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It is known that the problem of classifying the irreducible unitary represen- 
tations of a linear connected semisimple Lie group G comes down to deciding which 
Langlands quotients J(MAN, 6, v) are infinitesimally unitary. Here MAN is any 
cuspidal parabolic subgroup, CJ is any discrete series or nondegenerate limit of dis- 
crete series representation of M, and v is any complex-valued linear functional on 
the Lie algebra of A satisfying certain positivity and symmetry properties. The 
authors determine which Langlands quotients are infinitesimally unitary under the 
conditions that G is simple, that dim A = 1. and that G is neither split F4 nor split 
G2. ‘$1 1986 Academic Press. Inc 

For a linear connected simple Lie group G other than split F4 or 
split GZ, we determine the contribution to the unitary dual of G by all 
Langlands quotients J(MAN, O, v) for which MAN is a cuspidal parabolic 
subgroup with dim A = 1. For fixed MAN and 0, the contribution from 
Re v positive turns out always to come either from an interval of v or from 
an interval together with one isolated point. The parameter of the extreme 
unitary point v is given by a simple formula, and the gap, when there is 
one, is always of one or two sizes (except in the case that G is nonsplit F4 
and IJ= 1). 

For background on determining the unitary dual of G, one can consult 
[ 121, which will place our main theorem in perspective. 

We state the main theorem precisely as Theorem 1.1. Let us summarize 
the statement when G has a compact Cartan subgroup. The theorem says 
that the normal situation is that the unitary points form an interval 
extending from the origin for a distance given as the minimum of two num- 
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bers vi and v; . But there are six kinds of exceptions, all but one of which 
arise only when the Dynkin diagram of G has a double line. Four kinds of 
exceptions say that there is a gap in the unitary points, with an isolated 
representation at min(v,f , ~ v,, ); prototypes of these situations occur in 
Sp(n, l), nonsplit F4, %(2n, 3), and %(5,4). Two further kinds of excep- 
tions say that the unitary points form an interval but that the interval is 

shorter than expected; prototypes of these situations occur in %(2n, 2) 
and %(2n + 1, 2). 

One of the four kinds of gaps provides us with an interesting example 
concerning conjectures of Vogan [23] on the preservation of unitarity 
under cohomological induction. We give this example explicitly in Sec- 
tion 15. 

The proof of the main theorem is in two distinct parts. The first part of 
the proof is to make use of cut-offs that exclude certain representations as 
nonunitary. Statements of most of the cut-offs are assembled in Section 3 
and will not be proved in this paper. Some are variants of those announced 
in [2] and [3], and others are new; the idea of the proof for all of them 
appears in [3]. We do, however, include the proof that the cut-offs apply; 
this occupies Sections 47 and part of Section 14. 

The second part of the proof is to show irreducibility of the standard 
induced representations at certain points. A main tool here is a theorem 
implicit in Speh-Vogan [20] and stated explicitly here as Theorem 8.2. 
However, this theorem does not handle certain cases that we assemble 
afterward in Table 8.1. In Lemma 8.6 we reduce these difftcult cases to a 
small number that we handle in another paper [4]. 

Let K be a maximal compact subgroup of G. The case rank G > rank K is 
distinctly different from (and much easier than) the case rank G = rank K. 
Most of the paper is concerned with the equal rank case. When rank G = 
rank K, the case of a Dynkin diagram with only single lines on the one 
hand requires the most extensive analysis but on the other hand does not 
use the classification of simple real groups. By contrast we do make use of 
the classification of simple real groups to handle double-line diagrams; use 
of this kind of classification in the double-line groups is not surprising since 
most of the exceptional cases for Theorem 1.1 arise in such groups. 

The paper makes considerable use of “basic cases” and “special basic 
cases,” as introduced in [ 131 and [3]. The paper [ 131 conjectures a 
relationship between unitary representations in G and unitary represen- 
tations in subgroups L. We shall see in Section 15 that this conjecture fails 
in some of the double-line cases, particularly in S%(odd, even). However, it 
is almost true in all cases, and it is true enough to help in the bookkeeping 
that is necessary in the proof of the main theorem. 

We are indebted to D. A. Vogan for a number of helpful conversations 



UNITARY REPRESENTATIONS 23 

during our work. His suggestions and methods of computation were of 
decisive help in addressing questions of irreducibility and isolated represen- 
tations. We are grateful also to Barbasch and Vogan for sharing with us 
details of their work [S] before their publication. 

Conrents. 1. Statement of theorem. 2. Basic cases and special basic cases. 
3. Cut-offs for unitarity. 4. Validity of cut-offs in special basic cases, single-line 
diagrams. 5. Validity of cut-offs in general, single-line diagrams. 6. Validity of cut- 
offs for CI short, double-line diagrams. 7. Validity of cut-offs for c( long, double-line 
diagrams. 8. Tools for proving irreducibility. 9. Irreducibility in special basic cases, 
single-line diagrams. 10. Irreducibility in general, single-line diagrams. 
11. Irreducibility in double-line diagrams. 12. Isolated representations. 13. The 
final gap in unitarity. 14. Consideration of eo(odd, odd). 15. Remarks about 
examples. References. 

1. STATEMENT OF THEOREM 

Let G be a linear connected simple Lie group other than split F4 or 
split G,. We may assume that G is contained in a simply connected 
complexification Gc. Let /3 be a Cartan involution, let K be the 
corresponding maximal compact subgroup, and let MAN be the 
corresponding Langlands decomposition of a parabolic subgroup. We shall 
assume that rank M= rank(Kn M), so that M has discrete series (Harish- 
Chandra [7]). We shall assume moreover that dim A = 1. We denote 
corresponding Lie algebras by lower case German letters. 

Let 0 be a discrete series representation of M or a nondegenerate limit of 
discrete series [17], and let v be a complex-valued linear functional on a. 
Then the standard induced representation U(MAN, CT, v) is given by nor- 
malized induction as 

U(MAN,o,v)=indz,,(o@e’@l). 

If Re v z 0 (with positivity defined relative to N) and if v #O, then 
U(MAN, cr, v) has a unique irreducible quotient J(MAN, a, v), the 
Langlands quotient. In addition, J(MAN, 0, 0) makes sense [ 161 whenever 
the R-group R,, O is trivial. (See [ 171 for R, 0 in full generality.) The 
problem is to decide when J(MAN, 0, v) is infinitesimally unitary. 

If v is imaginary, then J(MAN, o, v) is trivially unitary. If Re v > 0, then 
J(MAN, 0, v) cannot admit a nonzero invariant Hermitian form unless the 
Weyl group W(A: G) has a nontrivial element w and w fixes the class [o] 
of o; moreover, v must be real. Conversely these conditions give the 
existence of a nonzero invariant Hermitian form. (See [16]). Thus the 
problem is to decide which real parameters v 2 0 are such that this form is 
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semidefinite. If R,, o is nontrivial, there are no such parameters v, by 
Proposition 16.8 of [ll]; thus we may assume R,,. is trivial. 

The solution to this problem involves counting the number of roots with 
certain properties and depends on having a particular kind of ordering, 
which in turn depends on parameters that define 0. To describe these mat- 
ters, we distinguish the cases rank G > rank K and rank G = rank K. 

First, suppose rank G > rank K. (Actually this means 9 z sI(3, [w) or 
g E eo(odd, odd).) Let b c I n m be a compact Cartan subalgebra of m, so 
that b @ a is a Cartan subalgebra of g. Let (rO be an irreducible constituent 
of the restriction of 0 to the identity component M, of M; then Lemma 2.1 
of [ 171 gives cr r indM,,o,, and thus crO determines (T. Hence 0 is determined 
by a Harish-Chandra parameter (&, A ‘) for 0. Here A ? is a positive 
system for the roots A = A(mc, bc), and %, is dominant relative to A +. 
Regarding A as a subset of A = d(gc, (60 a)@), we introduce a positive 
system A + for A such that I, is A + dominant and QA + = A +. (The con- 
dition OA + = A + means ib comes before a.) 

Let aR be the (unique) positive root of (g, a). We may assume that AT is 
defined by a lexicographic ordering of (ib)‘, and we let CI, be the least 
positive element such that a, + CI~ is a root. The element w of W(A: G) 
exists in so(odd, odd) but not in 51(3, [w), and in the case of so(odd, odd), 
Lemma 10.3 of [17] shows that ~[a] = [o] if and only if (A,, E,) =O. 

According to [9], J(MAN, 0, v) has a unique minimal K-type A (in the 
sense of Vogan [21]) given by 

A=&+&26,, (1.1) 

where 6 and S, are the half sums of positive roots for A + and A +(f”, b@), 
respectively. (See Sect. 14 for the nature of the roots of I.) We define 

v,=2#{p~A+l /Il.>Oand (A,b)=O}. (1.2) 

Next suppose rank G = rank K. Let b c g be a compact Cartan sub- 
algebra of g. We may assume that a is built by Cayley transform relative to 
some noncompact root a in A = A(g’, bc). Then b _ = ker a is a compact 
Cartan subalgebra of m, and the root system A = A(mc, by) is given by 
the members of A orthogonal to a. Let A, and A, be the subsets of com- 
pact and noncompact members of A. Corresponding to the root a is a non- 
trivial homomorphism X(2, [w) + G, and we let y, be the image in G of 
(-A -y) under this homomorphism. It will be convenient to identify a 
with its Cayley transform, so that we can write v as a multiple of a. 

Let cr,, be an irreducible constituent of the restriction of c to the identity 
component M, of M, and let x be the scalar restriction of cr to the sub- 
group (1, y.}. By Lemma 2.1 of [17], cr is induced from o0 @ x on the sub- 
group of M generated by M, and { 1, ya >, and thus ((I,,, x) determines (T. 
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Hence (r is determined by x and a Harish-Chandra parameter (&, A Z ) for 
,J. Here A 4 is a positive system for d _, and 1, is dominant relative to A IY. 
We introduce a positive system A + for A containing A Z such that A, is A + 
dominant and tl is simple. Let A: = A,n A+ and A+ = A, n A+. It is 
automatically true that the nontrivial element w of W(A:flG) exists and fixes 
Cal. 

If pa is half the sum of the roots having positive inner product with c(, 
then we say that CJ is a cotangent case if 

x(y,) = ( _ 1 )2<PZ% =>!ld 

and otherwise is a tangent case (for the Plancherel formula of G). 
According to [9], J(MAN, g, v) has one or two minimal K-types with 
highest weights given by the formula 

Ll=&+d-26,-++/L (1.3) 

Here p is 0 in a tangent case, and p = & ta in a cotangent case. In a tangent 
case, it is to be understood that ,U = 0 produces a A$ dominant ,4. In a 
cotangent case, at least one choice of p gives a Ai dominant /i, and the AZ 
dominant n or /i’s give the minimal K-type(s). We define 

WY a> v,+=l+ ,a,2 -+2#{pEA,Cj/?-aEA and (A,p-a)=O} 

PEA,+ IP-aEd, 1812< Ia12, 2(A’8-a’= +l ,P-a,2 , (1.4a) 

p=l-2<pta) 
VO --2-+2#{pEA,+l~+aEA and (A,j3+a)=O) 

I4 

PEA,TlP+aEA, 1012< la12, IB+a12 2(LB+a)= +1 . (1.4b) 

Given r~, we form R, and x as above, and we fix a choice of p for which A 
is A$ dominant. We say that a simple root /?E A+ is basic if 2(2,, p)/IpI’ 
is as small as possible among Harish-Chandra parameters that are con- 
sistent with A+ and x and have a A $ dominant corresponding form /i 
(given by (1.3)). (A formula for this minimum value will be recalled in 
Sect. 2.) The root system generated by the basic simple roots will be called 
the basic case associated to io. 

Define 

A,.={y~A,l<Ay)=0}. (1.5) 

The special basic case associated to A, is the group or root system 
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generated by CI and all simple roots of A+ needed for the expansion of 
members of A,, I. This root system will be denoted A,. 

The special basic case turns out to be contained in the basic case. 
Although the special basic case can be computed directly from i,,, it is 
easier in practice to read off the basic case and then to determine the 
special basic case within it. (See Table 2.1 and Lemma 2.2. An example will 
be given in Sect. 15.) 

THEOREM 1.1 (Main theorem). (a) Suppose rank G > rank K and 
(&, cc,) = 0. Then for c > 0, J(MAN, a, &zR) is infinitesimally unitary 
exactly when 

o<c<v,. 

(b) Suppose rank G = rank K. Then for c > 0, J(MAN, o, $E) with six 
exceptions is infinitesimally unitary exactly when 

0 < c < min(v,+ , vi ). 

The exceptions occur when the component qf a in the associated basic case or 
special basic case is of one of the following forms: 

(i) The component of c[ in the special basic case is q(n, 1) with 
n > 2, with ,u =O, and with CY adjacent to the long simple root. Then 
J(MAN, o, fcol) is infinitesimally unitary exactly when 

O<cdmin(v,f, v;)-2 or c = min(v,+ , vi ). 

(ii) The algebra g is nonsplit F4, and c is trivial. Then 
J(MAN, a, +CLX) is infinitesimally unitary exactly when 

O<c<min(v,+,v;)-6 or c = min(v,t , v; ). 

(iii) The component of c( in the special basic case is rju(n, 1) with 
n > 2 and with LX long, and there is an adjacent basic short simple root E such 
that su(n, 1) and E generate an algebra so(2n, 3). In this case, let [ be the 
sum of the simple roots strictly between CI and E in the Dynkin diagram. If i is 
noncompact, then J(MAN, o, $a) is infinitesimally unitary exactly when 

O<c<min(v,f, vi - 1) or c = min( v$ , v; ) if V&22 

0 < c < min(v,f ,v; ) if v,<l. 
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Zf [ is compact or 0, then J(MAN, o, &XX) is infinitesimally unitary exactly 
when 

1 O<c<min(v,+ - 1, v;) or c = min(v,f , v; ) if v,f>2 

O<c<min(v$, vg) if v,+dl. 

(iv) The component of CI in the special basic case is so(2n, 2) with 
n z 2. In this case let v: L and VO,~ be computedfrom (1.4) within an su(n, 1) 
subsystem A, of the special basic case containing CI and generated by simple 
roots. Let B0 be the unique positive noncompact root in the so(2n, 2) that is 
orthogonal to ~1. Then exactly one of c( and -CI is conjugate by K within 
so(2n, 2) to the root /?,,. Moreover, J(MAN, CT, $x) is infinitesimally unitary 
exactly when 

O<c<min(v,t,, vg) {f PO conjugate to ci 

O<c<min(v,+, ~0,~) if Do conjugate to --cI. 

(v) The component of tl in the special basic case is so(2n + 1,2) 
with n 3 2 and with tl long, but the situation is not imbedded as in (vi). In this 
case, let vofL and voL be computed from (1.4) within the su(n, 1) 
subsystem A, of the special basic case containing u and generated by simple 
roots. Let b0 be the unique positive noncompact root in the so(2n + 1,2) that 
is orthogonal to u. Then exactly one of u and --a is conjugate by K within 
so(2n + 1,2) to the root /IO. Moreover, J(MAN, o, $cc() is infinitesimally 
unitary exactly when 

! O<c<min(v,t,+l, vg) if fiO conjugate to u 

O<c<min(v$, v&+ 1) if/I0 conjugate to --cI. 

(vi) The component of u in the special basic case is 40(5,2) with u 
long, u is the middle of the three simple roots in the component, n = 0, and 
there exists a A + simple noncompact basic root next to the long node of the 
component. Then J(MAN, C-I, &u) is injkitesimally unitary exactly when 

O<c62 or c= 3. 

In all cases, U(MAN, o, v) is irreducible on the interior of any interval of v 
where J(MAN, a, v) is infinitesimally unitary. 

Some comments are in order about the case rank G = rank K before we 
proceed. The last term in the definition of VT or v; should be regarded as 
exceptional. It can be nonzero only when there are roots of two lengths and 
u is long (possible only in so(odd, even), sp(n, R), and split F4). When the 



28 BALDONI-SILVAAND KNAPP 

exceptional terms are 0, the roots that contribute to vi and vi all lie 
within the special basic case; thus vz and vi are the same whether com- 
puted in G, in the associated basic case, or in the associated special basic 
case. Theorem 1.1 therefore proves the conjecture in [ 131 that unitarity in 
the basic case corresponds to unitarity in G, under the assumptions that 
dim A = 1 and that the exceptional terms of vz and v; are 0. The conjec- 
ture can fail when an exceptional term is nonzero; we give an example of 
this failure in Section 15. 

Situations (i), (ii), (iii), and (vi) in the theorem are the cases where there 
is a gap in the unitary points. For (i) and (ii), this gap is generated by the 
corresponding gap with the trivial representation cr in some Sp(n, 1) or 
nonsplit F4 (cf. Kostant [IS]). The gaps noted in (iii) and (vi) are new. 
The simplest example for (iii) is in E(4, 3) with all simple roots noncom- 
pact, with CI equal to one of the long simple roots, and with Lo = 0; the gap 
occurs on the interval 1 < c < 2. The simplest example for (vi) is in 
%(5, 4). The gap in (iii) provides an interesting example concerning con- 
jectures of Vogan [23] on the preservation of unitarity under 
cohomological induction; we discuss the example in Section 15. 

Situations (iv) and (v) represent a reduction in the length of the interval 
below what is expected. This reduction is related to the existence of lines of 
unitary points in the two-dimensional pictures of representations induced 
from a minimal parabolic subgroup of %(N, 2). Curiously there is no 
corresponding reduction when the special basic case is an E-type diagram 
containing 50(2n, 2) as a subdiagram. 

Possibly Theorem 1.1 requires no change to be valid also for split F4. We 
simply have not examined all the possibilities. We have handled completely 
the case that c1 is short, but we omit the proof for that case. When c( is long, 
situations (iii) and (v) in the theorem do occur. 

2. BASIC CASES AND SPECIAL BASIC CASES 

From now through Section 11, we assume rank G = rank K. Put CL, = 
2(P, ~>/bl’. 

We first dispose completely of the case of two minimal K-types by means 
of 

LEMMA 2.1. The following conditions are equivalent. 

(a) J(MAN, a, v) has one minimal K-type. 

(b) U(MAN, 0, 0) is irreducible. 

(c) The R-group R,~, is trivial. 
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(d) J(MAN, CT, v) is infinitesimally unitary for all v near 0. 
(e) J(MAN, CT, v) is infinitesimally unitary for some positive v. 
(f) min(v,+, v; ) is not 0. 

Proof: (a)o (b) by Vogan [22], while (b)e (c) by [17]. The 
equivalence of (c) with (d) and (e) is explained in Chap. 16 of [ 111. We 
prove (a) 0 (f). 

First suppose that /i is given as one minimal K-type and that VT = 0. We 
show there is a second minimal K-type. In fact, v; = 0 forces 1 - pL, = 0, 
and thus p = +$a. Thus it is enough to prove that /i - c1 is d: dominant. 
Assuming the contrary, let y in A $ have 2(n-cc, y)/Jy12<0. Then 

2(4Y) 2(w<o 
Jy12 --ii?- . 

The first term is 30, and thus 2( ~1, r)/lrl 2 must be 1 or 2. Consequently 
either 2(4y)/l~12=0 and 2(a,y)/(y12>0, or 2(4y)/lyl*= +l and 
2(c(, ~)/lrl~ = +2. Put b= y - a. In the first case, /I contributes to the term 
2# {a E A,+ I /I + c1 E A, (A, /I + cc) = 0}, while in the second case, /I con- 
tributes to the term 

#(/3~A;lP+a~d, IP12~lcr12,2(~,B+a>/lB+~12= +l}. 

In either case, we get a contradiction to the relation v; = 0. 
Similarly if /1 is given and v0 + = 0, then we find that A + CI is a second 

minimal K-type. Conversely suppose that n is given with p = +tcc, and 
suppose that n - CI is dz dominant, thus giving a second minimal K-type. 
We show v< =O. First suppose that /I contributes to the term 

Then we have 

2<~-4rJ+~> 2<4p+a> 2(G(,P+r>=1-2<0 
lP+42 = I/3+a12 - Ib+x12 > 

in contradiction to the A; dominance of n - LY. Next suppose that /J con- 
tributes to the term 

2#{jkA,fI~+cxA, (A,~+cr)=O}. (2.1) 

We may assume that /I is minimal with respect to this property. We show 
that a+cr is As simple. In fact, otherwise write /3 + CI = yi + y2 with yi 
and y2 in AL. We must have (/1, yi ) = (A, y2) = 0. Since /1- c( is 
A$ dominant, O~(~-~,Y,)=(~,Y,)-(~,Y,)=-(~,Y,). Thus 



30 BALDONI-SILVA AND KNAPP 

(c(, y1 ) 6 0 and similarly (c(, y2) d 0. Adding, we obtain (tl, /I + cc) < 0, 
from which we conclude (c(, /I + LX ) = 0 and therefore ( tl, y I ) = (c(, y2 ) = 0 
and (/I,fl+a)>O. Now (jI,r,+yz)=(/?,j3+a)>0, and we may thus 
assume (fi, yi ) > 0. Hence B’ = fi - y , is in A,. The equation 

fl’=fl-y, =y*-Lx 

shows that p’ is positive and that 8’ + c( is the root y2, which is orthogonal 
to /i. Thus j3’ exhibits /I as not being appropriately minimal, contradiction. 
We conclude p + CY is Ai simple. Since p= $a, (1.3) gives /i = i, + 6 - 26, 
and hence 

o=2wf,B+r> 2Q.,,P+cc)+2(~,P+r) 2(2d,,B+@) 
Ifl+a12 = lfl+cx12 IP+A2 - lP+al’ 

>o+wJ3+Go~2, 
/ 

lP+A* 
However, 

W,B+~)= 2(&B) +wa)>3 

IB+4* w2M12 lt1(2’ ’ 

and we have a contradiction. We conclude that (2.1) is 0 and thus that 
VO ~ =o. 

Similarly if /i is given with ,U = -$x and if /i + LX is d: dominant, then 
vi = 0. This proves the lemma. 

In view of Lemma 2.1, we may assume henceforth that v$ > 0, that 
v; > 0, and that the invariant Hermitian form on J(MAN, (T, v) is positive 
for all v near 0. 

We now show how to calculate easily the basic case and special basic 
case associated to %,,. First we treat basic cases. We define a form i,,, on 
6” as follows: for /I simple, 2(&,, B)/IflI’ is the smallest possible value of 
2(&, /?)/I/?\’ among Harish-Chandra parameters J.b that are consistent 
with A + and x, lead to a nonzero representation of M, and have a As 
dominant form /1 (for the same p as io). From Theorem 3.1 of [ 131 and 
Corollary 2.3 of [lo], it follows that 

if flI@ and /I is compact 
if /IIu. and B is noncompact (2.2) 

and that 2<&,,, P>IIPI’ g is iven by Table 2.1 when 1-3 Y ~1. (In the table, the 
noncompact roots are the black roots.) 

The table allows us to obtain by inspection the Dynkin diagram of the 
basic case associated to Ao. The next lemma allows us to obtain by inspec- 
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Roots 

TABLE 2.1 

Values of 2(&,b, B>/lB12 

2(&,,, B>lIB12 Roots 

f(l -A) AA 
B a 

Ir,+fl -t 
B a 

2 
1 2 

B a 
f(l +Irxl) 

B a 
I!J-41-f 

tion the Dynkin diagram of the special basic case. Recall the definition of 
A K, I in (1.5); since /i is A: dominant, AZ L is generated by a subset of the 
simple roots of A$. 

LEMMA 2.2. Let y be a simple root for AZ. Then y is in A$> I if and only 
if y lies within the basic case and is of one of the following forms: 

(a) y is A+ simple, and ylcc. 

(b) y is A+ simple, y Y ~1, and IyI = 1~11. 
(c) y is A+ simple, y Y c(, JyI # Ial, and p# -ix. 

(d) y is the sum of CI and a noncompact neighbor of c(, and Iy = 1x1. 

(e) s,y is A+ simple, y 1 CI, IyI # 1~1, and ,a # +;a. 

(f) y is the sum of a noncompact neighbor p of E with a noncompact 
neighbor /I’ of /I having I/PI = IpI and B’ # CI, and ,a = + +x 

(g) szy is the sum of a neighbor B of CI with a noncompact neighbor /Y 
of/3 having I/?‘1 = IpI and /?‘# a, and ,a = -ia. 

Remarks. (1) Nondegeneracy of o plays a role in the lemma, there 
being another case when c-r is degenerate. Also if a root of type (f) occurs 
and 1x1 = IpI = I/3’I, then any other neighbor of c1 is compact, by non- 
degeneracy. We shall use this fact frequently without reference. 
Analogously in (g) if 1~1 = j/j = IP’I, then any other neighbor of CI is non- 
compact. 

(2) The proof will use a handy device for reducing the case ,u = -+a 
to the case ,u = + 5~. Namely we replace A + by s, A + and define a’ = - a. 
Then n is unchanged, but p = -+a has been replaced by p = + +a’. This 
device, called reflection in CI, will be used frequently in later sections. 
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(3) The special basic case is therefore generated by the simple roots 
mentioned in (a)-(g). These consist of c(, all compact A + simple roots in 
the basic case except as in (c), and certain noncompact A + simple roots at 
distance f2 from CI in the Dynkin diagram. 

Proof: Let y be AZ simple. Writing p - 4~ = t(p, - 1) CI, we obtain 

= 2(&-&,h> Y> +2WO,b~ Y> 
lY12 IA2 

+2(&Y) 1 2<% Y > 
--7-2++- 1) /?,2 

IYI 
(2.3) 

from (1.3). 
First suppose y is A+ simple. If yla, then 

2 (j-0, b 5 

lY12 
and 

This handles (a). If y Y CI, then 2(6, y)/lyl’= 1 and 

with equality only if y is basic. Using Table 2.1, we see that the right side is 

i( 1 + &) - 1 - i(& - 1) = 0 when 1~1 = Iyj 

l~l,+~I-t-l-(ll,-l)=lll,+tl-(~L,+l) when I4 > IYI 

$(I+ IAl)- 1 -tb- l)=t(lP,l -&I when I4 < Id, 

and then (b) and (c) follow. 
Next suppose that p = + 3 tl and that y is not A + simple. Then 

2<‘4,Y) 
ly)2= 

2<&-A0,b, ?> +2(1.0 b, Y> 

IA2 ,;,2 +(y+) 

with each term on the right 20. Hence y is in Ai I if and only if each term 
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on the right is 0. Let us suppose this happens. Expand y = y, + *. . + y,, as 
the sum of d + simple roots. Since 1, - &, b and A,,, are dominant, each yj 
is basic and (A,,+ yj) =O. Since p = +fa, (2.2) and Table 2.1 show that 
each yj is noncompact. Since y is compact, the number of yis is even. Also 
at least one yj has Iyjl = JyJ. Since 

it follows that the number of yj is ~3. Therefore y= y, + yz and lyil = 
Iy2( = 1~1. Now y, and y2 cannot both be orthogonal to tl, since otherwise y 
would be a compact root strongly orthogonal to c1 such that (A,,, y ) = 0, in 
contradiction to nondegeneracy. Moreover, y1 and y2 must be adjacent. We 
conclude that (d) or (f) is necessary when p = +$ and y is not A+ simple. 
Reversing the steps, we see that (d) or (f) is sufficient for y to be in A;, I 
when p = + f~. 

Next suppose that ,U = -4~ and that y is not A+ simple. We reflect in CI 
as in Remark 2. Then ,U = + 4 ~1’ and we are to consider y in s, A +. First 
suppose y is s,A+ simple. If yla’, then yla and y was simple for A+, con- 
tradiction. So y P ~1’. If IyJ = Ial, then (b) applies in the system s,A+ and 
yields the p= -$x part of condition (d) in the system A+. If IyI # (~1, then 
(c) applies in the system s, A + (since p # -$‘) and yields the p = -$x part 
of condition (e) in the system A +. 

Still with p = -$U and y not A + simple, suppose y is not s, A + simple. 
Since p = + fa’, the applicable conditions in s, A + are (d) and (f). However, 
(d) would make y simple for A+, which is not the case. Thus the condition 
relative to s,A+ for y to be in A;. I is (f), and the corresponding condition 
relative to A + is (g). 

Finally suppose that ,u = 0 and that y is not A + simple. Then we have 

2(A,Y) 2(1,-~,,,,Y)+2(~,,,,Y) 
-iiF= lY12 

ly12 + (V-2) 499. 

If (a, y ) < 0, then all terms on the right side are 20, and the last one is 
~0. Hence y is not in As I. If (a, y ) = 0, then all terms on the right side 
are 20, and y is in A& I only if (II,, y ) = 0. If y is strongly orthogonal to 
~1, this condition contradicts nondegeneracy. Otherwise y -U is a root and 

2(4y)44. 
--P- 

20?Y-~)+2<6~~)-2>0~ 
/y-al* y 

Hence y is not in As i. 
Thus the only possibility is that (CI, y) > 0. Considering matters in s,A + 
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with tl’ = -c1, we see that y must be s,A+ simple if y is in Ai i. So con- 
dition (b) or (c) applies in s,A+. Therefore (d) or (e) applies ‘in A+, and 
we have the p = 0 part of conditions (d) and (e). 

3. CUT-OFFS FOR UNITARITY 

If p0 is an integral form on b”, we let & be the As dominant Weyl 
group transform of puo. 

Let A’ be an integral form that is A i dominant, and let p be a noncom- 
pact root. We describe how to obtain (A’ + 8)” constructively; the result 
will always be of the form A’ + /?’ with a’ a noncompact root. Let Ai ,,, be 
the subset of members of A$ orthogonal to A’; A;, ,,, is generated by simple 
roots of AK+. The first step in the process is to make /I dominant with 
respect to Ai, n., say with result b,. If ,4’ +/I, is Ai dominant, then /I’ =/I, 
and we are done. Otherwise there will be a Ai simple root ?/ with 
2(A’, y)/JyJ’= + 1 and 2(p,, r)/lrl’= -2. Let pz be the short noncom- 
pact root /I, + y. Then /I’ is obtained by making p2 dominant with respect 
to A,&. Note that the process stops with (A’ + fi)“= A’ + /I, if all non- 
compact roots are short. 

Denote by T,,, an irreducible representation of K with highest weight A’. 
Let g = I@ p be the Cartan decomposition of g. We shall denote the 
adjoint representation of K on pc simply by p’. It is well known that the 
irreducible constituents (under K) of r,,,@p@ occur with multiplicity one, 
under our assumption that rank G = rank K. The proof of the following 
proposition will be given in another paper. (See [19] for other results in 
this direction,) 

PROPOSITION 3.1. Let A’ be integral and A$ dominant, let /? be a non- 
compact root, and suppose A’ + ,!I is Ai dominant. Then t,9,8 fails to occur 
in z,, Q pa, ifand onfy if there exists a (short) A; simple root y such that y is 
orthogonal to A’ and y is orthogonal but not strongly orthogonal to /I. 

Proposition 3.1 addresses one of the hypotheses of Theorem 3.2 below, 
which is a variant of results in Section 2 of [3] and will be proved in 
another paper. We return to the notation lo, p, A, etc., used earlier. 

THEOREM 3.2. In terms of the minimal K-type A, let A’ = (A + CY)“. Sup- 
pose that either (a), (b), and (c) or (a), (b’), and (c) hold: 

(4 t,, occurs in zn @ p”. 

(b) A-cc is not a weight oft,,,. 

(b’) A -a is conjugate to A + CI by the WeyI group of A,. 
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(c) There exists a root system A, E A generated by A+ simple roots 
such that a is in A,, A, has real rank one, and A’ -A is an integral linear 
combination of roots in A,. 

Then z,,, occurs in iJ(MAN, a, v)IK, and the pair of K-types {A, (A + a)“} 
exhibits J(MAN, a, fca) as not infinitesimally unitary for c > vg 

Remarks. (1) When all noncompact roots are short (necessarily the 
case in a single-line diagram, e.g.) then it follows from Proposition 3.1 and 
the second paragraph of this section that hypothesis (a) is satisfied. 

(2) In certain double-line cases with a long, we will have to get by 
with the following weakening of hypothesis (c): 

(c’) Let A t, n be the set of positive m-noncompact members of A 

Then every solution to the equation 

A’-A=ca+ 1 npa+ c k.,y 
PEA+,, YtdK+ 

with CEZ, ngEZ, k,EZ, n,]>O, k,>O has xnnB/?=O. 

The dual result obtained by reflection in a is as follows. 

THEOREM 3.2’. In terms of the minimal K-type A, let A’ = (A - a)“. Sup- 
pose that (a), (b), and (c) hold: 

(a) z,, occurs in z, @ pC. 

(b) A + a is not a weight oft,,,. 

(c) There exists a root system A, c A generated by A + simple roots 
such that a is in A,, A, has real rank one, and A’ - A is an integral linear 
combination of roots in A,. 

Then z,,, occurs in U(MAN, IS, v)IK, and the pair of K-types (A, (A +a)“} 
exhibits J(MAN, C, $ca) as not infinitesimally unitary for c > ~0’. 

Remark. The same two remarks as for Theorem 3.2 apply here. A 
statement here with (b’) in place of (b) would be contained already in 
Theorem 3.2. 

Let 6 + and 6 - be the results of making a and -a, respectively, 
dominant for A&. (See (1.5).) The S+ subsystem of A is the root system 
generated by a and all simple roots needed for the expansion of 6 +, and 
the 6- subsystem is defined similarly. These subsystems are necessarily 
contained in the special basic case associated to &. If a is short, then we 
know from the beginning of this section that (A + a)“= A + 6 + and 
(A-a)‘=A+6-. 

COROLLARY 3.3. Suppose that all noncompact roots are short. Every 
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root /? occurring in the formula for v; lies in the 6 + subsystem. If the 6 + 
subsystem has real rank one, then hypotheses (a) and (c) are satisfied in 
Theorem 3.2. If, in addition, the 6+ subsystem is of type A as a Dynkin 
diagram, then hypothesis (b) is satisfied. Consequently J(MAN, a, &a) is not 
infinitesimally unitary for c > v$ . Similar conclusions are valid for the 6 
subsystem, Theorem 3.2’, and vh- . 

Proof Since LX is short, the exceptional term in v: is 0. Let W, be the 
Weyl group of A,. We know that (n+a)“=/1+6+. Hence n+a and 
/i + 6 + are conjugate via Wk. If p contributes to vc , then the equality 
sBPa(~) = fi makes sP-,(n + c() = /1+ /I. Hence n + /I is conjugate to /i + a 
and therefore to n + 6 +. Since /1+ 6 + is Ai dominant, 

6+ -b=(A+6+)-(A+/?)= c k,,y 
yEA; 

and 6 + = /I + C k,y. Since /I is positive, it follows that /I is in the 6 + sub- 
system. 

Suppose the 6+ subsystem has real rank one. Remark 1 after 
Theorem 3.2 points out that (a) holds. For (c) we choose A, to be the 6+ 
subsystem. Since A’ - /1= 6 + - cr, it follows that (c) holds. Finally if n - c1 
is a weight of z~,,+~)-, then 

and 

6+ +cx=(n+s+)-(A-cc)= C k,Y 
yEA; 

d+-a=(A+d+)-(A+c()= c k;,y, 
;‘EA; 

when subtracted, show that 2cr is the sum of compact roots in the 6+ sub- 
system. If the 6+ subsystem is of type A (as well as of real rank one), then 
it is of type gu(n, 1) and 2~ is not the sum of compact roots; thus (b) must 
hold. Applying Theorem 3.2, we obtain the desired results for the 6+ sub- 
system and for v$. The results for K and v; follow similarly from 
Theorem 3.2’. This completes the proof. 

Our remaining cut-off results could be expressed in absolute terms as in 
Theorem 3.2, but we prefer to express them in relative terms, giving certain 
prototypes and a way of embedding them in results about G. The tool for 
embedding results is the Vogan Signature Theorem (Theorem 3.4), which is 
implicit in Vogan [25]. We formulate it in language appropriate to our 
situation: Let A, be a subsystem of A generated by simple roots and con- 
taining CI. Let 

A(u)= (PEA+ IP$AL)> (3.la) 
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and let 6(u) and 6(u n p) be the half sums of the members of d(u) and the 
noncompact members of d(u), respectively. Define 

3 ‘0, L = Al-&u), 

PL=PL, 

XL(YJ consistently with c(~, 

n,=n-26(unp). 

(3.lb) 

Then (&, L, A+ n A,, xL) leads to a well-defined standard induced series of 
representations UL(M, AN,, oL, v) of the group L corresponding to AL, by 
54 of [13], with nL as a minimal K-type. 

THEOREM 3.4 (Vogan Signature Theorem). With the conventions above, 
suppose that A’ is A$ dominant and that A’ -A is the sum of members of 
A,. Put Al, = A’ - 26(u n p). Then the multiplicity of z,, in U(MAN, o, v) 
equals the multiplicity of zAi in UL(MANL, oL, v). Moreover, @“the standard 
invariant Hermitian forms for these induced representations are normalized 
to be positive on the z, and 7’nL subspaces, respectively, then the signatures of 
these forms on the T,,’ and z,,~ respective subspaces are the same. 

Remarks. (1) The multiplicity result is in Speh-Vogan [20, 
Theorem 4.17 and pp. 26772681. 

(2) The equality of the signatures requires no additional inequalities 
on v. 

(3) We shall use the theorem as follows. We start from A, pass to 
AL, construct Al, by adding some roots of A, to A, and by making the 
result dominant for A; n A,, and set A’=AL+26(unp). If A’ is A; 
dominant, then the theorem assures us of equality of multiplicities and 
signatures for z,,, and T,,~. 

(4) Propositions 3.5-3.8 below will give us results about subgroups L 
that we can lift to G by means of Theorem 3.4, and their proofs will be 
given in a later paper. 

(5) If Theorems 3.2 and 3.2’ are known for real rank one groups, 
then Theorem 3.4 implies them in general. However, we shall need 
Theorems 3.2 and 3.2’ with hypothesis (c) weakened to hypothesis (c’), and 
then Theorem 3.4 does not help as much. 

PROPOSITION 3.5 [2, Theorem 23. Suppose n 3 2 and g =sp(n, l), 
possibly with abelian and compact factors, and suppose that the special basic 
case for 2, is all of A. Suppose that u = 0, that o! is adjacent to the long sim- 
ple root, and that a is the only noncompact simple root. Put A’ = (A + CX)” 
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and A”= (A’+a)“. Then z,, and z,. have multiplicity one in 
U(MAN, o, ica), the signature of the standard form on T,,, is sgn(v,f - c) = 
sgn(v; - ~1, and the signature of the standard form on T,,,,. is 
sgn( v$ - c)( v; - c - 2). 

PROPOSITION 3.6. Suppose n 2 2 and g = so(2n, 2), possibly with abelian 
and compact factors, and suppose that the special basic case for & is all of A. 
Then there is a choice f of sign so that *a is conjugate by the Weyl group 
of A, to the unique positive noncompact root PO orthogonal to a; fix this 
choice of sign. Put A” = (A f a + /IO)” = A + a + fiO. Then z,.,,, has multiplicity 
one in U(MAN, o, $a), and the signature of the standard form on T,,,, is 
sgn( v: L - c), where v$ r. and VO,~ are the quantities vc and v; computed in 
an su(n, 1) subdiagram containing a and generated by simple roots of A ‘. 

PROPOSITION 3.7. Suppose n z 2 and g = so(2n + 1, 2), possibly with 
abelian and compact factors, suppose that x is long, and suppose that the 
special basic case for & is all of A. Then there is a choice f of sign so that 
f a is conjugate by the Weyl group of A, to the unique positive noncompact 
root bO orthogonal to a; fix this choice qf sign. Put A” = (A + a + /3,,)” = 
A+a+p,. Then z,,. has multiplicity one in U(MAN, a, fca), and the 
signature of the standardform on z,,,, is sgn(v:, + 1 - c), where vO+~ and v,, , 3 , 
are the quantities v$ and vo computed in the maximal su(n, 1) subdiagram 
containing a and generated by simple roots qf A+. 

PROPOSITION 3.8. Suppose n 3 2 and g = so(2n, 3) suppose that a is long, 
suppose that the short A + simple root E is basic, and suppose that the special 
basic case for A,, is the maximal su(n, 1) subdiagram containing a and 
generated by simple roots of A +. Let [ be the sum of simple roots strictly 
between a and E in the Dynkin diagram, and suppose [ is (nonzero and) non- 
compact. Put A” = (A + ([ + E))” = A + [ + G. Then 5,,,, has multiplicity one in 
U(MAN, a, fca), and the signature qf the standard form on z,,,, is 
sgn( v; - c)( vi - c - 1). 

Propositions 3.6-3.8 are new and will be proved in another paper. 

4. VALIDITY OF CUT-OFFS IN SPECIAL BASIN CASES, 
SINGLE-LINE DIAGRAMS 

Our goal for this section is to prove 

LEMMA 4.1. Suppose that rank G = rank K, that the Dynkin diagram of 
A + is a single line diagram, and that the special basic case associated to 2, is 
all of A. Then at least one of the following happens: 
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(a) the 6+ subsystem has real rank one, and v$ < v; , 
(b) the 6- subsystem has real rank one, and v; d vz . 

In view of Corollary 3.3, this lemma will prove that min(v,+ , vg ) is a cut- 
off for unitarity, and it will do so in a way that will allow us to embed this 
result in larger groups. The proof uses the normalization /aI2 = 2 and dis- 
tinguishes several cases and subcases. 

(I) We first suppose there is a simple root y,, of As, i of the form (f) 
or (g) in Lemma 2.2. Possibly by reflecting in IX, we may assume the form is 
(g). Then p = - $CL, and y,, is the sum of three A+ simple roots ~1, y, and p 
as in the diagram 

0 0 0 (4.1) a 7 B 

(Here and elsewhere, the black roots are the noncompact ones.) We are 
going to compute 6 +, which is defined before Corollary 3.3, and we are 
going to show that v$ d v;. Before doing so, let us observe that any 
neighbor E of a other than y is necessarily noncompact. We remarked on 
this briefly in Remark 1 for Lemma 2.2. The reason is this: otherwise 
Table 2.1 shows that E + a + y + p is a compact root of m that is orthogonal 
to &, in contradiction to nondegeneracy. 

(1.1) Suppose y is not a triple point of A +. We claim that 6+ = a + y. 
We form the Dynkin diagram of A;, I, labeling each simple root with its 
normalized inner product with a. Since p = -ia and y is not a triple point 
and all other neighbors of a are noncompact, the only simple root for A$, I 
of type (f) or (g) (in Lemma 2.2) is y0 = a + y + /?, and it has label + 1. 
According to Lemma 2.2, the other simple roots for As, I are a + E with 
label + 1 (for at most two noncompact neighbors E of (x), y with label - 1, 
and various compact A + simple roots that are orthogonal to a and have 
label 0. 

Let us note that every A;, i simple neighbor y’ of y in A;, -i has label + 1. 
The root y’ cannot be one of the above roots with label 0 since y is not a 
triple point in A +, and all other possibilities have label + 1. 

Now we can show that 6 + = y + a. In fact, it is clear that y + a is con- 
jugate to a by the Weyl group of A,, I. We show 6+ is At I dominant. 
Assuming the contrary, let y’ be A$, I simple with (y + a, y’) ~0, i.e., 
(y+a,y’)= -1. Then (y,y’)= -1 or (x,1”)= -1. If (y,y’)= -1, 
then y’ is a neighbor of y and must have label + 1; so (a, y’) = + 1 and 
(y + a, y’) = 0, contradiction. So (a, r’) = - 1, y’ has label - 1, y’ = y, and 
(y + a, y’) = (y + a, y ) > 0, contradiction. Thus 6 + = y + a. 

The 6 + subsystem is of type su(2, 1 ), which is of real rank one, and 
Corollary 3.3 gives v 2 = 2. Since p = --+a, we certainly have v; 2 2. 
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(1.2) Suppose y is a triple point of A+ and the other neighbor fl’ of y 
is noncompact. Again we claim that 6 + = c1+ y. We proceed as in (I.1 ). The 
simple roots of A$, I with labels are yo=a+y +fi with label + 1, 
yb = c( + y + /I’ with label + 1, y with label - 1, a root CI + E with label + 1 (if 
CI has a neighbor E other than y), and various compact A+ simple roots 
with label 0. The only possible Ai, 1 simple neighbor y’ of y in Ai, I is CI + E 
and has label + 1. Thus the same argument as in (1.1) shows that 
6 + = y + ~1, the 6 + subsystem is of real rank one, vi = 2, and v; 3 2. 

(1.3) Suppose y is a triple point of A+ and the other neighbor y, of y 
is compact. Let the (compact) roots extending beyond y, be yz,..., yn. We 
claim that 6+ =cc+y+y,+ ... +yn. We proceed as in (1.1) and (1.2). The 
simple roots of A$, I with labels are yO=&+y+/? with label + 1, y with 
label - 1, a root c1+ E with label + 1 (if a has a neighbor E other than y), 
and various compact A + simple roots with label 0 (including ‘J, ,..., y,). 
Assuming by way of contradiction that c( + y + y, + ... + yn is not As, I 
dominant, let y’ be AL, L simple with (cc+ ... +r,,y’)= -1. Then (y+ 
~,+...+y~,y’)=-l or (a,~‘)=-1. If (y+y,+...+yn,y’)=-l, 
then y’ is a neighbor of one of y, y, ,..., yn but is not one of these roots. 
Hence y’ is a+y +/I or ~+a, both of which have label + 1; so 
(a, y’ ) = + 1 and (M + y + y , + . + yn, 7’) = 0, contradiction. So 
(cz, y’) = - 1, y’ has label -1, y’=y, and 

(a+y+y,+ .” +y,l,y’)=(a+y+Y,+ .‘. +Y,,Y)=o, 

contradiction. Thus 6+ =x+y+yl + ... +y,,. 
The 6 + subsystem is of type su(n + 2, 1 ), which is of real rank one, and 

Corollary 3.3 gives v$ = 2(n + 1). Each root /I + y + y i + . . + y, for 
0 <j < n contributes to v; , and thus v0 3 2(n + 1). 

(II) Next we suppose that there is no simple root of Ai, I of type (f) 
or (g) in Lemma 2.2 and that c1 is a triple point. Possibly by reflecting in ~1, 
we may assume that at most one of the neighbors pl, f12, /I3 of (x is com- 
pact; say that fi2 and p3 are noncompact. 

(II.1 ) If /?, is noncompact, then we claim that 6 + = CI. In fact, the 
simple roots of A,$ I with labels are CI + fl, for 1 <j 6 3 with label + 1 and 
various compact A + simple roots with label 0. Since all labels are >O, 
(~1, y’) > 0 for all Ai, 1 simple y’. Thus 6+ = c(. 

The 6’ subsystem is of type sl(2, R), and Corollary 3.3 gives v$ = 
1 + pL, d 2. Since /I2 and fi3 contribute to v; , we have v,j > 4. 

(11.2) If p1 is compact, let yI ,..., y, be the (compact) roots extending 
beyond pi. We claim that 6+ =a+/?,+~,+ ... +y,,. In fact, the simple 
roots of A;. L with labels are c( + b2 and a + p3 with label + 1, fl, with 
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label - 1, and various compact d + simple roots with label 0 (including 
Y 1 9*--, yJ. Arguing as in (1.3) we see that 6+ =a+/I1 + y1 + ... +yn. 

The 6 + subsystem is of type su(n + 2, l), which is of real rank one, and 
Corollary 3.3 gives v$ = 1 + p. + 2(n + 1). Each root j& + a + /I3 + fil + 
YI + ‘. . + yj for 0 <j 6 n contributes to v; , and so do /I2 and p3 ; thus vu 3 
2(n+3)>v,+. 

(III) Next we suppose that there is no simple root of ds, L of type (f) 
or (g) in Lemma 2.2 and that CI is not a triple point. 

(111.1) Suppose further that all neighbors of ~1 are of the same type, 
compact or noncompact. Possibly reflecting in ~1, we may assume that all 
neighbors are noncompact. Arguing as in (II.1 ), we see that 6 + = CI, the 6 + 
subsystem is of type 51(2, R), and v 0’ = 1 + pL, d 2. If a has no neighbors at 
all, then the 6- subsystem is of type sl(2, R) and v; = 1 - pu,; hence we are 
done. Otherwise c1 has a noncompact neighbor /I, which contributes to vi-, 
and thus vo 22. 

(111.2) Alternatively suppose that M has two neighbors, one compact 
and one noncompact. If A+ has no triple point, it follows that A+ is of real 
rank one, and Lemma 4.1 is automatic. Thus we may assume that there is a 
triple point. Possibly by reflecting in CI, we may assume that the root on the 
side of CI toward the triple point is noncompact. Call this root p. Let the 
compact neighbor be y, and let y, y, ,..., y, be the connected chain of com- 
pact roots ending in the node y,. We claim that 6 + = cn + y + y, + . . + yn. 
In fact, the simple roots of A$, I with labels are CI + /I with label + 1, y with 
label - 1, and various A + simple roots with label 0 (including y,,..., y,). 
Arguing as in (1.3) we see that 6 + = CY + y + y, + . . . + y,,. The 6 + sub- 
system is of type su(n + 2, l), which is of real rank one, and Corollary 3.3 
gives VT = 1 + p1 + 2(n + 1). 

We shall find a lower bound for v; Let E,,..., sk (with k 3 0) be the 
(compact) roots from /I to the triple point. Here we take Ed to be the triple 
point, with s0 understood to be B. Let 5, and t, be the other two neighbors 
of the triple point. Then 

51+4*+2&k+ ..’ +2q +2p+cc+y+y, + ..’ +y, 

for 0 <<j < n is a noncompact root contributing to v; , as is /I, and it follows 
that vi > 2(n -t 2). Thus v; 2 v$, and the proof of Lemma 4.1 is complete. 

5. VALIDITY OF CUT-OFFS IN GENERAL, SINGLE-LINE DIAGRAMS 

To pass from special basic cases to general cases of single-line diagrams, 
we use the following lemma. 
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LEMMA 5.1. Suppose that rank G = rank K and that the Dynkin diagram 
of A+ is a single-line diagram. Then at least one of the following things hap- 
pens: 

(a) the of subsystem has real rank one, and vi 6 v; , 

(b) the 6 - subsystem has real rank one, and vO 6 vO . 

Consequently J(MAN, o, iccr) is not infinitesimally unitary for 

c > min(v,+ , vO-). Moreover, if the component of CI in the special basic case 
associated to & is of type 5o(2n, 2) with n b 2 and {f vgL (for the 
appropriate choice of sign) is defined within the special basic case as in 
Theorem 1.1 (situation (iv)), then vzL, O < vt and J(MAN, o, ica) is not 
infinitesimally unitary for c > min( v$ L, v: ). 

The statements here about vz and vow follow immediately from 
Lemma 4.1 and Corollary 3.3, since the 6+ and 6- subsystems lie within 
the special basic case. Thus suppose the component of x of the associated 
special basic case As is of type 50(2n, 2), n > 2. Possibly by reflecting in c(, 
we may assume that CI is conjugate by the Weyl group of A,n A, to the 
unique positive noncompact root PO orthogonal to + M and lying in the 
so(2n, 2). Let ( v, S) mean “made dominant with respect to Ai n A,s.” 
Then Proposition 3.6 says within A, that the (K n S)-type 
(n,+a+po)‘“‘s’ cuts off unitarity of the Langlands quotients in S at the 
point ~2,. Here 

if u is built from the positive roots outside S. Suppose (A + cx + PO)” = 
A+c(+&. Then (A+a+&)” -A=a+/& is the sum of members of A,, 
and 

Hence the Vogan Signature Theorem (Theorem 3.4) says within G that the 
K-type (A + u + /IO)” cuts off unitarity of the Langlands quotients in G at 
the point v&. Therefore, to prove Lemma 5.1 (when PO is conjugate as 
above to + a), it is enough to prove that ,4 + a + &, is Ai dominant. 

This strong a statement is not quite true. But we need consider only 
cases where v 2 L gives a smaller cut-off than min(v,i , v; ). Thus we may 
assume v$ L < min( v$ , vc,). In this situation we shall be able to prove that 
A + c1+ /IO is AZ dominant. The tool is 

LEMMA 5.2. Suppose that rank G = rank K and that the Dynkin diagram 
of A -c is a single-line diagram. Let As be the associated special basic case. 
Suppose that fi is a noncompact root such that A + CI + p is dominant .for 
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A: n A,. If A +a+/? is not dominant for Ai, then there is a AZ simple 
root y of one of the following forms: 

(a) y is A+ simple, is adjacent to ~1, and is not basic, 
(b) y is the sum y, + y2 of noncompact A f simple roots with y, 

orthogonal to LX, y2 adjacent to ~1, and ,a # - fu. 

ProoJ Failure of As dominance means we can find y simple for A: 
suchthat2(A+cc+/?,y)/(y)*<O.SinceA,+!GA$nA,, thisywillnotbe 
in Ai i. Thus 2(A, y)/lyl’3 1. Then it follows that 

WRY)= +1 
--F- ’ 

2(4Y) 1 -= - 
lY12 ’ 

2(~J)=-l. 
Iy12 (5.1) 

From (2.3) 

1=2(1.,-l.abrY)+2(%g,h,Y) 
lY12 

,y,2 +(y-2)+&J. (5.2) 

If y is A+ simple, then (5.1) shows that y is adjacent to ~1, and Table 2.1 
shows that 2(%,,,, y)/I~/~=$(l +P~). Then it follows that 

2(&-&,h> Y> = 1 
lY12 

and y is not basic. This is possibility (a). 
If 2(S, y)/lyl’= 2, then y = y1 + y2 with y, and y2 both noncompact and 

simple. Since (LX, y) < 0, we may assume that y, is orthogonal to CI and y2 is 
adjacent to cc Table 2.1 shows that 2(&,, y)/lyl’=f(l -pz), and thus 
(5.2) gives 

Hence ~~~=2(~~-ll~,~,y)/JyI*, and p cannot be -$Y.. This is 
possibility (b). 

Certainly (5.2) shows 2(6, y)/IyI*d3. Thus suppose that 2(6, y)/ 
ly(*=3. Then y=y1+y2+y3 with y,, y2, and y3 simple, and (5.2) shows 
that 2(&, y)/Iyl* = 0 and that p = f~. Then it follows from Table 2.1 that 
yl, y2, and y3 are all noncompact. This is a contradiction since their sum y 
is compact. Thus (a) and (b) are the only possibilities, and Lemma 5.2 is 
proved. 

Let us return to Lemma 5.1 and the consideration of A + cx + PO. Here 
the component of c( in A, is assumed to be so(2n, 2), n > 2. Now CY + /lo is 
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orthogonal to A, n A,, and thus n + c1+ &, is dominant for Ai n A,. Sup- 
pose it fails to be dominant for A z . Then Lemma 5.2 produces a Ai simple 
root y of one of the two types (a) and (b). 

First suppose n > 4. If y is of type (a), the possibilities for {y } u 
(component of CI in A,) initially appear to be 

.’ 3 

(I) v.-.d” /O 
a .‘\ 

(II) -.,. 
Y a 

‘0 +k L’ 

PO 

(III) W.,, 

a Y 

A little computation shows in cases (II) and (IV) that it is -a, not + a, 
that is conjugate to PO; thus these cases are ruled out. Referring to (5.1), we 
see that we must have 2(&,, y)/(y(*= -1; this rules out (III). Finally in 
(I) we calculate v; by the techniques of Section 4 to be 1 - pX. But v; L = 
1 + p2 + 2(n - I), and thus our assumption vi L < v; is not satisfied;’ this 
rules out (I). 

If y is of type (b), we may assume that y is not in A,. Then the 
possibilities are similar to those above, except that 

is replaced by m 
v a YI Y2 a 

Cases (II), (III), and (IV) are ruled out for the same reasons as above. In 
(I), the root yr may be in the same component of a in d,, but y, is not. If 
y2 is not in the component, the above argument applies. Otherwise there is 
one less root between a and the triple point, and we calculate v; = 3 -p, 
and v& = 1 + ~1, + 2(n - 2). Hence vcL < v; is not satisfied, and (I) is ruled 
out. 

Next suppose n = 3. The only real possibilities are of type (I): 

;--I:I:; . = : 

0 / 

Y a VI Y2 a Cb ,t--E-4 

I L 
‘0 

AS AS AS 

In the first case we have v; = 1 - CL, and v$ L = 5 + pL,, in the second case 
we have vu =1-p, and vO+~=~+P,, and in the third case we have 
vi =3-pL, and v&= 3 + pL,: Since Lemma 5.2 gives .U # - 4~ in the third 
case, the inequality v; L < v, fails each time, and all the cases are ruled out. 
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Finally suppose n = 2; then the component of A, consists of three roots 
in a row. Suppose a is in the middle. For c1 to be conjugate to PO, the other 
two simple roots in As must be compact. Then the only possibilities are 

AS AS 

In each we have v; = 1 - pu, and vgL = 3 + pL,. Hence v& < vi fails, and 
these cases are ruled out. 

Suppose c1 is at one end. Then & is at the other end, and all three roots 
of the diagram of the component of A, are noncompact. To have (v, a) = 
( y, &, ) = - 1 as in (5.1) we must have 

for a diagram. Since /I,, is a noncompact root at distance two in the special 
basic case, we see from Lemma 2.2 that p = 4~. Then v; = vgL = 2 and 
vg L < min(v,+ , v; ) fails, so that this case is ruled out. This completes the 
proof of Lemma 5.1. 

6. VALIDITY OF CUT-OFFS FOR CI SHORT, DOUBLE-LINE DIAGRAMS 

The algebras g in question are sp(p, q), ep(n, [w), so(odd, even), split F4, 
and nonsplit F4. Nonsplit F4 is easily handled by [2] and Cl], and we 
shall not consider it further. The goal of this section is to obtain the lemma 
below for the remaining algebras, proceeding case by case. Recall that c( 
short implies that ,4 + 6+ and A + 6 - are A$ dominant, hence that 
(A + a) ” = A + 6 + and (A - c() ” = A + 6 -. However, it is not immediately 
apparent whether z,,,~+ and z,+~~ occur in r,, @pc. 

LEMMA 6.1. Suppose that the Dynkin diagram of A i is a double-line 
diagram and that CI is short. Then at least one of the following things hap- 
pens: 

(a) the 6+ subsystem has real rank one, and v$ d vi-, 

(b) the & subsystem has real rank one, and v; d vz 
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Moreover, J(MAN, (T, &xz) is not infinitesimally unitary for c > min(v,+ , v; ). 
In addition, if the component of CI in the special basic case associated to Lo is 
of type sp(n, 1) with n 2 2 and if p = 0 and a is adjacent to the long simple 
root, then J(MAN, CT, $~a) is not infinitesimally unitary for 

min(v,+, ~ v0 ) - 2 < c < min( v: , v; ). 

Prooffor ~p(p, q). The Dynkin diagram is of type C, and the long roots 
are compact. Corollary 3.3 is applicable. Thus, except for the last sentence 
of the lemma, we can pass automatically from statements in the special 
basic case to statements in general. We consider the following possibilities 
for the special basic case A,. 

(I) Suppose there is a simple root y0 of d$, i of the form (f) or (g) in 
Lemma 2.2. Possibly by reflecting in c(, we may assume the form is (g). 
Then p = -+a, and y0 = CI + y + fl as in (4.1). We shall use the methods of 
Section 4 to show that 6 + = o! + y. Then it follows that the 6+ subsystem is 
of real rank one and type A and that vz = 2 6 vo. In addition, 
Corollary 3.3 gives min(v,f , vg ) as a cut-off for unitarity. Let E be the 
neighbor of CI in d,Y other than y (if c( has two neighbors in A,). 

(1.1) Suppose F is short (or nonexistent). By Lemma 2.2, the simple 
roots 4 of At 1 with labels 2(4, a)/\cr12 are M + y + fl with label + 1, y with 
label - 1, c( + E (if E exists) with label + 1, and various compact A + simple 
roots with label 0. The only possible Ai, 1 simple neighbor y’ of y in AZ, 1 is 
c( + E and has label + 1. Thus the same argument as in (1.1) of Section 4 
shows 6+ =y+cr. 

(1.2) Suppose E is long. The simple roots of A$, 1 with labels are 
CI + y + fl with label + 1, y with label - 1, 2a + E with label + 2, and various 
compact A + simple roots with label 0. The only possible At I simple 
neighbor y’ of y in Ai, L is 2cr + E and has label +2 > 0. Thus again 
i?+ =y+cr. 

(II) Suppose that there is no simple root of Ai, I of type (f) or (g) in 
Lemma 2.2. If the component of c1 in the special basic case is of type A, 
then we can appeal to (III) in Section 4. Thus we may assume that this 
component contains the long simple root E of A. 

(11.1) Suppose further that the only neighbors of c( are connected to c( 
by single lines and that they are all of the same type, compact or noncom- 
pact. Possibly reflecting in ~1, we may assume that the neighbors are non- 
compact. Arguing as in (111.1) of Section 4, we find that 6+ = GI and that 
v$ = 1 + p, G VT. So this case is no problem. 
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(11.2) Suppose that a is not as in (11.1) and that the neighbor/l of a 
in the direction of the long root E has [/?I = (~1. Possibly reflecting in a, we 
may assume that /I is noncompact. The component of a in the special basic 
case is then 

with s 2 0 and t 2 0. Lemma 2.2 shows that A$ I consists of 

and possible other components orthogonal to a. We readily see that 
6+ =y,+ ‘.. +yi + a, that the 6+ subgroup is then of type ems+ 1, I), 
that vz = 1 + p% + 2s (with contributions from yj + . . . + y1 + IX, j z 1 ), and 
that v; > 1 - pL, + 2(s + 1) > vz (with contributions from 

Yj + . . . + y1 + a + 2(/3 + cl + . . . + E,) + E, j 2 0). 

(11.3) Suppose that a is neither as in (11.1) above nor as in (11.2). 
Then CI is adjacent to the long simple root E. If there is a neighbor y, of c( 
other than E, then we may reflect in CI if necessary so that yi is compact. 
The diagram of the component of a is of the following form with s b 0: 

(6.2) 

(11.3a) Suppose p = +$Y. The simple roots of Ai i with labels are y1 
with label - 1, E with label -2, and various compact d’+ simple roots with 
label 0. Therefore 6- = --a and it follows that v; = 1 - pI = 0. By 
Lemma 2.1 this estimate is sharp. 

(11.3b) Suppose p = -1~. The simple roots of AZ, i with labels are y1 
with label - 1, 2a + E with label + 2, and various compact A + simple roots 
with label 0. Arguing as in (1.3) of Section 4, we see that 6+ = y, + 
. . . + y, + a, that the 6 + subgroup is of type eu(s + 1, 1 ), that v$ = 1 + ,u~ + 
2s = 2s (with contributions from y, + ... + y1 + a, j> l), and that v; > 
1-~L,+2(s+1)=2s+4>vo+ (withcontributionsfromy,+ ... +y,+a+e 
for j B 0). 

(11.3~) Suppose ,u =O. The simple roots of Ai, i with labels are yi 
with label - 1, 2a + E with label + 2, E with label - 2, and various compact 
A + simple roots with label 0. Since s,s*~ + E(a) = -a, a and -a are con- 
jugate by the Weyl group of A, I. Hence /1+ a and /1- a are conjugate by 
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the Weyl group of A,. Then also 6+ = 6-. It is easy to see that the 6+ sub- 
system is all of (6.2) and we find that v$ = v; = 1 + 2(s + l), v$ having 
contributions from 7, + . + y 1 + CI for j 3 1 and from E + IX. Since the 6 + 
subsystem is of real rank one and since n + (x is conjugate to n - c(, 
Corollary 3.3 and Theorem 3.2 tell us that unitarity does not extend 
beyond vgt = min(v,+ , v; ). 

Moreover, when s >, 1, Proposition 3.5 is applicable within the special 
basic case A, to rule out unitarity between vgf - 2 and v:. Following the 
procedure described before the statement of Lemma 5.2, we shall apply the 
Vogan Signature Theorem (Theorem 3.4) to extend this conclusion from S 
to G. Referring to that procedure and to the statement of Proposition 3.5, 
we see that it is enough to prove that (A + 6 + + a)’ ” 1’) is A$ dominant. 

To this end, write (A + 6 + + LX)’ ” “) = n + 6+ + 6 1. If this is not Ai 
dominant, then we can proceed as in Lemma 5.2 to find a Ai simple root y 
with 

2(4-t) 1 2<f3+, Y> 
Iy/z= ’ 

IY12 
=-1, and W,YY)= -1 

Id2 . 
(6.3) 

Now y has to be short since E and 2~ + E are in A,, I. In standard notation 
for the Dynkin diagram of A of type C, let y = e; + e, with i < j. We can 
check that (6 +, E) > 0 while (6,) E) < 0. Thus (6.3) shows that j is not the 
last index of the diagram (the one corresponding to E). Since the only index 
common to 6 and 6, is the last index of the diagram, it follows that either 
(6+, e,)#O and (S,,e,)#O or else (S+,e,)#O and (6,,e,)#O in 
order for (6.3) to hold. But then we see that y lies in A,, contradiction. We 
conclude that (A + 6 + + E)’ ” 1 ‘) is Ai dominant, as required. 

Proof for sp(n, [w). The Dynkin diagram is of type C, and the long 
roots are noncompact. Referring to Lemma 2.2, we see that no simple root 
ofA;. requires the long A + simple root for its expansion. Thus the special 
basic’case A, is contained in the diagram A, containing the short A + sim- 
ple roots. 

Let us write v$, and VO,~ for the vi and vu of A,. Lemma 4.1 says that 
either the 6+ group in A, is of real rank one and vofL d vi L or the 6 
group in A, is of real rank one and VO,~ < vO, L. Moreover, in either case, 
there is no unitarity in L beyond min(v+ 
A K IGAL, we have (/i + E)’ ” ’ 
Thus the Vogan Signature Theorem (Theorem 3.4) says that there is no 
unitarity beyond min(v$ L, vo, ,,). Again since A,, I 5 A,, we have vz = vz L 
and v; = ~0~. Therefore all the assertions in Lemma 6.1 follow for this 
group. ’ 

Proof for so(odd, even). The Dynkin diagram is of type B, and a is the 
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unique short simple root, which we denote e,. We consider the following 
possibilities. 

(I) Suppose p = + $. Then we claim that 6- = -CC It follows that 
VO = 0, and this we know is automatically a sharp cut-off for unitarity by 
Lemma 2.1. 

To show that 6 - = -a, it is enough to show that ( -a, r’) > 0 for every 
simple root y’ of AZ, i. From Lemma 2.2, the only y’ for which ( -a, y’) is 
nonzero is of type (c) or (f), necessarily then e, ~, - e, or e, ~ z - e,. These 
roots have inner product 20 with -a = -e,. Hence 6 ~ = -a. 

(II) Suppose .D = - $a. Then similarly 6 + = a and vi = 0, which is a 
sharp cut-off for unitarity. 

(III) Suppose .D = 0. The simple roots y’ of A$ I consist of various 
compact A + simple roots and also possibly e,_, f e,, by Lem- 
ma 2.2. None of these roots is short. Referring to Proposition 3.1, we see 
that (A + a)” and (A -a)” necessarily occur in r,, @ pc; thus (a) holds in 
Theorems 3.2 and 3.2’. 

Let t be the smallest index such that ej - e,+ 1 is in As, I for allj with 
t <j < n. Then it is easy to see that 6 + = e, and that 

(p= -e, 
i 

if t=n 

e, if t < n. 

In either case, the 6+ and S- subsystems are both of type 
50(2(n - t + l), l), hence of real rank one. Thus (c) holds in Theorems 3.2 
and 3.2’. If t = n, then the 6+ and 6 ~ subsystems are of type A,, and (b) 
holds in Theorems 3.2 and 3.2’. If t < n, then 6 + = 6 ~ and (b’) holds. In 
either case the theorems apply and show that unitarity is cut off at 
min(v,f, v;)=v,‘=v;. 

Proof for split F4. No new ideas are needed, and the proof is omitted. 

7. VALIDITY OF CUT-OFFS FOR a LONG, DOUBLE-LINE DIAGRAMS 

The algebras g in question are ep(n, IR), so(odd, even), and split F4. The 
goal of this section is to prove Lemma 7.1 for sp(n, [w) and so(odd, even). 

LEMMA 7.1. Suppose that the Dynkin diagram of A + is a classical 
double-line diagram and that a is long. Then at least one of the following 
things happens: 

(4 v$ 6 v; , and hypotheses (a), (b) and (c’) are satisfied in 
Theorem 3.2 
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(b) v; Gv,‘, and hypotheses (a), (b), and (c’) are satisfied in 
Theorem 3.2’. 

Consequently J(MAN, o, fca) is not infinitesimally unitary for 
c > min( v$ , v; ). Moreover, 

(i) if the basic case associated to & satisfies the conditions of (iii) in 
Theorem 1.1 (which refers to so(2n, 3)) and if[ is the root defined there, then 
J(MAN, o, icct) is not infnitesimally unitary for 

min( v$ , v; -l)<c<min(v,i,v;) zf 5 is noncompact and vo > 2, 

min(v,+ - 1, v; ) < c < min(v,+ , v; ) if [ is compact or 0 and v$ B 2. 

(ii) if the special basic case associated to & satisfies the conditions of 
(v) in Theorem 1.1 (which refers to 5o(2n+ 1, 2)) and if v& and b0 are as 
defined there, then J(MAN, o, fcu) is not infinitesimally unitary for 

c>min(v&+ 1, v;) if PO conjugate to CI via Kin so(2n + 1, 2) 

c>min(v,+, vaL+ 1) if PO conjugate to - c( via K in so(2n + 1, 2). 

Before coming to the individual algebras g in question, we give a general 
result helpful in computing vi and v; and in checking the hypotheses of 
Theorems 3.2 and 3.2’. 

LEMMA 1.2. Suppose that the Dynkin diagram of A + is a double-line 
diagram and that CI is long. Whether or not A + 6 + is A$ dominant, every 
root b contributing to the term 

~#{/?EA,+I~~-LxEA and (A,fi-a)=O} (7.1) 

lies in the 6+ subgroup. If A + 6’ is Ai dominant, then T,, +di occurs in 
z, @ pc and the exceptional term 

~{B~~,fIB-~~~,IBI~I~l,~~~,B-~>lIB-~12=~} (7.2) 

of v: is 0. Conversely if the exceptional term is 0, then A + 6+ is A; 
dominant. 

Remark. An analogous statement is valid for n + 6- and v; 

Proof. We can regard a as an extreme weight of a compact group built 
from A,,., and then 6+ is the highest weight. Suppose b contributes to 
(7.1). If /I is long, then sgP Jc() = 8. So /I is another extreme weight and 
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Therefore fi is in the 6+ subgroup. On the other hand, if /3 is short, then 
sq- Jtx) = 28 - a. So 2p - a is another extreme weight and 

6+-2b+a= C n,y. 
YEAi. 

Therefore p is in the 6+ subgroup in this case, too. 
Now suppose that n + 6 + is A $ dominant. Since 6 + is long, it follows 

immediately from Proposition 3.1 that z, +6+ occurs in r, @no. Now, 
arguing by contradiction, suppose /? contributes to (7.2). Choose w in the 
Weyl group of A,, I with w6+ =a, and put y = w-‘(B-a). Then 

2(4~) 2(w4D-a>=2<4P-G0= +1 
lylz= 18-aIZ M-4’ 

shows y is positive, while 

2(A+d+,y) 2(wA+ws+,B-a>=2<n+a,p-a>=+1_2<0 
IY12 = N-al2 M-4’ 

contradicts A$ dominance of n + 6 +. This contradiction shows that (7.2) 
is 0. 

Conversely suppose (7.2) is 0. Arguing by contradiction, suppose n + 6 + 
is not A$ dominant. Then we can find y simple for A; with 2(4 y)/ 
IyI*= + 1 and 2(6+, y)/(yI’= -2. With w chosen as above, we find 
2(4 wy)/lwy)* = + 1, so that wy is positive, and 2(a, wy)/lwy12= -2, so 
that /? = a + wy is a root. Then p is in A,+ and contributes to (7.2), con- 
tradiction. 

Proof of Lemma 7.1 for ep(n, R). The Dynkin diagram is of type C with 
the long roots noncompact. The root a is the unique long simple root, 
which we denote 2e,. Possibly reflecting in a, we may assume that the 
adjacent simple root ynp 1 = e,- 1 - e, is compact. 

In checking the hypotheses of Theorem 3.2 or 3.2’, let us note that (b) is 
automatic. For example, ,4 -a cannot be a weight of (,4 + a)” since the 
difference 20: of the weights n -a and n + a is not the sum of compact 
roots in this group. 

For this group we shall use Lemma 7.2 (or its reflection in a) only when 
6+=aor6-=-a.Thelemmaimplies thatifd+=aandifn+ais As 
dominant, then (a) and (c) hold in Theorem 3.2 and vz = 1 + pa. 
(Hypothesis (c) implies hypothesis (cl).) 

To check on the Ai dominance, we shall need to know what A; simple 
roots are nonorthogonal to a. In the Dynkin diagram of A+, let there be k 
compact roots. Then there are n-k noncompact roots, and we can use 
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these to form n-k - 1 obvious compact A; simple roots (each one the 
sum of a connected segment of d + simple roots containing noncompact 
roots at the ends and only there). The result is k + (n - k - 1) = n - 1 com- 
pact Ai simple roots. Since we are working with sp(n, Rj, we know that 
there are no other A: simple roots. Therefore the only A: simple roots 
that are nonorthogonal to (x are 

e, + en and enpI -en, 

where t is chosen so that the only noncompact root among e, - e,, ,, 
et+ I -e t+2 ,..., en--,-en is e,-e,,,. We have n - t > 2. (Note: If no short 
A+ simple root is noncompact, then e, ~, - e, is the only A; simple root 
nonorthogonal to c(.) 

Suppose we know that 6+ = CI. For A + CI to fail to be Ai dominant, we 
know from the beginning of Section 2 that there must be a A: simple 
root y with 2(A, y)/(yj’= 1 and 2(cr, y)/IyI’= -2. Thus the previous 
paragraph forces 

Similarly if 6 = - CI, then ,4 - CI is A i dominant unless 

2(fA e,+e,) 
(e,+e,(’ =’ 

(7.3) 

(7.4) 

(with t existing). We now divide matters into cases. 

(I) Suppose p = + 1~. We claim that 6 ~~ = -a and A - c1 is A$ 
dominant, so that v; = 0. In fact, the simple roots 5 of Ai, i with labels 
2(5, u)/~M[’ are a possible y,- , with label - 1 and various compact A+ 
simple roots with label 0, by Lemma 2.2. Hence --a is As, i dominant and 
6 ~ = - c(. For A - CI to fail to be Ai dominant, (7.4) must hold. Put 
y =e,+e,. Then (2.3) gives 

= 2(do-lo,brY)+2(1~,b,Y) 
lY12 IY12 

+(~-2)-;(1-&)~ 

,2(1,-I,,,,Y)+2(1,,,,Y) 
/ 

lY12 IA2 
+ (n - t) - (1 - pa). (7.5) 
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Since n - t 2 2 and par = 1, this equation contradicts the A+ dominance of 
&. Our assertions follow. 

(II) Suppose p = 0. We claim that & = -LX and A - CI is Ai 
dominant, so that Lemma 7.2 gives v; = 1 < v$ and shows that 
Theorem 3.2’ applies. The argument starts as in (I), and we come to (7.5). 
Since p = 0, we are led to conclude that t = n - 2 and that P, ~ z - e, ~ r and 
yn ~ I = e, ~, - e, are orthogonal to &. Then 

is a compact root orthogonal to 2, and to c(, in contradiction to non- 
degeneracy. Our assertions follow. 

(III) Suppose p= -+cx. From Lemma 2.2, the only possible A,$, i 
simple root having nonzero inner product with a is e, ~ z + e,. Therefore 
6 + = CC, and also 6 - = - c( if e, _ 2 - e, _ I is compact. In all cases, (2.3) and 
a little computation give 

2(n,y,~,)=2(i,-i,,hrYn-,)+1 
IYn-II2 ILlI . 

(111.1) Suppose y,-, = e,-, - e, is not basic. We claim that 
A + 6+ = A + c( is A,$ dominant, so that vz = 0. In fact, failure of AL 
dominance means that (7.3) holds, and this contradicts (7.6) since y,,+ 1 is 
assumed not basic. 

(111.2) Suppose y, _ r is basic but e, ~ 2 - e, _ r either does not exist or 
is not basic. This is the most difficult case. We shall show that v$ = 1 < v; 
and J(MAN, cr, $a) is not infinitesimally unitary for c > v$ . 

Since 6 + = CI, Lemma 7.2 shows that the main term (7.1) of vz is 0. For- 
mula (7.6) shows that /3 = e,- r + e, contributes to the exceptional 
term (7.2) for v$ . If /I’= ej+ e, contributes also, then it follows that 
ej- e,- r is in A;, I. Hence there is a A, I simple root of the form 
eY - e, ~ r . However, Lemma 2.2 shows that the only candidate for such a 
root is e,-,-e+,, which cannot be in A, i since it is not basic. Thus 
e,-ee,_, cannot be in ALI, and there is no such /I’. We conclude that 
vz = 1, and we have 2 < V$ since p = - $. 

We are left with showing that the hypotheses of Theorem 3.2 are 
satisfied; we prove (a) and (cl). Referring to the beginning of Section 3 and 
noting from (7.3) that yn-, is a A; simple root with 2(4 y,-r)/ 
ly,-r12= +l and 2(cl,yn-,)/IynP,12= -2, we see that (A+a)” = 
(A+cr+y,-,)” =(A+e,-,+e,)“. Since e,-,+e, is A:,, dominant, we 
conclude that (A + a)” = ,4 + e,-, + e,. For r(, +njV to fail to occur in 
T/l@ PC, we need a A> simple root y such that y is orthogonal but not 
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strongly orthogonal to e, _ I + e, and such that (A, y ) = 0. The first con- 
dition forces y = y, _, . However, (A, yn-, ) is not 0, by (7.6), and there is 
no such y. By Proposition 3.1, (a) holds in Theorem 3.2. 

Let us check (c’). We seek solutions to 

en-,+e,=(A+a)“--A=ca.+ C np/?+ 1 k,y. 
Pl2en yEA; 
PEAi+ 

The only roots /I and y that can contribute are ae, _ I + be,, with each a > 0 
and with the sum of the a’s equal to 1. No such /Ys can contribute, and 
thus (c’) holds. Since we already know (b), the hypotheses of Theorem 3.2 
are satisfied. 

(111.3) Suppose yn-i and e,-,-e,-, are both basic. Then 
en-2--e,-l must be compact (to avoid degeneracy with respect to 
e,-,+e,-,). Thus b=en-,+e, and /?=enp2+e, both contribute to the 
exceptional term (7.2) of v$ , andsov,+>2.WeclaimthatA+6-=A-a 
is Ai dominant, so that Lemma 7.2 gives v; =2 < vz and shows that 
Theorem 3.2’ applies. 

For A - CI to fail to be Ai dominant, we must have (7.4) and hence (7.5). 
Here t<n--3 because e,-e,,, is noncompact. Since pL, = - 1, we con- 
clude from (7.5) that 

o= %,h? e,+e,)~((;1,~,,e,~,-e,-,)>O, 

contradiction. Thus A - c1 is Ai dominant. 

Proof of Lemma 7.1 for so(odd, even). The Dynkin diagram is of type B. 
We use standard notation for the simple roots, taking e, to be the short 
simple root. Let a be ej - ej+ , . Possibly reflecting in Q, we may assume that 
the next simple root after c( (ej+ I - ej+ 2 or e,) is noncompact. 

Since ej - ej + , is noncompact, one of ej and ej+ I is compact. Let ek be 
the short root with the largest index such that ek is compact. Then k b j. 
The root ek is A$ simple. Moreover, f =so(odd) 0 so(even), and hence 
there is no other short Ai simple root. 

(I) Suppose the exceptional term (7.2) of v$ or v; is not 0. We shall 
classify the situations where this happens. Lemma 7.2 says that it is 
necessary and sufficient that A + 6 + or A + 6 ~, respectively, fails to be A ; 
dominant. The remarks at the beginning of Section 3 then say that 
2(A, e,)/le,l’= 1 and that (6+, ek ) < 0 or (6 -, ek ) < 0, respectively. 

If the exceptional term of v0 + is not 0, then there exists a short noncom- 
pact root p with fi- c1 in A’. The only possibility is /3 = e,, and then 
fl-a=e,+, is compact with 2(A, ei+,)/le,+,(2= + 1. Consequently 
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ej+l- ek is in Ai I , u (0). Moreover, the exceptional term for vz is no 
more than one. 

Similarly if the exceptional term of vi is not 0, then it is one and the 
root ej - ek is in Ai I u (0). Since ej - ek and e,, 1 - ek cannot both be in 
A,u {0}, the exceptional term for only one of v; and v; can be nonzero. 

Conversely if 2(4 ek)/lek12= 1 and e,+ 1 -ek is in Ai, I u {0}, then 
/I = ej exhibits the exceptional term of vc as nonzero. If 2( A, ek)/lekl * = 1 
and ej-ek is in Ai, I u {0}, then /?=e,+, exhibits the exceptional term of 
v; as nonzero. 

We now limit the possibilities for k by applying (2.3) with y=ek. We 
shall show that k=n-1 or k=n and that k=n-1 impliesj=n-2 or 
j= n - 1. Substituting for 6 in (2.3), we have 

1=2(1.,-1.,,,ek)+2(i,,,ek) 

ieki2 lekl’ 

1 2<crt ek> 
+(2(-W)-2U-~,) ,ek,2 . (7.7) 

Suppose k<n -2. The third term on the right is 23 and can be offset by 
the last term only if k =j+ 1. Then a will be orthogonal to e, _ I - e,. 
However, e, and e,- I noncompact implies e,_ , - e, compact, and thus the 
second term on the right will be at least 2. We conclude k 2 iz - 1. 

Suppose k= n - 1, so that the third term on the right of (7.7) is 1. If 
j<n-2, then the fourth term is 0; hence the sum 2(&, e,-,)/le,-,12 of 
the first two terms is 0, in contradiction to nondegeneracy. 

If k = n - 1 and j = n - 2, we can substitute from Table 2.1 to see that 
(7.7) holds if and only if p = +$x and both e, ~, - e, and e, are basic. In 
this case the exceptional term of v$ is nonzero. 

If k = n - 1 and j= n - 1, then Table 2.1 shows that (7.7) becomes 

1 =2(&-&,b, en> 1 1 
lenI 

+ p,-2 -2+1-(1-j&). I I 
The necessary and sufficient conditions, classified by p, are as follows: 

e, basic 

e, one step removed from basic. 
(7.8) 

In these cases the exceptional term of v; is nonzero. 
Now suppose k=n. Our normalization of the root next to a then forces 

j < n - 2. We know that the exceptional term of v$ is nonzero if and only if 
2(A,e,)/le,l*=l and ei+,--e, is in Atl. Since ej+l-ej+2 is noncom- 
pact, the latter condition happens if and only if p = $x, ej + 2 - ej + 3 is non- 
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compact, and ej - ej+ , , e, + i - e, + z ,..., e, _ i - e, all lie in the special basic 
case. Similarly the exceptional term of v; is nonzero if and only if 
2(A,e,)/le,J2=1 and ej-e, is in Ai,L. Since e,,,--e,,, is noncompact, 
the latter condition happens if and only if all subsequent roots are compact 
and e,-e,,,, ej+,-ej,z ,..., e, ., - e, all lie in the special basic case. 

Next we show that Theorem 3.2 or 3.2’ is applicable in each of these 
situations to min(v,f , vi ). 

(1.1) k=n-1, j=n-2, p=f~1, e,-,-e, and e, both basic. The 
exceptional term of v$ is 1. The root e,- , - ej (if it exists) cannot be non- 
compact basic since otherwise ej- i would contradict nondegeneracy. It 
follows that the A$, I simple roots y’ with labels 2(y’, a)/laI’ are c( + fl (for 
/I = e, ~, - e,) with label + 1, as well as some roots orthogonal to /? with 
label 60. Consequently we have 6 ~ = p and vi = 2 < 3 < vg+ . Lemma 7.2 
says that A + 6- is As dominant and that r,, +6 occurs in t, @pc. 
Moreover, the 6.. subsystem is of type ~(2, l), and the proof of 
Corollary 3.3 shows that (b) and (c) hold in Theorem 3.2’. So assertion (b) 
in Lemma 7.1 is proved. 

However, in this situation the conditions of (iii) in Theorem 1.1 are 
satisfied, and Lemma 7.1 thus asserts more. The root [ is e, _ 1 - e,,and is 
noncompact. Since v; = 2 < vc , we are to rule out unitarity strictly 
between v; - 1 = 1 and vu = 2. For the system A, generated by CI, 5, and 
e Proposition 3.8 does exactly this, by means of the (Kn L)-type 
Li + e,- , . To extend the conclusion to G, it is enough, by Theorem 3.4, to 
show that A + e, _ i is A,$ dominant. Let y be A; simple. If y is in Ai, i and 
(e, ~, , y ) < 0, then Lemma 2.2 shows that e, _ 3 - e, _ 2 exists and is non- 
compact basic, in contradiction to nondegeneracy. Hence 
(A+e,_,,y)30 for y in AL,,. For all other Ai simple?, we have 
2(~,y)/~y)2~land2(e,~,,y)/(y~2~-l.Hence(/i+e,_,,y)30.Con- 
sequently (i) holds in Lemma 7.1. 

(1.2) k =n - 1, j= n - 1, e, as in (7.8). The exceptional term of v; 
is 1. From Lemma 2.2, no A;, L simple root involves e, in its expansion in 
terms of single roots. 

(1.2a) Suppose e, ~ 2 - e, _, , if it exists, is not compact basic. Then 
every Ai I simple root not of type (f) in Lemma 2.2 has label 2(y’, ~>/lcrl’ 
nonnegative. Hence p # $a implies 6+ = a; in these cases vi = 1 + pU < 
26 vu, and the argument in (1.1) shows that (a), (b), and (c) hold in 
Theorem 3.2. 

Suppose p = +a. Then we are assuming e, is basic; so there cannot be a 
A; I simple root of type (f) because otherwise ene3 would exhibit a 
degeneracy. Thus every A$, L simple root has label nonnegative, and we 
have 6 + = CI. That is, v$ = 1 + pL, = 2, and the argument in (1.1) shows that 
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(a), (b), and (c) hold in Theorem 3.2. If e,_ z -e,- 1 does not exist or is not 
noncompact basic, then every A:, I root has label 0, and we have 6 - = --cc 
By Lemma 7.2, vi = (1 - ,u,) + 2.0 + 1 = 1. Let us show in this situation 
that (,4 - CI)” satisfies (a), (b), and (c’) in Theorem 3.2, so that vi gives a 
sharper cut-off for unitarity. From the first part of Section 3, we have 
(A - c()” = (A - tx + e,- ,)” = (A + e,) “, and this is A + e, since e, is A,$, I 
dominant. Since (A, e,- 1 ) # 0, Proposition 3.1 shows that (a) holds. For 
(b), we note that ,4 + CI cannot be a weight unless (A + e,) - (A + a) = 
-e n ~, + 2e, is a sum of members of Ai, which it is not. For (c’), we are to 
examine solutions of 

e,=(A+e,)-A=ca+ 1 nBp+ 1 k,y. 
BEAT,, YEAK+ 

The only /? that could possibly contribute is B = e, _, + e,, and we would 
need 

e,=c(e,-,-ee,)+a(e,-,+e,)+be,-, 

with a > 0, b 3 0. The coefficient of e, forces c = a - 1, and then the coef- 
ficient of e,- i forces 2a + b = 1. Hence a = 0 and C nsj? = 0. In short, (c’) 
holds. Thus v; = 1 is a cut-off for unitarity when e, ~ 2 - e, _, does not exist 
or is not noncompact basic. 

If e, _ 2 - e, ~, is noncompact basic, then B = e, _ 2 - e, _, contributes to 
v; and we have v;>3>2=v,+. So the assertion (a) in Lemma 7.1 is 
already proved. However, in this case the conditions of (iii) in Theorem 1.1 
are satisfied, and Lemma 7.1 asserts more. The sum [ is 0 here. Since v$ = 
2 < vu, we are to rule out unitarity strictly between v$ - 1 = 1 and v + = 2. 
This is easy; renumbering our indices in the order n - 3, IZ - 1, n, n -!! and 
reflecting in CI, we do not change AT and we reduce matters to (I.l), where 
we know there is no unitarity between 1 and 2. Consequently (i) holds in 
Lemma 7.1. 

(7.lb) Suppose e, _ z - e, _ 1 is compact basic. This root is simple for 
A;, I and has label - 1. If p # - &, then all other A$, i simple roots have 
label 0. In this case all labels are 60, and hence 6 ~ = - c1 and vo = 
(1 --pu,)+2.0+ 1 =2-pu,. Since B=e,-,-e, contributes to vo+, we have 
vi < 2 < vc . To see that hypotheses (a), (b), and (c’) of Theorem 3.2’ are 
satisfied, we apply the argument in (1.2a) word for word. 

Now suppose p = --$a. If there is a As, I simple root of type (g), then it 
must be e,-,--e,, and we obtain 6+ =e,-,-ee,, so that v; =2 and the 
hypotheses of Theorem 3.2 are satisfied for this estimate. Since vi 2 
(1 - CL,) + 2.0 + 1 = 3, the assertion of Lemma 7.1 is proved in this case. 

If p = -+a and there is no As, I simple root of type (g), then all labels 
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are 40. So 6-=-a and v;=(l-~,)+2.0+1=3; the argument in 
(1.2a) shows that hypotheses (a), (b), and (c’) of Theorem 3.2’ are satisfied. 
If e, _ 3 - e, _ Z does not exist or is not compact basic, then 6 + = e, _ 2 - e,, 
the 6 + subsystem is of type ~(2, 1 ), v$ = 2, and familiar arguments as in 
Corollary 3.3 show that (a), (b), and (c) in Theorem 3.2 are satisfied. If 
e n-3 -e n-2 is compact basic, then vz 2 4 > 3 = v; , and the assertion of 
Lemma 7.1 is therefore already proved in this case. 

(1.3) k=n,j<n-2. 

(1.3a) Exceptional term of v$ nonzero. Then 2(/1, e,)/le,l’= 1, 
p = &, fl’ = ej+2 - el+ 3 is noncompact, and ej - ej+, , ej+, - ej+ 2 ,..., 
e n-1 -e, all lie in the special basic case. Let fl= ej+ i -ej+2. The root 
fi+p’isdi. simple of type (f), and its label is - 1. The root K+ /I is di. I 
simple with label + 1. All other Ai, I simple roots have label ~0, since 
e ,-, - ej (if it exists) cannot be noncompact basic, by nondegeneracy. 
Hence 6- = 8. Then v; = (1 -I*~) + 2 +0= 2, and the techniques of 
Corollary 3.3 show that hypotheses (a), (b) and (c) of Theorem 3.2’ are 
satisfied. Since pX = 1, vc is >, 2 and hence is 2 v; . 

(1.3b) Exceptional term of v; nonzero. Then 2(n, e,)/(e,l’= 1, all 
roots beyond ej+, - ei, Z are compact, and e, - e,+ , , e,+, -e,, 2 ,..., 
e n-l- e, all lie in the special basic case. Since ej + , - e,+ 2 contributes to v; 
and since the exceptional term of v; is nonzero, we have vO, > 3. 

Let us dispose of two preliminary subcases. First suppose that 
ei-2 -ej+ 1 is a Ai, L simple root of type (g). Then p = - fa, and we can 
check that 6+ = e-- , -e- . Hence v$ = 2 < v; , and the techniques of 
Corollary 3.3 shoi that hypotheses (a), (b), and (c) of Theorem 3.2 are 
satisfied. 

Next suppose that e, _, -e,, if it exists, is noncompact. Then 6+ = IX, 
VO +=1+/&<vg, and again the techniques of Corollary 3.3 show that 
hypotheses (a.), (b), and (c) of Theorem 3.2 are satisfied. 

The remaining subcase is that the component of c( in the special basic 
case has real rank one (with CI and e, + , - ej + 2 as the only noncompact sim- 
ple roots). Here we claim that the hypotheses of Theorem 3.2 are satisfied 
for (/1+ a) ” = n + 6 + and the hypotheses of Theorem 3.2’ are satisfied for 
(n-a)” =(n+s-)” =(n+s-+e,)“. There is no problem for 
(A+a)“, since we can use Lemma 7.2 and the techniques of Corollary 3.3. 
For (A--c()“, we check that 6- + e, =e,i+, and that e,,, is Ai, I 
dominant. Hence (,4 - a) ” = n + ej + , . Since (ft, e,) # 0, Proposition 3.1 
shows that (a) holds. For (b) we have 

(A-U)” -(A+cX)=e,+,-(e,-ej+,), 
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and this is not a sum of compact positive roots; hence /i + c1 is not a 
weight. Finally, for (c’), we check solutions of the equation 

ej+ i =(A-a)“-A=ca+ c nB/?+ c k,y. 
PEA?,” YeA; 

The only possible /? that can contribute is p = ej + ej+ i, and we would need 

e ,+, =c(ej-ej+l)+a(ej+ej+l)+bej 

with a 2 0, b > 0. As in (1.2a), this forces C npp = 0. Thus (c’) holds. 

(II) Suppose that tl or --tl is conjugate by the Weyl group of d$, I to 
PO = ej + e,, i. (We shall see that this case is disjoint from (I).) Since A,, I 
is contained in the special basic case and since an A type group has only 
permutations in its Weyl group, e, must lie in the component of tl in the 
special basic case. 

(II.1 ) Suppose j < n - 1. Then e, is compact and has 2( 4 e, )/ 
lenI =O. Hence k=n in the notation earlier; since 2(4 ek)/lek12# 1, the 
exceptional terms for vz and v; are zero. Lemma 7.2 and the techniques of 
Corollary 3.3 show that the hypotheses (a), (b), and (c) of Theorem 3.2 are 
satisfied if the 6 + subsystem is of real rank one (then necessarily of A type) 
and that the hypotheses (a), (b), and (c) of Theorem 3.2’ are satisfied if the 
6 - subsystem is of real rank one. 

If e,,, -ej+s is a Ai I simple root of type (f) in Lemma 2.2, then we 
check that 6- = ej+ i - Ejtz. The 6 - subgroup is then of type su(2, 1 ), so 
that the remarks above apply. We have v; = 2 < vi. 

Thus assume e,+, - ej+2 is not part of a As I simple root of type (f). If 
e ,-2-e,+l is a AsI 
ej-, - ej+ ,. We have 

simple root of type (g): then we check that 6+ = 
v 0’ = 2 d v;, and again the remarks above apply. By 

nondegeneracy, there is no other possibility for a A;, I simple root of 
type (f) or (id. 

Next suppose that ejel -e, exists and is noncompact and basic. Then 
6 + = c(, vg = 1 + ,u~ < 2 < v; , and again the remarks above apply. 

The remaining alternative is that the component of c1 in the special basic 
case A, is of type so(odd, 2). (This was not true previously during (II.l).) 
Let el--e,+l, Z<j, be the first simple root in this component. We have 
6+ =e,-ej+,, and the 6+ subsystem is of type su(j-,+ 1, 1). So the 
remarks above apply. The corresponding cut-off for unitarity is 

vo’ = 1+/&+2(j-I), (7.9) 

with contributions from /? = ei- ej+ i for 1 d i<j- 1. We have v; < v; 
since v; has contributions from b = ei + ej+ , for I< i <j - 1 and from 
P=<j+l. 
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Within the special basic case, Proposition 3.7 applies and gives us 
another cut-off for unitarity, namely vo, L + 1, where 

V ,jjL= 1 -pa+2(n-j-1)33-pa. (7.10) 

This cut-off comes from consideration of the (K n S)-type 

(n-a+Po)‘“~S’=(A+2e,+,)‘“~5’=A+2e,+,. 

When v~,~<vgf, we want this estimate to persist for G. As usual, the 
Vogan Signature Theorem (Theorem 3.4) shows that it is enough to prove 
that /i +2ej+, is Ai dominant. 

Failure of n + 2ej+ r to be AL dominant means that there is some i < 1 
with e,-ej+l simple in A$ (but not in AGI) with (/i+2ej+,, 
e,-ej+l) ~0. Then 2(~,ei-ej+,)/~ei-e,+,~*~ 1. Suppose /<j- 1. 
With Y=ei-e,,,, (2.3) and Table 2.1 give 

12 
2(~o,b,eI--e,+,)+ 2(4e,-,-ej+,) 

lY12 ( Id2 

-2 +1-p,) 
> 

= 2(j- I) - 1 + P2. (7.11) 

This inequality fails if I<j- 2 or if both 1 =j- 1 and p, = 1. If I= j- 1 and 
CL, d 0, then (7.9) and (7.10) give 

so that we do not care whether dominance persists. 
We also must consider 1= j. In this case, (7.9) and (7.10) give 

so that again we do not care whether dominance persists. 

(11.2) Suppose j = n - 1. Then e, is noncompact, and we must have 
2(/i, e,- 1 )/le, _, I* = 0. Hence k = n - 1 in the notation earlier, and again 
the exceptional terms for v$ and vu are zero. We can again show that (a), 
(b), and (c) in Theorem 3.2 or 3.2’ are satisfied by showing that the 
corresponding subsystem is of real rank one. 

The condition 2(/i, e, _ r )/\e,, ~. 1 I* = 0 forces p # + @., by Lemma 2.2. As 
in (I), we first eliminate all situations but those where the component of M 
in the special basic case A, is of type eo(odd, 2), but not so(3,2). 

If e,-,-ee,-, does not exist or is not compact basic, then 6 + = CI and 
VO + = 1 + pL, d 2 <VT, since v; gets a contribution from fi = e,. (There can 
be no A;,, simple root of type (f) in Lemma 2.2 since p # +$.) 
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If y = e, _ 2 - e, _ i exists and is compact basic, first suppose P, _ 3 - e, is a 
Ai, 1 simple root of type (g) in Lemma 2.2. Then ,u = -1~1, 6 + = a + y, and 
vof = 2 <v;. So there is no problem in this case. 

Now suppose that e,- 2 - e, _, is compact basic and no root of type (g) 
is present. Then the component of a in A, has compact simple roots 
ei--e,+l,..., en-,-en-, and noncompact simple roots e, _ , - e, and e,. It 
is of the form so(2(n - I) + 1,2), and we may assume 1 d n - 2. Then 
6+=e,-e,, and the 6+ subsystem is of type su(n - I, 1). The 
corresponding cut-off for unitarity is 

VO + = 1+,&+2(n-z- 1) (7.12) 

with contributions from /I = e, - e, for 1 d id n - 2. We have vt 6 v; since 
v; has contributions from p = ei + e, for I < i < n - 2 and from /? = e,. 

Within A,, Proposition 3.7 applies and gives us another cut-off for 
unitarity, namely VO,~ - 1, where 

V o,L=l-A. 

This cut-off comes from consideration of the (Kn S)-type 

(7.13) 

When v~<vo+, we want this estimate to persist for G. As in (II.l), it is 
enough to show that n + 2e, is As dominant. Failure of Ai dominance 
would lead to (7.11) with j = II - 1, and we conclude that I =j - 1 = n - 2. 
In this case (7.12) and (7.13) imply 

v; =3+/& while ~0.~ = 1 -,u%. 

Since we are not allowing p = + +a, we have a problem only when p = 0 
and the diagram is 

with all the illustrated roots basic. This is the situation in (vi) of 
Theorem 1.1, and condition (v) assumes we are not attempting to treat this 
case. (Here we can show that unitarity continues beyond VO,~ = 1 to the 
point 2 and that 3 is a unitarity point, but the proof that there is a gap in 
unitarity from 2 to 3 uses different methods and is postponed to Sec- 
tion 13.) 

(III) Suppose that neither a nor -a is conjugate by the Weyl group 
ofA& to po=ej+ej+i and that the exceptional terms of v$ and v; are 0. 
Lemma 7.2 and the techniques of Corollary 3.3 show that the hypotheses 
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(a), (b), and (c) of Theorem 3.2 are satisfied if the 6+ subsystem is of real 
rank one (then necessarily of A type) and that the hypotheses (a), (b), and 
(c) of Theorem 3.2’ are satisfied if the 6- subsystem is of real rank one. 

(111.1) Suppose that e, is not in the component of tx within the 
special basic case. Then the computation of 6 + and 6- takes place in a 
single-line diagram, and Lemma 4.1 tells us either that the 6 + subsystem 
has real rank one and v; d v; or that the 6- subsystem has real rank one 
and v; < vc . Hence the remarks above complete the proof of (a) or (b) of 
Lemma 7.1 in this case. 

The situation of (III. 1) may meet the conditions of (iii) in Theorem 1.1, 
and then Lemma 7.1 requires more. In this situation, c( cannot be adjacent 
to e,, since otherwise e, basic leads to (I) if p = + $ct and to (II) if p # + & 
Thus (iii) requires the following: e, must be noncompact basic, and the 
component of a in the special basic case must be of real rank one and must 
be adjacent to e,. Taking A, to be generated by this component and e,, we 
prepare to apply Proposition 3.8 to A,. The root [ is ej+ i -e, and is non- 
compact. Proposition 3.8 uses the (Kn L)-type A,t = A, + [ + e, = 
AL+ej+l to assert nonunitarity within L for v; - I <c < v;, hence for 

min( vc , vi- - 1) < c < min(v,f , v; ). 

(Note that vc and v; are the same in L as in G since A, includes the com- 
ponent of a in the special basic case and since the exceptional terms of v$ 
and v; are 0.) To extend this conclusion to G, it is enough, by 
Theorem 3.4, to show that ,4 + ej+ , is Ai dominant. Let y be Ai simple. If 
y is in A:, I and (e,,,, y)<O, then y is in A; nA, and we know 
(A+ej+,,y)>O. For all other Ai simple y with (e,+,,y)<O, we have 
2(A,y)/(y1231 and 2(ej+,,y)/(y12> -1. Hence (A+ej+,,y)>,O. Con- 
sequently (i) holds in Lemma 7.1. 

(111.2) Suppose that e, is in the component of a within the special 
basic case. If j < IZ - 1, then 2( A, e,)/le,12 = 0, and we see that we are in 
case (II.1 ), contradiction. So j = n - 1. Since e, is in the special basic case, 
Lemma 2.2 shows that 2(A, e, ~, )/le, _, / 2 = 0, and we see that we are in 
case (11.2), contradiction. So case (111.2) does not occur. 

8. TOOLS FOR PROVING IRREDUCIBILITY 

When min( v 0’) v; ) > 0, we know from Lemma 2.1 that J(MAN, cr, &a) is 
infinitesimally unitary for small positive c. It then follows from a general 
continuity argument (cf. [14, Sect. 141) that J(MAN, 6, $ca) is 
infinitesimally unitary for c in any interval [0, c,] such that 



UNITARY REPRESENTATIONS 63 

U(MAN, 0, &CL) is irreducible for 0 <c < cO. In every case where 
Theorem 1.1 asserts unitarity on an interval, we shall prove the assertion 
by establishing the corresponding irreducibility. 

Two of our tools will be the following results specialized to our situation 
with dim A = 1 from Speh-Vogan [20]. We say that c1 satisfies the parity 
condition for U(MAN, 0, &x) if either IS is a cotangent case and c is an even 
integer or 0 is a tangent case and c is an odd integer. (See Sect. 1 for 
“cotangent case” and “tangent case.“) 

THEOREM 8.1 [20, p. 2921. Fix c>O. Then U(MAN, o, ica) can be 
reducible only when either 

(a) cz satisfies the parity condition for U(MAN, o, fca), or 
(b) there is a root B#+cr with (&+~c~(,j3)>0 and 

(&-$~a, /3) ~0 such that 2(1,+iccr, p)/IDI’ is an integer. 

THEOREM 8.2 [20, Sects. 4,5]. Let U(MAN, a, v) be given with v = $cr 
and c > 0. Let A, be a subsystem of A generated by simple roots and contain- 
ing a. If the representation UL(ML AN,, oL, v) defined by (3.1) is irreducible 
and the set A(u) of roots in (3.la) satisfies 

(&+v,B>>O 

for all l? in A(u), then U(MAN, o, v) is irreducible. 

We shall use Theorem 8.1 normally in the following form. 

(8.1) 

COROLLARY 8.3. For c > 0, U(MAN, o, &a) can be reducible only tf c is 
an integer. Moreover, tf~ is short or if all roots have the same length, then 
reducibility forces a to satisfy the parity condition for U(MAN, o, &a). 

Proof For any root p, formula (1.3) and the integrality of/i show that 
2(& + ,U - ia, 8)/l/31 2 is an integer. Thus 2, + fcoa is integral, where c0 = 0 
if cr is a cotangent case and c0 = 1 if u is a tangent case. Suppose 
U(MAN, 6, &a) is reducible and a does not satisfy the parity condition. 
Choose j? as in (b) of Theorem 8.1. Since 2(& + &a, /?)/Ip12 is an integer, 
so is 2( $(c - c,,) a, B)/I/31 2. Whether a is long or short, this condition forces 
c - c0 to be an integer. Hence c is an integer. If a is short, the same con- 
dition forces c - c0 to be an even integer. Thus a satisfies the parity con- 
dition, contradiction. This proves the corollary. 

Let A, be a subsystem of A generated by simple roots and containing a. 
We say that (SV) holds if the inequality (8.1) holds for all /? in A(u). In this 
case Theorem 8.2 allows us to infer irreducibility in G from irreducibility in 
L. The starting points using Theorem 8.2 are Proposition 8.4 below and the 
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observation (evident from Table 2.1) that any A+ simple root that is basic 
in G and lies in A, is basic in L. 

PROPOSITION 8.4. For g equal to 50(2n, 1) or eu(n, 1) and the basic case 
equal to all of A, U(MAN, a, &cc) is irreducible for 0 < c < min(v,+ , v; ), The 
same conclusion applies to g = ep(n, 1) when o # 1; if IJ = 1 and n 3 2, then 
irreducibility extends for 0 -C c < min(v,+ , vo ) - 2. 

Remark. This is a reinterpretation of well-known results. See, e.g., [ 11. 

In a classical group, it is easy to check directly whether (SV) holds, but 
in an E-type diagram we need some simplification of the condition such as 
in 

LEMMA 8.5. Suppose that the Dynkin diagram of A+ has only single 
lines. Let A,, be a subsystem of A generated by simple roots and containing 
c(, and let A, be the component of c( in AL,. Let yi be the (simple) neighbors 
of AL in de-AL. For each yi, let /Ii be the sum (with multiplicity one 
apiece) of the simple roots from yi to ~1, including yi but not including GI. If 
(&, + v, pi) 3 0 for each i, then (SV) holds for A,, and 1, + v. 

Proof For this proof, let us normalize all root lengths squared to be 2. 
Without loss of generality we can shrink A,, to equal A,. Let /I in A(u) be 
a root to be checked. We may assume (p, ol) = - 1. Let p’ be the sum of 
the simple roots contributing to /I (each counted just once in /I’). Then /?’ is 
in A(u). Let IZ be the set of simple roots contributing to p’. We distinguish 
four cases. 

(1) Suppose c1 is not in I7. Since I7 is connected and IZu {a} has no 
loops, c1 has just one neighbor y,, in 17. Hence (/I’, CC) = - 1. Moreover 
/?-fl’EC A+ implies (I,, p - b’ ) > 0, and (fi - /I’, CI ) = 0 implies 
(v,fi--fl’)=O. Hence (&,+v,fl)>(&+v,/?‘), and it is enough to 
handle /I’. Since p’ is in A(u) and a is in At , I7 contains a root y that is in 
A(u) but is adjacent to At, i.e., one of the roots yl. The corresponding /Ii is 
the sum of the roots from y0 to y =yI. Then (fli, CC) = - 1. From 
b’--,!Ii~Cdf we obtain (A,,/?-p,)>O, and from (I’-P,,a)=O we 
obtain (v, /I’ - fli) = 0. Thus (A, + v, 8’) > (A, + v, pi), and it is enough 
to handle pi, as asserted. 

(2) Suppose a is in n and is a node of K7. We have ( /?, LX) = - 1 and 
(/I’, cz ) = f 1. Let y be the unique neighbor of c( in Z7. Then we can write 

p=acr+by+v, 

p’ = c! + y + v]‘, 
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where 2~ -b = - 1, b > 1, q and q’ are sums of simple roots orthogonal to 
tl, and q-q’ is a sum of simple roots. Hence 

(&,+&x,~>=b(l,,y)+(&,~)+ca-fbc 

=b<&,y)+<&,v)-SC 

2 (&h r> + (J-0, vl’) -tc 

= (&+~ca,/?‘-a). 

It is therefore enough to handle the root B’ - ~1, which is handled by (1). 

(3) Suppose c1 is in 17 and has two neighbors in I7. We have 
(p’, a) = 0. Removing a from Z7, we obtain two components, and we let /I; 
and fib be the sums of the simple roots in the components, so that 
/?‘= /?; + a + /?;. Since /?’ is in d(u), at least one of 8; and pi, say /3;, is in 
d(u). Then (pi, CI) = - 1 = (/?, CC), /?- /?I is in 1 d +, and it is enough to 
handle the root pi, which is handled by (1). 

(4) Suppose CI is a triple point in A’. We have (B’, cr ) = - 1 = (/?, cc). 
Since /I - /?’ is in C A + and (p - /I’, a) = 0, it is enough to handle /?‘. 
Removing CI from I7, we obtain three components, and we let /?;, pi, /I; be 
the sums of the simple roots in the components. Since j3’ is in A(u), at least 
one component, say the one for /?;, must extend outside AL. We write 
j3’=~‘1+(fi;+cr+jI;) and 

Here p; + CC + p; is a root orthogonal to cq hence we can drop v from the 
second term on the right. We have /?‘- /?; EC A+ and (fi’, a) = - 1 = 
(8;) cl). Hence it is enough to handle /I;, which is handled by (1). This 
proves the lemma. 

To get started with (SF’), we need some other irreducibility beyond that 
in Proposition 8.4. We assemble in Lemma 8.6 the additional information 
that we need. 

LEMMA 8.6. In the 27 configurations (a)-(aa) of Table 8.1, 
U(MAN, IS, &a) is irreducible for 0 < c < min(v,+ , v; ). In configurations 
(bb) and (cc), U(MAN, C, &cc) is irreducible for 0 < c < min(v,+ , VO,~ + 1). 

Proof of Lemma 8.6. The idea is to combine Proposition 8.4 and the use 
of (SF’) with some special irreducibility results proved by Vogan’s com- 
position series algorithm and assembled in our paper [4]. However, the 
configurations in Table 8.1 include a certain amount of duplication (with 



66 BALDONI-SILVA AND KNAPP 

TABLE 8.1 

Configurations Addressed by Lemma 8.6 

(a) 4 

(b) Ds 

Cc) Ds 

(d) DN 

P., 
8, 

(e) EC 

(f) & 

(g) EC 

(h) ET T” 

t 
a 

0 : c: 0 
tl p Y Yi 

t 
P 

0 = 0 0 
tl a Y yI 

t 
6 

0 w i A 0 
4 p2 a yI ~2 

(i) E’- 
ci) E,: 1 i 1 1 1 

a YI Yz Y3 

Table continued 

All roots basic 
p= -& 
vo’=4cv, 

All roots basic 
p=-$t 
vgf = 4 < v; 

All roots basic 
p=+fa 
vo’=4<v, 

All roots basic 
I( arbitrary 
n>2,t>l,ns2orp#-+a 
v,+=l+p,+Zn 
V ;=l-p,+2r 

All roots basic 
p= -+I 
v; =6cv, 

All roots basic 
/I=-+. 
Y; = 6 < vi 

All roots basic 
p arbitrary 
v;=5+pc,<v, 

All roots basic 
p-h 
v,c=84v, 

All roots basic 
pL= -g 
v; = 8 $ vc 

AI1 roots basic 
p arbitrary 
v; =7+p,<v, 
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TABLE I.l-Continued 

67 

u 0 c-c 
a Yl Y2 Y3 Y4 

All roots basic 
p arbitrary 
vo’=5+p,<v, 

All roots basic 
p=o 
v-=5,v,+=7 II 

All roots basic 
p-j.a 
vo’=6Qv, 

All roots basic 
p=-g 
vo’=6&vv, 

All roots basic 
/I= +$Y 
v$=6Cv; 

E one step removed from basic 
All other roots basic 
/I=++ 
vo’ = 6 = v; 

E one step removed from basic 
All other roots basic 
p-$ 
vo+ = 6 = VT 

All roots basic 
p= -h 
v$=lOQv, 

All roots basic 
p= -ip 
vo’=1ocv, 

All roots basic 
p arbitrary 
vgi =9+/L,<v, 

Table continued 
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TABLE 8.1-Continued 

& 

s s = 0 
Y4 Y3 Y2 YI a &I E2 

E 

: : 0 0 
Y3 Y2 y, a El E2 E3 

E 

= s s 0 
a 61 E2 &3 

(Y) c3 

a 

(2) Bh’ 

c+,..v 
Ytl Yl a El 

(aa) BN 

c&-...-...a 
Y” y1 a sl c2 El 

W) BN 

C-,..- 
Yn YI a 81 

(cc) BN 

c--c++-yy...~ 
Y. VI a 

All roots basic 
p arbitrary 
vo’=l+p,<v, 

All roots basic 
/l-+2 
v,=6 v+=8 3 0 

All roots basic 
pit-& 
v,+=7+p, 
V 0 =1-p, 

E one step removed from basic 
All other roots basic 

Flit+!@ 
vo+=7+pz 
V <=7-p, 

All roots basic 
p= -%( 
V 0 =2=v; 

E, one step removed from basic 
All other roots basic 

v++ta 
Tl>l 
v;=1+/&+2n 
V 0=2-p, 

E, one step removed from basic 
All other roots basic 
p arbitrary 
rIB0,132 
v,+=l+p,+2n 
v,=2-/&+2(1-l) 

All roots basic 
pf +$a 
FZ>l 
v,i=1+~,+2n 
Y ,=1-P, 

All roots basic 
p arbitrary 
n>O,r>2 
v,t=l+p,+2n 
v ,,=l-&+2(1-t) 
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A T imbedded in A+ in distinct ways), and we must sort out the duplication 
in order to reduce matters to [4]. 

Suppose /? is a simple root with (fl, a) # 0 such that (A,, /I) = 0. If we 
replace A+ by spA +, then the members of A+ remain positive, and & 
remains dominant for G. The only difficulty is that CI does not remain sim- 
ple. However, we can repeat the process with an s,A+ simple root /I’ with 
(fi’, a) # 0 such that (A,, j3’) = 0, and continue in this way. After several 
steps, CY may again be simple, and then we have a new valid way of 
imbedding A+ in the positive roots for G. 

Under this change of imbedding, the tangent-cotangent decision is 
preserved, but p = + fa may get changed into p = -4~. The important 
thing is to follow the patterns of 2(&, /?)/I/?[’ for the successive systems of 
simple roots and then to interpret the new pattern as involving roots basic 
for p= +$x or .D= -$ (see Table2.1). 

There is a second way of changing the imbedding: reflection in CI. We 
have used this device extensively already; it involves replacing CI by --CI and 
v and -v. 

For an example in detail, consider configurations (a), (b), and (c) in 
Table 8.1. If we apply sy to (a) and s, +? to the result, then (a) is transfor- 
med into (c) (with new letters for the simple roots other than a). If we 
apply sa2 to (4 and s, + p2 to the result, then (c) is transformed into (b). So 
(a), (b), and (c) are really the same. 

Now let us come to the proof. In the single-line diagrams, Corollary 8.3 
shows that it is enough to prove irreducibility at v = &x when c is an 
integer and c 3 1 + pL, mod 2 and 0 < c < min(v,t , v;). The latter condition 
we can rewrite as O<c <min(v,+, vu) - 2. Moreover, c = 0 is handled 
automatically by Lemma 2.1. In all single-line diagrams, let us normalize 
all root lengths squared to be 2. 

In (a), (b), and (c), which we know now to be equivalent, we have to 
prove irreducibility only for c = 2. In the case of (b), this irreducibility is 
asserted at the end of Section 1 and in Section 5 of [4]. Thus we are done 
with (a), (b), and (c). 

Consider (d). We divide matters into subcases, first supposing that 
vo’ > v; . In this circumstance let A, be the horizontal subdiagram. The 
numbers v$ and v; are the same in A, as in A, and Proposition 8.4 says 
we have irreducibility in A,. To use (SV) and Theorem 8.2 to pass to 
irreducibility in A, Lemma 8.5 says that it is enough to show that 
c < min( v$ , v; ) - 2 implies 

(i,++,yl+ ... +y,-,+.c)>O. (8.2) 

Since v; > v;, we have vz - 2> vu and cd v$ -4. Since all roots are 
basic, Table 2.1 gives 



70 BALDONI-SILVA AND KNAPP 

(&+;ccr, y1+ ... + yn .- I+ E) = $( 1 + /&) + (n - 2) - $c 

>$(I +/&)+(n-2)-$v,+ +2 

=&(l+/&)+n-&(1+&+2n)=o. 

Thus (8.2) holds, and we have irreducibility in A. 
Next suppose that v; = v;. The above computation anyway proves 

irreducibility for c < v: - 4, and we have to handle c = vi - 2. If p = +$, 
this irreducibility is asserted by the cotangent cases in Section 6 of [4], 
while if h = 0, this irreducibility is asserted by the tangent cases in Section 6 
of [4]. If p = -4~1, then we apply the reflections sY, and s,+~, to see that 
the diagrams for I= +& and p = -4~ are equivalent if n and t are 
adjusted suitably. 

Finally suppose that vi < v;. Then we let A, be the diagram with 
E,,-9 & ,+ 1 chopped off in such a way that v$ = v; in the subdiagram. We 
have just seen irreducibility in A,. If c f vJ - 2, then 

Thus Lemma 8.5 says that (SV) holds, and hence we have irreducibility in 
A. 

We turn to E,. Two reflections of (e) leads us to (g) with p = + +cr, and 
two reflections of (f) leads us to (g) with p = +$cr. Thus we need only con- 
sider (g). If p = -&a, we can take A, to be A with the node 6 deleted, and 
Proposition 8.4 gives us irreducibility at c = 2 in A,. Since Table 2.1 gives 
(A, + tl, S) = 0, Lemma 8.5 shows that (SV) holds at v = c(, hence that we. 
have irreducibility in A for c < min(v,f , v; ) - 2. 

If p = 0, we can still take A, to be A with 6 deleted, and Proposition 8.4 
gives us irreducibility at c = 1 and c = 3 in A,. Here (A, + &XC, S) = 
i( 1 - c), and only the irreducibility at c = 1 extends to A in this way. For 
c = 3, we appeal directly to Section 7a of [4]. 

If ,D = ++a, we take A, to be A with yz deleted, and case (c) gives us 
irreducibility at c = 2 in A,. Since (&+a, y,+y2)=l>0, Lemma85 
shows that (SV) holds at v = CI, hence that we have irreducibility in A for 
c = 2. For c = 4, we appeal directly to Section 7b of [4]. 

Next we consider E,. Two reflections of (h) leads us to (j) with p = +$a, 
and two reflections of (i) leads us to (j) with p = + $CC. Let us therefore con- 
sider (j). For p = - $a, we can reflect twice and pass to (k) with ,U = + +a; 
so we handle this case by handling (k) shortly. For ,U = 0 and p = +$x, we 
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take d, to be the Es subdiagram given in (g); in A, we have irreducibility 
for c d 3 + pm. Since 

this irreducibility extends to A. For c = 5 + pL,, we appeal directly to Sec- 
tions 7e and g of [4] for the irreducibility. 

In (k), we can let A, be the horizontal subdiagram. Proposition 8.4 gives 
us irreducibility in A,. Since v$ = 5 + Pi, the expression 

is >Oforc<3+paifp=-$or~=O,anditis >Oforc=2ifp=++x. 
Thus we obtain the desired irreducibility in A except when p = + $ and 
c = 4; in this case we appeal directly to Section 7c of [4]. 

In (I), we take A, to be the D, subdiagram obtained by deleting y,. The 
D, subdiagram is the case n = t = 2 of (d), and (d) says we have 
irreducibility there for cd 3. Since 

this irreducibility extends to A and handles (I). 
Two reflections of (m) leads us to (o), and two reflections of (0) leads us 

to (n). Let us therefore consider (n). We take A, to be the E, subdiagram 
in which E has been deleted. Case (f) gives us irreducibility in A, at c = 2. 
Since (A,, + tl, E + q) = 0, this irreducibility extends to A. For c = 4, we 
appeal directly to Section 7f of [4] for the irreducibility. 

Two reflections of (q) leads us to (p), which we consider now. We take 
A, to be the A, subdiagram in which E has been deleted. Proposition 8.4 
gives us irreducibility in A, for ~64, hence at c= 2. Since E is one step 
removed from basic, we have (A, + CI, E) = 0, and thus the irreducibility at 
c = 2 extends to A. For c = 4, we appeal directly to Section 7d of [4] for 
the irreducibility. 

Finally we consider E,. Two reflections of (r) leads us to (t) with 
p = +$, and two reflections of (s) leads us to (t) with p= ++a. Let us 
therefore consider (t). For p = --+a, we can reflect twice and pass to (u) 
with p = + $a; so we handle this case by handling (u) shortly. For p = 0 
and p = + +cr, we take A, to be the E, subdiagram given in (j); in A, we 
have irreducibility for c < 5 + pm. Since 

(43 + tt5 + f&l @, YI + Y2 + Y3 + Y‘l) = tc1 + PJ + 3 - tt5 + PA = 1 2 0, 

this irreducibility extends to A. For c = 7 + pal, we appeal directly to Sec- 
tions 71 and m of [4] for the irreducibility. 
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In (u), lirst let p = --tee We take A, to be the horizontal subdiagram, 
and Proposition 8.4 gives us irreducibility for cd 4. Since (A, + 2u, 
6 + fl) = 0, this irreducibility extends to the required irreducibility in A. 
For p = 0 and p = + &, we take A, to be the E, subdiagram given in (k); 
in A, we have irreducibility for c < 3 + pL,. Since 

this irreducibility extends to A. For c = 5 + pa, we appeal directly to Sec- 
tions 7h and i of [4] for the irreducibility. 

In (v), we let A, be the D, subdiagram obtained by deleting y4. The 0, 
subdiagram is the case n = 3 and t =2 of (d), and (d) says we have 
irreducibility there for c 6 4. Since 

(A3 + 2& Y4 + 73 + 72 + Yl> = 12 0, 

this irreducibility extends to A and handles (v). 
In (w), where p # -4~1, let A, be the D, subdiagram obtained by deleting 

y3. The D, subdiagram is the case n = 2 and t = 3 of (d), and (d) says we 
have irreducibility there for c d 3 + pL,. Since 

this irreducibility extends to A. This handles p = + $CX completely and han- 
dles c < 3 when p = 0. For p = 0 and c = 5, we appeal directly to Section 7k 
of [4] for the irreducibility. 

In (x), we first suppose p = -1~. Let A, be the E, subdiagram given in 
(q); in A, we have irreducibility for c 6 4. Since 

this irreducibility extends to the required irreducibility in A. Now suppose 
p = 0. Let A, be the A, horizontal subdiagram; in A,, Proposition 8.4 gives 
us irreducibility for c < 5. The irreducibility for c = 1 and c = 3 extends to 
A, since (A,, + :a, E + y1 ) = 0. For c = 5, we appeal directly to Section 7j of 
[4] for the irreducibility. 

For configuration (y), we appeal directly to Section 4 of [4] for the 
irreducibility. 

Consider (z). For /A = - $CI, we can reflect twice and pass to (aa) with 
p = + 4~; so we handle this case by handling (aa) shortly. Thus let p = 0. 
When n = 1, we can appeal directly to Section 3a of [S] for the 
irreducibility. For n > 1, we take A, to be the subsystem generated by yi , CY, 
and sl, and we shall show that (SV) holds. Since the diagram has a double 
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line, Lemma 8.5 does not apply, but we can see directly that p = yz + yi 
gives the worst possible situation. Since 

2(& + 44 Y2 + Yl > = 1 > o 

Id* 

/ 2 

(SV) holds, and the irreducibility in d, extends to A. (Here we have used 
Corollary 8.3 to reduce matters to c an integer, but we do not restrict the 
parity of c.) 

Consider (aa). We divide matters into subcases, first supposing that 
vo’ < v; . In this circumstance let A, be the A,- 1 subdiagram obtained by 
deleting E,. In A, we have v$ L = vz and vO;L = v; - 1, and Proposition 8.4 
says we have irreducibility in A,. Again we show that (SV) holds. This 
time the root to check is B = s1 + ... + st, and c $min(v,+, vg-) - 1 < 
v; - 2 implies 

2(&+&x, El + ‘.. +Et)/Ia12 

=(t(l-&)+(t-2)+1)-& 

a$(1 -&)+(t-2)+ 1-$(2-&+2(t- l)-2) 

=$>O. (8.3) 

Hence (SV) holds, and the irreducibility extends to A. 
Next suppose that v: = V; + 1. The above computation anyway proves 

irreducibility for c < vz - 3, and we have to handle c = vc - 2. If p = + +CI, 
this irreducibility is asserted by the cotangent cases in Section 3a of [4], 
while if p =O, this irreducibility is asserted by the tangent cases in Sec- 
tion 3a of [4]. If p = --$a, then we apply the reflections sy, and sa+?, to see 
that the diagrams for p = + 4a and p = - &cx are equivalent if n and r are 
adjusted suitably. 

Finally suppose that v: > v; + 1. Then we let A, be the diagram with 
Y ,,,..., yj+ i dropped off in such a way that v$ = vi + 1 in the subdiagram. 
We have just seen irreducibility in A,. The worst case for (SV) is 
/3=y,+, + ... +y,, and c<v,+ -2 implies 

2(&+fca~Yj+l + ... +Y,)/(cr12=;(l +Q+j-+c 

= +vo+ - fc 3 0. 

Thus (SV) holds, and the irreducibility extends to A. 
In (bb) and (cc), we are to prove irreducibility for 0 <c < 

min(v,+, voL + 1). Configuration (bb) is handled in the same way as (z): 
For ,U = -‘$x, we reflect twice and pass to (cc). For p = 0, we appeal 
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directly to Section 3b of [4] when n = 1, and we apply (SV) with A, as the 
n = 1 system to pass to general n. 

Consider (cc). We divide matters into subcases, first supposing that 
v$ < VO,~. In this circumstance let A, be the A,_, subdiagram obtained by 
deleting E,. Then vl and VO,~ are the vz and v; for A,, and Proposition 8.4 
says we have irreducibility in A, for c < min(v,f , vo, L) - 1 = v$ - 1 < 
vOyr. - 1. We imitate the calculation in (8.3) finding that c Q vo, L - 1 implies 

= (i( 1 - /&) + (t - 2) + f) - +c 

>i(l -/&)+(t-2)+4-+(1-/&+2(t- l)- l)=O. 

Hence (SV) holds, and the irreducibility extends to A. 
Next suppose that vi = VO,~ + 2. The above computation anyway proves 

irreducibility for c < vl - 3, and we have to handle c = vJ - 2. This is done 
by reference to Section 3b of [4] in the same way that configuration (aa) 
referred to Section 3a of [4]. 

Finally suppose that vgf > vo, L + 2. Then we let A, be the diagram with 
Ye,..., yi+ i dropped off in such a way that v$ = vo, L. + 2 in the subdiagram. 
Then we can argue as for configuration (aa) to see that (SV) holds for 
cdv,t - 2, and the irreducibility for c d v< [, therefore extends to A. 

9. IRREDUCIBILITY IN SPECIAL BASIC CASES, SINGLE-LINE DIAGRAMS 

In this section we shall apply the results of Section 8 to prove 
Lemma 9.1. In Section 10 we shall extend this lemma suitably to all A0 for 
single-line diagrams. The extended lemma, when combined with 
Lemma 5.1, will complete the proof of Theorem 1.1 b for single-line 
diagrams, in view of the remarks at the beginning of Section 8. 

LEMMA 9.1. Suppose that rank G = rank K, that the Dynkin diagram of 
A f is a single-line diagram, and that the special basic case associated to JI,, is 
all of A. If g # eo(2n, 2) with n 2 2, then U(MAN, o, iccc) is irreducible for 
0 <c < min(v,+ , v;). If g = 5o(2n, 2) with n >, 2 and if PO is the unique 
positive noncompact root orthogonal to tl, then U(MAN, (T, fcu) is irreducible 
for 

OQc< 
i 

min(v$,, v. ) if PO conjugate to CI via K 
min(v,+ , ~0, J if PO conjugate to --o! via K; 

here v: L and VO,~ are the v$ and vo for a maximal su(n, 1) subdiagram con- 
taining ix 
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According to Corollary 8.3, we need check irreducibility at $x only for c 
an integer of the correct parity and less than the bound stated in the 
lemma. The parity in question is this: we are to check even c if p = f&a and 
odd c if p = 0. Moreover, Lemma 2.1 implies that we can disregard c = 0. 

We proceed by following the division into cases given in Section 4. We 
take all root lengths squared to be 2. Evidently there is nothing to prove 
unless min(v,+ , v; ) > 2. 

(I) Suppose there is a simple root y0 of di, I of the form (f) or (g) in 
Lemma 2.2. Possibly by reflecting in a, we may assume that the form is (g). 
Then p = - ia, and y0 is the sum of three d + simple roots a, y, and p as in 
the diagram (4.1). From Section 4, we know that vc d v;. Moreover, 
vi = 2 (and hence there is nothing to prove) unless we are in case 

(1.3) Suppose y is a triple point of A+ and the other neighbor y, of y 
is compact. Let the (compact) roots extending beyond y1 be Ye,..., yn. The 
diagram is 

“‘% 

. ..- 
Y Yl Y. 

B 

and v$ = 2n + 2. When a and B are both nodes, the diagram is so(2n, 2) 
with n > 2, and -a is conjugate to /3 = /&, via K. Thus Lemma 9.1 asserts 
irreducibility only for 0 < c < vOyL = 2, and there is nothing to prove. So we 
may assume that a and /? are not both nodes, and we are to prove 
irreducibility for c equal to any even integer with 0 <c < 2n + 2. If n 2 2, 
the diagram is of type E, and we must have n d 4. 

If n = 4, the diagram is of type E,, and Lemma 9.1 follows from 
Lemma 8.6, part (r) or (s). If n = 3, the diagram is of type E,, and 
Lemma 9.1 follows from Lemma 8.6, part (h) or (i). 

If n = 2, we can assert only that the diagram contains E, as in (e) or (f) 
of Table 8.1. If the diagram is merely E,, then Lemma 9.1 follows from 
Lemma 8.6. If the diagram is E, or Es, then v] in (e) or (f) has a second 
neighbor q’, necessarily compact, and we have to prove irreducibility at 
c = 2 and c = 4. Let A: be the E6 subdiagram, in which we know there is 
irreducibility at c = 2 and c = 4. To pass to A+, we show that (SV) holds. 
By Lemma 8.5 and Theorem 8.2, it is enough to show for c = 4 that 

(II,+~ca,tj’+yl+~+y)>O in the case of(e) 

(&++ca,r]‘+q)>O in the case of(f). 

Since q’ is compact, Table 2.1 shows that the left sides in both cases are 0; 
hence (SV) holds. 



76 BALDONI-SILVA AND KNAPP 

Finally suppose n = 1. We have to prove irreducibility at c = 2. If CI is a 
node, then A + contains the D5 subdiagram in (a) of Table 8.1. Lemma 8.6 
tells us there is irreducibility in this subdiagram, which we denote AZ. To 
pass to A+, we show that (SV) holds. Letting q’ be a (necessarily compact) 
neighbor of q other than /I, we see from Lemma 8.5 and Theorem 8.2 that it 
is enough to show that 

From Table 2.1 we see that the left side is 1; hence (SV) holds. 
If c( is not a node, then A+ contains the D, subdiagram in (b) in 

Table 8.1. Let Ai be this subdiagram. Lemma 8.6 tells us we have 
irreducibility at c = 2 in the subdiagram. To pass to A+, we have to check 
(by Lemma 8.5 and Theorem 8.2) that (1, + ~1, S) 3 0 for two possible 
roots 6. If q has a neighbor q’ # a, then we must check 6 = q’ + q; however, 
(1, + IX, q’ + q) B 1. If /I has a neighbor q’ # CI, then we must check 
6 = q’ + p + y; however, (& + ~1, g’ + p + 7) = 0. Hence (SV) holds. 

(II) Suppose that there is no simple root of Ai,, of type (f) or (g) in 
Lemma 2.2 and that c1 is a triple point. Possibly by reflecting in ~1, we may 
assume that at most one of the neighbors /II, f12, p3 of a is compact; say 
that /I1 and /I3 are noncompact. From Section 4 we know that vJ <v;. 
Moreover, v$ < 2 (and hence there is nothing to prove) unless we are in 
case 

(11.2) Suppose fll is compact. We write y1 for pl. Let the (compact) 
roots extending beyond y, be yz,..., yn. The diagram is 

and v,zJ = 1 + ,u~ + 2n. When /I2 and f13 are both nodes, the diagram is 
eo(2n, 2) with n k 2, and -a is conjugate to f12 + a + p3 = flo via K. Thus 
Lemma 9.1 asserts irreducibility only for 0 < c < VO,~ = 3 - par; here we may 
takeAt tobetheA,+, subdiagram obtained by deleting p3. We know that 
there is irreducibility in At for c < 1 - pz. Since 

Lemma 8.5 shows that (SV) holds at c = 1 - F~. Hence we have the 
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required irreducibility in this case. So we may assume that /3* and /I3 are 
not both nodes, and we are to prove irreducibility for c equal to any 
positive integer satisfying 0 < c < 1 + pa + 2n and c E 1 + pix mod 2. 

If n B 2, the diagram is of type E, and we must have n < 4. The cases 
n = 3 and n = 4 are then handled by Lemma 8.6 (j ) and (t). 

Suppose n = 2. We have to prove irreducibility for c d 3 + p@. The 
diagram certainly contains E6 as in (g) of Table 8.1. If the diagram is 
merely E,, then Lemma 9.1 follows from Lemma 8.6. If the diagram is E, 
or Es, then q in (g) has a second neighbor q’, necessarily compact. Let AL 
be the Es subdiagram, in which we know there is irreducibility for 
c d 3 + pL,. Since 

Lemma 8.5 shows that (SV) holds at c = 3 +P~. Hence we have 
irreducibility in A + when n = 2. 

Finally suppose n = 1. We have to prove irreducibility for cd 1 + pa. If 
p = - $a, there is nothing to prove. If h = 0, let A,+ be the D4 subdiagram 
containing /12, jJ3, ~1, and yl. We saw at the start of (11.2) that irreducibility 
occurs in A, for c = 1 when p = 0. If q’ is a second neighbor of p2 or P3, 
then we easily see that (A, + fa, q’ + pz) or ( A0 + fa, 7’ + Bj) is >O. 
Lemma 8.5 shows that (SV) holds at c = 1, and we have the required 
irreducibility. Finally if p = + $, then Lemma 9.1 follows from part (c) of 
Lemma 8.6. 

(III) Suppose there is no simple root of AKfl of type (f) or (g) in 
Lemma 2.2 and that a is not a triple point. If all neighbors of CI are of the 
same type, compact or noncompact, then min(v,+ , v;) < 2 and there is 
nothing to prove. Thus we may assume we are in case 

(111.2) Suppose that c1 has two neighbors, one compact and one non- 
compact. If A+ has no triple point, then A+ is of real rank one and 
Proposition 8.4 applies. Thus we may assume there is a triple point. 
Possibly by reflecting in c(, we may assume that the root p on the side of c( 
toward the triple point is noncompact. Let the compact neighbor be y,, 
and let y, ,..., yn be the connected chain of compact roots ending in the node 
y,,. We know from Section 4 that vz = 1 + pI + 2n < v; 

If the diagram is of type D, then it is of type 50(2N, 2) with Na2, and 
Lemma 9.1 insists on irreducibility only up to min(v,+ , v&J, where At is 
either of the maximal A, subdiagrams. The required irreducibility holds in 
At by Proposition 8.4, and (just as at the start of case (11.2)) we can show 
that (SV) holds for c< VO,L - 2. Hence the required irreducibility holds 
in A+. 
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Thus we may assume the diagram is of type E. If /I is not a triple point, 
then the diagram is of the form 

with n > 1 and t >, 1. Also t + n < 3 since there are at most eight simple 
roots. We are to prove irreducibility for c d 1 + pL, + 2(n - 1). Let AZ be the 
subdiagram obtained by deleting q. Since n - t < 1, we have 

vo’=v&= 1 +pL,+212<l -pL,+2(t+3)=qL. 

Thus Proposition 8.4 shows that there is irreducibility in At for 
c< 1+~,+2(n- 1). Since 

Lemma 8.5 says that (SV) holds and that we have irreducibility in A+. 
If fi is a triple point, then t = 0 in the above analysis and the argument 

still works for n = 1 (even if the unlabeled branch in the diagram has more 
than 2 roots). For n = 2 and n = 3, we appeal directly to parts (k) and (u) 
of Lemma 8.6, and then the proof of Lemma 9.1 is complete. 

10. IRREDUCIBILITY IN GENERAL, SINGLE-LINE DIAGRAMS 

We can now complete the proof of Thereom 1.1 for single-line diagrams 
with rank G = rank K. The theorem follows immediately from Lemmas 5.1 
and 10.1, in view of the remarks at the beginning of Section 8. 

LEMMA 10.1. Suppose that rank G = rank K and that the Dynkin 
diagram of A + is a single-line diagram. If the component of u in the special 
basic case is not so(2n, 2) with n 2 2, then U(MAN, CT’, fca) is irreducible for 
O<c<min(v,t, vO-). Zf the component A, of a in the special basic case is 
eo(2n, 2) with n >, 2, let f10 be the unique positive noncompact root in A, 
orthogonal to u, and let v&, and vaL, be the vz and v; for a maximal 
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w(n, 1) subdiagram A,, of A, containing a; in this case U(MAN, o, @a) is 
irreducible for 

o<c< 
i 

min(v,t,, , vo ) if &, conjugate to a via K n C 

min(v,+ , hjyL,) if /IO conjugate to -a via K n C. 

Let A,, be a maximal subsystem of A that either is a special basic case or 
is one of the configurations of Table 8.1. If one is available, choose A,, to 
be a maximal one such that the component of a has a triple point. (More 
precisely, we order the Dynkin subdiagrams of A under inclusion, insisting 
that compactness/noncompactness be preserved under inclusion, that a 
map to a, that ,U be preserved, and that 2(&, p)/I /3[” be the same for each 
/I as for the image of B under the inclusion. With respect to this notion of 
inclusion, we have a finite partially ordered set, and A,, is to be maximal in 
this ordering and, if possible, is to have a triple point within the component 
of a.) Let A, be the component of a in A,,. The idea will be to show that 
(SF’) holds for the passage from irreducibility in L to irreducibility in G, for 
the required range of v; then Theorem 8.2 will prove Lemma 10.1. 

Irreducibility in L is a consequence of Lemmas 8.6 and 9.1. In checking 
that (SV) holds, it is enough to check that 

(&+v,~,>20 (10.1) 

for the special roots /Ii described in Lemma 8.5. As in Sections 8 and 9, the 
only v’s that need checking are points &a with c an integer in the correct 
range with c = 1 + pal mod 2; moreover, we can disregard c = 0. Con- 
sequently there is nothing to prove unless min(v,+ , v;) > 2. 

Let E be the neighbor of A, that we adjoin and test in Lemma 8.5. Since 
we have to check whether (I, + $ca, E + . . . ) is 20, the worst case will 
often be where (&, E) = 0. In particular, if E is orthogonal to a, the worst 
case will be that E is noncompact and basic (unless we want to take into 
account some degeneracy that arises). 

We divide matters into cases according to the nature of A,. We nor- 
malize all root lengths squared to be 2. 

(I) Suppose that A, contains a simple root of A& of the form (f) or 
(g) in Lemma 2.2, with A+ simple constiuents a, y, B and with y not a triple 
point. By (I) of Section 4, we have min(v,+, v,) d 2, and hence there is 
nothing to prove. 

Henceforth we assume that (I) is not the case. 

(II) Suppose that A, contains no simple root at all of A& of the 
form (f) or (g), and suppose that every neighbor of a in A, is compact, or 
else that every neighbor of a in A, is noncompact. By (11.1) and (111.1) of 
Section 4, we have min(v,+ , v; ) < 2, and hence there is nothing to prove. 

580 69 ‘I -6 
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Henceforth we assume that (II) is not the case. 

(III) Suppose that A, has a Dynkin diagram of type A. Since neither 
(I) nor (II) holds, A, is of real rank one and a is not a node. We divide 
matters into subcases according to the placement of E. 

(111.1) Suppose that E is a neighbor of a. Then the root pi of 
Lemma 8.5 is just E itself. The root E cannot be basic since otherwise 
Lemma 2.2 would force it to be in the special basic case, hence in A,. 
Exactly one neighbor of a in A, is noncompact, and, possibly reflecting in 
a, we take it to be on the long branch of A, - {a}. The root E may be com- 
pact or noncompact; we write @ for it and define s = + 1 if E is compact, 
s = - 1 if E is noncompact. The diagram of A, u {E} is 

,-I”3-..., 

6, &I a YI YI 

with n 2 t 2 1, and classification requires t < 2. Then 

v,+=1+/&+2t and v; =l-j&f2n. 

For c < v$ - 2, we have 

(I,+tca,E)~1+(~0,b,E)-~(~O+-2) 

=l+f(l+S&-4(1+/&)-((t-l) (10.2) 

=2-t+f(s-l)&. 

If p, < 0, (10.2) is >O for t < 2, i.e., in all circumstances. So suppose f4= = 1. 
Then (10.2) is >O for t = 1 and also for t = 2 if E is compact. Moreover, 
there is no difficulty unless E is only one step removed from basic, 

So suppose pLoI = 1, t = 2, E is noncompact, and E is only one step 
removed from basic. Then c < vi - 2 gives 

(IZ,+$ca,s)=l--&>,l-((n-1)=2-n. 

Hence (10.1) holds for n = 2. If n > 3, then A, u {E} contains the diagram 
(p) in Table 8.1, in contradiction to the requirement that A, contain a 
triple point if possible. 

(111.2) Suppose that E is not a neighbor of a. Let s1 ,..., E, and y1 ,..., yn 
be the roots extending from a, with E, and yn nodes in A, and with yn no 
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farther from E than E, is. Possibly by reflecting in CI, we may assume sl is 
noncompact. Then the diagram of A, is 

with t 3 1 and n 2 1, and E (by classification) is attached at most two roots 
from the yn end of the diagram. 

Suppose E is attached to y,,. Then the root to check is ai = yr + .. . + 
yn+s, and v 0’ = 1 + .D, + 2n; hence c < vz - 2 implies 

(13~+4CQ,yl+...+Yn+E)=(~0,E)+(3(1+~OL)+(n-l))--c 

~(n,,E)+t(l+~=)+(n-1)-5(1+~Ln+2n-2) 

= (&I, 6). 

Hence (10.1) holds. 

(10.3) 

Suppose E is attached one root from the end, necessarily to y,- i. Then 
the root to check is pi= y1 + . . . + y, _, + E. A computation analogous to 
(10.3) shows that (10.1) holds unless (A,, E) = 0, i.e., unless E is noncom- 
pact basic. But if E is noncompact basic, we have a contradiction to the 
construction of A,: If n > 2 or p # -fez, then A, u (E} is the diagram (d) in 
Table 8.1, while if n = 2 and p = -$a, then A, u {E) contains the diagram 
(b) in the table; in either case a choice of A, with a triple point was 
available, contradiction. Thus (10.1) holds when E is attached one root 
from the end. 

Suppose E is attached two roots from the end. Either n 2 3, or n = 1 and E 
is attached to al. We first suppose that n 2 3, so that E is attached to yn --2. 
Then the root to check is pi = yi + . . . + y, _ 2 + E. A computation analogous 
to (10.3) shows that (10.1) holds if E is noncompact and at least two 
removed from basic or if E is compact and nonbasic. On the other hand, if E 
were compact basic, E would already be part of A,, contradiction. So we 
may assume that E is noncompact and either is basic or is one step removed 
from basic. Meanwhile we have v; = 1 -pm + 2t; hence c < v; - 2 implies 

(~,+~ccr,y,+...+y,-*+E) 

~(n,-n,,,E)+t(l+~L,)+(n-3)-~c 

2 <& - 4l.b~ E)+t(l+~,)+(n-3)-t(l-~,+2t-2) 

= <Al - &.,T c)+n-t-2+1*%. (10.4) 

Hence (10.1) holds if n > t + 2 or if n = t + 2 and pN # - 1. The classification 
implies n+t+2,<8; hence n+t<6. If n=5, then tgl and n>t+2, so 
that (10.1) holds. If n = 4, then t < 2 and (10.1) holds unless t = 2 and 
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pa = - 1. For (10.1) to fail here, E must be basic, in which case A, u (E} 
would be just the diagram (v) in Table 8.1, in contradiction to maximality. 

Now suppose n = 3, so that t < 3. First, assume E is one step removed 
from basic. Then (10.4) shows that (10.1) holds if 2 > t - pL,. Hence (10.1) 
holds if t=l or if t=2 and ~~20 or if t=3 and pL,= +l. If t=2 and 
p, = - 1, then A, u {E} is just the diagram (q) in Table 8.1, in contradic- 
tion to maximality, while if t = 3 and pX # + 1, then A, u {a} is just the 
diagram (x), again a contradiction. 

Next assume E is basic. Then (10.4) shows that (10.1) holds if 12 t - pa. 
On the other hand, Lemma 2.2 says that E already is in A, if pL, = - 1; thus 
we may assume pE = + 1 or pE = 0. Hence (10.1) holds if t = 1 or if t = 2 
and pL, = + 1. If t = 2 and pL, = 0, then A, u (E} is just the diagram (1) in 
Table 8.1, in contradiction to maximality, while if t = 3, then A, u (E} is 
just the diagram (w), again a contradiction. 

Finally suppose E is attached two roots from the end and that n = 1, so 
that the neighbor of E in A, is E, Since we have already handled cases 
where E is attached zero or one root from the end, as well as some cases 
where E is attached two roots from the end, we may assume t b 4. The root 
to check is /I, = E + F, . We have vi = 3 + p,. If c < v$ - 2, then 

(&+tCa,E+E,) 

3 (&I- &,b, 6) + (~0.b~ 8) +$U -Pz)-1(1 +Pz) 

= (&-&,b,E)+ (&,b, &)-Lb. (10.5) 

From (10.5) we see that (10.1) holds unless E is noncompact basic and 
p% = + 1. In this case Lemma 2.2 shows that E is already in A,, contradic- 
tion. Hence (10.1) holds in all cases. 

(IV) Suppose that A, has a Dynkin diagram of type Dq. 

(IV.l) Suppose (also) that A, contains a simple root of A& of the 
form (f) or (g) in Lemma 2.2. Possibly by reflecting in a, we may assume 
that the form is (g). Let a, y, and b be the simple constituents as in (4.1); 
the root y is compact and we have p = -+a. The root y has to be the triple 
point in D,, and we let 6 be the remaining node. If 6 is noncompact, then 
v$ = 2 and there is nothing to prove. If 6 is compact, then the diagram is 
40(6, 2), and we have a valid estimate v;~ = 2, where A,, is the A3 diagram 
containing a, y, and 6; thus again there’& nothing to prove. 

(IV.2) Suppose that A, contains no simple root of AZ,, of the form 
(f) or (g) in Lemma 2.2. Then a is not a node, since by assumption we are 
not in case (II). Thus a is the triple point. Since we are not in case (II), we 



UNITARY REPRESENTATIONS 83 

may assume, possibly by reflecting in IX, that two of the nodes are noncom- 
pact and one is compact. The diagram of d, is then of the form 

El 

and is of type 50(6,2). We have 

vo’=3+p, and voyL, = 3 - p,, 

where d,, is the A, diagram containing y, IX, and si. If ,uL, # 0, then one of 
these estimates is 2, and there is nothing to prove. So assume p(a = 0. We 
adjoin E to d,, necessarily to one of the nodes. Since p = 0, c < 1 implies 

(&+fccr, E-tnode)d(&,node)-&k&--4=0. 

Thus (10.1) holds. 

(V) Suppose that A, has a Dynkin diagram of type DN, Na 5, and 
is eo(even, even). 

(V.l) Suppose (also) that A, contains a simple root of As,, of the 
form (f) or (g) in Lemma 2.2. Possibly by reflecting in a, we may assume 
that the form is (g), given as in (4.1) as the sum of GI, y, and /I with y com- 
pact and with ,U = - 4~. Since we are not in case (I), y is the triple point. 
We may assume that the third neighbor of y is compact, since otherwise 
min( v$ , v; ) = 2. The n c1 and /I are nodes. Also A, is of the form 
50(2N- 2, 2), and we have a valid estimate VO\~, = 2. Thus there is nothing 
to prove. 

(V.2) Suppose that A, contains no simple root of A& of the form (f) 
or (g) in Lemma 2.2. Since we are not in case (II), we may assume, possibly 
by reflecting in a, that the diagram is 

with n>l,t>l 

or 

--(: 

6, 
p... 
Y” yI a 

62 

with na 1, t=O. 
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We have valid estimates 

VO +=1+/&+2n and vo,L, ~ =l-/&+2(t+l). 

If the root E is adjoined to y,, then the root to check is pi= 
c+y,+.. ‘+yl. If c<v,+-2, then 

( Izo + &a, E + yn + . . . +Y,)=(1,,E)+t(l+~~)+(n--)--c 

B <no, E), 

and hence (10.1) holds. If the root E is adjoined to Sj (j= 1 or 2) then the 
root to check is fli=s+a,+s,+...+.sl. If c<v,,,--2, then 

(~o+~ca,~+~j+~,++~~ +E,)=(~o,E)+t(l-&)+t-+c 

3 <no, E), 

and hence (10.1) holds. 

(VI) Suppose that A, has a Dynkin diagram of type D,, iV> 5, and 
is 50*(2N). Referring to Table 8.1, we see that we must consider diagram 
(d) as A,, in addition to all possible special basic cases. 

(VI.l) Suppose (also) that A, contains a simple root of A;,, of the 
form (f) or (g) in Lemma 2.2. Possibly by reflecting in a, we may assume 
that the form is (g), given as in (4.1) as the sum of a, y, and b with y com- 
pact and with p = - ia. Since we are not in case (I), y is the triple point. 
Then exactly one of a and fi is a node. Also v: = 4 < v; , and the diagram 
A, contains either (a) or (b) in Table 8.1; we let A,. be this D, subdiagram. 
It is enough to test the adjoining of E to A,,. To have (10.1) we need 
CAO, Pi> 2 l. 

Suppose AL9 is as in (a). If F is adjoined to a, it is not basic (because it is 
not in AL), and thus (A,, E) > 1. If E is adjoined to yl, then (I,,,, yr) = 1 
handles matters. If E is adjoined to q, then (A,,,, q) = 1 handles matters. So 
(10.1) holds. 

Suppose A,, is as in (b). If E is adjoined to fl, nondegeneracy says E can- 
not be noncompact basic, and thus (lo, E) > 1. If E is adjoined to y,, then 
(I,,,, y, > = 1 handles matters. If E is adjoined to q, then (&, q) = 1 
(valid since p = - 1~) handles matters. So ( 10.1) holds. 

(VI.2) Suppose that A, contains no simple root of A;,, of the form 
(f) or (g) in Lemma 2.2. Since we are not in case (II), we may assume, 
possibly by reflecting in a, that A, is as in (d) in Table 8.1 or is special 
basic of the form 

T6 ...e (10.6) 
* 
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First, suppose A, is as in (d) in Table 8.1 but with the noncompact node 
called 6. Let E be adjoined to A,. If E is adjoined to yn, then pi = y , + . . . + 
y, + E and thus c < vc - 2 routinely gives 

(il,++ca,yl+*.. +y,+E)>(&,E)>o. 

Similarly if E is adjoined to E,, then /Ii = E + E, + . . . + E, and thus c d v; - 2 
routinely gives 

If E is adjoined to the noncompact node 6, then fij = yI + . . . + y,- , + 6 + E, 
and c < v$ - 2 gives us only 

(lo+&ca,yI+... +y,~,+6+E)>(&,E)-l. 

However, E cannot be noncompact basic, since otherwise 6 + E would 
exhibit degeneracy, and this expression is therefore >O. Hence (10.1) holds 
no matter how E is placed. 

Now suppose A, is special basic of the form (10.6). Here v$ = 
3+por<v;. Let A,, be the system generated by the live simple roots pic- 
tured in (10.6). With E adjoined to A,, (instead of AL), it is enough to 
prove that the root pi defined in Lemma 8.5 satisfies 

(&++(l+/JL,)a,~i>30. (10.7) 

If E is adjoined to .Q, then Pi = E + c2 + E, and we have 

(~o+f(l+~,)~,E+E~+E,)=(~O,E)+1+~(1--~)--(l+~L,)~O. 

If E is adjoined to yl, then pi = y, + E and we have 

(~,+K1+CL,)a,Y,+&)=(~O,E)+~(l+~(,)--f(l+~,)~o. 

Finally if E is adjoined to 6, then Bj = 6 + E and we have 

(n,+t(l+~L,)a,~+E)=(~O,&)+f(l-~a)-~(1+~Ua)=(IZO,E)-~La. 

This expression is 20 unless E is noncompact basic and ,nL, = + 1, in which 
case 6 + E is a root of type (f) in Lemma 2.2 and E is already in A,. Thus 
(10.7) is valid, and (10.1) holds in all cases. 

(VII) Suppose that A, has a Dynkin diagram of type E,. Referring 
to Table 8.1, we see that we may assume that A, is a special basic case. 

(VII.l) Suppose (also) that A, contains a simple root of A& of the 
form (f) or (g) in Lemma 2.2. Possibly by reflecting in a, we may assume 
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that the form is (g), given as in (4.1) as the sum of a, y, and /I with y com- 
pact and with p = - $a. Since we are not in case (I), y is the triple point. If 
the third neighbor of y (other than a and /I) is noncompact, then v: = 
2 <v; from Section 4, and there is nothing to prove. So we assume this 
neighbor is compact. One of the three neighbors of y must be a node in A,, 
and we divide into cases accordingly. 

(VII.la) Suppose the third neighbor is a node. Then vi = 4 <v; , 
and the diagram is 

Whether E is placed next to q or to /I’, the equalities (A.,, q) = (A.,, /I’) = 1 
force (L,, + a, /Ii) > 0. Thus (10.1) holds whatever the placement of E. 

(VII.lb) Suppose a is a node. Then v$ = 6 < v; ~ and the diagram is 
(e) in Table 8.1. If E is placed next to y2, then pi= y + y, + y2 + E and we 
have 

thus (10.1) holds in this case. If E is placed next to r], then /Ii = E + q + /I + y 
and we have 

Thus (10.1) holds in this case unless E is noncompact basic. But when E is 
noncompact basic, A, u {E} is just the diagram (m) in Table 8.1, in con- 
tradiction to maximality. Thus (10.1) holds in all cases. 

(VII.lc) Suppose /I is a node. Then vi = 6 < v; , and the diagram is 
(f) in Table 8.1. If E is placed next to yz, then /I, = y + y1 f y2 + E and we 
have 

thus (10.1) holds in this case. If E is placed next to q, then /Ii = E + r~ and we 
have 

Thus (10.1) holds in this case unless E is noncompact basic. But when E is 
noncompact basic, A, u (E} is just the diagram (n) in Table 8.1, in con- 
tradiction to maximality. Thus ( 10.1) holds in all cases. 
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(VII.2) Suppose that A, contains no simple root of Ai,, of the form 
(f) or (g) in Lemma 2.2. Since we are not in case (II), a is the triple point 
or a is a non-node next to the triple point. 

(VII.2a) Suppose c1 is the triple point. Possibly by reflecting in TV, we 
may assume that two of the neighbors are noncompact and the other 
neighbor is compact, since we are not in case (II). If the diagram is 

(10.8) 

then vt = 3 + pL, G v; and the equalities (A,, yi) = (A,, y2) = 1 force 
(&+$(l+~~)cr,~i)>O whether E is placed next to yi or to y2. Thus 
(10.1) holds whatever the placement of E. 

The alternative is for the diagram to be (g) in Table 8.1, with v$ = 
5 + pE < v; . If E is placed next to y2, then /Ii = y1 + yz + E and we have 

thus (10.1) holds in this case. If E is placed next to ‘I, then Bj = E + r] + /?* 
and we have 

Thus (10.1) holds in this case unless E is noncompact basic and pal = + 1. 
But when E is noncompact basic and pL, = + 1, A, u (E} is just the diagram 
(0) in Table 8.1, in contradiction to maximality. Thus (10.1) holds in all 
cases. 

(VII.2b) Suppose a is a non-node next to the triple point. Possibly 
by reflecting in ~1, we may assume, since we are not in case (II), that the 
diagram is 

with v$ = 3 + pa. Whether E is placed next to y1 or to y2, the equalities 
(&,yl)=l and (A,,y2)=+(1+~Jforce (&+g(l+~,J~1,~~)~0. Thus 
(10.1) holds in all cases. 

(VIII) Suppose that A, has a Dynkin diagram of type E,. Referring 
to Table 8.1, we see that we have to consider special basic cases and a num- 
ber of other configurations. 
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(VIII.l) Suppose (also) that A, contains a simple root of AZ,, of the 
form (f) or (g) in Lemma 2.2. Possibly by reflecting in ~1, we may assume 
that the form is (g), given as in (4.1) as the sum of CI, y, and b with y com- 
pact and with p = -$Y+. Since we are not in case (II), y is the triple point. If 
the third neighbor of y (other than c1 and /I) is noncompact, then v$ = 
2 6 v; from Section 4, and there is nothing to prove. So we assume this 
neighbor is compact. One of the three neighbors of y must be a node in A,, 
and we divide into cases accordingly. 

(VIII.la) If the third neighbor is a node, then the E, subdiagram A,, 
is as in (VII.la) and the argument given there handles matters. 

(VIII.lb) Suppose a is a node. Then A, is special basic or is of the 
form (m) in Table 8.1. First suppose A, is special basic. If A, is of the form 
(h) in Table 8.1, then v$ = 8 <v; and E must be placed next to y3. Since 

(I,+3cl,y+y,+y,+y,+&)=(~O,&), 

(10.1) holds. The other possibility for A, special basic is the diagram 

with v$ = 6 6 v; . Here E must be placed next to y2, and 

(1,+2cr,Y+p+r,+v2+&)=(3LO,&); 

thus (10.1) holds. 
Next suppose A, is of the form (m); let us denote the root E in that 

diagram by 6. The root E that we adjoin to A, must be adjoined to 6 and 
cannot be noncompact basic (to avoid a degeneracy from E + 6). Thus 

(~,+2a,6+E+Y]+B+y)=(~o,E)-110, 

and (10.1) holds. 

(VIII.lc) Suppose B is a node. Then A, is special basic or is of the 
form (n) in Table 8.1. First suppose A, is special basic. If A, is of the form 
(i) in Table 8.1, then v$ = 8 <v; and E must be placed next to y3. Since 

(1,+3a,y+y,+y2+y3+&)=(~0,&), 

(10.1) holds. The other possibility for A, special basic is the diagram 
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with vo+ = 6 < v;. Here E must be placed next to cZ, and 

(A, + 2a, El + E2 + E) = (A,, E); 

thus (10.1) holds. 
Next suppose d, is of the form (n); let us denote the root E in that 

diagram by 6. The root E that we adjoin to d, must be adjoined to 6 and 
cannot be noncompact basic (to avoid a degeneracy from E + 6). Thus 

and (10.1) holds. 

(VIII.2) Suppose that d, contains no simple root of A,$, of the form 
(f) or (g) in Lemma 2.2. Since we are not in case (II), we may assume o! is 
not a node in A,. 

(VIII.2a) Suppose M is the triple point. Possibly by reflecting in ~1, we 
may assume that two of the neighbors are noncompact and the other is 
compact. As in (VII.2a) there is no difficulty if the neighbor of c1 that is a 
node is compact. 

Suppose A, is special basic. If A, is of the form (j) in Table 8.1, then 
vg+ = 7 + pU d v; and the root E must be adjoined to y3. Then 

and (10.1) holds. The alternative is for A, to be of the form 

oc,sco 
a &I E2 E3 

with v: = 5 + pa. Here E must be placed next to s3, and 

thus (10.1) holds. 
If A, is not special basic, it is of one of the forms (p) and (0) in 

Table 8.1; let us denote the root E in those diagrams by 6. In (p) we have 
P=$Y and v$ =6=v- ,, . The root E must be placed next to s3, and we have 

(&+2U,E+E3+E2+E,)=(&,E); 

thus (10.1) holds. In (0) we have p = ia and vz = 6 <vi. The root E that 
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we adjoin to A, must be adjoined to 6 and cannot be noncompact basic (to 
avoid a degeneracy from E + 6). Thus 

and (10.1) holds. 

(VIII.2b) Suppose a is adjacent to the triple point on the medium- 
length branch. Possibly reflecting in a, we may assume the triple point is 
noncompact. Then v 0’ = 3 + pL, < v;. Referring to Table 8.1, we see that A, 
is special basic. Thus the roots yl, y2, y3 on the long branch are all com- 
pact, and we have 

Thus (10.1) holds. 

(VI11.2~) Suppose a is on the long branch from the triple point. 
Possibly reflecting in a, we may assume its neighbor that is closer to the 
triple point is noncompact. Then A, is special basic or is the reflection in a 
of (q) or (1) in Table 8.1. If A, is special basic, it is of the form (k) or has a 
one root closer to the end. In the respective cases, we have vi = 5 + pL, < vo- 
and vl = 3 + ~1, <v,. We find (A,, + $(v,’ - 2) a, pi) = (&,, E), and hence 
(10.1) holds. If A, is the reflection in a of (q) or (I), then vl = 6= v; and 
VO + = 5 < vu in the respective cases. Again we find (1, + f(v,’ - 2) a, pi) = 
(I,, E), and hence ( 10.1) holds. 

(IX) Suppose that A, has a Dynkin diagram of type E,. Then 
A,= A, and there is nothing to prove. This completes the proof of 
Lemma 10.1. 

11. IRREDUCIBILITY IN DOUBLE-LINE DIAGRAMS 

Now we take up the irreducibility problem in double-line diagrams. 
Lemmas 11.1 and 11.2, in combination with Lemmas 6.1 and 7.1, will com- 
plete the proof of Theorem 1.1 for double-line diagrams except for the 
unitarity of the isolated representations and the nonunitarity of the gap in 
Theorem l.lb(vi). 

LEMMA 11.1. Suppose that the Dynkin diagram of A + is a classical 
double-line diagram and that u is short. Then U(MAN, a, )ca) is irreducible 
for 0 G c < min(v,+ , ~ v. ) unless the component of LX in the special basic case 
associated to A0 is of type sp(n, 1) with n > 2, with p = 0, and with a adjacent 
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to the long simple root. In this case U(MAN, CT, tea) is irreducible for 
O<c<min(v,+, v&)-2. 

ProoJ: Corollary 8.3 shows that it is enough to prove irreducibility 
when c is an integer with c z 1 + ,uL, mod 2 and with c in the above range. 
Lemma 2.1 implies that we may disregard c = 0. We shall follow the 
division into cases in Section 6, using the notation introduced there. 
Evidently there is nothing to prove unless min( v$ , v; ) > 2. 

Proof for sp(p, q). Normalize so that the short roots B have 1 /l I’= 2. 

(I) Suppose there is a simple root of A& of the form (f) or (g) in 
Lemma 2.2. Then min(v,+ , v;) = 2, and there is nothing to prove. 

(II) Suppose there is no simple root of Ai,, of type (f) or (g) in 
Lemma 2.2. 

If the component of a in the special basic case is a Dynkin diagram of 
type A, we let A, be that subdiagram. Unless a has two neighbors in A,, 
one compact and one noncompact, case (III) of Section 4 shows that 
min(v,+ , v;) < 2, and there is nothing to prove. Thus we may assume that 
A, is of real rank one and a is not a node. Proposition 8.4 gives us 
irreducibility in A, for c < min(v 2, vi ) - 2; we shall show that (SV) holds, 
so that the irreducibility extends to A. Let A, have simple roots ei - ei+ 1 ,..., 
ej-ej+l with i<j, and let a=ek-ek+l, i-t 1 <k<j- 1. For /l in A(u) to 
give (&+$a,/?)<O, we must have (/?,a)<O. Thus /?=e*-e, or 
p=e k+l+e, or D=2ek+,. The worst cases are ei_ 1 - ek, ek + , - e,+ 2, and 
2e k+l’ Possibly by reflecting in a, we may assume ek + 1 - ek + 2 is noncom- 
pact. Then c 6 vz - 2 implies 

(&++ca,ei-l-ek) 

= (&, ei- 1 -e,)+~(l+~(,)+(k-i-l)-& 

> (&, eipl -ei) 20, 

while c < v; - 2 implies 

(&++caT ek+l-ej+2) 

= C&2 ej+l -ej+z >+i(l--p,)+(j-k-1)--$ 

>(&,ej+l-ej+,>>O. 

Since k <j - 1, 2ek + 1 is not simple. Thus we have 
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and this we have seen is 20 for c < min(v,+ , v; ) - 2. Thus (Sv) holds, and 
we obtain the desired irreducibility. 

NOW suppose that the component of o! in the special basic case is of 
type C. Let A, be that subdiagram. 

(11.1) Suppose that the only neighbors of c( are connected to c( by 
single lines and that they are all of the same type, compact or noncompact. 
Then min( vi , v; ) < 2, and there is nothing to prove. 

For the remainder of the proof for sp(p, q), we assume that (11.1) is not 
the case. 

(11.2) Suppose o! is not adjacent to the long root E. Possibly by 
reflecting in a, we may assume that A, is of the form (6.1) with s >, 1 and 
t 2 0. Then vc = 1 + pcl, + 2s < vu, and Proposition 8.4 gives us 
irreducibility for c < v: - 2. For applying (SV), the worst root to test is 
n+ys+ . . . + y , , where u is a second simple neighbor of ys. Then we find 
that c < v$ - 2 implies 

(d,+tca,rl+y,+...+y,)~(;1,,rl)30, (11.1) 

and the irreducibility extends to A. 

(11.3) Suppose a is adjacent to E. Possibly by reflecting in CI, we may 
assume that A, is of the form (6.2) with s > 0. If p = + ia, then v; = 0 and 
there is nothing to prove. If p = -fa, we have v$ = 2s f v; , and 
Propostion 8.4 gives us irreducibility in A, for cd vi - 2. For applying 
(Sk’), the worst root to test is q + y, + . . + y1 , where q is a second simple 
neighbor of Y,~, and we have nothing to prove unless s> 0. If s>O and 
cdv,+ - 2, then (11.1) holds, and the irreducibility extends to A. 

Finally suppose p = 0. If s > 0, then v$ = vu = 1 + 2(s + l), and 
Proposition 8.4 gives us irreducibility in A, for cd v: - 4. For applying 
(SV), the worst root to test is q + ys + . . . + y,, where q is a second simple 
neighbor of ys. For c 6 v$ - 4, we obtain 

(E”,+$x,~+ys+ ...+Y1)2<&,1)20, 

and the irreducibility extends to A. If s=O, we have vg = v; = 3, and 
Proposition 8.4 gives us irreducibility for c d v$ - 2. For applying (SV), 
the worst root to test is q, a second simple neighbor of 01. For c= 1, we 
have 

since (&, q) = 4. Thus the irreducibility extends to A. 

Prooffor ep(n, R). The special basic case is necessarily contained in the 
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A,- 1 subdiagram of A. If there is a simple root of A:,, of the form (f) or 
(g) in Lemma 2.2, then min(v,+, 0 v -) = 2, and there is nothing to prove. 
Otherwise we denote by A, the component of a in the special basic case; 
A, is an A type diagram. Then the same argument as at the start of (II) for 
sp(p, q) gives the required irreducibility. 

Proof for so(odd, even). We may suppose that p =O, since otherwise 
min(v,+ , v; ) = 0 and th ere is nothing to prove. Let A, be the component of 
tl in the special basic case. In the notation of Section 6, A, is of 
type so(2(n - t + l), l), and we can compute that v$ = v; = 1+ 2(n - t). 
Proposition 8.4 says that there is irreducibility in A, for cd v$ - 2. For 
applying (SV), the worst root to check is e, _ , - e,. With ) e, 1 2 = 1, we 
have 

(A, + $(v,+ - 2) a, et_ 1 -en> 

=(&,e,-,--e,)+[(n-t-l)++]-f(v,+-2) 

=(~O,e,~l-ee,)kO, 

and therefore the irreducibility for c < vz - 2 extends to A. This completes 
the proof of Lemma 11.1. 

LEMMA 11.2. Suppose that the Dynkin diagram of A + is a classical 
double-line diagram and that a is long. Then U(MAN, a, &a) is irreducible 
for 0 6 c < min( vz , vO- ) except in the following situations: 

(i) if the basic case associated to 1, satisfies the conditions of (iii) in 
Theorem 1.1 (which refers to 5o(2n, 3)) and ifc is the root defined there, then 
irreducibility extends for 

O<c<min(v,+, vu -1) lfc is noncompact and vO- > 2, 

0 ,< c < min(v,+ - 1, v; ) if [ is compact or 0 and vz > 2. 

(ii) if the special basic case associated to II, satisfies the conditions of 
(v) in Theorem 1,l (which refers to so(2n + 1, 2)) or the conditions of (vi) in 
Theorem 1.1 (which refers to an entended version of 545, 2)) and if v& and 
/I0 are as defined there, then irreducibility extends for 

0 < c < min(v& + 1, v;) if&, conjugate to a via Kin so(2n + 1,2), 

0 < c < min(v,+ , ~0.~ + 1) if p0 conjugate to --c( via Kin eo(2n + 1,2). 

Remark. In situation (vi) of Theorem 1.1, conclusion (ii) here gives 
irreducibility for 0 < c < 2, which is the correct interval for Theorem 1.1. 



94 BALDONI-SILVA AND KNAPP 

Proof. Corollary 8.3 shows that it is enough to prove irreducibility 
when c is an integer in the above range. (Unfortunately there is no longer a 
restriction on the parity of c.) Lemma 2.1 implies that we may disregard 
c = 0. We shall follow the division into cases in Section 7, using the 
notation introduced there. Evidently there is nothing to prove unless 
min(v,+ , vo ) > 1. 

Proof for sp(n, R). The root a is the unique long simple root 2e,. 
Possibly by reflecting in a, we may assume that the adjacent simple root 
y, _ i = e, ~ i - e, is compact. Then min(v ~ 0’) v0 ) < 1 (and there is nothing to 
prove) unless we are in case 

(111.3) p = --$a, y+, and enA2 -e,-, both compact basic. Then 
VO ~ =26v,‘, and we are to prove irreducibility at c = 1. Let A, be the sub- 
system generated by e, _ 2 - e, _, , yn _ i , and a. This is of type sp( 3, IR), and 
we have irreducibility in A, by part (y) of Lemma 8.6. To pass to A, we 
show that (SV) holds. If /I is in A(u) with (/I, a) < 0, then p = ei - e,, and 
the worst case is evidently /I = e, _ 3 - e,. Normalizing so that 1 fl\ 2 = 2, we 
compute that 

(lo++4 en-3 -e,)=(~o,e,~,-ee,~2)+(1+O)-((ta,e,-3-e,> 

= (Ao, en-,-en-,) 20. 

Hence (SF’) holds, and we have irreducibility in A, by Theorem 8.2. 

Proof for so(odd, euen). Let a = ej - ej+ , . Possibly by reflecting in a, we 
can arrange that the next simple root from a toward e, is noncompact. Let 
ek be the short Ai simple root, and normalize root lengths so that 
(eJ*= 1. 

(I) Suppose that the exceptional term (7.2) of v$ or v; is not 0. 

(1.1) Suppose k=n-1, j=n-2, p=+a, and e,-,--ee, and e, are 
both basic. Then v; =2<3 <v,‘-, and the conditions of (iii) in 
Theorem 1.1 are satisfied. Here [ is e,_ I - e,, which is noncompact. Thus 
exception (i) of Lemma 11.2 asserts irreducibility only for 0 Q c < 1, and 
there is nothing to prove. 

(1.2) Suppose k = n - 1, j= n - 1, and e, is as in (7.8). 

(1.2a) Suppose e, ~ 2 - e, _ , , if it exists, is not compact basic. If 
p #4a, then v$ = 1+ pL, < 2, and there is nothing to prove. So suppose 
p=+a. If e n-2 -e,-, does not exist or is not noncompact basic, then 

- = 1, and there is nothing to prove. If e, ~ 2 - e, _, exists and is noncom- 
zct basic, then vz = 2 < 3 Q v; and the conditions of (iii) in Theorem 1.1 
are satisfied. Here c is 0, and exception (i) of Lemma 11.2 asserts 
irreducibility only for 0 6 c < 1. Thus there is nothing to prove. 
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(1.2b) Suppose e,,- Z - e, _ I exists and is compact basic. If p = + ia, 
then v; =2-,~~= 1 <v,+, and there is nothing to prove. If ,u # +&, we 
first let A, be generated by en-2 -e,- 1, 01, and e,. In A,, part (z) of 
Lemma 8.6 gives irreducibility at c = 1. In applying (SF), the worst root to 
check is j=en-J-e,+,, and we have 

(n,+~cr,D)=(n,,e,_,-e,_,)+l(l+~ol)-t. (11.2) 

If p = 0, then (11.2) is 20; thus (SV) applies and the irreducibility at 
c = 1 extends to A. Moreover, v; = 2 -pm = 2. Hence there is nothing 
further to prove when p = 0. 

Suppose p = --+a. If e,_ 3 -e,- Z does not exist, there is nothing to 
prove. Otherwise first assume e,- 3 - e, _ 2 is not basic. Then (11.2) is 3 0, 
(SF) applies, and the irreducibility at c = 1 extends to A. Moreover, vz = 
2 < 3 = v;, and there is nothing further to prove. 

Next assume that p = - $a and that e,,- 3 -e,- 2 is noncompact basic. 
Then en-,-e,, is a A:,, simple root of type (g) in Lemma 2.2, and v$ = 
2 < 3 < v; . We have to prove irreducibility at c = 1, and (11.2) is no help 
(being negative). Instead we let A, be generated by all the long simple 
roots. Since p = - fu and A, has only single lines in its Dynkin diagram, 
there is irreducibility in A, at c= 1. In applying (SF), the worst root to 
check is e,. Since (7.8) says that e, is one step removed from basic, we have 

2(;,1+i,;e”)=2 I (4 e, > 2 =l>O. 
en lenI 

Thus (SF) does apply, and the irreducibility at c= 1 extends to A. 
Finally assume that p = -+a and that e,- 3 - e,- 2 is compact basic. 

Then (11.2) is 20, (SV) applies, and the irreducibility at c= 1 extends to 
A. However, v; = 3 < v; in this case, and we have to prove irreducibility at 
c= 2 also. Thus we enlarge A, so as to be generated by e, _ 3 - e,- 2, 
e,-2--e,-l, ~1, and e,. Part (z) of Lemma 8.6 gives irreducibility in A, at 
c= 2. In applying (SF), the worst root to check is p= e,.-, - e,- 1, for 
which 

Thus (SV) applies to show that the irreducibility at c=2 extends to A. 

(1.3) Suppose k=n andj<n-2. 
(1.3a) Exceptional term of vc nonzero. Then v; = 2 < v: . Let A, be 

the subsystem with e, deleted. Then v;~ = 2 < vo+L. By Corollary 8.3 we 
have irreducibility at c = 1 in A,. In applying (&‘), we do not need to 
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check roots ei - e,, (since these are in AL), and the worst root to check is 
therefore B = ei+ , . Since e, is compact and orthogonal to or, we have 

(no+Ia,ej+,>=(;1o,ej+-,)-t~(~0,e,)-t~O. 

Thus (SV) holds, and the irreducibility at c = 1 extends to A. 

(1.3b) Exceptional term of v; nonzero. The first of two preliminary 
subcases is that eje2-ej+i is a AiI root of type (g). Then v$ =2<v;. 
With A, defined as in (L3a), we have v+ - 0 L - 2 d ~0,~. Corollary 8.3 gives us 
irreducibility at c= 1 in A,, and the argument in (1.3a) shows that (SV) 
holds, so that the irreducibility extends to A. 

The second preliminary subcase is that ejP 1 - ej, if it exists, is noncom- 
pact. Then vi = 1+ pclol < v; . There is nothing to prove unless cl0 = + 1, in 
which case we can again proceed as in (1.3a) to obtain irreducibility at 
c= 1. 

The main subcase is that the component of ,a in the special basic case is 
of real rank one. One node in this component is e, _ 1 - e,; let the other 
one be ei - ei + 1. Then we have 

vo’= 1+/&+2(j-i), 

v; =2-pu,+2(n-j-l), 

and these numbers are of opposite parity. First suppose vi < v; . Then we 
let A, be the subsystem of A with e, deleted. Then v&, = v: and VO,~ = 
VO --l>v,+, so that Lemma 10.1 gives irreducibility in A, for c d v$ - 1. In 
applying (SV), the worst root to check is p = e,, , Then c < v: - 1 
d v; - 2 implies 

~(n0,,,ej+,-e,>+(IZ0,b,e,)--t(v,-2) 

=(f(l-p,)+n-j-2)+f--f(2-pL,+2(n-j-2))=0. 

and the irreducibility extends to A. 
Otherwise suppose v; < v$ . Then we let A, be the result of adjoining e, 

to the component of a in the special basic case. For this L, v& = v$ and 
V- 0,L = vo 2 so that part (aa) of Lemma 8.6 gives irreducibility in A, for 
c<v; - 1. In applying (SV), the worst root to check is fl=eiP 1 -ej. If 
i < j, then c 6 v; - 1~ v$ - 2 implies 

(Ao+jca, ei-1 -ej)>,(A0,b,ei-ej)-~(v~-2)=0, 

and the irreducibility extends to A. If i = j, then v$ < 2 and hence v; G 1; 
thus there is nothing to prove. 
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(II) Suppose that a or -a is conjugate by the Weyl group of A$,, to 
Po= ej+ej+l. 

(II.1 ) Suppose i < n - 1, so that e, is compact and orthogonal to A. 
If we let A, be the subsystem of A with e, deleted, then the worst case for 
applying (SV) is ei+ i , and we have 

Hence irreducibility at c = 1 in A, will imply irreducibility in A. 
If there is a Ai1 root of type (f) in Lemma 2.2, then v; = 2 < vz in A, 

and in A. If there is a A+ K,I root of type (g) in Lemma 2.2, then v: = 2 < vo 
in A, and in A. If ei- 1 - ej exists and is noncompact basic, then vz = 
1 + pa <v; in A, and in A. Hence in all of these cases, the remarks in the 
previous paragraph show that we have nothing further to prove for the 
desired irreducibility. 

Thus we may assume that the component of c1 in the special basic case 
A, is of type so(odd, 2). Let AL, be the system A, with e, deleted. Since the 
conditions of (v) in Theorem 1.1 are satisfied, Lemma 11.2 asserts 
irreducibility only for c < min(v,+ , vet, + 1). In the notation of Section 7, 
v: and v& + 1 satisfy 

vo’= 1+/&+2(j-4, 

v,,,+1=2-y,+2(n-i-l), 

and are of opposite parity. If vz < v& + 1, then we let A, be the subsystem 
of A with e, deleted. Then vzL = v$ and v~- = vcL1, so that Lemma 10.1 
gives irreducibility in A, for c ,< v 2 - 1. In applying (SV), the worst root to 
check is p=ej+,. Then c < v$ - 1~ v<~, - 1 implies 

(&+$ccQ,ej+l> 

~(n,,,ej+,-e,>+(1,,,e,>-t(v,,-l) 

=(4(1-~,)+n-j-2)+$-f(l-&+2(n-j-1)-1) 

= 0, 

and the irreducibility extends to A. (Here the equality (A,,, e,) = 4 used 
the compactness of e,.) 

If v,,,+ 1 <v,+, then we let AL= A,. Part (cc) of Lemma 8.6 gives 
irreducibility in A, for c < v;,,,. In applying (SV), the worst root to check 
is /I = e,- I - ej. If 1 <j, then c < v;,,, < vz - 2 implies 
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and the irreducibility extends to A. If 1 =j, then v$ < 2 and hence VO,~, = 0; 
thus there is nothing to prove. 

(11.2) Suppose j = n - 1. Then p # + fa. If e, _ z - e, _ , does not exist 
or is not compact basic, then v$ = 1 + pm < 1~ vo , and there is nothing to 
prove. So suppose e, _ 2 - e, _ 1 exists and is compact basic. 

Ife,-,-e,isaA& simple root of type (g) in Lemma 2.2, then p = - ia 
and vc = 2 < VT. We have to prove irreducibility at c = 1. Here a does not 
satisfy the parity condition. By Theorem 8.1, reducibility can occur only 
when there is a root fi#ka with (&+$a,/?)>0 and (A,-~a,fi)<O 
such that 2(;1, + ta, /?)/I /I I* is an integer. Since I, is A + integral (this 
being a cotangent case), (a, fl )/I b 1 * is an integer. Thus b is short, and we 
must have /I= +e,-, or +e,. Table2.1 gives (&,e,)=$=(l,,e,_,), 
and thus we see that the condition of Theorem 8.1 is not met. Hence we 
have irreducibility at c = 1. 

Now suppose that no A& simple root of type (g) in Lemma 2.2 is 
present. Then the conditions of (v) or (vi) in Theorem 1.1 are satisfied, and 
it is enough to prove irreducibility for 0 d c < vet + 1, where VO,L = 1 - pL,. 
Let A, be the subsystem generated by e, _ z - e, ~ 1, e, _ I - e,, and e,. Part 
(bb) of Lemma 8.6 gives us irreducibility in A, for c < 1 -pm. In applying 
(SV), the worst root to check is /I = e, ~ 3 - e, _ 1. Then c < 1 - pL, implies 

(I,+4ca,P>~(~o,e,-3-e,-2>+(1,,,,e,~2-e,~,>-4c 

2 (&, en-3 -en-2)+t(l +PJ-31 -PA 

= (&, ene3 -e,-,)+bb. (11.3) 

Since e, _ 3 - e, is assumed not to be of type (g) for Lemma 2.2, we cannot 
have both pL,= -1 and (&,e,-,-ee,-,)=O. Thus (11.3) is 20, (SV) 
holds, and the irreducibility extends to A. 

(III) Suppose that neither a nor -a is conjugate by the Weyl group 
of Ai,, to BO=ei+ei+, and that the exceptional terms of v$ and v; are 0. 
We know from Section 7 that e, is not in the component of a within the 
special basic case. 

Let A, be the special basic case, and let A, 2 A, be the subsystem of A 
obtained by deleting e,. First suppose min(v,+ , v;) = 2. In A,, Lemma 10.1 
gives us irreducibility for c = 1. In applying (SV), the worst root to check is 
ej+ i, and we have (1, + $a, e,, I ) = (A,,, ej+ i) - 1. Thus the irreducibility 
at c = 1 extends to A unless (A,, ej+ i ) = 0, i.e., either 

j<n--l,e,+,-ej+2 is (noncompact) basic, p = + ia, and 
ej+*-ej+3,-, e, are all noncompact basic 

or 
j = n - 1, e, is noncompact basic, and p # - +a. 
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In the first case, nondegeneracy forces j = n - 2; this is case (I.1 ), and we 
have already considered it. In the second case, p = + f~ is case (1.2) and 
p = 0 is case (11.2); we have already considered these cases. 

Consequently we may assume that the component of CI in d, is of real 
rank one and that min(v,+ , v; ) > 2. Let e, - e,, , ,..., e,_ , - P, be the simple 
roots of this component; we know 1 >j + 1 since min( v$ , vn ) > 2. We saw 
in Section 10 that 

(&+f(v; -2)cr,e,+,-e/)=0. (11.4) 

Let A, be the subsystem of A obtained by deleting e,. Lemma 10.1 gives us 
irreducibility in A, for c < min(v,+ , v;) - 1. In applying (SF’), the worst 
root to check is e, + , , and (11.4) gives 

(~~+~(v~-l)01,e,+l)=(i,+~(v~-2)cr,ej+l-e,)+(1,,e,)-~ 

= (A,, e,) -+. 

Consequently the irreducibility in A, extends to A unless v; d vz and 
(I,, e,) = 0. This condition forces all simple roots after e,- , - e, to be non- 
compact basic; by nondegeneracy, we must have I= n (and e, noncompact 
basic). 

Thus the conditions of (iii) in Theorem 1.1 are satisfied. The root [ is 
e.i + I - en, which is noncompact. Hence Lemma 11.2 asks for irreducibility 
only when c < v; - 1. That much irreducibility follows from (11.4), and the 
proof of Lemma 11.2 is complete. 

12. ISOLATED REPRESENTATIONS 

Situations (i), (ii), (iii), and (vi) in Theorem l.lb indicate unitarity for 
some isolated representations. Situation (ii) requires no proof, and 
situation (i) is well known for nonsplit F4. Thus it is enough to prove this 
unitarity for situations (i), (iii), and (vi), with (i) restricted to sp(p, q). 

Many of the ideas and results in this section are due to D. A. Vogan, 
partly in response to questions posed by the authors, and we are grateful 
for his help. 

The chief idea to prove the unitarity is to use Zuckerman’s derived 
functor modules A,(I), as explained in Vogan and Zuckerman [26], but 
with the parameter 1 outside the usual range. (See also Enright and 
Wallach [6].) Unitarity is proved for such representations under suitable 
conditions by Vogan [24]. In situations (i) and (iii), we shall identify the 
span of the minimal K-type as the desired Langlands quotient, while in 
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situation (vi), we shall identify a different irreducible constituent of the 
A,(1) as the desired Langlands quotient. 

The process of identifying the Langlands parameters is simplified by our 
assumption dim A = 1, as we show in the following proposition. 

PROPOSITION 12.1. Suppose that J(MAN, a, v) and J(M’A’N’, o’, v’) 
each have the same unique minimal K-type and the same infinitesimal charac- 
ter, and suppose that a is a discrete series or nondegenerate limit of discrete 
series and that dim A = 1. Then J(MAN, 6, v) and J(M’A’N’, a’, v’) are 
infinitesimally equivalent. 

Proof. Applying the theory of [20], we conclude from the presence of 
the same minimal K-type in each of the given representations that 
J(MAN, a, v) is an irreducible quotient of some U(M,A,N,, a.+, v*) 
while J(M’A’N’, a’, v’) is an irreducible quotient of U(M,A,N,, a*, v;) 
with the same a,; here a.+ is a discrete series representation of M,. The 
number of irreducible quotients of U(M, A, N,, CT.+, v.+) is ) R,,“* 1, and 
the various irreducible quotients of U(M, A, N,, a*, v*) all have the same 
number of minimal K-types, which must be one since J(MAN, a, v) has a 
unique minimal K-type. Therefore U(M, A, N,, a*, v,) has I RVIY) I 
minimal K-types. Since (R, *,“*I d 1 R,*,, , we conclude 1 R, *,,_ / = ) R,*,oI. 
Therefore v* satisfies rv* = v* for every r in R,*,,. Similarly rvi = v; for 
every r in R,,,o. 

Since J(MAN, a, v) has just one minimal K-type, so does U(MAN, a, 0), 
and thus U(MAN, a, 0) is irreducible. We now bring in the theory of [ 171. 
Since we have nondegeneracy, this theory tells us that R,*,o determines a 
superorthogonal set (ai} of real roots such that 

and such that raj = - aj for each j. Thus the elements in ai fixed by R,*,. 
are in a’. 

Since a is one dimensional, v: must be a multiple of v*. Since the 
infinitesimal character is the same for our two given representations, 
) vi I = 1 v.+ I. Therefore v!,, = v*, and it follows that our given represen- 
tations are infinitesimally equivalent. 

Since the Langlands quotients under study have unique minimal K-types, 
Proposition 12.1 allows us to match them with representations A,(A) by 
matching the minimal K-type and the infinitesimal character and by check- 
ing that the minimal K-type of A,(n) is unique. 

We shall not need the detailed construction of A,(I). It is enough to 
have the following result. 
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THECOREM 12.2 ( Vegan [24]). Suppose rank G = rank K. Let A + be a 
positive system for A = A(gC, b”), let A, be a subset of A generated by A+ 
simple roots, let A(U) be the set of positive roots not in A,, and define 

l=gn b’@ c u= c c&3, q=I”@u. 
BEAL PEA(U) 

Let L be the analytic subgroup of G with Lie algebra I. Denote by 6(. ) the 
half sum of the positive roots contributing to the specified vector space. If II in 
ib’ is the differential of a unitary (one-dimensional) character of L such that 

(n+d(~),/?)>O for aZZP in A(U), (12.1) 

and if 

A=;1+26(unp”), 

then there exists an admissible representation A,(A) of g with infinitesimal 
character I+ 6 such that 

(a) the K-types have multiplicities given by the following version of 
Blattner’s formula: 

mult r,,, = .LK Wet 4 p(s(A ” + 6,) - (A + d,)), 

where W, is the Weyl group of A, and 9 is the partition function relative to 
expansions in terms of noncompact members of A(U), and 

(b) the representation A,(l) admits a positive definite invariant inner 
product. 

Proof: Let Y be the one-dimensional character e’ of L, and let 
A,(A) = @( Y) in the notation of Vogan [24]. We shall apply Theorem 7.1 
of [24]. Hypothesis (a) of that theorem is just that Y is unitary, which we 
have assumed. Hypothesis (b) is satisfied by virtue of Vogan’s 
Proposition 8.5 (in which Vogan’s 1 is to be our 1+ 6), since Y is one 
dimensional and (12.1) holds. The theorem says that WSY admits a 
(specific) positive definite inner product and that @Y = 0 for i # S. Apply- 
ing Theorem 6.3.12 of [23], we obtain the Blattner formula as stated. 

PROPOSITION 12.3. Under the assumptions of Theorem 12.2, suppose that 
A is A$ dominant. Then A,(1) is nonzero and the K-type z,, occurs with mul- 
tiplicity one. If in addition (A + 26,, /?) 2 0 for all /? in A(U), then z,, is the 
unique minimal K-type of A,(1). 
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Proo$ For A” = A, the term s = 1 gives a contribution of 1 to mult r,. 
Conversely suppose A” and s give a nonzero term. With d(u n p”) 
denoting the set of noncompact members of d(u), we have 

n”+s,=s(n”+6,)+ c k,y, 
YEAi 

s(A”+6,)=n+s,+ c qi 
~ELl(llnpq 

Hence 

(12.2) 

If A” = A, then C nBj? = 0 and s(A + 6,) = A + 6,, so that s = 1. Thus r,, 
has multiplicity one and A,(1) is nonzero. For general A”, (12.2) gives 

lA”+2~,12=ln+2s,l’+2 A+26,,&y+pQ? 
i > 

+ Ck,Y+C%fl* (12.3) 

Wehave (A+26,,y)>Oforallyind~.If (A+26,,j)>Oforallfiin 
A(w), then the right side of (12.3) is >/ 1 A + 26,1*, with equality only when 
C k,y = C nsj =O. This proves the minimality under the additional 
hypothesis. 

PROPOSITION 12.4. In the setting of Section 1 with rank G = rank K, sup- 
pose that A, is a root subsystem of A generated by simple roots and contain- 
ing c(, and suppose A, has real rank one. Let A be defined by (1.3). If the 
parameter 

A=A-26(unpc) (12.4) 

is orthogonal to A,, then J(MAN, IS, pL) is infinitesimally unitary. Here pL 
is the half sum of the positive roots of (I, a) computed just from roots that lie 
in A,. 

Proof. We use the given L and the corresponding u (from our usual 
A+) as data for Theorem 12.2. First we exponentiate A. Let LC be the 
analytic subgroup of Gc with Lie algebra I@. The Lie algebra bc is a Cartan 
subalgebra of Ic, and A exponentiates to exp(bc)s LC since A and 
26(u n pc) do. Since A is orthogonal to A,, it is At dominant. Therefore 
the Theorem of the Highest Weight supplies an irreducible representation 
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of L” with highest weight 2. Naturally this representation is one dimen- 
sional and its restriction e’ to L is unitary. 

Substituting from (1.3), we have 

A+ 6(u) = A -2&u n p”) + S(u) 

=&+6-26,+p--&26(unp”)+6(u) 

= II, - 6 + 6(u) + 241” n p”) + p - +I 
(12.5) 

= &-6(F) + 26(1” n p’) + p - +x 

The right side is the sum of A,, and a real combination of members of A,, 
and any member y of A, satisfies ‘&, wCdLJ wy = 0, where @‘(A,) is the 
Weyl group of the root system A,. Since 1 (by assumption) and 6(u) are 
invariant under W(A,), we obtain 

A+d(u)= c WA,. 
w E WAL) 

If B is in A(u), then 

since w-‘fi is in A(u), hence is >O. 
Thus Theorem 12.2 applies. The form ,4 in the theorem is the minimal K- 

type here, by (12.4). Thus A,(1) has infinitesimal character il+ 6 and is 
unitary. Since n is by assumption A $ dominant, Proposition 12.3 says that 
A,(1) is nonzero. Let us compute (,4 +26,, /I) for B in d(u). By (1.3) 

where c = 0, -4, or - 1, depending on the value of p. The first term on the 
right side is 20, and the second term is > 1. The only way that the left side 
can be ~0 is for c to be -1 and 2(a, /?)/IBI’to be +2. In this case p-a 
is a root. Hence /I is not simple and 2(6, B)/I /I I* > 2. Thus 
(A + 26,, p) 2 0 for /I in A(u). 

By Proposition 12.3, A,(1) has the unique minimal K-type n and 
infinitesimal character 1+ 6. Here 

2 + 6 = n + 6(u) + d(F). 

The first two terms on the right side are fixed by W(A,). Applying a mem- 
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ber of W(d,) that results in a positive system for A, that takes a before m, 
we see that the infinitesimal character of A,(A) is given also by 

1~+6(u)+6-(1@)+p,. 

The projection of this form on RX is pL; the proof will be complete if we 
show that the projection orthogonal to c1 is 1,. 

For this purpose we apply Lemma 3 of [9] to Ic to obtain 

6(1~)-26,(1c)=6~(1”)-26~,,.(I~)+~cc-E(26,(1c)), 

where E is the orthogonal projection on Rcr. Since A, has real rank one, 
&(I”) = 6-,,(I”). Thus we can rewrite this identity as 

6(1’) + 6 -(I”) = 26,(1”) + $ct - E(26,(1’)). (12.6) 

We are to check the component orthogonal to c1 of 

n+@l)+&(l”)+p, 

=~,-6(IC)+26(1~~n~)+~--~+6~(1~)+p, by (12.5) 

=~,+6(lC)-26,(la:)+~-ta+s-(rc)+p, 

= I, + pL + p - E(26,(1”)) by (12.6) 

and the component is clearly A,. Thus the infinitesimal character and 
minimal K-type of A,(A) match those of J(MAN, C, pL), and the result 
follows from Proposition 12.1. 

SITUATION (i). We are assuming that the total group is Sp(p, q), that 
p = 0, and that c( is adjacent to the long simple root. We take A, to be the 
component of c1 in the special basic case, which we assume is of type 
ep(n, 1) for some n 2 2. We check directly that $(v,+ ) a = t(v; ) a = pL. The 
members of A & span A, over R (see Sect. 6, item (11,3c)), and thus A is 
orthogonal to A,. The roots of A(u) are those involving an index less than 
p + q - n - 1, and the noncompact ones come in pairs ei f e,. Thus 
26(unp’) is orthogonal to A,, and Proposition 12.4 says that 
J(MAN, cr, +ccz) is infinitesimally unitary for c = vi = vo . 

SITUATION (iii). We are assuming that we have 50(2n, 3) imbedded in 
A, with the short simple root E basic and with the remaining su(n, 1) equal 
to the component of II in the special basic case. We saw in the detailed 
treatment of so(odd, even) that there is no loss of generality in assuming 
that CI and E are not adjacent and that the sum c of the simple roots strictly 
between tl and E is noncompact. In this case, E is noncompact. Under the 
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assumption that v$ 2 v; , we are to prove that J(MAN, o, iv; a) is 
infinitesimally unitary. 

We have seen that the exceptional term of v; is zero in this cir- 
cumstance. If A, denotes the special basic case, we thus have v$~ < v$ and 
V 0s = vo , with vc - ~0’s Q 1. Since ~2~ and v<~ have the same parity, our 
assumption is that v& > ~0;s. Let A, ‘be the component of c( in the special 
basic case, but with t(v,& - v&) roots deleted from the end opposite to the 
one where E is adjoined. Then we have v& = var. = v;~ = v; , and an easy 
computation with the basic cases of SU(N, 1)‘shows that +(v&) a = pL. 
Thus we will be done (by Proposition 12.4) if we show that A - 26(u n p’) 
is orthogonal to A,. 

Now AL is generated by A,, and a, and thus it is enough to show 
orthogonality with a. Let E be the orthogonal projection along Ra. By 
Theorem 1 of [9], we have 

E(A - 2b(u n p”)) = -E(26,) + p - E(24u n p’)) 

= - E(26) + E(241” n p”)) + p 

= -a + E(26(1”)) - E(26,(1’)) + p 

= - E(26,(1’)) + p. (12.7) 

A little check in SU(N, 1) shows that A, is the basic case for o = 1 in 
SU(N, 1) (since v& = v,), and Theorem 1 of [9] therefore identifies (12.7) 
as the minimal K-type of the spherical principal series, namely 0. This 
proves the required orthogonality. 

SITUATION (vi). First we work in so(5, 4) with the basic case for 

0 n * 
cl---2 e2 - e3 e3 - e4 l 

e4 

with p =0 and a =e3 -e4. Here I,= (& &, 0, 0) and we are to prove 
unitarity at v = $a. The minimal K-type is A’ = (2,0,0, 1). 

LetA,bespannedbye,-e,,e,-e,,e,-e,,andput~=--(u)=(-2, 
-2, -2, -2). Then (12.1) is trivial, and A, defined by 

A=n+26(unpc)=(l,O,O, 1) 

is dominant for As = {ei + e4, e2 f e3, e,, e3}. Moreover, 

x4 +26,= (3, 3,1, 1) 

is A+ dominant. Thus Theorem 12.2 and Proposition 12.3 say that A,(1) 
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has infinitesimal character A+ 6, that every irreducible subquotient of 
A,(I) is unitary, and that A is the unique minimal K-type. Here 

1+6=(-2, -2, -2, -2)+(4,&3,9=(#, -4, -2) 

is conjugate by the Weyl group of A to 

/I, + v = ($, 4, 3, - 1). 

Hence A,(A) has the same infinitesimal character as J(MAN, CJ, &). 
To complete the proof, we shall show that A,(A) is reducible, having an 

irreducible constituent with A’ as minimal K-type. We begin by finding the 
Langlands parameters of the (irreducible) cyclic subspace of A,(1) 
generated by the K-type r,, . In fact, take as parameters fiJfl, v” = 4~~ + $a,, 
and x0 = 0 for d” + given by 

Theorem 1 of [9] shows that the minimal K-type of the corresponding 
induced series is indeed A = (1, 0, 0, 1). Since we know that A determines 
&, and that &, is 0, v” must be the full infinitesimal character (put in the 
positive Weyl chamber). 

Let us see that z,, does not occur in the induced series U(kAfl, ~7;). Let 
1 be the minimal (Kn ti)-type of d, namely I= (t, +, 1, t). For A’ to occur, 
we must have 

A=~+d,a,+d,cr,, 

A’- c k,y=A’+c,cc,+c,cr,=weightofr,,. 
YEA; 

for integers nS b 0 and k, > 0 and for real numbers dl, d2, ci, c2. Then it 
follows that 

(l,O,O,O)=A’-A= c npB + c k,y + (xlal+ xzaz). 
PEA+,” YeA; 

The only possible ,8’s are /I1 = e, +e, and f12 =e3 + e4. Taking the inner 
product with 8, + fi2, we obtain 

1 = 2(n, + n2) + 1 k,(y, e, + e2 + e3 + e4>. 

Since e, + e2 + e3 + e4 is A + dominant, it follows that n, = n, = 0, that the 
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Ai simple root e, + e4 has coefficient 0, and that the Ai simple root e3 has 
coefficient 1. Thus 

(LO,O,O)= 1 kyY+(-vl+w2) 
YE4 

=a(el-e4)+b(e2-e,)+e,+(x,cr,+x,ct,). 

The inner product with e, + e2 shows a + b = 1. Thus the only possible 
solutions have a = 1, b = 0 and a = 0, b = 1. In these respective cases, C k,y 
is (l,O, 1, -1) or (0, l,O,O), and A’-E&,y is (l,O, -1,2) or 
(2, - 1, 0, l), both of which are too large to be weights. Hence z,,, does not 
occur in the induced series. 

Next we consider the occurrence of a general z,,. in A,(1). If the s term is 
nonzero, (12.2) says that 

A”=A+ c k,y+ 1 ~,YB, k,>O and ns>O. (12.9) 
YeA; BE4unPC) 

Here we can restrict y in Ai to be A; simple, thus a member of 

(el +e4, el -e4, e2-e3, e3), 

while /3 is a member of 

{e,, e4, el +e2, el +e3, e2+e4, e3+e4}. 

Moreover, at least one nS is > 0 if A” # A. 
For A” = A’, we take the inner product of (12.9) with e, + e2 + e3 + e4 

and conclude from the remarks above that 

el=A’-A=a(e,-e4)+b(e2-e,)+ce,+de4+he3 

with a, b, c, d, h nonnegative integers and with c + d+ h = 1. Solving, we 
lind the two solutions 

c=l and a=b=d=h=O, 

a=d=l and b=c=h=O. 

These translate into 

z&y=0 and Cns/I=e,, 

xk,y=e,-e, and Cng/?=e4. 



108 BALDONI-SILVA AND KNAPP 

Hence they correspond to s = 1 and s = s,, _ eq. But we check directly that 

s .,-.,(A’+6,)2/1’+6,-(e,-e,), 

and thus only s = 1 is possible. On the other hand, the s = 1 term for 
mult(r,.) does equal one, and thus we conclude that z,,, occurs in A,(i) 
with multiplicity one. 

Finally we show that 1 A” + 26, I2 is minimized among all K-types other 
than r,, in A,(1) uniquely by A” = A’, so that the cyclic span of the T,,, sub- 
space is an irreducible unitary representation with the same minimal K- 
type and infinitesimal character as J(MAN, (T, $). We continue with the 
normalization of inner products that makes 1 e I ) ’ = 1. First let us note that 

Suppose A” gives a smaller difference. We refer to (12.3) and note that 

2 A+&Ck,y+C@ 
l > 

gets bigger when more y’s and /Ys are used, while the term 

lZkYY+lhJ~2 (12.10) 

is always at least one (except when A” =A). For fi in d(unpc), we find 
that 2(A + 2dK, /I) <6 (as required) only for /I =el and fl=e,. With 
P=el, we must have Ckyy+Cng/3=e,, and thus A”=A’. With /3=e4, 
we must have 2 (A + 26,, 1 k, y ) d 6 - 2n,. This equation implies 

= 0, and (12.10) forces also k,,- ‘) = 0. If k,, _ eq > 0, we are led to 
:‘ky=e,-e, and C nSfl=e 4, from which we obtain A” = A’. The only 
remaining possibility is that k,, > 0. Then we must have A” = A + ke, + ne4. 
But this A” is not Ai dominant if k > 0 or n > 0. This proves the minimiz- 
ing property of I/1” + 26,\’ and completes the proof of unitarity of 
J(MAN, c, 3~) in 50(5,4). 

Now let us pass to the general case in situation (vi). Possibly after 
reflecting in CC, we can arrange that the 50(5,4) case is imbedded in the 
general case, and we take A, to correspond to the eo(5,4). In standard 
notation, the last entries of A, and A,, + $X are 

2, = (...) 1, 1, 0, O), 

I, + +x = (...) ;, 4, $, - $), 

and the last entry of the “...” within A, and A, + $x is at least $. Then it 
follows that (A, + $c(, /I) > 0 for all fl in A(u), and J(MAN, 0, $CC) is 
infinitesimally unitary by Theorem 1.3a of Vogan [24]. 
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13. THE FINAL GAP IN UNITARITY 

To complete the proof of Theorem 1.1 when rank G = rank K, we have 
still to show in situation (vi) that J(MAN, cr, $ccr) is not infinitesimally 
unitary for 2 <C-C 3. This result does not seem to lend itself to the kind of 
analysis in Sections 3-7, and we shall use the theory of intertwining 
operators instead. The idea is that U(MAN, 0, &a) is reducible at c = 2 and 
the intertwining operator that defines the invariant Hermitian form has a 
simple zero on its (nontrivial) kernel at c = 2; consequently the signature of 
the form on any K-type that meets the kernel changes at c = 2, while the 
signature on the minimal K-type remains positive. 

In the proof we shall treat just 50(5,4), to keep the notation simple. It is 
an easy matter to revise the proof to apply to all cases of situation (vi), and 
we shall make some comments on this point at the end of the section. 
Possibly by reflecting in a, we may assume that the Dynkin diagram is as 
in (12.8). 

First we prove reducibility at v = a. We have ,U = 0 and 

2, = t&t, 0, 01, 

&+a= (i, i, 1, - 1). 

It follows from [S] that the reducibility question is the same as for the 
SO(3, 2) subgroup (corresponding to integral infinitesimal character) with 

;2”, = (0, 01, $+a=(l, -1) p = 0. 

The root a does not satisfy the parity condition. The analysis of reducibility 
is carried out as in Section 4 of [4], but with Sp(3, R) cut down to 
Sp(2, R): The tool is Vogan’s composition series algorithm, and one wall 
crossing is needed. The result is that we have reducibility into two pieces. 

Now we bring in the intertwining operators of [15]. We shall use the 
notation of that paper without redefining it; alternatively the reader may 
consult [ll], where the same notation is used. According to [16], the 
operator that defines the Hermitian form at v is 

a(w) A,(w, 0, v), (13.1) 

apart from normalization. Here w is a representative in K of the nontrivial 
element of W(A : G), as in Section 1, and we may assume that this operator 
is positive definite (on each K-type) relative to L2(K, Vu) for v small and 
positive. 

Let E be a finite-dimensional subspace of the domain of (13.1) equal to 
the sum of a number of K-types, and let T(z): E + E be the restriction to E 
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of a(w) A p(w, cr, +(2 - z) a), for complex z with ) z ) < 1. We can regard T(z) 
as an analytic n x n matrix-valued function of z, by [15]. Following 
Jantzen [8] and Vogan [24], we define 

Ek = {u E C” 1 there exists f: { 1 z 1 < 11 --+ C” analytic such that 

f(0) = I/ and zekT(z)f(z) is analytic at O}. (13.2) 

LEMMA 13.1. In the above notation for 50(5,4), 

E,=E, E, = En ker T(O), and E,=O. 

We say that T(z) has only a simple zero at z = 0. We postpone the proof 
for a moment, first showing how the desired nonunitarity of 
J(MAN, 0, &a) follows for 2 < c < 3. 

The operator T(z) is Hermitian for real z, and we can use it as in Sec- 
tion 3 of [24] to define a nondegenerate Hermitian form on Ek/Ek + I, say 
with signature (pk, qk). According to Proposition 3.3 of [24], the signature 
of T(z) for small positive z is (Cpk, C qk), while the signature for small 
negative z is 

1 P/c+ c qk, c Pk+ 1 qk . 
k even k odd k odd k even i 

Lemma 13.1 says that pk = qk = 0 for k > 2, and the positivity of T(z) for 

z > 0 says that q0 = q1 =O. Thus the signature on E of 7’(z) for small 
negative z is (pO,pl). Here p,=dim E,/E, and pI =dim E,. Thus our 
operator is indefinite on any E large enough to contain the minimal K-type 
and a K-type that meets the (nontrivial) kernel of (13.1) at v = a. 

Thus the problem for 50( 5,4) comes down to proving Lemma 13.1. We 
use the following two lemmas in its proof. 

LEMMA 13.2. Let A(z), B(z), and M(z) be n x n matrix-valued analytic 
functions for 1 z 1 < 1 with A(O) and B(0) nonsingular. rf M(z) has onZy a sim- 
ple zero at z = 0, then so does A(z) M(z) B(z). 

Proof Let us define Ek(M) as in (13.2), with M replacing T. If u in 
E,(M) is represented byf(z), then B(z))‘f(z) has B(O)-‘f(0) = B(O))’ u 
with 

f’f:: zpk[A(z) M(z) B(z)] B(z))‘f(z) = A(0) lim zkM(z)f(z) 
2-O 

existing. Hence B(O))’ u is in E,(AMB). Thus B(O))’ E,(M)E E,(AMB). 
Applying B(0) and arguing similarly, we see that equality holds. The 
lemma follows. 



UNITARY REPRESENTATIONS 111 

LEMMA 13.3. Let M(z) be an n x n matrix-valued analytic function for 
( z I< 1 such that M(z) is diagonal for all z. If each diagonal entry of M(z) 
has at most a simple zero at z = 0, then M(z) has at most a simple zero at 
z = 0. 

Proof Elementary. 

Lemma 13.2 allows us to strip off invertible factors from either side of 
T(z). In particular, we can strip away invertible factors that do not depend 
on z. Thus we can identify our operators with matrices, and it does not 
matter what bases we use for the identification. First we discard a(w) from 
(13.1) because its action is invertible. Next we shall enlarge the domain of 
Ap(w, 6, v) and then factor the resulting operator as a product of simpler 
operators. 

To do so, we note that the roots of m are given by the diagram 

0 - 
e,+e, cl-e2 e2 

(13.3) 

and 1, is 0 on the el(2, R) corresponding to e3 + e4. We imbed this limit of 
discrete series of ,X(2, R) (crossed with the rest of M) in a reducible 
unitary principal series of SL(2, R) (crossed with the rest of M), and then 
we induce everything to G, using the double induction principle. The result 
is that U(MAN, 6, &LX) is a direct summand of an induced representation 
U(M,A.N,> gz+c, 2 ka) obtained from the rank two parabolic subgroup 
M,A,N, with A, built from a=e3 -e4 and a’=e, + e4. The Dynkin 
diagram of m, is simply 

et--2 e2 

and the parameter ;2”, of g* is just the restriction of &. For restricted roots 
relative to this parabolic subgroup, we can use a system of type B, with 
fi +f2 = Cayley(a) and fr -fi = Cayley(a’). To specify c* completely, we 
give only q,(~h+J and a,(rh-& since Ye =Y~~=Y~-~Y,-,+~. We take c* 
to agree with CJ on Y~,+,~ = ya. Since p = 0, this means o,(rr +J = - 1. The 
value of (T* on yfierz is determined by the value of 0 on the central element 
of the SL(2, R) subgroup of M, thus ~*(y~,-~) = - 1. 

We can choose w in (13.1) to be a representative in K of the reflection 
sfi +f2 in W(A, : G), and then the techniques of [ 151 show that 

Adw, 0, fca)EApe(w, o,, &Cfl +fd). (13.4) 

Actually since we can discard invertible operators in our analysis, we can 
simply write sr +fz directly in place of w, and then Proposition 7.8 of [15] 
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allows us to factor the right side of (13.4) according to a cocycle relation as 

Ap*(Sf2, Sf,-f2f*a*, -&U-i -fd) A&,-,, Sf2a,, W-i -j-d) 

x AP*(% g*’ w-i +fd). (13.5) 

Let us examine the third factor here more closely. This operator depends 
only on data in the subgroup of G given as the centralizer 2 = Z,(ker(f,)), 
and by means of the kind of identification in Proposition 7.5 of [ 151, it can 
be identified with a standard inertwining operator for Z. In more detail, we 
can see from Section 5 of [ 121 that the operator in G on a single K-type is 
the tensor product of a block diagonal operator with an identity operator, 
while the operator in Z on a (Kn Z)-type contained in that K-type is the 
tensor product of one of the blocks with a different identity operator. At 
any rate, nonsingularity of the operator for Z implies nonsingularity of the 
operator for G. 

The subgroup Z is essentially SO(4, 3), and its m is just m,. (There is an 
additional abelian factor to Z, and there is some disconnectedness, but 
these features do not affect the intertwining operators in any essential way.) 
The intersection of a, with 50(4, 3) is one-dimensional, and we can write 
the Dynkin diagram of the Lie algebra of Z as 

(13.6) 
el -e2 CaybUd 

in order to fulfill the conditions of Section 1. (It is not important here to 
see that the middle simple root is compact in Z, even though that is the 
case.) Relative to this system, we can write I,, in coordinates as (4, 4, 0). 
This parameter is not integral, and we must have p = 0. Since Cayley(f,) is 
short, Corollary 8.3 says that the induced representation of Z is irreducible 
at integral multiples of the root defining the a of Z, hence in particular at 
$cfi for c = 2. 

Thus Lemma 13.2 allows us to discard the third factor on the right side 
of (13.5) from our analysis, and in similar fashion we can discard the first 
factor. 

Let us examine more closely the second factor on the right side of (13.5). 
This operator depends only on data in the subgroup Z’ = Z,(ker(f, -fi)) 
and again can be identified with a standard intertwining operator for Z’. 
Here the relevant fact about the identification is that if the operator for Z’ 
is diagonal with diagonal entries having at most a simple zero at 92 - z) x 
for z = 0, then the same thing is true of the operator in G. 

In view of Lemma 13.3, we will therefore have proved Lemma 13.1 if we 
show that the operator for Z’ is diagonal with diagonal entries having at 
most a simple zero at +(2 - z) a for z = 0. The point now is that Z’ is essen- 
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tially a product of SL(2, R), an abelian factor, and the identity component 
of M,; moreover, only the SL(2, R) is important to the operator. Thus we 
can regard the operator (on a (Kn Z’)-type) as the tensor product of an 
identity operator by the restriction to a K-type of SL(2, R) of a standard 
intertwining operator for SL(2, W). 

The K-types for SL(2, R) (and indeed any ?%,(n, 1)) have multiplicity 
one, and thus any standard intertwining operator is scalar for a given K- 
type and given v. This sclar function of v is the subject of the lemma below, 
which completes the proof of Lemma 13.1 for g = x1(5,4). 

LEMMA 13.4. Let y,(z) be the scalar value of a standard intertwining 
operator A(w, C, zp) for S%,(n, 1) on some K-type. Then for z positive, any 
zero of y,(z) is simple. 

ProoJ If ya(zo)=O, then the induced representation is reducible at zO. 
Hence the infinitesimal character is integral and, in the case of SL(2, R) z 
- 
SO,(2, l), c1 satisfies a parity condition at zO. Then it follows from [14] 
that A(w-‘, WC, -zp) has no pole at -zO, so that y,,( -z) y,(z) is analytic 
at z=zO and vanishes there at least to the order that y,(z) vanishes. 

But [14] shows that y,,( -2) y,(z) is a nonzero multiple of the 
reciprocal of the Plancherel factor p,(z). This factor is the product of a 
polynomial by a possible tangent or cotangent and has at most simple 
poles. Thus y,,( -z) y,(z) vanishes at most to order one, and so does y,(z). 
This proves the lemma. 

Let us briefly indicate how to revise the proof of Lemma 13.1 to apply to 
all cases of situation (vi). The reducibility at v = a is established by the 
same computation, still in x1(3,2) g sp(2, R). After we form the intertwin- 
ing operator, we embed our induced representations in representations 
induced from a rank-two parabolic subgroup, one built from c( = eN- 1 - e,,, 
and ~1’ = eAip 1 + eN. Then we still have a factorization (13.5), and we can 
go through the same identification procedure. For the first and third fac- 
tors, the diagram (13.6) is enlarged by more simple roots to the left of 
e, - e2, but the irreducibility at integral multiples of f2 is unaffected. For 
the second factor, we still have essentially an operator for SL(2, R), and 
thus the argument goes through without essential change. 

This completes the proof of Theorem 1.1 in the case that rank G = 
rank K. 

14. CONSIDERATION OF SO(ODD, ODD) 

In this section we prove Theorem 1.1 when rank G > rank K. We use the 
general notation established in Section 1. We have already observed that 
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we may take g = so(odd, odd), and we accordingly introduce further 
notation to reflect properties of that Lie algebra. 

The root system A = A(g’, 6” @a”) is of type D,, and we take c(~ = eN. 
The root system A_ = A(mC, b”) is of type D,_ r within A. Once (A,, A+) 
is fixed, we can name the roots of A- in such a way that the simple roots 
of A’ are the standard ones in D,_ 1: e, - e2 ,..., eNp2 -e,,- ,, 
e,P,+e,P,. Then we can write 

with 

and with all n, in Z or all nj in Z + t. The linear functional cc1 in Section 1 is 
just eNPi, and the condition w[o] = [a] means exactly that nN-, =O. 
Since there is no unitarity without this condition, we assume it now. In 
particular, the n;s are then integers. 

Thus we write 

~O=(n,,...,nN-2,0,0), all n,EZ. (14.1) 

Taking A + to be the system with simple roots e, - e2 ,..., eN-, - eN, 
eN-l+eN? we see that A + meets the conditions of Section 1. Here 
e, ,..., eN-, span the dual of ib, and eN spans the dual of a. We define (., .) 
by (ei, ej) =a,, so that lei12= 1. 

According to [9], A, = A@“, b”) consists exactly of the restrictions to b” 
of the members of A - A -,n, and we may take As to be the restrictions of 
the positive such elements. Then we see that 

Ai = {e,+ej(i<j<N-1 and ei+ej#Ap,,} u {eili<N- l}, 

with ei the restriction to bc of e,f eN. Theorem 1 of [9] says that the 
minimal K-type of the induced representations is 

n=n,+s-26,. (14.2) 

LEMMA 14.1. The Ai simple roots y such that (A, y ) = 0 are e,?- I and 
all members e, - e,, , of A’,, such that (I,,ei-ei+l)=l. 

Proof. First suppose that y = e, + ej with i <j < N - 1 and y compact for 
A -. If (/i, y ) = 0, then (14.2) and our normalization of the inner product 
give 

o=(&,Y)+(&Y)--. (14.3) 
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The first term on the right side is > 1 by nondegeneracy, and thus it must 
be 1 and (6, y ) must be 1, i.e., y must be A + simple. Hence y = ei - ei + 1. 
Converselyify=ei-ei+I and (AO,ei-ei+l)=l, then (14.3)holds andy 
satisfies (A, y ) = 0. 

Otherwise suppose y = ei with i < N - 1. If (A, y ) = 0, then (14.2) gives 

We conclude that (6, ei + eN) = (6, ei - eN) = 1, from which it follows 
that ei- eN is simple. Thus i = N - 1. Conversely if i = N- 1, we know 
(A.,, eN-,) =0 and thus 

(A,eN~,)=0+(6,eN-,)-(26,,eN~,)=(6,eN~,)- 
2(6Ky eN- I > 

leN-,12 

=(6,e,-,)-l=O. 

We recall from Section 1 the definition 

v,=~#(PEA+ 1 PI,>0 and (A,/?)=O} 

Let i, be the smallest index i such that ei - ei+ , ,..., eNP 2 - eNP 1 are all 
compact and have (&,ej-e,+,)= 1 for i<j<N-2. 

LEMMA 14.2. (a) Ifj<N, then (A,e,)=O ifandonly ifi,Qj<N-I. 

(b) v,=2(N-i,). 

Proof: (a) It is immediate from Lemma 14.1 that (A, e,) =0 for 
i, <jG N- 1. Conversely let (A, e,) = 0. If we expand ej in terms of A: 
simple roots, we obtain 

ej=(ej-ejl)+(f?j,-ei,)+"'+(ej,-,-ej,)+e,,. 

Each term must be orthogonal to A, and then Lemma 14.1 shows that 
jr = N - 1 and the various pairs of indices jk, j, + 1 are consecutive with 
<A ,,,eik-eik+,)=l. Hence i,<j$N-I. 

(b) The roots fl in A+ with p I,, > 0 are fl= ej + eN, and the condition 
(A, j?) = 0 then means (A, ej) =O. Thus v,, = 2(N- i,) by (a). 

Let A, be the subsystem of A with simple roots 

e,, - eio + 1 ,..., eN~2-eN~1,eN---eN,eN--l+eN. 
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Since rank L > rank(L n K) and since every root of A_ n A, is compact, 
A, is of the form 50(2(N- i,) + 1, 1). Therefore all (Kn L)-types of any 
standard induced representation have multiplicity one. Now the linear form 
A +e,- 1, when made dominant for A$ n A,, becomes A +e,, and Lem- 
ma 14.2a shows that this form is dominant for Ai. Therefore 
A’= (A +e,-,) ” is a K-type in the bottom layer of U(MAN, cr, v), in the 
sense of Speh and Vogan [20], and we can conclude from that paper that 
z,,, has multiplicity one in U(MAN, G, v). 

From the conclusion that t,,, has multiplicity one and from a result like 
those in Section 3 (which we defer to another paper), we obtain 

LEMMA 14.3. With notation as above, put A’ = (A + eNp ,) ” . Normalize 
the standard Hermitian form for U(MAN, CS, $caR) so that it is positive on 
z,, . Then 5,,, has multiplicity one and the signature of the standard form on 
z,, is sgn(v, - c). 

Consequently J(MAN, G, icaR) is not infinitesimally unitary for c > v,,. 
To see that it is unitary for c Q vO, we prove irreducibility for c < vO. Within 
A,, the series of representations in question is the spherical principal series, 
which is irreducible out to pL = (N-i,) aR = $v~u,. We shall apply the 
results of Speh and Vogan [20] that are applicable here and are analogous 
to those quoted in Section 8. For one thing, irreducibility will follow in G 
at v=$caR if c<vO and v,, satisfies (&+v,j)>O for all p in A+-A,. 

We can handle c d 2(N - i0 - 1) by showing that 

(&+(N-i,-l)a,,j)>/O forallflinA+-A,. 

The worst /I is evidently p = e,- 1 -e,,,, and we have 

(&+(N-i,-l)a,, e,,-,-e,)=(&,eiop,-e,)-(N-&--l) 

>/(&,e,,-e,)-(N-&-1)=0. 

For 2(N - i0 - 1) < c < 2( N - iO), we appeal to the following Lemma, based 
on [20]. 

LEMMA 14.4. With A,, as in (14.1) and v positive, U(MAN, 0, v) can be 
reducible only when v is an integral multiple of aR. 

Proof Since there are no real roots, Theorem 6.19 of Speh and 
Vogan [20] says that there can be reducibility only at points v for which 
there is a complex root p such that 2( 1, + v, fl)/I p 1’ is an integer and /3 
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satisfies certain other properties. Possibly replacing fi by -fi, we can take /I 
to be ejf eN for some j< N. Then 

2(&+v> P> 
IBI' 

= CL03 ej> f Cv, eiV> 

has to be an integer. Since (14.1) says that (lo, e,) is an integer, (v, eN) 
has to be an integer. This proves the lemma and completes the proof of 
Theorem 1.1 when rank G > rank K. 

15. REMARKS ABOUT UNITARITY 

1. Calculations in Single-Line Diagrams 

In a single-line diagram with rank G = rank K, Theorem 1.1 implies that 
the unitary points form an interval. This example will illustrate how to 
determine the endpoint of the interval easily. Actually no computation is 
needed after d + has been imbedded in A +. Let us suppose that A + is 

5 6 18 
0 0 s 0 

a 

and that I, = ( , O A I 1 ,, 3), with the integers representing the numbers 
2( A,, p)/I j? I* for /I simple. 

Since & is A+ integral and g $ ep(n, R), this is a cotangent case. We 
must determine whether p = ++a or p= -$x. Using Table 2.1, we write out 
&b for each choice of p: 

A&= ( 
1 

1001101 > 

1, = 
’ ( 

0 

> 1100101’ 

The infinitesimal character A,, must dominate one of these term-by-term; if 
it dominates both, then there are two minimal K-types and there is no 
unitarity. We see that 1, dominates ,l,t, and not A,; therefore p = + fa. 

Comparing I, and A&,, we see that there is agreement on the E, sub- 
diagram (consisting of all simple roots but the one marked “8”). Therefore 
the basic case is E,, and we can discard root 8. Referring to Lemma 2.2, we 
see that the roots of the E, subdiagram (all the remaining ones but 7) are 
needed for A &, but root 7 is not. Thus the special basic case is E,. Since it 
is not so(even, 2), the cut-off for unitarity is min( v$ , v; ). 
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Next we form the Dynkin diagram of A;,,. Lemma 2.2 shows that only 
the obvious simple roots of A$ within the basic case are eligible to be in 
AS,,. so Ai,, can be written down by inspection as 

CL- 
1 2+3 5 6 

We attach to each simple root y of A$,, the number 2(y, a)/[ o! 1 2, obtain- 
ing the diagram 

c-r-3 
0 1 -1 0 

Positive roots in this system with positive total contribute to v;, while 
those with negative total contribute to v 0’. A little thought shows that only 
two have positive total, while at least three have negative total. Therefore 
v; = 1 -CL, + 2(2) 6 2(3) < ~0’. Therefore the cut-off for unitarity is at 
v; = 4, i.e., at v = 2~. 

2. A Conjecture of Knapp and Speh 

The above kind of computation is more complicated in a double-line 
diagram with c1 long because of the presence of the exceptional term that 
can contribute to v: or v;. This exceptional term also provides a coun- 
terexample to a conjecture of Knapp and Speh [ 131 that the unitary points 
v in the basic case are the same as the unitary points in G. 

For a specific example, we take configuration (z) in Table 8.1 with 
p = - $tx and n = 2. The total diagram is B, and has vi = 4 and vi = 3. The 
basic case A, is A, and has v: = 4 and v; = 2. In both instances 
Theorem 1.1 says that the unitary points form an interval ending at 
min(v,+ , v;). Thus the unitary points in the basic case L are a proper sub- 
set of those in G. 

3. A Conjecture of Vogan 

Vogan [23, p. 4081 conjectured that the parameter mapping from L to G 
described in Section 8 would carry unitary representations to unitary 
representations under certain circumstances. One set of circumstances is 
that (SV) holds as in Section 8, and Vogan proved this conjecture in [24]. 
Another set of circumstances is that I” @u contains the “classification 
parabolic” used in [23]; this form of the conjecture is still not settled. It 
seems to be only a slight change to insist only that (SV) hold at v = 0, 
which is what our conditions in Section 8 force. But with this change, 
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situation (iii) in Theorem 1.1 provides a counterexample to the preser- 
vation of unitarity. In fact, let us take the basic case with p = + $a for the 
B, diagram 

-s----d a 

The group in question is S0(4,3) locally, and A0 = 0. Therem 1.1 says that 
the unitary points extend from 0 to fa, with c1 as an isolated unitary point. 
Now we can take A, to be generated by the two long simple roots, so that 
L is SU(2, 1) locally (on the semisimple part). The corresponding 
parameters for L are those of the spherical principal series, where we have 
unitarity from 0 to a, with no break. Thus the open interval of v from ta to 
a gives unitary Langlands quotients in L but not in G. 
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