, i safw(M:T)
Y s =
g Ty sael...,0}) + Taly,eefl...,a}) +8,

if 8, € W(M: T)

with 7, and T, differing in how X 1is defined (see p. 264 of [8]).
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(b) If o is complex and 8a is positive, then

U, ((y seef...})) =7(sy,eef...]) +8,

with e unchanged.
(¢) If o is real and does not satisfy a parity condition for

7y ,eef...}), then

UQ(F(Y AR S D = 8, -

Moreover, in all cases @0 is a finite sum of irreducible
characters, each of which has (the index corresponding to) a in its

T -invariant and each of which occurs in w(y ,eef{...}).

Remark. The main terms of Ua’ as well, have o in their

T-invariant, by Lemma 3.11b of [9].

Finally there is a reciprocity theorem that is helpful in

computing ®0 ¢

Theorem 1.7 ([9], Theorem 4.14). Tet y be regular integral,
and suppose ® and @' are irreducible characters with infinitesimal
character y. If i is in t(®) but j is not in r(®), and if
J is in 7(®') but i is not in r(®') (and if indices i and J
do not span a group G, ), then the multiplicity of ®' in UJ @)
equals the multiplicity of ® in Ui(al) , and this common

multiplicity is at most one.

Now we can state the algorithm roughly. We begin with the
regular integral parameter YO constructed earlier. Since dima = 1,
we can write the character of U(P',04,v,) as w(yo ,ae{a}) for
some o . By a succession of reflections in complex roots, we pass
from Yo to Yi1sY¥o2 +oe s ¥ to a point where we know how
w(yk, e <r{a}) decomposes. (For example, if o is simple in the
system for Yi * then either a Schmid identity (Theorem 1.1) or
Theorem 1.2 will be available. In Section 2 we shall establish a
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more efficlent starting point.) We write the decomposition of
F(YR, a<»{a}) and apply to the whole identity the reflection that
takes us to W(Yk-l’ e e{a}), computing the individual terms by
Theorems 1.6 and 1.7. (It is not clear whether these tools will be

sufficient in general. However, they will suffice in our examples,

and the additional tools in [10] will suffice in general.) Then we
reflect again to pass to F(Yk-z’ cef{a}), and so on, until we have
a decomposition of w(yo, aef{al). Finally we use Theorems 1.3 and
1.4 to pass to our original parameters. If only one nonzero term
survives, our orilginal representation U(P,o,v) was irreducible.
Setting matters up with the initial reflections requires some
further explanation. We illustrate matters for an example with

SO*(lo). The numbering of the Dynkin diagram will be

5

1 2 3 4

Our given data will be a positive system for gc containing é+(mc,tc)
such that the root defining @ is simple. This root a will be
root 2. The white dots are the compact roots (when referred to bg),
while the black dots are noncompact. We specify A by attaching

e(k,ﬁ)/lﬁ]g to each simple root B8. Then the dlagram is

and we investigate reducibility/irreducibility at v = a. The

diagram for A +wv 1is

AV e
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We apply a succession of reflections in roots nonorthogonal to o in

an effort to make A +vy dominant. ITf A{ = 5353, we obtain

a = (:) +-(:) &i
Finally ag = SSAI gives us

o = (:) + (:)-r(:) A;
This A} is a system compatible with At (m?1%)  that makes A+v

dominant. We can take it as the system in which is to be

Yo
dominant. The set of singular roots is £1,3,4) .

There is no need to carry along an explicit value of Yoi having

+
AO

Yoe= 5570, which will be dominant for QI, and Yio= 53Y1’ which

and the expression for o will be enough. Then we can define

will be dominant for a;. Since o is simple for a; and satisfies
the parity condition (our group is not Sp(nm,R)), w(y,, e «f{al) is
given by a Schmid identity. So we have a starting place for the
algorithm.

2. An inductive application

When we set up matters as at the end of Section 1 and then
proceed with the wall crossings, we typically find that the first few
wall-crossing steps are independent of our example. What is happening
is that the first few steps take place in a common real rank one

example. The theorem below formalizes this process and its result.

Because of this theorem, we shall find that the set-up at the end of

Section 1 should be done in such a way as to minimize the number of

steps that are outside a real rank one subgroup.
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Theorem 2.1. Let Y be a regular integral infinitesimal
character dominant for {l Suppose that o is a g-noncompact root
that is the sum of all the simple roots in a single-line real rank one
subgroup with positive system /_\S c A+ , and suppose o satisfies the

parity condition for w(y ,eer{a}). Let n be the number of simple

roots in &"5 s

among these simple roots, say with €q compact and € noncompact.

and suppose n » 2. Let €, and e, be the nodes

If n=2 and if {a} is abbreviated as a«, then

Ty ; eea) =Ty, ¢ ea) +F{sla Yy ,aoaq) +T(8, Y ,0eea) +?(sa v, aed)
1t 2

5.2
(2.1)
while if n » 3, then

T(Y » 0 0a) = Ty 0 ea) +T(s, ¥ 0 ea) +T(s, v, 0ea) +7 (s, 8. y,oea) .
1 €5 €1 %2

(2.2)

Proof. We proceed by induction on n, treating n= 2 and n=3

separately. First let n=2. The relevant part of the Dynkin

diagram is

Cr—oA9)
10 2
and we introduce
g']': = 5, 4] o—e = @ s, Y dominant
1 €4y 1
[ex
¥ AT o—® o = @ + @ y dominant
O = > €
1 2
By the Schmid identity (Theorem 1.1) applied to 8¢ o
k
‘T(Sgl\' y000a) = F(SelY , 0 4a) +F(sgl~( , a «xf) +1'r'(sasely yaad) .

(2.3)

We shall apply the functor s, To compute the T-invariants of the

right side of (2.3), we need one more diagram:
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+
8 ,Se lAO 2— S.,5e lY dominant

The T-invariants within the set {1,2] are

T(FfSEIY, sera)) = {2}
T(F(sel'f ,yoed)) = {1}

T(T(s 8, r»aed)) =4

ael

by Theorem 1.4. Then Theorem 1.6 gives

sl”TF(SelY ;0 ea) F(sgly »aea) +7(y , a40) +8,

Il

le(sle s a <) —F(se 1Y soefd)

slﬁ(sas NESin uee) +8, .

¥ ,aef) = TI'(SaSel'Y , a4 ) +7r(sasel

A
Here @, is the sum of constituents of v(sasg Y , aexd) =
1

F(sase Y e<@) having 1 in the T-invariant, and so @, = 0. Also
2l

@1 is the sum of constituents of ?r(se Y ;0<*a) having 1 in the
1L

T-invariant, and so (2.1) shows 8, = c?(se Y,a<d). Now
1
Theorem 1.7 gives
¢ =mult (s, y,e«d) in U;(T(s, ¥,e%a)), 14v ={2},
ak 1
= mult ?(sey,ana) in U2('1F(s.e Y ,a«d)), ofgr ={1} .
1 1

For the latter we write

Il

Ue({f(ggly ,a<rd)) ?(sely,uea) +®3.

This shows ¢ > 1, and Theorem 1.7 says c = 1. Applying s; to

(2.3) and using Theorem 1.5, we obtain
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T(y , a ¢20) slw(s ¥, 04¥0)
L

8T (s, IY » 6 ©a) +8T(s, lY » 8 @f) +5,7 (5 8, lY , 0 d)

T(8, ¥ »0a4a) +7(y , 0 ©F) +F(s.E Y , 0 f)
1 X

- Ffse Y, oed)
i
+ F(sasely R ) +?(sdsely » 0 e¥E,) . (2.4)
Since €1 is compact and S BoBL = B gl W8 have
16 2Ll 2
F(sasg Y ,oed) = 1r(se s, S. Y saed) = F(se Y , 0 <g)
i E 1 2
and
T(s.s. y,0ee,) =7(s, 8.5, Y,aes, €,) =T7(5, y,aea).
aveq 2 e, aeq 2 €, 2 €,
Substitution into (2.4) gives the desired result (2.1).
Next let n=3. The corresponding diagrams are
D—0——1)
ik 2 3
a{ = ;_\,3 o—0—=e = @ 3 @ 8¢ Y dominant
. “8y S Ea 1

o
In
B
+
=
]

By (2.1) for B Y s
1

m(s, Yy, ,tea) =T(s, ¥,0ea) +7(s S. Y s0ea)
€q z €, z €My €y 2

+ 7(s Y , 0 ea) +7(s ¥, aef) .
e €0

@ + @ + @ y dominant

(2.5)
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We shall apply the functor 51 - To compute the T-invariants of the

right side of (2.5), we need the diagrams

+
s 5. A o—C0O0—e cc=® s s. y dominant
€1in57eq 0 Mo —€1Mp @ R |
B g AT o—e—o a= (@ s. s, y dominant
[P 0 52 el
251 €, o €5

The T-invariants within [1,2,3]1 are

T{F(se Y ,0eq)) = {2,3}
i
— 1,
Tﬁ{salmgscly,u«u)) {1,3}
T (F(sg 5, ¥ awa) = (2]
gl
T(T(sg 85 Y 50 d)) = {1} . (2.6)
2l
Then
Sl-TF(SelY s 0 42a) = F(sely » e ea) +T(y , 0 @a) +8;
51T (8, S¢ Y seea) = - (s, 5. Y 50 e0)
ARSI 108y
8-T(s. S Y ,0«a) =m(s, S, Y,eea)+T(s, ¥,cec)+8
il eo€q e eq €5 2
s-m(s. 5. ¥ ,aerd) =-T(s, 5. Y,aed). (2.7)
i e, €, % e, €

From (2.5) and (2.6)

8. = ¢, m(s S. Y,aea) +c (s, 5. Y saed).
i 1 Ve imye "’ 27,8

Now Theorem 1.7 gives

¢, = mult F(salmgsely ,a#a) in Ul(‘r—r(sel'r ,aea)), Lér ={2,31,

I

mult F(sel\f ,a<aq) in Ue(w_r'(s S. Y,eea)), 24t ={1,3}

EqiMa S
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For the latter, we write

U, (s S¢ Y s 0ea) = (s

¥, aea) 408, .
e Mo %y S0 3

This shows ¢y > 1, and hence c; = 1. Next,

c, =mult (s, s, y,aed) in U,7T(s Y ,0ea), 1 £r ={2,3},
2 €5 € 1 €1
= mult (s, Y,oeva) in U,T(s, 8, Y,ced), o gr ={1}.
1 2l
Now
U,T(s. 5. Y,oef) = T(s, s, ¥,aea)+08) .
2" e e €, €, L

Here O is the sum of constituents of w(s. s. ¥ ,a<d)
L €58

]

T(s. s, y¥,sed) having 2 in the T-invariant, and so @, = 0.
€, €y
Since ?(sely ,aera) and T(sg Sfe,Y s 0% @) have respective

r-invariants {2,3} and {2}, they are unequal characters, and thus

32 = 0. Hence

8, =T : 2.8
1 = T(sg 1'*‘”25le ;0 eaq) (2.8)

To compute 82 , wWe use the Schmid identity
m(s. s. Y,aea)=T(s. s, ¥ ,eaa)+7(s, s Yy ,0ad) +T(s s, 5, Y ,0ed)
€,eq eyeq i €5 € ? a'e,€q
and compute that the T-invariants for the terms on the right are
{2}, {1}, and {3} . Then it follows that
®, = cr(s. s, Y, ,e«d).
2 €5 € 2
By Theorem 1.7,

o]

]

mult T(s, s, Y,ead) in U;(T(s; s, Y ,aea)), 1¢£r={21,
Pl 2k ek

mult 7(s, s. Y,aewa) in U, (T(s, s, ¥,aed)), 2fr ={1].
€, €q 2 2 e €4

Since

Ue(ﬂ(seesely slaardl)) = Tr(scesely ;0 <a) +®5 -
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we have ¢ > 1. Thus ¢ =1 and

82 = F(sgesal\( , 0 ad) . (2.9)

Finally we apply s, to both sides of (2.5), use the identity

BJ_W(Sle yaea) =Ty, 0 ea)

given in Theorem 1.5, and substitute from (2.7), (2.8), and (2.9) to
obtain (2.2) for n = 3.
Now let n > 4, and assume inductively that (2.1) and (2.2) have

been proved for all cases { n-1. The starting diagrams are

+
1=5.4, O0—0:-0—@ o=@+..+@ g, Gominant

l
T

[0} =®+.. .+® y dominant

o—O0— —o—@ a=@+...+@ (2.10)

s, s, y dominant

S fe
OO cO——@ a=Q)+...+(@ (2.11)
= e YA s VR S LR N
s 8. Y ominan
5 B
O——0——0—0 oa=Q+..+[@) (2.12)
Ta o SRghe  Sheafile (7%

s s, s,y dominant
€y Moo,
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e

By inductive hypothesis, (2.2) for n-1 and s lY gives us

(s ,neva) =T(s. Y ,0ea)+7(s, 5, ,06e0)
( e,Y ) ( et e %,
+ T 8 gea) +T(6.. . 8 8 ¥ saea), (2.13)
F (% nyPe Y - ) +7(8g an % p% Y *
and the respective t-invariants for the terms on the right are
02, 0Dl 5 18 iespn=1} 5 [1,3,4544.50), and £1,3,4,...5,0-1} ., Then
le(selY , 0 ea) = 'T_r(selw( yaea) +T(y , 0 «ra) +84
s.T(S. 5. ¥ ,0ea) =T(s, s, Y,aeqa)+T(s, Y,aea)+@
LR e £5* €2 &
le(s.e e Y a <ra) = = '1?(56 S, Y0 <a)
Bl Bal- )
s,T(s 8, 5. Y,aoeqa) = - T(s8 S. B, Y ,0eaq). (2.14)
ey in, ey iy €aey

From (2.13),

8, = c.7(s 8. Y ,a%a) +c,m(s S. S. Y ,0eaq).
il 1" e ins7e = 27 e iy e €
By the same argument as when n = 3, we find ¢, = 1. Also
c, = mult of T(s s, 8, Y,e«a) in U, (7(s, ¥,aea))
2 €ty €p € p CR 2 *
LET ={2,.00,n=1},
= mult of T(s, y,aea) in U,(T(s, s 5 Y 0ea)),
1 s B
plgn = 3ol yn=Tl,
Now
U, (m(s S. 5, Y,aea)) =T7(s, s, y,aeq)+0
2 ety €p €q €, e & i

with each constituent of 83 in 7 ( s ¥s,aeaq). By

<] B8
L= o i AL

inductive assumption for n-3 (if n > 4) or by a Schmid identity

if n=U4, this 7 has three or four terms in its expansion, all

computed within the diagram (2.12), and 1 1s in the T-invariant of

each. Since 1 1is not in the t-invariant of ?(sE= ¥ ,0eaq),
i1
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T(s, Y »aea) does not occur in @5 . But nor do we have
1
T(sy Y s,aa) =7(s, s, ¥, aerc) , since n is in the T-invariant
1 Socty
of the left side but not the right side. Thus ey = 0, and
@, =7(s s, Y s0eaq). (2.15)
1 €5 € .

To compute @2 , we note that each constituent of 32 must occur in
Tr(sg lse 27 sa¢¥a) and have 1 in its T-invariant. By inductive
assumption for n-2, this 7 has four terms in its expansion, all
computed within the diagram (2.10). A term in which « includes
root 2 will not have 1 in its T-invariant, while a term with a not
including root 2 (or in the case n=4—in which a«g) will have

1 in its T-invariant. There are two terms of the latter kind,

(s 8. 5, ¥ ,aea)
CittniS et

and

7( Y ,aad) if n=14

s Bs B
Nat®pi®q €o
T(s s B e W aeno i AT RS

P B s L R -
Let c3 and cy be the respective coefficients of these terms in
@2 . A familiar argument shows ey = 1. TFor the computation of
cy» let us treat n = 4 and n > U4 separately.

First suppose n = 4. Then

¢y = mult (s

n3+ceselse2'y,uafﬁ) in Ul(?r(selseey,aﬂa)),l£1={2,3},

Yy yaeq) in U3(F(s

mult 7(s, s s
$1 Nigi®a %y

s SeeY.nHﬁ)),3¢T={1,2},

and we find that

U3(?r(sn3+eesglsegy ,aed)) = Tr(sn3+625e seEY s a9n3-+e2) i

1

The T-invariant of the term on the right turns out to be {1,3}, while

T(Tr(sa sey,nuu)) is {2,3} . 'Thus cy = 0 when n=2=u4.
3 e
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Now suppose n » 4. Then

¢y = mult (s

5 S. 8. Ys,aoea) in U.(T(s. 5. y,oea))
Mn-11®2 €12 €3 €2 S L :

I er =2, R "ln-l})

mult 7(s, s. ¥ seea) in U,(7(s s S. S. Y¥,eea))
S R ot et YR N '

2n =11,3,5...n=201,

the diagram for the latter T-invariant being

o s 8 G LG
ki I g MNpei ™52 Mpog

Mn-2tMn-1*€2

Here
U, (m(s s 5. 5y ,vexa) = 7(s S. S. ¥,aea)+0
2Y Vnp_gtepo e e, e Mn-11€5 €1 €" ° 3
(2.16)
with each term of ®3 contained in
m( Y 5 a <) . (2.17)

8 s =] s
Tn=1""2 "o S 8
our inductive assumption for n-4 (or a Schmid identity if n=5)

shows that 1 i1s in the t-invariant of each term of (2.17), while 1

Y ,aeaq)

is not in the tT-invariant of 7(s. s. y,eea). ©So T7T(s 6 s
%1%z g1€a

does not occur in 93 . Finally n is in the t-invariant of the first
term on the right of (2.16) but is not in the t-invariant of

T(s, S, Y,a®a). Thus ¢y = 0 when Al
X -2
So all cases n ) 4 have

Y, aea). (2.18)

8_ = T7(s 8. 8§
€1t %y

2

Finally we apply s; to both sides of (2.13), use the identity

SlTI'(Sle s Q ""a-) = W(Y s @ HG)

given in Theorem 1.5, and substitute from (2.14), (2.15), and (2.18)
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to obtain (2.2) for n. This completes the induction and the proof

of the theorem.

3. s0(2n-1,2)

For 80(2n-1,2) we shall consider two sets of examples. For each
we specify A by attaching 2( 2 BY/|B|2 to each simple root p in
the Dynkin diagram of type Bn . The black simple roots are the
noncompact ones, and P is built from a. We number the simple roots
from 1 to n, with n denoting the short simple root. The theorem
in each case is that U(P,o,v) is irreducible for the indicated

value of wv.

a. First set of examples

n=3
& 0 1 tangent case
4 O——f::. at v = 3a
n odd »5, t=%(n-1)
3 it 1 z 0 z 1 2 tangent case
: ec;_ €, €, a Y; Yo :___?t at v = (t-%)a
n even ) 4, t=%n
1 1 il 0 0 il 2 cotangent case
A O —0—0—@———0—"-=0

at v = (t-1)a

The diagrams for X+y are

A+y: O—e—» (n=3)
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11 1 1-t 2t-1 1-t 1 2
Aiv: O—: —O—O—@—8—0O— =0 (n odd > 5)
(04
1 1 2-t 2t-2 1-t i 2

Ady: O— ' —0O0—0O0—8@—8—O0—-—0 (n even >_1¥)

For n=3, we let t=1. In the same way as at the end of Section 1,
we apply a sequence of complex root reflections to each of these

diagrams. When n 1is odd, the sequence is Sp4**S4u081° " 8¢ 15¢ *
When n is even, the sequence is s,. 1°""84,98;°°*8; 7+ In all

cases the resulting diagram is

At
0 on 1 F T A T iy
AN+wo: o—0—O0— —O——e—D a=@+®+...+@
By Pn-1 Pn

This .f_\g is a system compatible with A+(m$,tm) that makes A +v
dominant. We take it as the system in which Yo is to be dominant.
The set of singular roots is {1,n}.

The nature of a allows us to apply Theorem 2.1 immediately to
obtain

-n-(yo s 8 ea) = T(yy,ao ) .e-F(sJSlYO ;0 ea)
- Tr(sﬁn_lyo , 0 o) +v(sﬁlsﬁn_l\fo s 0 @), (3.1)

except that the last term is replaced by Tr(sﬁ Yoo 0@ «f) when n=3.
n-1

The respective T-invariants for the representations on the right side
are {lyessan=1} ., (2,5 n=0}0 o 0 n-2. nl i and {2 .5 ,0-2n] -

The only one of these that is disjoint from the set {1,n} of singular
roots is the second one. By Theorem 1.3, the only term on the right
side of (3.1) with nonzero image under the § functor is the second
one, and its image is irreducible. Therefore U(P,o,v) is

irreducible.
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b. Second set of examples

n=3s
% 0 0
i O——9
(05
n odd 25) t:%(n—l)
1 1 % 0 % 1 ik
A o—: ' —0O0—0O——8—0O0—  —0
= i S R R T Y
n even >4, t=%n
1 1 1 0 0 ] 3k
A o— —O0—C0—8—8—0O0— "D
b s LT TR AR i (B it

The diagrams for A+v are

A+wv e o—ee—»

i 1 1-t 2t-1 1-%t 1 i
Aiv: O—: —O—O—@—8—O— =D

I 1 2-t 2t-2 1-% 1 | 1
Atv: O—++—O0—O—@—8—O0— =D

For n=3, we let t=1. We apply the same seguence
reflections as in Section 3a, obtaining a system AI ’
apply the reflection s, to a{ to obtain z’.\.g. The
all cases are

tangent case

at v = %a

tangent case

at v = (t-%)ao

cotangent case

at v = (t-1)a

(n=3)
(n odd » 5)
(n even > U4)

of complex root
and then we

diagrams in



60

+
& 0 i 1 1 i )
y NI o—0O—~0— - —O—e—9 o =(:)+<:)+...+(:::)
'Bl Bn—l IEn
Jen
+
85 0 1 1 il 0 i

Atv: O—O—O0—:—O0—8—8 o=D+@+.-+@-)+2@

E:} that makes A+v

This A7 is a system compatible with At (€, t
dominant. We take it as the system in which Yo is to be dominant.
The set of singular roots is {1,n-1}.

We can apply Theorem 2.1 in the system ‘5‘1 to obtain

T(5,Yos 8 ©wa) =T(sy,,0 «0) +T(515.Y 5 0 “a)

+ F(sn_lsnyo .0 %) +'T?(slsn_lsn\(o s 0 ©a) , (3.2)

except that the last term is replaced by F(sn_lsnyo, a«@d) when
n=3. The respective T-invariants for the representations on the
right side are {21,...,n-1}, {2,...,n-1}, {1,...,n-2,n}, and

{2] e =20} . We apply 5n to both sides of (3.2). We could go
through the step-by-step analysis, but it is simpler to observe that

everything that happens in the computation is oblivious to the presence
of the double line in the diagram. Therefore the answer has to be of
the form given in Theorem 2.1:

T(Ygsa9a) =T(yy,aea) +T(s1Yy, 8 «a)

+ (8> 0 «a) +T(818,.¥, 0 ea) .

The respective T-invariants for the representations on the right side
are {1,...,0-2,n}, {2,...,n-2,n}, {1,...,n-1}, and {2,...,n-1}.
The only one of these that is disjoint from the set {1,n-1} of

singular roots is the second one. Thus only the image of
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?r'(slyo, a«0) 1is nonzero when we apply the ¢ functor, and its image

is irreducible. Therefore U(P,0,v) 1s irreducible.

b, Sp(3,R)

For Sp(3,R) we shall specify A by attaching 2(%,5)/]5[2 to
each simple root A Iin the Dynkin diagram of type 03. The black

simple roots are the noncompact ones, and P is built from o.

1 0 (0] cotangent case
A o—0o—»
5 at v = 3o

We shall prove that U(P,o0,v) 1is irreducible for the indicated value
of v .
We number the roots as {1,2,3}1 from left to right. The diagram

of A+v is

W A
N+ oO—CO—® a=0Q AT

Put &B = SQAI. The picture is

0 2k 0 i h

oO—0o—=e a =2@ + (3 aS = 8By
We take AJ(; as the system in which y, is dominant. The set of
singular roots is {1,3} . We do not have an immediately available

+
0

satisfy the parity condition, and Theorem 1.2 says that

character identity in A but have one in &{. Here o does not

w(seyo,u«a) =F(52Y0,uua). (4.1)

The T-invariant for the right side is {1}, and we find
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52?(52Y0 s 0 ¢a) = F(SQYO s @) +?(YO , @ «a) +8 .

Here the constituents of @ must occur on the right side of (4.1)

and must have 2 in thelr t7-invariants. So 8 = 0. Therefore

TF(YO s 8 o) 82“'(5270 s Gesa) = 52?(3270 , 8 <)

'TT-(SEYO , 0 @a) +F(YO , 0 @) .

The T -invariants for the two terms on the right side are {1} and
{23 . Only the second of these is disjoint from the set ({1,3} of
singular roots, and it follows just as in Section 3 that U(P,o,v) is

irreducible.

5. S0 (10)

For SO (10) , we specify A as at the end of Section 1. This
is a cotangent case and we treat v = a. We prove that U(P,o,v) is
irreducible for this value of v .

We number the roots as at the end of Section 1, and the diagram

for A+v 1is what is called &; there. It is a little more

. : - + + _ -
convenient to define Al as 5331A2. We continue with AO = 55&1.

Then our diagrams are

QI a =(:)-+(:)+(:)
TS5 1
5 9 Lol o «-0:@0+0

We use Ag to define Yo+ The set of singular roots is i B [

We can apply Theorem 2.1 in the system A{ to obtain
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11-(35?0 , 0 eq) = F(55Y0 , 0 ©a) +F(sls5yo, o «a)
+ F(SBSSYO , 8 @a) +F(sls355-y0 saea). (5.1)

The respective T-invariants of the terms on the right are AL Ea
{2,3}, [1,2,4}, and {2,4}, and 5 is not in any of these. But
even more, we see from Theorem 2.1 that 5 is not in the T-invariant
of any constituent of the corresponding representations (... ,a <a)
for the members of the right side of (5.1). This says that all the

extra ® terms are 0 when we apply s to the terms on the right

5
side of (5.1). Consequently application of S5 to (5.1) gives exactly

m(y ., aea) = (same 4 terms as in (5.1))

0

+ T(Yqy» 8 ©a) +F(sl¥0 , 6 @)
+ T (85855575 @ «a,B) +7 (85515355 » 8 «ra,B) .

Here p denotes the noncompact root in position 5 for the positive
system in question. We readily compute that the respective

T-invariants of our four new terms are {1,2,5}, {2,5}, {1,2,4,5},

and {2,4,5}. Of our eight T-invariants, the only one that fails to
meet the set {1,3,4} of singular roots is {2,5} . Thus only the
image of ?(slyo ,e4a) is nonzero when we apply the ¥ functor, and

it follows as in Sections 3 and 4 that U(P,o,v) is irreducible.

6. SO (2n)

For SO0°(2n) with n > 6, we shall specify A\ by attaching
2(?\,5)/|B12 to each simple root B in the Dynkin diagram of type
D, - The black simple roots are the noncompact ones, and P is built

from a.
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cotangent case

el b 1 0 0 i
O Bed=C) *—@ Ot at. v = (t=2)e
< e DL R 5

tangent case

at v = (t-%)a

%
=5
Y1 Ye1 Yg

L 1 %
o—: - —0—®
€ 82 El

o @o

We shall prove that U(P,0,v) is irreducible for the indicated values
of wv.
We number the roots on the horizontal as {1,...,n-1} and denote

by n the root extending upward. The diagrams for A+v are

0
SR 1 3ot fesmiioog 1 3 caa)
C}—— =09 l. =
0
1 1 1-t 2t-1 1-% 1 1
A+wv (n even)
O =v—0) *—O B—==
o

We apply a sequence of complex root reflections to one or the other
of these diagrams. When n 1is odd, the sequence is

-t When n 1is even the seqguence is

Ehrnns C B hiy SRRy
Spg®* S 08y Sy - In both cases the resulting diagram is

+
&
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ST - +
We let A. = snal and use &O

0 to define Yo+ The diagram is

-4

Ao

a =(:)+...+(::)—+()

and the set of singular roots is {1,n-2,n-1}. The argument now
proceeds just as with so*(lo) in Section 5, and the result is that

U(pP,o,v) is irreducible.

T. Groups of type E

For groups of type E, we shall consider 13 specific examples,
of which 2 are in E6’ 5 are in E?, and 6 are in E8' The theorem
is that U(P,0,v) is irreducible in all 13 cases. Our numbering of

the roots in E8 i

and we drop root 7 or roots 6 and 7 in E, or Eg.

For each example, we state what vy 1is, and we give two diagrams,
the left one for the m parameter A (with 2(%,5)/|3|2 attached
to the simple root g ) and the right one for the infinitesimal
character A-+v. The black simple roots are the noncompact ones,

o is cirecled, and P 1g built from a.
In addition, we give the sequence of reflections used to pass
to Ag.

we apply Theorem 2.1. (Thus effectively we have only to implement

A vertical line in the middle indicates the stage at which

wall crossings for reflections to the left of this line.) With each
example we list the set of singular roots.
The 13 examples are listed below. After giving the list, we shall

discuss the proof of irreducibility.



(b)

(c)

(d)

Eg with v %a
%

1 % 0 % at

Reflections: SE!SOSISESh'

Eg with w

20
0
il 0 0 3k 1

Reflections: 5332|50515554.

B i —
E, with v 20,
l::
il 1. 0 0 1. 1
Reflections: 32|50s133$5.
E7 with v = 2a.

- - ]El; ® O O
il 1 0 0 1 1

Reflections: 32|So$1555&'

66

Singular set:

Singular set:

-1 1;

{1,4,5} .

Singular set:

Singular set:

=1 i,

{0,3,6} .

{0,3,6} .
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(e) E, with v = 3a.

%; )
LA S et L T S el S e Sl )

Reflections: 5352|505155su i Singular set: f{1,4,61.

(£) E, with Vv = 2a.

- :OI @' ®
2 1 0 0 1 0

Reflections: 5653521553133'

1 1 -2 =1 0

Singular set: {0,1,4,53.

(8) E; with v = 3a.
0 -3
S R I 0—0—0
1 0 0 1 . 1 1 -3 &} -2 i 1
Reflections: Sﬂsls352|305155$1¥ - Singular set: ({3,5,6}.
(h) Eq with v = %o.,
L 1
o—o ®—0—0—o0
1 1 h 0 " & 1 1 1 9,0 et g Ty

Reflections: S2|5051535635 . Singular set: {0,3,7} .
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) Eg with v = 3a.

Reflections: 5352|305153S685' Singular set: {1,4,73.

(J) Eg with v =

h-%\.ﬂ

1 1 b 0 + 1 2k 1 1 -2 5 =2 1 1

Reflections: sels Singular set: {0,3,7}.

1838685 .

(k) Eg with v =32a.

R R ST S e R T S R R i R R ]

Reflections: 5352|3051535655 . Singular set: {o0,1,4,7}.

(¢) Eg with v:%a,

% -3

Reflections: Shsls352|503136s5sﬁ' Singular set: {3,5,7] .
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(m) Eg with v = Loy

0

o) I
\ 9,
1 it

= O
= O

Reflections: 5355sh518352|5051565554' gingular set: {[2,4,6,7}

As we said, U(P,0,v) is irreducible in all 13 cases. We turn
the proof. TLet At be the positive system indicated above, let W
the product of the reflections to the right of the vertical line, let

n be the number of reflections to the left of the vertical line, and

to
be

put &; = wAT. Then define é;—l’ e ag by applying one at a time

the reflections that are to the left of the vertical line. Then we can

define YO = A+Vv +4 as in Section 1, and we can reflect it to obtain

Y3 dominant for &5, 0 é 5 é n. Theorem 2.1 enables us to
decompose v(yn, c¢ea) as the sum of four irreducible characters.

In every case, the first reflection to the lef't of the vertical
line is S5 . Moreover, the root 2 ig not in the T-invariant of
any of the four irreducible characters, nor is it in the T-invariant
of any constituent of any of the corresponding w's for these four
characters. Applying Sy, WE then obtain a decomposition of
F(Ynal’ a«a) as the sum of eight irreducible characters. (This is
all very similar to what happened in Section 5.)

When n=1, we have only to check that the singular set meets
the t-invariant of 7 of these 8 characters, and then we have
irreducibility for U(PR,0,v) . Thus we are done in cases (a), (c¢),
(d), (h), and (J).

When n=2, the next (and last) reflection is S35 and we
prepare to apply 83 to our expansion of w(yl , @ <) into the sum
of eight irreducible characters. The four characters that occurred

also in -n-(y2 ,eea) have 3 in their T-invariants and may be
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disregarded. 1In order to handle the © terms, it is necessary to
decompose the w's that correspond to the four additional characters
that first appeared in TJ‘(Yl ,a<a) . Each of these w's is seen to
be the sum of eight irreducible characters, all of whose T-invariants
meet the singular set. Therefore all of the @ terms may be
disregarded. We thus need to consider only our four new characters
and their main new terms under U3 . of these 8 characters, 7 have
T-invariants that meet the singular set. Thus U(P,u,v) is
irreducible in cases (b), (e), (i), and (k).

In cases (g) and (L), we have n=4. The reflections to the
left of the vertical line are 5u515352’ and it is necessary to

calculate the decomposition of m(y,,e ea) = 5382v(74, e ea) exactly.

This calculation is more complicated in case (L) than in case (g) but
can be done without tools more advanced than Theorem 1.7. One handles
the last two wall crossings in the spirit of the previous paragraph,
discarding as early as possible any terms that will not affect the
final irreducibility. The detalls are fairly long and will be omitted,
but the result is that U(P,o,v) is irreducible in cases (g) and (1).

Case (f) has n=3. The reflections to the left of the vertical
line are SgS387 and we calculate Tr(Yl , 0ea) = s3s21r{Y3 ,0<a) as
in case (g) above. The resulting character identity involves ten
irreducible characters. The root © is not in the T-invariant of any
of these ten characters, nor is it in the T -invariant of any
constituent of the corresponding w's for these ten characters.
Applying Sg . Wwe obtain a decomposition of v(yo, a«qa) as the sum
of 20 irreducible characters. The singular set meets the T-invariant
of 19 of these 20 characters, and thus U(P,0,v) 1s irreducible in
case (f).

Finally we consider case (m), in which n=6 and the reflections
are 53858 5,538, . Here we calculate W(Y3, awq) = sls3s2r(y6, a ea)

exactly, using Theorem 1.7, and we calculate w(y,,t ea)
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= SQW(Y3 ,a«qa) except for two ® terms. One handles the final two
wall crossings in the spirit of the cases n=2 and n=4. The
details, however, are much more complicated in this situation. But at

any rate the result is that U(P,o,v) 1s irreducible in case (m).
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