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INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS II

M. W. Baldoni-Silva* and A. W. Knapp '

For a linear semisimple Lie group G with a compact Cartan
subgroup, the paper [5] derived explicit formulas for the action of
intertwining operators on standard induced representations. These
formulas had been announced earlier ([1], [2], [4]) and had been used
in combination with some known results to classify irreducible
unitary representations in certain situations (arbitrary such
representations for SU(N,2), as well as most Langlands quotients
obtained from maximal parabolic subgroups for general G). The
present paper gives the derivation of the remaining previously-
announced formulas, handling the case of standard induced
representations attached to a maximal cuspidal parabolic subgroup
when G has no compact Cartan subgroup. These formulas were
announced in [3] and [4] and were used in classifying irreducible
unitary representations in further situations (groups of real rank
two with restricted roots of type Ag, as well as other Langlands
quotients obtained from maximal parabolic subgroups for general G).

The background for the formulas is as follows: The Langlands
classification describes the irreducible "admissible" representations
as the unique irreducible quotients ("ILanglands quotients") of
standard induced representations. The irreducible unitary
representations in turn are those Langlands quotients that admit
invariant Hermitian inner products. It is known when there exists an
invariant Hermitian form, and the question is one of deciding
positivity of the form. The form is unique up to scalars, if it
exists, and it 1lifts to the standard induced representation.
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Relative to the (non-invariant) 12 inner product on the standard
induced representation, the form is given by an explicit integral (or
singular-integral) intertwining operator. The gquestion is whether
the intertwining operator is semidefinite.

Rather than try to evaluate the integral operator, we follow a
strategy that was used extensively by Klimyk, often in collaboration
with Gavrilik, for particular groups (see, e.g., [9]). The strategy
is to take advantage of the intertwining property to relate the
operator on one subspace to the operator on another subspace. Indeed
it turns out in principle to be possible to compute the form globally
just by computing the L2 inner product of an arbitrary iterated
representation-image of one particular function with itself.

In the present paper we consider the case in which the standard
induced representation comes from a maximal cuspidal parabolic
subgroup of G. If this subgroup is all of G, then the standard
representation is a discrete series or limit of discrete series and
hence is unitary. Thus we may assume G has no compact Cartan
subgroup. We shall derive two formulas, one for the effect of a
single step within the Lie algebra and one for the single step
followed by a step back to the start. In two applications we give
special cases that correspond to two previously announced results
(Lemma 14.3 of [4] and Proposition 4.1 of [3]).

Contents. 1. Occurrence of K types in a tensor product.

2. Representations to be studied. 3. Necessary conditions for
unitarity. 4. General formula. 5. Application to 8o (odd,odd).
6. Application to certain groups of real rank two.

1. Occurrence of K types in a tensor product

Let G be a linear connected reductive Lie group, and let K
be a maximal compact subgroup. We denote Lie algebras by
corresponding lower case German letters, and we write € as a
superscript to indicate complexifications. TLet 8 ©be a Cartan
involution of g with respect to 1, and write g=1®p as the
corresponding Cartan decomposition. We fix on g a nondegenerate

symmetric bilinear form BO invariant under © such that ad g
acts by skew transformations, B is negative on tx1, B is

o e

positive on px§p, and BO(T,p)=O, We extend B, to 38><g

so as to be complex bilinear.
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Throughout this paper we assume that g has no simple factor of

type G, (real or complex). We fix a maximal torus B in K and

let t ©Dbe the centralizer of b in g. Then t is a maximally

compact 8-stable Cartan subalgebra of g (see p. 129 of [12]), and

we can write t=b®a with e cp. TLet &= a(s%1®) be the set
C C

of roots of g with respect to t
inner product {-,-)> on the set of linear functionals on t

The form B, induces an
€ that
are real-valued on ib®ae , and we write u'rp" if {u',u"™ =o0.
In [5] we worked with the special case t =b . Thus for now
our results will generalize those in [5]. Starting in §2, we shall
introduce further assumptions that make the situation in this paper
disjoint from the one in [5].
If p 1is a root, we often write B=pp+p; with ﬁRrrﬁla and
ﬁI==ﬁ p + No root has ﬁI==O since t is maximally compact. (See
Proposition 11.16a of [12].) Let

og = {pea| pl,=0}.

The root vectors for the members of Ap lie either in 1* or in
pC, and we call the corresponding roots compact or noncompact,

respectively. Let

bp o = {compact roots in &B}

By — {noncompact roots in QB}.

We use a bar to denote the conjugation of gc with respect to

g - If B=pp+B; 1is a root, then we are led naturally to roots B
and 6p, and these are given by E::BR"BI and 6B= -Bp+pg-
Hence 6B =-8.
Using [7, pp. 155-156], we can select root vectors Xﬁ for B
in A in such a way that
BO(XB,X_B} — e (1.1a)
and

8%, = -X (1.1b)

B SE
For a real-valued linear functional p on ib®a, we let Hp be
the member of 1ib@®a such that p(H) = BO(ﬁJ,H) eya Il
(Warning: This normalization is different from the one in [5].)
Then it follows from (1.1) that
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o -2
[Xg,X_g] = 2|l Hy (@2}
as(onis - A

Proposition 1.1. The selection of root vectors as in (1.1) can
be done in such a way that BX13 = Xﬁﬁ for all BeA-A

B

Remark. We assume henceforth that the selection is made in this
way.

Proof. Under the assumption B;éAB, f 1s neither real nor
imaginary. Hence {g, -g,08B, -6} 1is a set of four distinct roots.
First let us make a selection of Xﬁ, X-ﬁ’ XGB, Xmﬁﬁ so that (1.1)
holds. Now we shall normalize this choice. Let us write

BXJB = aXBﬁ and Sx_ﬁ = bX—BB‘

Then (1.la) implies
2ab|p| =2 = abB, (¥g X pg) = By (8Xg,0X_g)
= By(Xg,X ) = BAMBIES

and ab = 1. Thus we have

68X, = aX and 86X , = a” X

B 6p -B -6p”’

and application of 8 gives

BXBJB = arlxﬁ and ax-ﬁﬁ = aX_B.

Using (1.1b), we obtain

SX= (PR = B s e SER = -aaX _,
=Nk aite ) -6 -p
and aa = 1. Let us leave XB and X_JB unchanged, and let us
redefine
e = ELR ARl = @ e
8p B -0p -B

Then (1.1) is unaffected for B, and aa = 1 implies (1.la) holds
for the new Xg, and X gg. Moreover (1.1b) holds for Xap and

X—Bs since

BXGB = e(aefﬁj = aL“3 = -abX_g = -X
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and
8X = Bl(EBX =ax , = -abX, = =X . «
-68 ( —ﬁ) -B B 6p
This completes the proof.
Let us fix some lexicographic ordering for . If B is in
ﬁ-—AB, we can form the four roots B, -B,6BR, -88 of the preceding

proof. Two of these will have positive equal restrictions to a,
and the other two will have negative equal restrictions. The
relevant pairs are (g, -88) and (-8, 0p). From the decomposition

QC —ab %30 0¥ BedBre T nBinh nEX

pea-ay B pen, B’

we thus obtain

1€ _plo T C(Xy +%g,) @ T cx, (1.3a)
Fraiy Belp, ¢
Bl, >0
C C T T
p. =0 & C(XB"Xéﬁ) DRy cxﬁ. (AL 519)
5EA—AB BEAB,n
ﬁ[u>o
Let
(NS ! Bea—&B,n}
ApemidBpale Buebinbpe bse
From (1.3a) it follows that we can identify Ap with the root system
A% 8% orf 1% with respect to bT. From (1.3b) we can identify

A, as the set of nonzero weights for the action of Ad(K) on pc;
moreover each of these welghts has multiplicity one. Note that
Awaan?gﬁ as soon as A contains complex roots.

Lemma 1.2. If B is in A, then IIBI[2=c|18]2 with
c = 1 1 TRl
S
Proof. Calculation gives
2B, B
f—mg—ze—uc. (l.}-l)

The left side of (1.4) is an integer from -2 to 42, since
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and
86X = 0 (abX =aX_, = -abX, = -X,, .
op = (BT ,) = 24 B~ Fop
This completes the proof.
Let us fix some lexicographic ordering for a . " If ‘g is in
ARSI we can form the four roots B, -f, 08, -8 of the preceding

B,
proof. Two of these will have positive equal restrictions to a,

and the other two will have negative equal restrictions. The
relevant pairs are (g, -88) and (-8, 8B). From the decomposition

Co % CX, © % CX,
pea-ay Beay

we thus obtain

1€ _ e T e¢(x +Xg) © L €X, (1.3a)
pea-ng P BeAL ¢
,B{a>0
C C
p’ =a~ & L C(Xﬁ_xeﬁ)@ z €X, - (1-3b)
BeA-Ag BeAp 1
5‘u>o
Let
A = {Bg | B EA—AB,n}
A= {Bg | ﬁEAFéB,C} ;
From (1.3a) it follows that we can identify A with the root system
A(!C,bcj of 1% with respect to v®. From (1.3b) we can identify

A, as the set of nonzero weights for the action of Ad(X) on DC;
moreover each of these weights has multiplicity one. Note that
QKFWthég as soon as A contains complex roots.

I2

Lemma 1.2. If B 1isin A, then |p, = c|gl® with

—_—T
c = %—, o o (e 105

Proof. Calculation gives

(B, P

—I—2—=2-‘}-|-C.

(1.4)
B

The left side of (1.4) is an integer from -2 to 42, since
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2<15v2YI>
el

2.

which is even. If this integer is greater than 2 in absolute
value, one possibility is that g = i2yI. Then Br=8 is in
hence is in A

A
B,
B.n * The other possibility is that g is long and
2y; 1is short (and hence y is short). Lemma 1.2 gives

8lv 1% = 2l2y;1% = |]® = (4 or 2 or 1)p|?,
so that
2|
1]61 = (22 or lt ox"h (T .
v

Thus the Schwarz inequality gives

2<.BI,YI>
ly,! 2

ellip

= (242 or 4 or 4 /7). (1.7)
= Dol

If 4 is attained in (1.7) with |[p|®=2|p|%, then the ecquality in
the Schwarz inequality forces ﬁI = dYI for some d. Since (1.5)
ey £y, wlelisgze 8t o Br =*2y;. since 2y, is a root, it
follows that ﬁR:=ﬁ —ﬁI is a root, in contradiction to the fact that
there are no real roots. We conclude that 4 1is attained in (1.7)
with |5|2::1BI]2, i.e., with B imaginary. Then we have

5 2By 2B,Y) 2(B,y)

PR o T T
YI IL‘Y Y

and EQ(IB,Y)/H]QI = 1. This equality forces |g| { |v],
contradiction.

2

Lemma 1.4, If v is in A/ and gy is in' A ¢ with
I e T e

2 2
2By /ly;l® = -2, then g = v or Tpl¥=2lpsy I%=2lyI2.

Proof. Suppose BI # Yo and let Ng=Bp+Yg - Thiz iz a
nonzero weight of pc and hence is in ﬂn‘ et —al -y, and q he
extensions of ﬁI’ Yo and N1 to members of A, not necessarily
consistently. By Lemma 1.2,

2 2 2
871% = 2%181%, Iy I® = 2P1y1®,  Ingl® = 2%|n]
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1o aEEERITE &, 9D, ESel Bo The norms squared of any two roots in
A are in the ratio of 2, 1, or %, and thus f;5>>I|2 = 2d|YI]2
and InI] el 28|YIE2 . Expansion of E,BI +YIi2 gives

g [N e g2

[ SIE e ihllo eee [ -,
Y1 Yl vl vl

d

Hence 2% = 2
e=0.

-1, and the only possibility is that d=1 and

Starting in §2, we shall work with a specific choice of A+ ’
the set of positive roots within A, and we shall let &; be the
set of restrictions of A'n [(a- AB) Ua But for now let us

T B,c] ;
suppose that A if W denotes

is any positive system for A

K K K
the Weyl group of &K and if p' is a linear functional on bc
that is real-valued on ib , then there exists w EWK such that wu!
is &E dominant, and we write (u')” for the dominant form.

We say that a linear form p' on bc is integral if exp p'!
is well defined on B. If p! is integral, then 2(p',YI) /HI|2
is an integer for every Y1 €A - (Recall the argument: If
Y €A=Ag o restricts to y;, then y gives us a copy of su (2)
within g . Since SU(2) is simply connected, it maps into G, and
our assertion follows from known properties of SU(2).)

Because G is linear, u' integral implies 2(;_1',,8)/[;3[2 is
an integer for every g8 EAB,n‘ This agssertion follows because the
isomorphism

81 (2,R) = (CHﬁ +€X +CX-B) Ng

B

and the linearity of G give a homomorphism of SL(2,R) into G.

If A' is integral and is A} dominant, we let T,, be an

K
irreducible representation of K with highest weight A'. We
shall regard nc as a representation of K wunder Ad(K); we have

observed that the nonzero weights of pC are the members of %,

each with multiplicity one. The weight O has multiplicity equal to
dim o .

Proposition 1.5.. Let A' be integral and A+ dominant. Then

(a) every irreducible constituent of Tat @ p has highest
weight of the form A'+p with p in A U{o}.
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(b) every irreducible constituent of T ®pC other than T
AT e A AT

has multiplicity one.

This follows from the description of the weights of pC and

from Problems 13 and 14 on p. 111 of [12]. We sharpen this result in
Theorem 1.7 below.

If A" is dominant integral, we let AK,h' be the subset of
roots in aK orthogonal to A'. This is a root system, and the
simple roots of QE,A' = AK’h,rlﬂg are simple in ag since A' is
dominant. TLet WK,AT be the Weyl group of AK,ﬁ'; this is the
subgroup of Wy fixing A', by Chevalley's Lemma (p. 81 of [12]).

To simplify the notation, we shall drop the subscripts "I

from members of AK and An for the remainder of this section.

Lemma 1.6. Let A' be integral and A£ dominant, and let g
be in A . Then (A'+B)Y 1s of the form A'+pg' with B' in
A,V {0}, and pB' 1is obtained constructively as follows: Let By

be the result of making B dominant for A§ n1 (by means of

Wy h')' Then exactly one of the following things happens:
ol

fe)s B is Al dominant, and B' =g, .

o G 5

(b) There exists a Ap simple root y with E NG Eo v =it
2(gsv/Iv[%=-2. 1In this case Bp=By+Y 1isin A U{o}. Either
B' is the result of making Bs dominant for
W or B'=0.

(by means of

+
A pt
K,hl) 2

Proof. Lemma 1.2 of [5] handles the special case a =0. In
the general case, we argue as in that lemma, fixing the proof as
necessary. If (a) fails, we are led to a a; simple root y as in

(b) or else to a A" simple root ¥ with

K
2(1613Y> 2<"”‘-T+1[31;Y>
——[—_!_2_ { -2 and -—[—!2—.- £ 0c
i1 A

In the latter case, Lemma 1.3 says B, =-2y and B i1s in A .
0 L B,n

Since G is linear, E(A',ﬁl)/|£l|2 is an integer. Thus
2(&',Y)/[yf2 = +2, and we have

s, (A" +By) = (At -2y) -py = A",

Hence B'=0. (In any event Byt s S UG b
consideration of the y welght string.)
50 we may assume y 1is as in (b). As in [5], A' +p is
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conjugate via wK o) i +ﬁ2 , Where ﬁ2==ﬁl-FY. Iift 52==O, then
B'=0. Otherwise Lemma 1.4 gives

18,12 = 2l,l% = 2v|. (1.8a)

Let 33 be the result of making Bo dominant for &; A1 2 S2Y
¥ at
B2:=wﬁ3 with w eWk,ﬁ, . We shall show that A'=0 or B'==ﬁ3.
Notice that
2
IR

lesl® = g, (1.8b)

ariE -l +ﬁ3 is not AE dominant, then we can repeat the argument in

the first paragraph of the proof to find y' simple for ALY with

K
either

2(AT,y"
_h,_ll-é_ = +2 and ﬁs = --2'{' € QB,n
or else
2(A',% " 2 B3y "
—-rw-F?-= +1 and —T——11r— = -2.
Y'I .Yl'

In the first case, sY,(ﬁ'-+53) =A', so that B'=0 and we are
done. In the second case, f) =f3+v! is such that A' +B, 1is

conjugate to A! +ﬁ4 . AL 54==O, then B' =0 and we are done.
Otherwise Lemma 1.4 gives

2 B 2
18412 = 21p,12 = 2lv'12. (1.8¢)
From the eguation ﬁlzzﬁe -y , We have

2<|Bl:wY'> 2(52)WY|> 2<Yﬁer)

o Pl z
[yt [yl Iy
2(33,Y') 2y, wy " 2{y,wy ')
= o] - 2] = SulEo -'—_——_2' L (1‘9)
[ ly'] Iy

Lemma 1.3 thus implies

By = -2wy' e Bg. n (1.10a)
or

L e 0, (1.10Db)
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If (1.10a) holds, then the linearity of G forces
2(&',B1>/15112 to be an integer. This integer is

(AT, 2uy " = (A, y 1) :
= - 'g = -'§ ]
M|Y‘|2 IY'|2

contradiction. So (1.10b) holds.

Tny (2.20B) , o B raits suppose s (v, =0kt «Thene(l.9) is -2, .and
Lemma 1.4 says that either By =-wy' or [ﬁlle::2|yf12; in either
case, (1.8) gives a contradiction.

We conclude that (y,wy') < 0, so that y+wy' is in A
From (1.8) we have |y|° = 2]YT12, so that |y dwpi]2 = [y1)2
2(Y,wyl)/!y‘|2=:—2. Substituting into (1.9), we obtain

and

ABsy+wy'y AR,y 2€py,wyh

A o)
’f? = =440 =-4,

- LBt
ly+wyt]? 2yl ly

and Lemma 1.3 gives B, =-2(y+wy') €A Since G 1s linear,

L e B°
Q(A',ﬁl>/|ﬁl12 is an integer. This integer is
-2{A',2y+2wy ') 20T,y 1 2{AT, Wy ") 3
2 o B ey 2
2|yl vl '

|y
contradiction. This completes the proof of the lemma.

We come to the main theorem of this section, which goes in the
direction of identifying the irreducible constituents of T&‘gapc.
Our result will not handle every case, but we state it in enough
generallty so that it includes both the situation e =0 and the
cases that are needed for our applications in this paper.

Theorem 1.7. Suppose that the length squared of any two members

of AKU A, stand in the ratio 4, 1, or 2. TILet A' be integral
and AK dominant, let g be in A and sugpose R SR ) A;
dominant. Then T falls to ocenr in if and only if

A
there exists a AE simple rocot y such that W aLE Al A; RE

Y18, and both y+B8 and y-p are in AnU L@l =

Proof. It is a routine exercise to take the proof of Theorem
1.3 of [5], which handles the case a =0, and adapt it to the
situation here. The formula that replaces (1.1) in [5] is
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(M -
Tp®p = (dima)T,, +§3'§ Sgﬂ(f\'ﬁg"“éK)T(!L|+]5r+5K)"'_5K ’

where 61{ is half the sum of the members of QE.

Theorem 1.8. Let up' be integral, let A! = (u')¥, let B be

in An’ suppose T(H,+ﬁ)f occurs in TﬁT(SpC » and suppose
(wi+g)Y # Ar . Lebt E = E(u1+ﬁ)v be the projection of T,, @pe on
the T(Hl:ﬁ)v subspace (along the subspaces for the other K

types). _'_I‘_f_‘ v! is a nonzero weight vector for T with weight

u+B)

Remark. This theorem generalizes Theorem 1.5 of [5], which

p'!, then E( = ({577 ®X}B) is nonzero.

handles the case a=0.

Proof. For much of the proof, we shall assume that p'=A',

i.e., that i ol *  dominant. First suppose A' + NE e
2 K

dominant. Then we can trace through the first part of the proof of
Theorem 1.5 of [5], adapting the notation to allow for the 0 weight
space in p® to be nonzero, and see that E(v'®X,) # 0. The next
case to consider is that A' +sB is AY  dominant for some s in

K
wK,h" and the argument for Theorem 1.5 of [5] handles this case
as well.

Next we consider general pB. Choose s in wK At such that
sA

sp is A dominant. Since (A'+8)Y # A' Dby assumption, the

K, 0!
previous paragraph and Lemma 1.6 show that there is a AE simple

root y with Q(A',Y)/[YI2 = +1 and 2(sﬁ,y>/|y|2 = =R EEh

B,=8SB +Y . Then Lemma 1.6 shows that A!' +8'B, 1is ﬂ;
=

By the result of the previous paragraph,

dominant

Horsisonel sl WK,L"

E(v'@:)(QJ ) # 0. Since v! is a highest weight vector for r,,, we
-

!._T
have 2

T (A1) (XY)E(V'®XSﬁ) = E(T_n_,(x )v'® X, +v'®ad(XY)XSﬁ)

B
= E(v'® ad(x_{)xsﬁ) .

\

The right side is a nonzero multiple of E(Vv'® X, +Y)’ which we have
just seen is nonzero. Therefore E(V'® X ) on the left side is
nonzero. Applying s_l, we see that E(v'®X,) 1is nonzero.

Finally in the general case in which p' 1is not necessarily AE

dominant, we introduce a new positive system for A so that u' is

K
dominant, and then the theorem reduces to the case that has already

been proved.
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2. Representations to be studied

Our objective, as noted in the introduction, is to obtain
explicit formulas for the effect of standard intertwining operators
on certain K types of induced representations. In this section we
introduce the representations to be studied, note how to compute
their minimal K types, and establish some identities for half sums
of roots.

We continue with the notation of §1. 1In particular, g has a
maximally compact Cartan subalgebra t=b@a, A is A(gc,tc) , and
A and A are certain sets of linear functionals on b°.

We selected root vectors X, in (1.1l) and Proposition 1.1 with
a certain normalization and found in (1.2) that [XB’X-B]::Elﬁl_EHﬁ'

ey e g ﬂ-—AB, put

Y, = X

R R T
As in §1, we fix a lexicographic ordering on the linear functionals

@3t (o Then we can use a to form a parabolic subalgebra

m@&a®n with

mt —sCe T cxﬁ
Bely
nC=ZCX.
ﬁeA—ABﬁ

Bla >0

This parabolic subalgebra is maximal cuspidal. We have an Iwasawa-
like direct sum decomposition

6 = 1o mnp)®eaen®, (2.1)

and we let P P , and F, be the respective projections on the

1 m
first three factors. These projections can be read off from the

formulas

0 O e X if ﬁ{a DG
| (XIB+X8IB) + 0 + 0 -Xyg if g'a <o o
p OO O £
o) + X + 0 + 0 if pedy -

The Hermitian form
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(X,¥) = -B(X,67) 2o3y]

is a positive definite inner product on gc that is invariant under
Ad(K) . If (T,V) is any finite-dimensional representation of KX
and if {.,+) 1is a positive definite K-invariant inner product on
T, Ehent wiEm o SniEE s Eoy e n e e S d s R e Lol Ehiat

T(X)* = -1(X) = -1(6X) for xe1®.
From this identity and (1.1) we readily find that
T(HB)* = T(Héﬁ) for BeA
T(Xﬁ)* = T(X_B) for pedg (2.4)
T([YB’Yﬁ’}) = »T([Y_B,Y_B,]) for B« A-AB, B! € A S

Also (1.1) allows us to compute the norms of Xﬁ and Yﬁ relative
to (2.3) as

2/|8|2 for pea

1l

2
Ixﬁl

17,12 2!

4/|g]l® for Bea-aA

]

B*

In view of (1.3b), an orthogonal basis of ptn consists of

{v, | € A-0g Bln>(ﬂ U {XB | B eAB,n} U {orthogonal basis of a®} .

B
(2.6)
From (2.2) we read off
PTY}B = "(XﬁJ“Xe,s)
Ppig =0 (2.7)
PnYB =0
for pea-Ap with ﬁ‘u > 0s MAlEE
PIXB =0
= 2.8
P Xg = Xg (2.8)
Puxﬁ =0
for B EAB o L shall make use of the formula
-2
= - — 2-
[X_g+X_g 5> Y] 4| g| P,Hy for pea-Ag, (2.9)

which is verified by direct calculation.
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Starting in §4, we shall use vector field notation for
differentiation of functions on G, letting

Xt (g) = zg £((exp tX)7Y6)| 4

e e alg dm @ dhE 0K emel Y e i @ Oel i Beiiaahe o e
e = 0F . Then WE— .

The representations that we study will be those in the
"fundamental series" of G. (Here is where we specialize our
situation so that we are no longer generalizing [5].) Namely we
study certain representations induced from the parabolic subgroup
MAN that corresponds to m®a®n. Let p be half the sum, with
multiplicities counted, of the roots of (g,a) that are positive
relative to N.

We fix a discrete series or limit of discrete series representa-
tion ¢ of M. (In §5, we assume that ¢ is nondegenerate in the
sense of [14]. In §6, M will be compact, and nondegeneracy will be
automatic.) Let M#::MOZM’ the product of the identity component
and the center. By (12.82) and Proposition 12.32 of [12], o is
induced from a digcrete series or limit c# of acting in a
Hilbert space g

Now Lemma 12.30a of [12] shows that M#==MO,
real roots. Thus o is determined by its Harish-Chandra parameter

(:\O,AB) .

since there are no

Let A be the minimal (Kn M#) type of cr# given on b by

A= KO‘—ﬁB,c—+GB,n,
where 6B - and 6B n are the respective half sums of the members
of ALlna and ALN A . Following the procedure of [1l], we

B B, ¢ mE B,n

introduce a positive system A+ containing At

B
lexicographic ordering in which b comes before a . The subset

and built from a

+ _ : +
Ag = {ﬁ‘b with peA ,BJ{(_\.B,n}

We let & and & be the half

is then a positive system for A %

e
sums of the members of A" and AE, respectively.
We shall study the family of induced representations
U(v) = U(MAN,0,v) = ind? (c®e’®1), (2.10)

where v 1s a complex-valued linear functional on o and the
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induction is normalized so that imaginary v yields unitary U(v) .
We regard the induced representation as acting on functions by the
left regular representation.

By [11], U(v) has a unigue minimal K type given simply by

A== +8-28. (Eray

It is clear that ‘ﬁ'[b = A The first part of the proof of the
minimal X type formula that appears on pp. 629-631 of [12] shows
that a highest weight vector for Wl U(v) is highest of type
T for KﬂM0=Kﬂ M# 5 The B.I‘g‘ume.l:lt shows also that T has
multiplicity one in U(v) . This fact was shown originally by

Vogan [17].

Theorem 2.1. Let p' be an integral form on b, and define

I= B E&PQH]B p I = B i EAPGHIB ;
By >0 B[,>0
(u',p) >0 u',py 20

Then

() I +IT=0
b) u'=A' dominant for Al implies
dominant for Ay implies
i

ﬁ‘a>0
<“|',ﬁ> =0
Proof of (a).
L PH

I+ = Hy, - E&PQH'B— e
glies Bl o

et 2@ Qe )@

LPH = ELgPVH. = EPH = 0.

EARSGRST gt B cA® P

ﬁﬁ>0 pifg> 96 wigfs) o
dut,gy (o Su'.py Do

The middle equality holds because PnH—BB = PDH]5 .
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INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS II

Proeie_ @ (9o aLE Blu PR then Blb is in Ap - If also
{(AL',B) # 0, then the sign of <{A',p> determines whether B is in

- +

A or —A+, chbneE. AU Al AK dominant. Thus

=1 Z = L
I = EAPn HJB I[g;_APn Hﬁ

Bl AOR
Sy bR

as required.

3. Necessary conditions for unitarity

Continuing with notation as in §2, we recall the techniques of
[1] and [2] for proving nonunitarity. (Those papers assumed
rank G = rank K, and we have to modify the techniques slightly in
our current situation.) Fix an element w in K normalizing A
such that we centralizes A, and assume throughout that wo=0o .
Then we can deduce from [13] that there exists a unique family of

intertwining operators T(v) with the following properties:

(1) T(v) is defined for wv's in the -1 eigenspace of Ad(w)
such that Re v 1is in a suitable neighborhood of the closed
positive Weyl chamber of the dual o' of a .

(2) For each A', T(v) carries the T,, ‘K type for U(v) into
the Th,

and satisfies

K type for U(-v), varies holomorphically in v ,

U(v,X)T(v) = T(v)U(v,X)

for all X in 4¢°%.

(3) T(v) is the identity on the minimal K type T, .

For Re v 1in the closed positive Weyl chamber (under our
hypotheses), U(v) has a unique irreducible quotient J(v), and
J(v) contains the K type T, with multiplicity one. If v is
real-valued, then J(v) admits an invariant Hermitian form, unique

up to a real scalar; this form 1lifts to U(v), where it is given by
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<f:g> = (T(V)f:g)Le(K) . (3-1)

Since the normalization (3) makes T(v) positive definite on the K
type T, , (3.1) shows that J(v) will fail to be infinitesimally
unitary for some real v 1lying in the -1 eigenspace of Ad(w)
within the closed positive Weyl chamber if we can produce a X type
o such that T(v) fails to be positive semidefinite on that K
type.

The papers [1l] and [2] introduce two techniques for finding such

a A', Both use the following definitions. If i is an
irreducible representation of K, we let P, be %ﬁe projection of
the induced space to the T subspace given by
et
P, £(k,) = d, f‘x_("E)'A f{k_lko) dk . (3.2)
L L 2
K
Here dn is the degree of T , and Xn is the character.
--1 ﬁ.l --1
hilb e G in the induced space to be a nonzero highest weight

0

vector for the minimal K type TP . Ty Vo denotes a nonzero
- A
highest weight vector in an abstract representation space V- of K

of type T then f is necessarily of the form

pA? 0
£ (k) = ar, (k)" tv (3.3)
0 A 0
ol #
for a unique operator A in HomKﬂM#( ,W0") . It follows from the
remarks after (2.11) that there exists a unique element u. in V°

0
of weight A in the T subspace such that
*
AR = (3.4)
We fix this element U,
Let T“l be an irreducible representation of K, and let Xl
be in gc. Define
a(v,k) = <P!‘_1U(v,xl)fo(k),uo> 5 (3.5)
#
the inner product being taken in V° . ILet
b(v,k) = (P.,\U(v,h}fl)P!,_lU(v,Xl)fo(k),uo) 5 (3.6}

Theorem 3.1.

(a) Suppose T has multiplicity at most one in U(v) and

Ay
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a(v,k) 1is not identically 0 as a function of k in K. Then the
guotient

c(v) = a(-v,k)/a(v,k)

is independent of k. If Ad(w)v=-v, if v 1is real-valued, and

if v 1is in the closed positive Weyl chamber, then c(v) < 0
implies that T(v) is not positive semidefinite on the K type

qr .
A

1 (b) Regardless of whether t, has multiplicity one in U(v) ,
suppose Ad(w)v==y, vy 1is real-va}ued, and v 1is in the positive
Weyl chamber. If b(-v,1l) > 0, then T(v) is not positive

semidefinite on the K type

Thl.
A proof can be obtained by making slight adjustments to the
arguments in [1] and [2].

L, general formula

The main result of this section, Theorem 4.1, will give formulas
for the guantities a(v,k) and b(v,k) of §3 under certain
hypotheses. At this stage the Weyl group representative w of §3
does not enter the computation, since a(v,k) and b(v,k) make
perfectly good sense without it. We shall make particular choices of
w in §§5-6.

let X be any

Theorem Y4.1. Fix a complex root a=oap+o

C

I k]
member of p , and define A, = (ﬁ+aI}V and

Hio= 5 B
0 _BE;Q-'—Q |B
,s|c>o
{.".,B):O
Suppose that
() (Asap) =0
(b) ar is short among the members of Ap -
Then

(1) (PﬁlU(\),X)fo(k),uo} = (Tﬂ.l(k)_lE.n_l(V[)@ x),EAl(voa (H\7+HO))>‘ :

and also
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(2) real rank G = dim o implies
( PP_U (V » X) P-’-lU(V L] YO'.) fo.‘ uo)

(k) "'E, (E

’-1(v0® Ya)EX),Eh(E!\_l(vO@ (HG+HO)) ® (HG-»HO)» f

Remarks. Note from (a) that |A1| # |r| ; hence LY N o TEeRHn

(1) and (2) are trivial if T,  does not occur in T, ®pC; so0 we

may assume T, does occur in T @bc.
Ly A

Preliminaries for the proof. 1In the proof we shall use the

formulas (2.7) and (2.8) relating the root space decomposition of gc

(relative to (bEBn)C ) and the Iwasawa-like decomposition (2.1).
Suppose that f 1is a member of the space of the induced representa-
tion and is given on K by the formula

£(k) = c(v)T,, (k) "ty

with C(v) in HomKnM#(vnr,v“#) . For X in % we compute
U(v,X)f(k) by the method of §5 of [5]. As in (5.7) of [5], the

result is
U, X)E(K) = [(vep) (B, 7)1C()T,, () v + [0(B 1) IcM)r, () ty
+ C(\J)TA . (PrY)Tn, (k)'lv s

where Y==Ad(k)_lx. Let {Hj} be an orthogonal basis of g .
Using our basis (2.6) and arguing as in the first part of the proof
of Theorem 5.1 of [5], we obtain

< P!_ rrU(\’, X) f(k) ,'Llo>
= (B, (v®X),m(K) (C(v)*u @ T |5, %(G+p) (H,)H.))
A V) u, : 3 V+p 3 85

+ L 5181%¢E, u(vex),m(k) (cw)"of (p x
Ben

B) u,® xﬁ)>

B,n
+ L 71812 (Byu(ve x),m(k) (Tp1 (P ¥p) Cv) a0 7)) (4.1)
BEA

Bla >0

where w7 refers to the representation of K on the tensor product.
We refer to the three lines of the right side of (4.1) as the
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term, the m terms, and the 1 +terms.

Proof of conclusion (1). We take A'=A, A" =A1_=(h+a1) 5
v=vg, C(v) =8, and f:fo, remembering that A*uo--vo. The a
term of (4.1) is simply

ke, (Eﬁl(vO@JX),W(k) (VO®HG+p)) .

Let us see that the m terms are all 0. In fact, uo has b
welght A, so that c#(PhXﬁ)*uo has weight A-g. Since B 1is a
noncompact root for M, A-p 1is not a weight of T e But A*
annihilates all KNMF types of c# other than T2 and thus

* 4 * e
Ao (RRXB) U, = 0. 8o the m tems are O.

Next we consider the 1t term corresponding to p with
B'a > 0. TFormula (2.7) gives Py Yg =-(xﬁ+exﬁ) ; hence (2.4) shows
that the 1 term corresponding to the root g is

1, 25
= = ?rlﬁ'l U"nl(vo@ X),m(k) (T,n,(x—ﬁ*'x-egs)"o‘g YB)> . (4.2)

The weight of T, (X_
would imply

IB+X_GJB)VO in 7, is A-pB;, and. (A,pR) £ 0

2
| -R-_|BI! =

A2 -2a,py 1l ® > A%+ 18717 > 10175
thus (4.2) is 0 wunless {(A,B) > O.
When {A,p> > 0, we can use (2.9) to write

Ty (X_ﬁ+x_eﬁ)v0® Yous v(x_ﬂ-+-x_eﬁ) (vo® YIB) 28 ad(X_'B+X_eJB)YIB

= T(A_+X o) (V5@ T) +u]5|‘2(v0® P H (4.3)

B ﬁ)'
In this expression, the first term on the right projects to 0 under

E, since £-+BI cannot be a weight of &,:
.'.]

|a+8.12 = (A1 2, +1p 1% > 812 +]p ]2
|2

2 2
> InZ 4 lagl® = Ia+agl® = I8y

(Here we have used that <{A&,B) > 0, that a; is short, and that

(A, =0.) ©Putting (4.3) into (4.2), we see that the 1 term
corresponding to B 1is

= - (Ehl(vog X),m(k) (v,® PnHIBD "

Adding the contributions from all the terms, we obtain
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<P_,_1U(v,x)fo(k),uo> E <E',‘_l(v0® X),m (k) (vo® (85, - EAPQ Hg))? s
Bl, >0
(A,B) >0

and this is

I

<E.ﬂ.lf“'o® X),m(k) (vy® (B +Hy)))
by Theorem 2.1b. This proves conclusion (1).

Proof of conclusion (2). By Frobenius reciprocity the map

Sl [ :
v G>H0mKnM#(V' ,¥°' ) into the induced space, given by
ve B> Br, (k) 'v, (. h)
--l
i1s one-one onto the K type T, of the induced space. Put
..l

£y = P.I,'IU(\J,Ya)fO s

This is a member of the K type Tros and it has weight A +a

which is extreme for L Since - _A_+cxI
multiplicity one as a we%ght, and multiples of V' =E, (v0® Ya} are

the only v's that can contribute to the realization of fl via

I ]
ig' extreme, it has

(4.4), as a consequence of Theorem 1.8. Thus

£1(k) = B(v)t, (k) v
=l
A
for unique members B(v) of HomKnM#(V Lo 0.
In (4%.1) we take A'=A;, A"=A, v=v', C(v)=B(v), and
feg=ofe C The m terms are absent since the assumption real rank G

it
= dim ¢ means that Ap p 1is empty. TLet us compute B(v)*uo. This
2 A
is some vector of weight A=A in V1. fThus if {vi} is an
orthonormal basis of the A weight space of T, » We can write
n-l
B(v)*uo = b, (v]v, with b; (v) = (vi,B(\:)*uO) : (4.5)

Then we have

)—l

z bi(V}(Tnl(K v',vi> = ('rhl(k)'lv‘,B(v)*uo)

- (B(\J)Thl(k)qlv',u&

<P!‘-.1U(V’Ya)f0(k)’u0>

=l ;
(Tﬁl(k) VI’E."Ll(VO® (HG-bHO)D by conclusion (1)
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-1
=5 (vi’EAl(VO® U%+Ho))><Tn1(k) v,V
and the irreducibility of T allows us to conclude
pelt
b, (v) = (vi,Eﬁ_l(vC)@ (H;+Hg))) .

Hence

il al A

% A= B l(voca {HG-I—HO)) 5 (4.6)
We substitute from (4.5) into (4.1) and obtain
(PhU(v,X)fl(k),uo)

= I o ®)UE (v e X),m(K) (v, 0 1y, ))

- 12 :
EAHI;BE (B, (viOX),m(k)(ry (X_g+X gp)vy ® 7)) ] .
B[Bu >0 (4.7)

Here v, has b weight A and T, (X-B+X'BB) pulls down b

welights by BI' Since «a is sho‘i%, we have

il
I.ﬂ-—ﬁIle b |A+CCI]2 = _2(!"-;|B> o [,Bllg - 101:[]2 Z _2<!'u18> )

and A -B. cannot be a weight of T, if {a,p> < 0. Thus the
ﬁth ! term is O wunless {A,p) sl 2w " It {n,p} 2 0, then

A +ﬁ1 is not a weight of TA since

leealinie

| A48 = 20,8 +1871% > 2An,py .

So in this case
E, (T.n.l(x—ﬁ+x~eg3)"1® YB) =GB (v @ ad(X_IB+X_eIB)YB)
-2
= 4| Ey (v; @ PQHIB) -

Substituting into (4.7), we obtain

& PyU(v,X) £, (k) » Uy

|
b

bi(v)(Eﬁ(v'@X),-rr(k)(vj_@ (Hv_+p = & 2E0

=T bi(v}(]ﬂ‘,ﬁ(v' ®X),m(k) (vi:s (H\-)—HO) I

1
e (1
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by Theorem 2.1. Taking (4.6) into account completes the proof of
conclusion (2).

5. Application to 8o (odd,odd)

We shall apply conclusion (1) of Theorem 4.1 to a group G with
Lie algebra 6o (odd,odd) in order to supply a proof of Lemma 14.3 of
[L4].

Let us recall the notation of §14 of [4]. The root system is of
type Dy, which has roots ieitej (1#3) in standard notation. We
take b to correspond to indices 1, ... ,N-1 and o to correspond
to index N. The infinitesimal character for a representation o
of interest is

Ay = (ny5...5my 5,0,0)
with n, D oo 2-DN—2 2 0 and with integer entries. The positive
system At is the usual one, whose simple roots are
el-eg, coo 0 eN—Q_eN—l’ eN—l_eN’ eN—l+eN'

We take a=ey ,+ey. Then a=ap+a; has

R
ap = ey end  ap = ep. (5.1)
By convention, ey is positiwve as a root of a .
As is noted on p. 24 of [4], the reflection s _  in the Weyl
group of o acts on KO by reflection in g and %hus fixes xo;

hence Sq fixes the class of the representation ¢ of M that

correspongs HE) Consequently we can take w in §3 to be a

0"
representative in K of S and Theorem 3.1 will be applicable
o HALEhE to > O

We shall see that the multiplicity assumption in part (a) of

when v = fca

Theorem 3.1 is actually satisfied and that Theorem 4.1 can be used
to compute the guantity a(v,k) in the theorem. Let

vy = 2f{pea’ | ;3|0>o and {A,B) =0} . (5.2)

Theorem 5.1. With notation as above, suppose that o is

nondegenerate in the sense of [14]. Put Ay = (A+ey ;)Y . Normalize

the standard Hermitian form for U(écaR) so that it is positive on

154



INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS II

T, Then Ty has multiplicity one in U(%caR) , and the signature
of the standard form on T is sgn(vo—c) 0
=

A

Proof. From the top of p. 116 of [4], we know that T,. has
multiplicity at most one. Thus Theorem 3.la is a.pplicable,'-g:nd we
are to compute a certain quotient a(-v,k)/a(v,k). We shall use
conclusion (1) of Theorem 4.1 with X=Y_ , in order to make the
computation.

From (5.1), we have A= (!\_+eN_l)v = (.J\.+aI)" , and Lemma 14.1 of
[4] shows that <,n_,aI> =0. Also it is apparent that oy is short
among the members of A . Thus Theorem 4.1 applies. The conclusion

K
for v real is that
-1
afv,k) ={1, (K)™°E, (v.®Y ),E, (v.® (H +H.))} .
_A_l “'l 0} a .1"-.1 0 v 0

Since o has dimension 1, HO is a multiple of Ha , the
multiple being given by R

| -2 A QD Riapltl. D) o

RI 15€&+ a Q’.R
Bly» 0
(-ﬁ-”B) =0

and the number of

Each of the PA's 1in the sum has PQH}E>> =|BR=czR ’

such g's is ,%_vo, with v, as in (5.2)e" "Thusy for v=%caR, we
have
sthiE
H +H, = g(cwo)HaR.
Hence

-1
a(%cosR,k) = %(vom)('r_h_l(k) Ehl(vO® Ya)’E!\.l(vO® H“RD X

If the inner product in this expansion is not identically zero, then

a(—%caR, k) oS

e 2

a (-%caR, k) vgte
and Theorem 3.la will finish the proof.
First we check that g occurs in T\ ®p€ . Define ﬁ:'[ in
_./\nU {ol by .h_-+-,8£ = (f‘-.+aI)" = L (Recall Proposition 1l.5a.) We

shall prove that ﬁi is conjugate to a. Dby W S Pact, fIrst
o
notice that ,Bi # 0 since |!l.1|2= |.ﬂ.|2+|a1]2;£ [A]2. et EiEe

the result of making o. dominant for A

T Ag AL 'ﬁ‘+51,I is not
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A+ dominant, then Lemma 1.6 produces a ‘QI‘; simple Y1 with
2(A,YI)/FYI[2=+1 and 2<I61,I’YI>/|YI12 =-2. The latter formula
shows that vy is short. gSince the entries of A are integers,
2(!\_,71)/|YI[2 is then an even integer and cannot be +1. We
conclude that A+py ; 1is /_\,;; dominant, so that JS£=,BLI.

Now we apply Theorem 1.7 with A'=A and 8 =;8£ . The length
condition is clearly satisfied. If (e does not occur in Th ®nc .
then the theorem gives us a &E simple root Y]': such that
Y]': Lz st A; A <Y£"BP =0, and both YI'[+'BIl and Yi—{ii are in
AV flo}". " since yfﬁ‘ are in %U{o} . YI is short. Since '«(I'
is in &K p» Lemma 14.1 of [4] shows that Y= ey y=ar. From the
previous paragraph, BI is WK conjugate to op = Yi‘ Taking into

account that Ay is a root system of type B_+B_ , we see that

Yit'@i are in A,. But they are in A

Hence they are in A

B also, since they are long.

B, ¢ But then they cannot be in AnU fo}, ana

we have a contradiction. We conclude that Tﬁ'l occurs in TﬁGP
Now let us return to proving that

-1

<Thl(k) Ef\l(vo@Ya)’Eﬂ. (vo®H, »

R

is not identically 0. Since A ;é i g Ty occurs irreducibly in
'r @D{E by Proposition 1.5b. Thus it is enough to prove that

.h (vo®Y,) eand EA (v ®H, ) are nonzero. The first of these
vectors is nonzero by Theoreﬁ 1.8, and we examine the second. Since

J\l(\ro@ Ya) has weight A +a; and since
2
(Atap,ap) = |aI| Pon
Tﬁ_l(x—a+x-9a)E_ﬁ_l(VO® Y,) is not zero. Thus

JE

0 # T.&l(x—a+x—ea

Eﬁl(vO® [X_o X gq2¥,])  since (hyap) =0
= -25
= -4|qf Enl(vo® HGR) by (2.9),

and the proof is complete.

6. Application to certain groups of real rank two

We shall apply conclusion (2) of Theorem 4.1 to a group G with
restricted root system of type A, and with just one conjugacy class
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of Cartan subgroups. These groups are the subject of [3], and our
objective in this section is to supply a proof of Proposition 4.1 of
that paper.

Let us recall the setting in [3]: All complex roots have the
same length and are orthogonal to their complex conjugates, by (1.1)
of [3]. We denote the positive restricted roots by €1-€p» &1-€3
ep-e3 . We take oap=e,-e; and define ar as in Lemma 3.8a of [10]

to make a=a,+a be a root; since M# is connected, this choice

R i
makes it so that the action of 54 on the equivalence class of o

is mirrored by the action of g Ron the infinitesimal character

RO. We let w be a representa%ive gk @ik Sq_ »

that wo=0c , so that the material in §3 applies. TLet A be the

and we assume

minimal K type of the induced representations, and define
o ={pea| (a,p)=0}.

Proposition 1.4 of [3] says that AL is generated by simple roots of
a+. Let L be the analytic subgroup of G corresponding to b@®a

and AL, and let Lss be the commutator subgroup. Then Proposition
1.2 of [3] says that Lss has real rank one or two, and our interest
is in the case that it has real rank two. Let P, be the functional

p for Lss'

Theorem 6.1. Let notation be as above, in particular with 5,

fixing the equivalence class of o . Suppose that the standard N
invariant form is normalized so that f, has (fo,fo):=l, Put
h]_=(&+a1)' . Then the function

T 5 g U gPrata) o

is a nonzero member of the induced space, and (fl,fl) is a positive

multiple of l-—cz.

Remarks. The parabolic subgroup MAN is minimal under our
assumptions, and M 1is thus compact. Hence o is finite-

dimensicnal.
Proof. We are going to apply Theorem 3.1b with v =cp, e B0

Since is a positive multiple of the theorem is applicable.

B, %n 3
We are to compute a certain quantity ©b(v,k), which we take to be

b(v,k) = (P.,!‘U(v,Y_a)PﬁlU(v,Ya)fo(k),uo) s
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and show that b(-v,1l) is a positive multiple of c2-1 when
v =cpp .
To compute b(v,k), we use conclusion (2) of Theorem 4.1. By
(1.2¢) of [3], we have (A,aI)=:O. Let us check that a; is short
K In doing so, we shall assume that g is
simple, as we may for the proof of Theorem 6.1 without loss of
generality. If a is not short, then there exists B =BR-+BI in
A such that |ﬁI|< LuI1 and (aI,ﬁI>5£O. Since all complex roots
in A are orthogonal to their conjugates and have the same length,

Br=0. Thus B, 1s in A. But then

among the members of A

1812 = Fla_l? = Flal?

gives an illegal length relation among the roots of A. We conclude
that o is short.

Since there is just one conjugacy class of Cartan subgroups in
G, WwWe have real rank G = dim o . Thus Theorem 4.1b applies and

gives us
b(v,k) = <T£(k)“1m_n_(gﬁl(vo® Y_g) 8 Y,) Ey (B (vo® (1, +H5)) @ (,-Hp) )

for v real. Now

H,.= Z PH,= L PH, =% L PH, = %H I
0] ,B€Q+a 5 ﬁeaiu |[3 »B(—:&La IB % 2pL pL
Blo?>0 Bl.70 Bly >0
(-A-,,B>=O
For v =cCpp s b(v,k) therefore reduces to
(G, = (L -1)<-r (k) E (h (vo® Y, i Sk E_I,“(E"l(vosHpL)aHpLD :

(6.1)

Since the expression of interest for Theorem 3.1b is b(-v,1l), the
proof will be complete if we show that the inner product in (6.1) is
DESLEhrE wEE IRl g Actually it is enough to prove that the inner
product is nonzero, since it is constant in v and since U(v) 1is
unitary for vw=0.

First we check that T, occurs in T, ®y
Ay U0l by h+ﬁi:=(ﬁ+a1)'::1 Ay (Recall Prop051tlon 1.5a.) We
shall prove that ﬁ is conjugate to ar by W In fact, first
notice that B15£O since |A1|2-]ﬁ|2-+1a |2;£|ﬁ1% Let 51,1 be

C. Define BI in
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the result of making o dominant for A ALt _ﬂ_+,|31 - is not
»

.|.
+ K,A °
A}‘{ dominant, then Lemma 1.6 produces a 3% simple YI with
2, vp/lvol% = 11 (6.2a)
and
2
2By, v /Ivgl? = 2. (6. 2v)

Since real rank g = dim a , AB = is empty. Thus An c AK, and
; =
s in A . “Since |o:I] = 1;31 I] and since o, 1is short
2

(6.2b) says By,7= "Y1 But then (6.2a) gives

0 = (!'-.,aI) = (.h,ﬁl o= -<.I'\.,'YI> £ 0,

and we have a contradiction. We conclude that BI f’l I°

Now we apply Theorem 1.7 with A'!'=A and A= JBI The length

condition is satisfied since /\n c A and since AK A s AT O0h
system. If 'r}tl does not occur in "';-. @p then the theorem gives
= + I e = ! 09 =

us a 4, simple root YI such that yi is in AK, 5 (YI,JBI> =0

and both YI”%I and YI 'BI are in ADU{O} Now

2 2 2
lagl® = [84l® < lvgl® + 3412 = 1yaxpi]|®

I

hence in A (since all complex

B’ B,n
roots have equal lengths and are orthogonal to their conjugates).

implies that YTf‘Bi AR A

But AB,I’I is empty, z.nd we have a contradiction. We conclude that
T-A-l occcurs in 'I'.ﬁ‘@p .

Arguing with characters, we see from the occurrence of T in
"rn®nc that T, oceurs fins ®pc. Note that _1\.1;4!‘. sincert
il ¥x

Now let us return to proving that the inner product in (6.1) is
nonzero at k=1. Since T_n_ occurs in "rﬁ.@pc and T.& occurs in
T-"—1® pﬂj ,» Theorem 1.8 shows t%at

Ey (E_A_l(voa Ya) ® Y—o;) (&)

1s nonzero. If we can prove that the vector

E'A'(Eﬁl(vo® HPL)®HpL) (6.4)

is a nonzero multiple of (6.3), then the inner product in (6.1) will
be nonzero at k=1, and the proof will be complete. In place of
(6.4), we may as well consider
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Ey (EA (v0® H, VBERD ) .

ik R R
We start from the identity

E!\-(Eﬁl(vocﬁ HGR)®Y_Q) = @ o
which holds since

ﬁ-+aI is too long to be a weight of

-
Applying Th(Xa+Xea), we get

0 = Eﬁ_(E_A_l(voea [xa+xea,HaR])®Y_ﬂ)
+ By (E_,_l(vos HGR) G g Yl
A 2 ¢
- !aRI Eﬁ_(Eﬁ-l(voeka)®Y_a)

2
Lo 5 e T e R e 0 S bt 1 PSS
A Al 0 o op

fL =

(6.5)

This relation exhibits (6.5) as a nonzero multiple of (6.3), and the

proof is complete.

160



10.

1Ll

12.

13.

14,

15,

INTERTWINING OPERATORS AND UNITARY REPRESENTATIONS IT

References

M. W. Baldoni Silva and A. W. Knapp, Indefinite intertwining
operators, Proc. Nat. Acad. Sci. USA 81 (1984), 1272-1275.

M. W. Baldoni-Silva and A. W. Knapp, Indefinite intertwining
operators II, Proceedings of Cortona conference, 1984, in press.

M. W. Baldoni-Silva and A. W. Knapp, Irreducible unitary
representations of some groups of real rank two, "Non-Commutative
Harmonic Analysis and Lie Groups," Lecture Notes in Math., No.
1243, 15-36, Springer-Verlag, Berlin, 1987.

M. W. Baldoni-Silva and A. W. Knapp, Unitary representations
induced from maximal parabolic subgroups, J. Func. Anal. 69
Gleiei s 2iiil=G)

M. W. Baldoni-Silva and A. W. Knapp, Intertwining operators and
unitary representations I, J. Func. Anal., to appear.

Harish-Chandra, Discrete series for semisimple Lie groups II,
Acta Math. 116 (1966), 1-111.

S. Helgason, "Differential Geometry and Symmetric Spaces,"
Academic Press, New York, 1962,

J. E. Humphreys, "Introduction to Lie Algebras and Representation
Theory," Springer-Verlag, Berlin, 1972.

A. U. Klimyk and A. M. Gavrilik, Representation matrix elements
and Clebsch-Gordan coefficients of the semisimple Lie groups,
J. Math. Physiecs 20 (1979), 1624-1642,

A. W. Knapp, Commutativity of intertwining operators for
semisimple groups, Compositio Math. 46 (1982?, 33-84.

A. W. Knapp, Minimal K-type formula, "Non Commutative Harmonic
Analysis and Lie Groups," Lecture Notes in Math., No. 1020,
107-118, Springer-Verlag, Rerlin, 1983.

A. W. Knapp, "Representation Theory of Semisimple Groups: An
Overview Based on Examples," Princeton Univ. Press, Princeton,
Wodlog G

A. W. Knapp and E. M. Stein, Intertwining operators for
semisimple groups II, Invent. Math. 60 (1980), 9-84.

A. W. Knapp and G. J. Zuckerman, Classification of irreducible
tempered representations of semisimple groups, Ann. of Math.
116 (1982), 389-501, and 119 (1984), 639.

R. P. Langlands, On the clagsification of irreducible
representations of real algebraic groups, mimeographed notes,
Institute for Advanced Study, Princeton, N. J., 1973.

161



M. W. BALDONI-SILVA, A. W. KNAPP

16. H. Midorikawa, Clebsch-Gordon coefficients for a tensor product
representation Ade@w of a maximal compact subgroup of real
semisimple Lie group, "Lectures on Harmonic Analysis on Lie

Groups and Related Topics," Lectures in Math., No. 14, 149-175,
Kinokuniya, 1982.

17. D. A. Vogan, The algebraic structure of the representation of
semisimple Lie groups I, Ann. of Math. 109 (1979), 1-60.

M. W. BALDONI-SILVA
Dipartimento di Matematica
Universitd degli Studi di Trento
38050 Povo (TN), Italy

A. W. KNAPP

Department of Mathematics
State University of New York
Stony Brook, NY 11794, U.S.A.

162



