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For a linear semisimple Lie group with a compact Cartan subgroup, the authors
obtain formulas for the action of intertwining operators on certain subspaces of
standard induced representations. These formulas provide explicit limitations on the
pool of candidates for irreducible unitary representations, since the only possible
invariant inner product is given by such an intertwining operator.  © 1989 Academic
Press, Inc.

The problem of classifying the irreducible unitary representations of a
semisimple Lie group comes down to this: The Langlands classification
describes the wider class of irreducible “admissible” representations, and
one simply has to decide which irreducible admissible representations
admit invariant Hermitian inner products. In fact, the problem is even
more concrete than this description makes it sound. The Langlands
classification realizes representations on quotients of L? spaces, and the L?
norm provides a noninvariant inner product for reference. There is at most
one invariant Hermitian form (up to scalars), and this form is given in
terms of the L? inner product by an explicit intertwining operator. (See
[12, Chapts. 14 and 16], for details.) To decide unitarity, it is enough to
determine whether this intertwining operator is semidefinite.
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Although the operator is given by an explicit integral or singular
integral, attempts at evaluating the integral or deciding the operator’s
signature directly have been largely unsuccessful. In [1, 2], we introduced
two related techniques to help compute a small part of the signature. As a
result we obtained necessary conditions for unitarity. The techniques are
based on an old idea that has been used extensively by Klimyk, often in
collaboration with Gavrilik, for particular classical groups (see, e.g., [10]):
We take advantage of the intertwining property of the operator to relate
the behavior on one subspace to that on another.

In four papers [2-5], we combined known results with formulas
obtained from these techniques to classify irreducible unitary represen-
tations in certain situations (SU(N, 2), some other groups of real rank two,
and Langlands quotients obtained from maximal parabolic subgroups).
Although the four papers contain the full combinatorial arguments
necessary to derive the classifications from the formulas, they do not
contain the proofs of the formulas themselves.

In the present paper we begin the derivations of these formulas. We shall
see that the formulas are rather complicated to derive from the techniques

TABLE 1

Locations of Proofs of Announced Results

Announced result Location of proof

Theorem 1 of [1] Corollary 5.2 and Remarks
Proposition 3.4 and Corollary 3.6

Theorem 2 of [1] Corollary 5.2 and Theorem 7.2

Theorem 3 of [1] Corollary 3.6

Theorem 4 of [ 1] Proposition 3.4 and Remarks
Conclusion (b) of [ 1] not completely proved

Theorem S of [1] Theorem 3.3

Theorem 6 of [1] [5]

Theorem 7 of [1] [51

Lemma 2.1 of [2] Corollary 1.6

Theorem 2.2 of [2] Theorem 5.1 and Remarks

Theorem 2.3 of [2] Theorem 6.4 and Remarks

Theorem 2.4 of [2] Theorem 10.1 and Remarks

Theorem 2.5 of [2] Theorem 2.1 and Remarks

Proposition 3.1 of [5] Theorem 1.3

Theorem 3.2 of [5] Corollary 5.2 and Remarks

Theorem 3.4 of [5] [14]

Proposition 3.5 of [5] Corollary 7.3

Proposition 3.6 of [5] Corollary 8.2

Proposition 3.7 of [5] Corollary 8.3

Proposition 3.8 of [15] Theorem 9.1
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of [1,2], and we shall be content for now with handling only those
formulas that are applicable when the underlying semisimple group has a
compact Cartan subgroup. In a sequel we shall derive the formulas that are
applicable when there is no compact Cartan subgroup.

The derivations begin in Section 5. In Sections 1-3 we develop some
preliminary material on decompositions of tensor products and on mul-
tiplicity questions, and in Section 4 we review the techniques introduced in

[1,2]

Contents. 1. Occurrence of K types in a tensor product. 2. Some iden-
tities for half sums of roots. 3. Multiplicity questions for K types.
4. Necessary conditions for unitarity. 5. General one-step formula. 6. Two-
step formula with some conjugacy. 7. Two-step formula applicable to gaps
in Sp(n,1). 8 Two-step formulas applicable to sharper estimates in
SO(N, 2). 9. Two-step formula applicable to gap in SO(2n, 3). 10. Two-step
formula giving elliptical cut-offs.

1. OcCcURRENCE OF X TYPES IN A TENSOR ProbucTt

Let G be a linear connected reductive Lie group, and let K be a maximal
compact subgroup. We denote Lic algebras by corresponding lower-case
German letters, and we write C as a superscript to indicate com-
plexification. Let 6 be a Cartan involution of g with respect to {, and write
g=1@®p as the corresponding Cartan decomposition. We fix on g a non-
degenerate symmetric bilinear form B, invariant under 8 such that ad g
acts by skew transformations, B, is negative on f x f, B, is positive on p x p,
and By(f, p) =0. We extend B, to g© x g so as to be complex bilinear.

In this paper, we shall assume that rank G =rank K and that g has no
simple factor of type G,. We fix a maximal torus B in K, and then B is a
Cartan subgroup of G. Let 4= 4(g%, b®) be the set of roots of g* with
respect to b®, and let 4, and 4, be the subsets of compact and noncompact
roots, respectively. Roots are real-valued on ib. The form B, induces an
inner product ¢-,-> on the set of linear functionals on b® that are real-
valued on ib, and we write p’ L p” if {g', u”>=0. If y’ and p” are roots,
we write u' L1 u"” (and say u’ is strongly orthogonal to u") if neither
p+p" nor w—p”is in 40U {0}.

Starting in Section 2, we shall work with a specific choice of 4%, the set
of positive roots within 4, and we shall let 47 = A~ 4. But for now let
us suppose that 4; is any positive system for 4, = A(t%, b®). If W denotes
the Weyl group of 4, and if u’ is a linear functional on b€ that is real-
valued on ib, then there exists we W such that wy' is 4} dominant, and
we write (') for this dominant form. If A" is 47 dominant and is
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(analytically) integral (ie., if exp A’ is well defined on B), we let 7, be an
irreducible representation of K with highest weight A’. We shall regard p®
as a representation of K under Ad(K); the weights of p® are the members of
4,,, each with multiplicity one.

PROPOSITION 1.1.  Let A" be integral and A} dominant. Then

(a) every irreducible constituent of ©, ® p* has highest weight of the
Jorm A"+ B with B in 4,

(b) every irreducible constituent of 1, ® p© has multiplicity one.

This is well known and follows from Problems 13 and 14 on p. 111 of
[12]. In Theorem 1.3 below we shall describe which forms A’ + 8 actually
do arise as highest weights in 7, ® p®. But first we need a lemma. If 4’ is
dominant integral, we let 4, ,. be the subset of roots in 4, orthogonal to
A'. This is a root system, and the simple roots of 45 =4, , N4} are
simple in 4 since A’ is dominant. Let Wy ;. be the Weyl group of 4 ,;
this is the subgroup of W fixing 4’, by Chevalley’s Lemma [12, p. 81]. If
u' is merely integral, we let 4, . be the subset of roots in 4, orthogonal to
w’; this is a root system but is not necessarily generated by 4; simple roots.

LemMa 1.2. Let A’ be integral and A} dominant, and let B be in 4,,.
Then (A'+B)Y is of the form A'+ ' with ' in 4,, and B’ is obtained
constructively as follows: Let B, be the result of making B dominant for A} ,.
(by means of Wy ). Then exactly one of the following things happens:

(a) A"+, is A} dominant, and ' = ;.

(b) There exists a A} simple root y with 2{A",y>/|y|*= +1 and
2{B1,7>/|v|1> = —2. In this case let B, be the short noncompact root B, + y.
Then B’ is the result of making B, dominant for A} ,. (by means of Wy ,.).

Remark. 1f B is short, then so is f,, and 2{B,,y>/|y|*=—2 is
impossible. Thus the process above stops with (4’ + )Y = A"+ 8,.

Proof. 1If yis 4} simple, we write

2<A'+B1,?>=2<A',V>+2<I3nv>
ly]? I7]? ly1?

Foryin 4% ., both terms on the right are >0. For y notin 4} ., the first
term is =1, and the sum on the right can be <0 only if the two terms on
the right are +1 and —2, respectively, since g has no G, factors. Thus
A"+ B, is 4F dominant unless the condition in (b) holds.

In any event, let B, =wf with w in W, .. Then wAd'=A’, so that
wA'+B)y=A"+p,. If A"+ f, is 4} dominant, we thus conclude f' = §,.
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Now suppose the condition in (b) holds. Let s, be reflection in y. Then the
inner products in (b) force

s(A'+B)=(A"=7)+ (B +29)=A"+ (B +7)=4"+5,,

so that A’ + f is conjugate to A’ + B, by W,. If we now repeat the proof,
replacing f§ by f§, throughout, then the remark shows that (4’ +§,)Y =
A’ + B with B’ equal to the result of making f, dominant for 4} .

THEOREM 1.3. Let A’ be integral and A} dominant, let B be a noncom-
pact root, and suppose A’ + B is Af dominant. Then t 4. , 4 fails to occur in
7, ®p© if and only if there exists a (necessarily short) A}t simple root y such
that y is in A¢ . and that y L 8 but y LA B.

Proof. 1If y' is an integral form, we define sgn p’ as follows. If u* L y for
some y in Ay, we take sgn u' =0. Otherwise, there is a unique w in Wy
such wu' is 4} dominant, and we take sgn u’=sgn w. From [9, p. 142] or
[12, p. 112], we have

T, ®pt= z SEN(A" + B' +0x) Ta s p v o) —op0 (1.1)
B edn

where 6 is half the sum of the members of 47 .
Now suppose 7., 5 does not occur in 7, ® p®. By (1.1), there exists
p'#p in 4, such that

(A" +P+6g)Y —0x=(A"+ +,)" — . (1.2)

Since d is algebraically integral, it will be helpful to regard (A’ + f+0,)"
as the highest weight of a representation of a finite cover of K. Since A’ +
is 4% dominant, (1.2) implies that A"+ '+ is a weight of 7,45, ,,.
Hence

(A" +B+0)—(A'+f' +8)= Y n,y, n,=integer=0 (1.3)

+
yedy

and

A"+ B+ 2= A"+ B +5k|°. (1.4)
Expanding (1.4) gives

204"+ 35, B—B'>=1B1"—1|BI>.

Since A"+ 6, is A} dominant and nonsingular, substitution from (1.3)
shows that || —|B|*>>0. Thus p’ is long and B is short. Hence we have
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|BIP=2CA"+0,, =P'>= 3 n2(A +dx.7)
yedg
2<5 ,”> 3 2
= Z n,(#)[?’“? Z n.,,|'})|",
e +

‘,’EA; yedg

and equality can hold throughout only if #,> 0 implies y is orthogonal to
A" and is 47 simple. Since § is short, we conclude that equality holds
throughout, that there is only one nonzero term on the right, and that its 3
is short and has n,=1. Thus f— f'=y with y short and simple in 4} ,.
Since the long root f’ is the difference of the short roots f and y, p and y
must be orthogonal but not strongly orthogonal. This completes the proof
in one direction.

Conversely suppose that there exists a short A4} simple root y such that y
isindy , and thaty L gbuty 1/ B. Put f'=pf—7, and let s, be reflection
in y. Then

S(A'+B+0)=A"+ B+ (6x—y)=A"+F +«

shows that (1.2) holds and that sgn{A'+ '+ d,)= —1.
In (1.1), suppose that another term, say the §” term, has

(A +P+0g)" —0x=(A"+p"+6x)" — 0k

and f” # f. Running through the argument in the direct part of the proof
and then the argument in the above paragraph, we see that
sgn(A' + B” + ) = — 1. Therefore the total coefficient of 74, 5, 5.+ s, ID
(1.1) is <0 and must be 0.

COROLLARY 1.4. Let A’ be integral and A} dominant, let p be a noncom-
pact root, and suppose A' + f is A} dominant. Then T 4. , 5 occurs in T, @ p°©

if either
(a) all noncompact roots have the same length or
(b) B is long.

THEOREM 1.5. Let u' be integral, let A" = (u')", let B be a noncompact
root, and suppose T, , 3 occurs in 1, @p®. Let E=E,,. , 5. be the projec-
tion of T 4 @ p® on the 1, , 5, subspace (along the subspaces for the other K
types). If v’ is a nonzero weight vector for t, with weight p’ and if X, is a
nonzero root vector for B, then E(v' @ X;) is nonzero.

Proof. For much of the proof, we shall assume that y' = A’, i.e., that y’
is 4% dominant. First suppose A’ + f is 45 dominant. Let v" =Y v, ® Xj
be a nonzero highest weight vector for the 7., , subspace of 7, ® p©. We
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may assume that each v, is a nonzero weight vector of weight A"+ §— B,
and that these weights are decreasing as i increases. Suppose v, #cv'".
Choose y in 4% with 1 ,(X,) v, #0. Then

0=(r,®Ad)(X (Zv ®Xﬁ>

=Y 1,(X) 0. ®Xs+Y 0,®[X,, X;].

The only term on the right side with first component of weight
2A+ B~ +7y is 1,(X,)v,®X;. Therefore 7,(X,)v, =0, contradic-
tion. We conclude that

V' =c'®@X+ Y 0,®@X, (1.5)
iz2
with ¢ #0.
Let us introduce a K-invariant inner product for 7, and take the
induced inner product on 1, ®p®. Then E=E . 4 is an orthogonal
projection. If E(v' ® X;) =0, then (1.5) gives

v = Ev" =E< Y v,-®X,,’>.

iz2
<

Since the two terms on the right side of (1.5) are orthogonal and ¢ i1s #0,
this inequality gives a contradiction. ‘

This completes the proof if 4’4+ f is 47 dominant. The next case to
consider is that A’ +sf is 4} dominant for some s in Wy ,. Let w be a
representative of s in K. If E(v'® Xz) =0, then also

Thus
Y 0 ®@X,|.

iz2

0" =HE(Z v.~®Xﬂ,)

iz2

0=1( 4,5 (W) EQW' ®X;)=E((t,®Ad)W)(v' ® Xg))
= E(14(w) v’ ® Ad(w) X).

Since s is in Wy 4, T4(w) v’ is a nonzero vector of weight s4’= A" in the
space for 7,; thus 1,(w)v’ is a nonzero multiple of v’. Moreover,
Ad(w) X, is a nonzero multiple of X ;. Thus (1.6) gives us E(v' ® X5) =0,
in contradiction to the result of the previous paragraph.

This completes the proof if 4’ + sf is 4} dominant for some s in W ,..
Now we consider general B. Choose s in Wy , such that sf is 4}
dominant. The previous paragraph and Lemma 1.2 show that we are done
unless B is long and there exists a short 45 simple root y such that
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2{A, /|77 =+1 and 2{sB, 7>/} >|* = —2. The root f,=sf + y is short,
and the result of the previous paragraph shows that E(v' ® X,5,.)#0.
Since ¢’ is a highest weight vector for 7 ,., we have

T+ o (X)) E0'®@ X ) = E(14(X,) v’ @ X5 +v' ®ad(X,) X )
= E(U’ ®ad(X~,) Xs[})

The right side is a nonzero multiple of E(v'® X, ,), which we know to be
nonzero. Therefore E(v'® X,;z) on the left side is nonzero. Arguing with a
representative w of s as in (1.6), we see that E(v'® Xj) #0.

Finally in the general case in which x’ is not necessarily 47 dominant,
we introduce a new positive system for 4 so that u’ is dominant, and then
the theorem reduces to the case that has already been proved.

COROLLARY 1.6, Let u' be integral, let A'=(u’)", let B be a noncompact
root, and suppose either that all noncompact roots have the same length or
that B is long. If v' is a nonzero weight vector for T 4. with weight u’, and if X,
is a nonzero root vector for B, then E . 5 .(v'® Xz) is nonzero.

Proof. This follows from Theorem 1.5 and Corollary 1.4.

2. SoME IDENTITIES FOR HALF Sums oF RooTs

Qur chief objective in this paper will be to obtain explicit formulas for
the effect of standard intertwining operators on certain K types of induced
representations. In this section we introduce the representations to be
studied, note how to compute their minimal K types, and establish some
identities for half sums of roots.

We shall introduce our notation in the full generality that we need. But
we shall state and prove the main result of this section, Theorem 2.1, only
for the case of representations induced from maximal parabolic subgroups.
However, we have used Theorem 2.1 in [2] in more generality; thus we
shall indicate at the end of this section the simple modifications in the
statement and proof that give the generalization quoted in [2].

We continue with the notation of Section 1. In particular, g has a com-
pact Cartan subalgebra b, 4 is 4(g%, b*), and 4 and 4,, are the subsets of
compact and noncompact roots, respectively. By [8, pp. 155-156], we
select root vectors X, for fin 4 in such a way that

Bo(Xp, X_p)=2/|BI? (2.1a)

and
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Then it follows that Hy, defined by
Hy=[Xp X_4), (22)
satisfies B(Hz) =2 and that

Xp+X_pg, i(Xg—X_p) are in g if § is noncompact (23)
Xp—X_p, (Xg+X_p) are in g if f is compact. '

The Hermitian form
(X,Y)=—ByX,0Y) (2.4)

is a positive definite inner product on g® that is invariant under Ad(K). If
(1, V) is any finite-dimensional representation of K and if (.,-) is a
positive definite K-invariant Hermitian inner product on V, then
7(X)*= —1(X) for X in {, and it follows that

(X)*=—1(X)= —t(0X) for XefiC
From this identity we readily find that
T(Hg)* =1(Hp) for Be4 (2.5a)
X)*=1X_)) for yedg (2.5b)
[ X, Xp1*=—1[X 45, X 4] for Bedg,fedg
orfied,, B ed,. {2.5¢)
For functions on G, we use vector field notation for differentiation,

letting X1(g)=(d/dt) f((exptX) 'g)|,_oif Xisin g. If X and Y are in g
and if Z=X+iY, we let Zf=Xf+iYf. Then

Zi=Zf. (26)

Fix a nonempty ordered set «,,.., o, of noncompact roots that are
superorthogonal in the sense that no nontrivial linear combination of the a;
is a root. (Often we shall be interested in the case /=1, and then we write «
for a,.) Define

!
a=Y RX,+X ,),
j=1

j=

and use the lexicographic ordering from the ordered basis

X+ X o Xyt X,

580/82/1-11
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to define a notation of positivity. Using this a and this notion of positivity,
we can construct a parabolic subgroup MAN in the usual way, and MAN
will be cuspidal in the sense that rank M =rank(Kn M). Let p be half
the sum, with multiplicities counted, of the roots of (g, a) that are
positive relative to N. We write &, for the Cayley transform of «;. Then
(X, + X _,)=2

Let b_ be the common kernel in b of the a/s. Then b_ is a compact
Cartan subalgebra of m, and

4_={yed|y L «;forall}

may be identified as the root system of (m%, bC). [Caution: The root
vectors for the roots of (m®, bC) are not the X.’s for ye 4 _ but are Cayley
transforms (relative to a,, .., «,) of the X’s.]

We fix a discrete series or (nonzero) limit of discrete series representation
o of M. Let M* =M,Z,,, the product of the identity component and the
center of M. By (12.82) and Proposition 12.32 of [12], ¢ is induced from a
discrete series or limit o* of M* acting in a Hilbert space V°".

Now Lemma 12.30 of [12] shows that M™* = M, F, where F is the finite
abelian group generated by the elements y; = exp niH; with 8 a real root of
4(g%, (a@b_)). Since the Cayley transformed &’s span the real roots and
since the «;s are assumed superorthogonal, the only f’s that are relevant
are f=d, Thus ¢* is determined by its Harish-Chandra parameter
(40, (4_)") and its scalar value on each element y; of Z,,. We write 7,
for v .

Let A be the minimal (Kn M%) type of 6* given on b_ by

A=do—b6_ +5

where 6 _ . and 6, are the respective half sums of the positive M-com-
pact and M-noncompact roots of 4 _. Following the procedure of [11], we
introduce a positive system 4* containing (4_)* such that each «; is
simple for 4 *. (The condition on the «;’s in [11] is weaker than simplicity
of the «s, but the s turn out to be simple here because of the
superorthogonality.) Let Af =AY "4, and A} =4% 4, and let 4,
dx,8,,and &_ be the half sums of the members of 4%, AF, 4}, and
(4_)*, respectively.
We shall study the family of induced representations

U(v)=U(MAN, o, v)=ind§, L0 ®e' ®1), (2.7)

where v is a complex-valued linear functional on a and the induction is
normalized so that imaginary v yields unitary U(v). We regard the induced
representation as acting on functions by the left regular representation.
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The main result of [11] is that the highest weights of the minimal X
types of U(v) are given by all 4} dominant expressions of the form

Taﬁ-u, (28)

where u is given by Y°/_; s;; with each s, equal to +4a; or to 0, depending
(in a nontrivial fashion) on the value of o*(y,). Moreover at least one
choice of the system of signs in the + o, terms of u gives a 4} dominant A.
We fix such a choice of u and hence A From [11] an alternatlve formula
for A is

{
A=A +0—=20,— Y do,+n (29)

j=1

It is clear that A|, = A. The first part of the proof of the minimal X type
formula that appears on pp. 629-631 of [12] shows that a highest weight
vector for 7, in U(v) is highest of type 7, for K~ M, and that the value of
74(7,,) on a highest weight vector is the same as the scalar value of a#(yaj).
(To see these facts, it is necessary to supplement the arguments of [12]
with the observation that & =spant ,(K,)v, in [12] is one-dimensional.
In fact, G, is locally a product of SL(2, R)s since the «/s are super-
orthogonal Hence K, is abelian and is contained in B.)

It will be important to us that 7, has multiplicity one in U(v). This is a
theorem of Vogan [19]. In our situation the arguments in [12] reduce this
assertion to the corresponding result in a product of SL(2, R)’s, where it is
well known.

For the remainder of this section, we shall take /=1 and write a =«a,.
Later we shall state a version of Theorem 2.1 valid for general /. Define

2{p, 0y

—1
AP

+2#{ped}|p—aecdand (A, f—a)=0}

+#{ﬂe4:|ﬁ—aea,|ﬁ|2<| |22<—|”;,—"—|2°‘—>=+1} (2.10)
0—=l—2<l/;’|?>+2#{ﬁed,‘f|B+aeAand {4, B+a)=0}
v fpeazipracaipranr BL2 il o

THEOREM 2.1. Let u’ be an integral form on b, and define (with the signs
taken consistently throughout)

580/82/1-11*
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B - 2 2 W, BFay
#{ﬁeﬁnw-#aemlﬁf <|al’—mfa|—z— 1}
2<H/,ﬁ¢a>>l}
IBFal?
2u, BFay 2}
IBFal’

—2# {BEA,,Iﬂ¢a€A, [B12 = |al?,

—2# {ﬁeAnlﬂiaeA, 1B12<lal?,

_2<,u'ioc, to>

=p(X,+X_,) 7

~ R W ta, fray
# {BEAn‘ﬁiaEAalﬁ‘ <\0f|2,_W—1}

Wpta, ptrad }
VEXI

2{u' +a, fta)
B ral 22}

—

—2# {ﬂednlﬁtaezi, 18172l

—2#{BeAAﬂ¢aeAAﬂV<|w%

Then

(a) T+H=2#{Bed,|BFacd, |BI>>|a|’ u LBFal},
(b) T+WI=0ifu' is 4% dominant and 1, . , . occurs in T, ® p®,
() I=—ll=vyif W'=Aandz,,, . occursint,®pc.

Proof of (a). Put u, =2y, y>/|7|% The sum 1 +11—2p(X,+ X _,) is

= —2-# {Bed,|BFaed |BI’<|a|’ upz,=1}
—# {Bed,|praed, |BI’<|al’ (W £ a)s.,=1}
—2# {Bed, | BFaed |BI* 2 al’ ppr 21}
—2# {Bed,|BFaed |BI*<lal’ upz,>2}
—2# {Bed,|Bracd [BI*>]al’ (W ta)p,, 21}
—2# {Bed,|Bracd |BIP<|al’ (Wt a)ps, 22}

On the second and sixth lines, we have (+a);,,=2. On the fifth line, we
have (ta)s,,=0 when |f[*>|a|’ and (fa)s,,=1 when |B]*=]a|
Taking these relations into account and replacing f§ by —f in the same
lines, we find that the above expression is
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=—2—# {Bed,|BFaed |BIP<|al} phr =1}
—# {Bed,|fFaed, B <|al? ppz.=1}
—2# {Bed,|BFaed, |BI>=|al} upz,21})
—2# {Bed,|BFacd, |BI*<|a|? ppz.22}
—[2# {Bed,|BFacd, |BI*> o] ppz,< —1}
+2# {fed,|pFacd, |BI*=al’ pp+.<0}]
—2# {Bed,|BFaed, |BI*<|al’ upz.<0}

=—2-2# {Bed,|BFaecd}

+2# {Bed,|pFacd, |BI*>al’ up+.=0}. (2.11)

Now
2{2p, & 2{f,a)
2p(Xm+Xﬂ)=———< f’z 2 - D b . (2.12)
|&] gea ol
(B,ad>>0
We shall prove that
2
5 i§’|2‘>=2# (Bed,|p—aed}+2. (2.13)
<ﬂ:6ae>d>0

To do so, we consider all « strings of roots in 4. The only singleton string
that contributes to either side of (2.13) is {«}, which contributes 2 to the
left side and the constant term 2 to the right side. We consider a doubleton
string {7, y —a} together with its negative {—y +a, —7}. The roots y and
—7v+ a contribute a total of 2 to the left side of (2.13); exactly one of y and
—7y+ a is noncompact, and it contributes a matching 2 to the right side of
(2.13). Consider a tripleton string {y,y —a,y—2a} together with its
negative {—y+2a, —y+a, —y}. The roots y and —7y+ 2a contribute a
total of 4 to the left side of (2.13), and one of the pairs (y, —y +2a) or
(y—a, —y +a) contributes a matching 4 to the right side of (2.13). This
proves (2.13), and also we have

2# {Bed,|p—acd}=2# {Bed,|p+acd} (2.14)

by replacing § by —f. Combining (2.11), (2.12), (2.13), and (2.14), we
obtain conclusion (a) of the theorem.

Proof of (b). We give the argument for the top choice of signs. Write
(W' +a)Y =u'+ By, and suppose I +1II is nonzero. Choose f# in 4, with
B—aed,|Bl*>|a|? and p’ L B— . Since « is short, Lemma 1.2 allows us
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to write = wa for some win Wy .. Put y=w(f—a). Then y is in 4 .,
y L By, and y LA B,. Possibly replacing y by —y, we may assume j is
positive,

Thus 4 . has a member y with y 1 ,and y L/L B,. Changing notation,
let y be a minimal element in 4% , with y L f, and y LA f,. We shall
prove that y is 4} simple.

Assuming the contrary, write y =7y, +y, with y, and y, in 47 . Since ' is
assumed 43 dominant, y, and y, are in 4 .. But f, is 4} . dominant,
and thus {fy,7,>20 and {f,,7,>=0. Since {fy,y,+7,>=0, we
conclude

(Bo» 71> =< Bo, v27 =0. (2.15)

Now 0<|y[*={y, 7>+ <y, 7,> implies (3,7,>>0 or <y 7,>>0.
Without loss of generality, let us say {y, y,> >0. We know that y + g, are

roots, and (2.15) gives
GuyEBed =020 Bod> =<1, 70 >0.

Hence y, + 8= (y + Bo) — 7, are roots. Thus y, is in 4 , with y, 1 §, and
¥, 44 Bq. So y, contradicts the minimality of y, and we conclude y is 47
simple.

Taking the existence of y into account in Theorem 1.3, we see that
T, 4, does not occur in 7,-® p®, in contradiction to our hypothesis. This
proves (b).

Proof of (c). We give the argument for the top choice of signs. In view
of (b), we have only to show that I=v; . Substituting from (2.12) and
(2.13) for p(X,+ X _,) and from (2.8) for 4,=2{A, a)/|«|? we have

[=# {fed,|B—acd}+1—2(20x),+ p,
—# {Bed,|f—aed [pI*<|al’ A5_,=1}
—2# {Bed,|p—aed |BI*=|al’ 45 21}
—2# {Bed,|B—aecd, | <|al’® A5 , =2}
=l+pu,+# {Bed,|p—aed}—2(26,),
—2# {Bed}|B—aed, A, ,>1)
+# {BedS|f—aed |BI?<|a|’, A4y_,=1}
=l+p,+# {(fed,|B—aed}—2(26,),
—2# {Bed;|f—acd) +2# {fedr|f—acd A, ,=0)}
+# {fed|B—aed |B]*<|al? Ag_ =1}
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Comparing this expression with v, we see that it is enough to prove

# (Bed,|f—ocd)—2# {ﬂeA,Tlﬁ—aeA}=g—<2|—i"(;-i>—. (2.16)

To do so, we consider all a strings of roots in 4. The singleton strings do
not contribute to (2.16). We consider a doubleton string together with its
negative:

{y,y—a} and {—v+a —7},

where y>0. If y is noncompact, the contribution to (2.16) is
1-2=2{y—a,a)/|a|?>, and equality is preserved. If y is compact, the
contribution to (2.16) is 1 —-0=2(y, a)/|a|% and equality is preserved.
This handles doubleton strings. We consider a tripleton string together
with its negative:

{r,y—oy~2ua} and {—y+20, —y+a, —7},

where y>0. If y is noncompact, the contribution to (2.16) is 2—2=
2{y —a, a)/|a|? and equality is preserved. If y is compact, the contribution
to (2.16) is 2—2=2{(y)+(y—2a), a)/|a|?, and equality is preserved.
This handles tripleton strings. Thus (2.16) is proved, and the proof of
Theorem 2.1 is complete.

Remarks. In [2] we used a version of Theorem 2.1 applicable to a
superorthogonal set {a, .., o} in place of {a}. For the precise statement,
we fix j and replace « by «; in (2.10) and the statement of Theorem 2.1.
Also we add to each of the sets of conditions {fe4,| -} the condition
BLLa,.., o . If we maintain these conventions throughout the proof,
the proof goes through without further change. Let us define v¢; and v, ; as
the versions of v§ and vy that are modified in this way.

3. MuLTipLICITY QUESTIONS FOR K TYPES

We continue with the notation of Sections 1 and 2, but we take /=1
through Proposition 3.4, so that {«,, ..., a,} reduces to {a}. In this section
we shall compute the multiplicities of certain K types and weights.

Since 6 =ind¥, ¢*, the double induction formula shows that

U(v)=ind$, Mo ®e’" ®1)=ind%« ,n(6* R @ 1). (3.1a)
Thus

U x=1nd% e (0% | g o ae%)- (3.1b)
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Let us write

0#|KmM#:Z”;,'T;,' (3.2)

-
as the decomposition into (K~ M?*) types. Since ¢* is determined by
0” |4, and the scalar ¢*(y,), we can regard the A’s in (3.2) as distinct

integral forms on b_. Frobenius reciprocity gives us the multiplicity
formula

RYUQIFEEIN DI E S PIGWEE S5 (3.3)
Iy
a formula that motivates a number of the results of this section.

Let 6* be the result of making « dominant relative to 4 , (by means of
W 4), and let 6~ be the result of making —a dominant relative to 4 ,.
By the 6% subgroup of G, we mean the reductive subgroup built from b, o,
and all the simple roots of 4™ needed for the expansion of § * in terms of

47 simple roots. The 6~ subgroup of G is defined analogously in terms of
6~ and s, d4%.

Lemma 3.1. If G has no factor split F, and if o is nondegenerate in the
sense of [16], then the following are equivalent:

(a) « and —o are conjugate via W ,

(b) A+ o and A—« are conjugate via W,

(c) A+aand A—o are conjugate via W

(d) A+ =(A+a) =(A—2)"=A4+06"

(e) (A,a)=0and A+ is a weight of 1.4 .~
(f) <A,a)=0and A—o is a weight of (4, ,-

Moreover, these conditions can hold only if there exist roots of two different
lengths and a is short.

Proof. 1t is clear that (a) and (b) are equivalent. To see that (c), (e),
and (f) are equivalent, first assume (c) holds. Then 4+« is certainly a
weight of 1, ., and A+a has the same length as A —oa, so that
{A,a)=0. Thus (e) holds, and similarly (f) holds. Conversely if (e) holds,
then {(A,a>=0 implies |A+a|=|A—a|. Since 4A+a is a weight of
T(a_av, it must be an extreme weight, and we conclude A+« is a Wy
transform of A4 —a. Thus (e) implies (c), and similarly (f) implies (c).

Next let us observe that (d) implies (a). In fact, (d) gives 6* =6 ~. Thus
a is conjugate by Wy , to 6* =47, which is conjugate by W, , to —a.
Hence (d) implies (a). Clearly (a) and (b) imply (c).
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To complete the equivalences, we show (c) implies (d). It is enough to
prove (c) implies (A+a)Y =A4+6" and (A—a)Y =A4+6~. If all roots
have the same length or if « is short, this follows from Lemma 1.2. Thus we
may assume that G is simple, that there are roots of two different lengths,
and that « is long. Then G is locally Sp(n, R) or SO(odd, even), since split
F, is excluded by hypothesis. Lemma 7.1 of [5] says that either 4+ a is
not a weight of 7, _,,+ or else 4 —a is not a weight of 7, ,,.. Hence (e)
or (f) fails, and (c) cannot hold when « is long and there are roots of two
lengths. In particular, the six statements are always equivalent.

Finally we show that (a) is impossible if all roots have the same length.
We may assume G is simple. By (d), we have 6" =4 ~. In the terminology
of [5], the roots of the 6" and 6~ subgroups, as well as the members of
A 4, lie in the special basic case. Thus we may assume G is a special basic
case. By Lemma 4.1 of [5], either the 6 * subgroup or the 6~ subgroup has
real rank one and is thus of the form SU(n, 1) locally. Since 6" =4, « and
—a are conjugate via the Wy of a subgroup of the form SU(n, 1). But this
is a contradiction, since 2« is not the sum of compact roots in SU(n, 1).

Lemma 3.2. If Biand B, are noncompact short roots that are conjugate
via Wy 4, then there exists p in Wy 4 with p* =1 such that B,=pp,.

Proof. Since §, and f, are conjugate via Wy ,, we can write
ﬁl =B2+ Z nyy with n},ez. (3.4)
YEA;,A

Among all such expressions (3.4), choose one with 3 |n,| as small as
possible. In this case we shall prove that the y’s with n, #0 are strongly
orthogonal.

In fact, we write

0= |ﬁ1|2_ |ﬁ2|2=2(ny2<ﬁ25 ?>+n§ |y|2)+ Z 2”y”y'<% '}’/>-
7 "y
y#Y

The first sum on the right side is >0 term by term since

2By,
n, 2By 412 |77 = |nv|(—<l’;|—3>sgnny+ I)W

+1717 (0] = |n,1);

here both terms on the right side are >0, the first one since y compact and
B, short noncompact force |2<{f,, 7>/|y|1*} < 1. Thus

02 Z ny”y’(?ﬁ V,>

y#Y
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We claim that each term on the right is 0. Assuming the contrary, choose 7
and y’ with n,n_{y, 7' > <0.

If n,n,.>0, then y+y" is a root. Without loss of generality, let
{n,|>={n,|. We can rewrite

nv'}’+n'y’y’ as ny(y+y,)+(ny’_n'y) y/ (353)

with |n, —n,| <|n,| and get a contradiction to the minimality of 3 |n,]|.
If n,n, <0, then y —y" is a root. Without loss of generality, let [n,.[> [n,][.
We can rewrite

n,y+n,y as n(y=y)+(,+n.)y (3.5b)

with |n,+n,| <|n,| and get a contradiction to the minimality of 3° [n,|.

Thus the roots y in our minimal expression (3.4) are orthogonal. Let us
prove they are strongly orthogonal. Suppose y and y’ occur with y 1 3" and
y LA v If n,n, >0, then we argue as in (3.5a), using that 7 +7' is a root,
to get a contradiction. If n,n, <0, then we argue as in (3.5b), using that
y—7’ is a root, to get a contradiction. We conclude that the y’s in our
minimal expression (3.4) are strongly orthogonal.

Put p=11, .05,  Then pis in W, , with p?=1. We shall prove that
pB =4, If sy'occurs in p, then

2B = Bon 1> _ KXYV,
Iyl Iy1? v

Here 2{B;,7>/ly|* is 0, +1, or —1 since | B, <}|y], and 2{B, 7>/ 12
similarly is 0, +1, or —1. Since n,#0, the only possibilities to achieve

(3.6) are

(3.6)

2<ﬁ1,2)’>: +1 and 2<ﬁ2’2._y>= —1 (3.7a)
7] ly]
or
2<|/3y1|,2v>= 0 and L{’;l’zﬁ= +1. (3.7b)

In either case, (3.7a) or (3.7b), we see that {f;, —y) = {B,, v>. Hence for
each v,

(pBi,y>=LBi,py> =B, —v>=<Bs 7> (3.8)
Now (3.4) gives

pBi=pB,—Y n,y,
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and it is clear that pf,e f,+ 3, Ry. Hence
pBi=B,+Y ¢,y (39)

for suitable c, € R. Taking the inner product of both sides of (3.9) with each
y and comparing with (3.8), we see that each ¢, is 0. Hence pB, =, as
required.

THEOREM 3.3. Suppose that G has no factor split F,, that ¢ is non-
degenerate in the sense of [16], and that @ and —o are conjugate via Wy, ,.
Let A, =(A+a)" =(A—a)". Then

(@) [t4:A4+a]l=[14:A—a]l=1 (for the multiplicities of weights)
®) [talgame:t]l=1

Proof. Conclusion (a) is trivial: Since 4+ a and A4 —a are extreme
weights of 7, they have multiplicity one. Toward conclusion (b), first let
us prove that any weight u’ of 7 ,, with ¢’|,_ =2/ has the form

w=A+02n+1)x (3.10)

for some integer n. In fact, y'|, =A|, =4 implies u'— A = ca for some
constant c. Since y’ is a weight of 7, , Lemma 3.1d gives

p=A4,— Y ny=A4+6"— 3 npy.

yeA;E yeA;
Hence
— +
co=08%"— Y ny.

yed;

Taking the inner product of both sides with the half sum & shows that ¢ is
an integer. Since 6 * and « are noncompact, ¢ is odd. (See Problems 12 and
13 on p. 478 of [12].) This proves (3.10).

Parts (e) and (f) of Lemma 3.1 say that (A, a)>=0. Therefore |u'| in
(3.10) is too large for u' to be a weight unless u'=A +o. Taking into
account (a) of the theorem, we see that the span of the weight vectors
whose weight restricts to A has dimension 2, coming from weights 4 + «
and 4 —o. Consequently [, |gq~a#:7;]1<2.

To see that 1 <[1,,|lg~am+: T;], let v, and v,_, be nonzero weight
vectors for 7, of weights 4+ a and A —a, respectively. We show for
suitable normalization of these vectors that v, , ,+v,_, is a highest weight
vector for a Kn M¥ representation of type 7,. We have

2nidA+a, a) 2nid A, o)
r/l[(ya) vA+a=expTvA+a=exp—l—?;'2_vA+un
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and the scalar on the right is the same one by which 7 (y,) acts on a
highest weight vector of 7 ,. Thus

TAl(yu) UA P J#(ya) vA +at
Applying the same argument to v, _,, we obtain
TAl(yz)(UA + + U4 7(1) = 0#(Va)(v/l + + UA ~a)'

Thus it is enough to exhibit a normalization such that the root vectors for
the positive roots of (m®, b€ ) annihilate v, , , + v ,_,. Let us set aside tem-
porarily the question of which normalization to use and work with an
arbitrary normalization.

Let y be an M-compact positive root for (m®, bC ) with ¥ , as root vector.
Then y L o. Suppose y L1 a. Then X, can be taken to be X,. We have
1,(X,)v,,.=0 since

[A+a+y P —|A+al’=2¢A+a,7) +1y[*=2{4, ) +]7]*>0
shows A4 + a + y cannot be a weight of 7 ,,. Similarly 14,(X,)v,_,=0. Thus
TAl(yv)(vA+a+vA7a)=0'

Next suppose that y L « but y 1L/ «. By Lemma 5.4 of [15], we can take
X =[x, x,]-[X,, X_,] Then v, [X,, X,]v,,,=0 since

(A+a)+ G+ —|[A+a]>=2{A+a,y+a)>+|y+a|’
=2{A, > 42 x>+ |y +a*>0

shows (4 + a) + (y + «) cannot be a weight of t,. Similarly
140X, X _,1v, ,=0. Consequently

TAl(j}y)(vA+a+ UA —fcx) = TAl[Xya Xa] UAfm —TAl[Xy’ Xfa] vA +a (3'11)

Actually each term on the right side of (3.11) is O unless {4, y) =0. In fact,
each term is a weight vector of weight 4 + 7, and the equation

[ A+yP = A+a?=2{A,y) = 2{A, a) =2{4, 7}

shows 4 + 7 is a weight only if {4,y =0. In this case, 4 + y is an extreme
weight.
For use below, let us observe conversely that

T,[X,, X v, #0 (3.12)

if yla ylia and {A,y>=0. Hence A+7y is a weight, necessarily
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extreme. In fact, all we have to observe is that (A —a,y+a) <0. Then
(3.12) follows from standard facts about weight strings.

Returning to (3.11), we see that every normalization of v, +v,_,
gives a highest weight vector unless there is some y, with y4 L o, y, LA a,
and {4, y,>=0. Thus, in proving 1 <[, |x~m#:7;], We may assume
there is such a root y,. In this case, let v,,, denote a nonzero weight
vector of weight A +7yg; this is unique up to a scalar since A+7y, is
extreme. Then we can write

[ X Xa 04 a =01
X X104 = b0
so that
Tl T )0 s at040) = (= by0) D44 (3.13)
If y is another root with y L &, y 1/l o, and {4, y)> =0, then we have
similarly
T (X s ratva ) =(a,—b) vy, (3.14)

The proof that 1 < [1,4,|x~ s+ 7;] will be complete if we show that a,— b,
is a multiple of a,, — b, (since then we can adjust v,_, by a scalar to make
a,,—b,, be 0, with the result that the adjusted v,,,+v,_, is KnM*
highest).
Now 7,/(X, ) v,,,,=0 since
(A +70)+ (ot a)*— |4 £a|
=4{A 10, 70) + 12707 =417,1*>0

shows that neither of (4 + y,) + (7, + a) is a weight. From (3.13) it follows
that there i1s a nonzero constant ¢ such that

Wpyatva_o)=T4(X ) Ta (X)) 0000 +04_0)
= (a?O_ b}’o) 17AI(AX}_)}O) U/l +70°

Substituting into (3.14), we obtain

(a,—b)vgy,= C_l(ayo —by) TAl()?y) TAJ(’?fvo) Vi + 00

which is the desired relation. This proves that 1 <[ 1, |x~am#: 721

To complete the proof, we show that [, |x.a#:7,] is not 2. It is
enough to prove that v, _, is not Kn M* highest. In view of (3.12), it is
enough to produce an M-compact positive root v, with y, L a, y, 14 a,
and {A,y,>=0.
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Applying Lemma 3.2 with f;,=¢ and f,= ~«, we can find strongly
orthogonal roots y, in 44 , with ([Ts,) 2= —a. Then

2. v,
a S = (I, )= -

says that
a=cly1+ "'+Cryr'

We may assume all the ¢; are nonzero. Taking into account the result of
Lemma 3.1 that o is short, we find the following possibilities, all having all
lei|=3:
(i) r=2, both y/s are long
(ii) r=23, oney,islong, two ys are short
(1ii) r=4, all y/s are short.

Meanwhile Lemma 3.1 says that there do exist roots of two different
lengths. We may assume G is simple, and then 4 is of type B,, C,, or F.
In B, and F,, any two orthogonal short roots fail to be strongly
orthogonal. Thus (ii) and (iii) are ruled out above, and « =¢,y, + ¢,y, with
ley|=lcyl =3 Put yo=s,a=c;y,—cy7,. Then yy La, yo LA o, and
{A,7vo>=0. The equation a+y,= +7y, shows that y, is G-noncompact.
Thus y, is M-compact, as required.

We are left with 4 of type C,. In Sp(n, R), no noncompact root is W
conjugate to its negative. So we may assume G is locally Sp(p, g) with
p+g=n and with K locally Sp(p)x Sp(¢q). In standard notation we can
write a =e,—e;, , and we may assume 2e; is a root of Sp(p) and 2e,, ,is a
root of Sp(g). For a to be Wy , conjugate to —a, 2e; must be Wy ,
conjugate to —2e,, and 2e,,, must be Wy , conjugate to —2e,,,.
Consequently (A, e;>={A,e;.,»=0. Then y,=e,+e¢,,, is a root with
vo L o, yo LA a, and {4, y,)> =0. The equation « + y, = 2¢; with 2¢, com-
pact shows that y, is G-noncompact. Thus y, is M-compact, as required.

PrOPOSITION 3.4. Suppose that o« and —a are not conjugate via Wy 4.
Suppose A =(A+a)" equals A+06* and A7 =(A—a)" equals A+3~.
With the signs taken consistently throughout,

(@) [ryz:Ata]=1L
(b) [ratleam il +2ns0 [taz:A4F (2n+1)a].
(©) 1<ltazlonmritil if AF a is not a weight of T 4+.

A sufficient condition for AFa not to be a weight of t,: Is that
{4, +a)<0.
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(d) The nth term on the right side of (b) is 0 for n=0 if
4, £2) <0.

(e) The nth term on the right side of (b) is O for n>0 if the 6* group
is classical. If, in addition, 26 is not a sum of members of A}, then the Oth
term is 0.

Remarks. (1) The results for A, depend on having (4 + o) =A+67,
and those for A depend on having (4—a)Y =A44+5". Both these
conditions are satisfied if all roots have the same length or if « is short, by
Lemma 1.2

(2) In [1] we announced that 1< [t z|x~m#:7:] without the
hypothesis on weights in (c). We are not able to prove the version in the
announcement. But see Remark 3 with Corollary 5.2 for further infor-
mation.

(3) The condition on weights in (c) is not a necessary condition. For
example, take G = Sp(2, 1) with

4% o O————0 45 O O————==0
a=e —e, €,—e, 2e, 2e, e,—e, 2e,

a4*: @) @)

e +e, 2e,

If 4=(1,0,0), then (A+a)¥=(2,1,0) and A—a=(0,1,0). So 4—«
is a weight of 7,,,v. A little computation shows nevertheless that
[T(A+a)V|KmM#:Ti]=1‘

Proof. We give the argument for 4. The results for 4, then follow by
replacing 4™ by s,4" and a by —x.
(a) A+ais an extreme weight in 7,4+ and therefore has multiplicity
one.

(b) The same argument as for (3.10), but with a reference to the
hypothesis rather than to Lemma 3.1d, shows that any weight " of 7,
with p'|,_ =4 has the form

w=A+2n+1)a (3.15)

for some integer n. Choose we Wy , with wé™ =a. Then A+« is the
highest weight of 7+ relative to w4 ¢, and thus

W=A+a— Y n.y
TEWA;
=A +a— Z nwywy’ nwyZO'

+
yedg
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Substitution from (3.15) gives

2n+Doa=a— > n,,wy

yedg

Applying w !, we have
Mt =—Y n,y. (3.16)

yed;
Since d * and each y are positive, we conclude n <0.

The subspace of highest weight vectors for occurrences of 1, in
T4 |k~ a» Must be contained in the span of the ' weight spaces, with u’ as
in (3.15) (and also n<0, as we have just seen). Conclusion (b) of the
proposition therefore follows when we take (a) into account.

(c) Letv,,, be a nonzero weight vector of weight A+a in 7,:.
First we prove that v, , is a highest weight vector under Kn M* for an
occurrence of 7, if and only if there exists no M-compact positive root y
with y Lo, y L/ &, and <A,y —a)=0. The behavior under 7 ,:(y,) is no
problem and is handied as in Theorem 3.3.

Let y be an M-compact positive root for (m, b® ) with X, as root vector.
Then y L a. Suppose y L1 o. Then ¥ , can be taken to be X,. We have
T4 (X;) V4.4, =0 since

[A+o+y?—|A+al?=2{Ad+a,y)>+|y*=2{4, 7> +17]>>0

shows A +a+y cannot be a weight of 7 4+.
Next suppose that y L o but y L/l «. By Lemma 5.4 of [15], we can take
X, =[x, X,]-[X,,X_,]. Then 7+ [X,, X,] v,,,=0 since
(A+a)+(+a)>—[A4+al?=2¢A+ay+a)+|y+al?
=2{A,y+ad+2|a|®’+|y+al?
>0

shows (4 +a) + (y+«) cannot be a weight of z,+. Consequently
TA;L(X})!) UA+a=;rAl+[Xan~a] VA tar (317)

To complete the proof of our assertion, we show that the right side of
(3.17) is O if and only if {4,y —a)>>0. (Note y —a is positive since y is
positive and a is simple.) If {4,y —a)> =0, then s, (4 +a)=A4+7y shows
that A +y is a weight, and the right side of (3.17) is nonzero as a result of
standard facts about weight strings. If (A, y —a) >0, then

(A+y]P—{A+a|?=2{A,y—a)>0
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shows (A+a)+(y—a)=A+y is not a weight of A], and thus the right
side of (3.16) is 0. This proves our assertion.

To prove (c), it is therefore enough to prove that there exists no M-com-
pact positive root y with y L a, y LA a, and {A,7y—a) =0. Assume the
contrary. Since y+ o is in 4}, we have

0< A, y+ad=LA,y—a)+2{A, a)=2{A4, o).

Thus {A, a >0. Meanwhile, we have seen that 4 +y is a weight of 7.
Also y+a is a member of 47 with

{A+y,7+ad=L{A, y—ad+2{A, ad>+|y]>>2{4, a),

and we know the right side is >0. Thus (A+7y)—(y+a)=A—0a is a
weight, in contradiction to hypothesis. We conclude that t; occurs in 7+ if
A—o is not a weight of 7 ,+.

Suppose {4, a)> <0. Then

[A—a]?=|A+a]?==2{Aa)>0

shows A4 —a cannot be a weight of 74+. If {4, a> =0 and 4 —a is a weight,
then the implication (f) implies (d) implies (a) in Lemma 3.1 {which does
not need the hypotheses about F, or nondegeneracy) says o and —a
are indeed conjugate via W, ,, in contradiction to hypothesis. Thus
{A, o> <0 implies 4 —« is not a weight of Taf-

(d) If <4, a) <0, we have just seen that A —a is not a weight of Taf-
For n> 0, we have

A= (2n+ 1) a|?—|Ad+al>= =244, 2n+2) a) + (4n* + 4n)|a|*> 0,

and thus A4 — (2n+ 1) « cannot be a weight.

(e) If we write n for —n in (3.15), then the derivation of (3.10) shows
that the weight

p=A—2n+1)a
arises in tandem with an identity

—(2n+a=6*- Y k,y k,=0.
yeA;
Applying s, to this identity, we have
5,07 =02n+ Do+ Y kys,), k,>0.

+
yedy
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Here 5,0 * and s,y are positive roots (unless 0 * = «, in which case there is
no difficulty). If we refine this expansion into an expansion of s,6% in
terms of simple roots, we see that the simple root « occurs at least 3 times if
n>0. But a simple root does not occur more than twice in a root expan-
sion within a classical group. This proves the first assertion in (e).

For the second assertion, suppose 4 — o is a weight of 7,+. Then we have

A—aeA+8 =) 47,
as well as

A+aed+d7 =) 4;.

Adding these relations, we see that 26* is in Y. 4F. This completes the
proof of the proposition.

The point of Theorem 3.3 and Proposition 3.4 is to address the first term
[tt4a)vlk~m#:T;] on the right side of (3.3) when 7, =1.,,,, . The
following considerations allow us sometimes to show that the remaining
terms are 0.

We return to a general superorthogonal set {a, .., ;} in place of {a}.
Suppose that 7, occurs in U(v)|x because of some 7, €7 .|k, + With
A # . Then

i,:i+ Z kﬂﬁ’
gea”,

and the sum is nonzero. For suitable real numbers s, it must be true that
A +73 s;a; is a weight of 7., hence is of the form

MY su=4"— Y ny.
vedg
Hence

A=A+ Y kgp+ Y ny+Y sa.

Bed?, yedf
If we write A=4+3 t;a;, then we find

A=A+ Y kgB+ Y ny+d (s;+1)a,.

ﬂsAi,n ?94;

Any two weights of U(v) must differ by a member of the root lattice
(relative to 4), and it follows that each 5,47, is an integer. Thus we must
have
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I
A=A+ Y kgf+ Y ny+ Yy ma; (3.18)

Beat, yedg j=1

with integer coefficients, k; >0, n, >0, and some k;> 0.

ProposiTION 3.5. If A' is integral and A} dominant and if A’ — A lies in
the linear span of a real-rank | subsystem A, < A that is generated by A™
simple roots and contains o, ..., o, , then

LU k:tal=[t0lknnr: T2

Proof. By (3.18), 3 kgB + 3 n,y lies in the span of 4,. Since each term
is positive and since 4, is spanned by simple roots, each such f liesin 4, .
Since 4, has real rank / and since a,, ..., @, are in 4, , the M corresponding
to 4, is compact. Thus 4*  ~ 4, is empty, and there are no nontrivial
solutions to (3.18). The proposition follows since n, =1 in (3.3).

COROLLARY 3.6. Suppose I=1 and {a,,..,a,}={a}. If A =(4+a)"
equals A+ 07" and if the 6 subgroup has real rank one, then

LUk TAl*] = [TA;' | ka4l

If AT =(A—a)Y equals A+06~ and if the 6~ subgroup has real rank one,
then
[U(V)|K: fAl‘] = [TAl_ [k ar#: T/l]-

4. NECESSARY CONDITIONS FOR UNITARITY

Continuing with notation as in Section 2, we recall the techniques of
[1, 2] for proving nonunitarity. Since G is connected and rank G =rank K,
we can deduce from [13] and from [12, p. 478] that there exists a unique
family of intertwining operators 7(v) with the following properties:

(1) T(v) is defined for Re v in a neighborhood of the closed positive
Weyl chamber of the dual o’ of a.

(2) For each A’, T(v) carries the 7, K type for U(v) into the 7, K
type for U(—v), varies holomorphically in v, and satisfies

U(—v, X) T(v)=T(v) U(v, x)

for all X in g©.
(3) T(v) is the identity on the t 4 K type.
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For Re v in the open positive Weyl chamber, U(v) has a unique
irreducible quotient J(v), and J(v) contains the 7, K type with muitiplicity
one. For Re v on the edge of the positive Weyl chamber, the uniqueness of
J(v) may break down; but there exists a unique irreducible quotient of U(v)
containing the 7, K type, and this we take to be J(v). If v is real-valued,
J(v) admits an invariant Hermitian form, unique up to a real scalar; this
form lifts to U(v), where it is given by

{frg>=(T) ], &) k) (4.1)

Since the normalization (3) makes T(v) positive definite on the 1, X type,
(4.1) shows that J(v) will fail to be infinitesimally unitary for some real v in
the closed positive Weyl chamber where J(v) is the unique irreducible
quotient if we can produce a K type 7, such that T(v) fails to be positive
semidefinite on that K type.

The papers [1, 2] introduce two techniques for finding such a A". Both
use the following definitions. If 7 ,, is an irreducible representation of K, we
let P, be the projection of the induced space to the 7, subspace given by

P ftho)=dy | TalR1/(k ko) dk. (42)

Here d 4, is the degree of 4, and y,, is the character. Next if 4 is any
scalar-valued function on K and w is an integral form on b, we let 4, be the
—a Fourier component of 2 under the action of B on the right:

k)= | kD) E.(b) db. (43)

where ¢, is the character of B corresponding to w.

Fix f, in the induced space to be a nonzero highest weight vector for the
minimal X type t,. If v, denotes a nonzero highest weight vector in an
abstract representation space V' of K of type 14, then f; is necessarily of
the form

Jolk)= At ,4(k) ™" v, (4.4)

for a unique operator 4 in Homg . ,+(V4, V°"). It follows from the
remarks after (2.9) that there exists a unique element u, in V°” of weight A
in the 1, subspace such that

A*uozvo. (4'5)

We fix this element u,.
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Fix o integral on b, let 7,4, .., 74, be irreducible representations of K,
and let X, .., X, be in g®. Define

a(v, ky= P4 UM, X,) Py, - Py, UG, X0) folK), oo, (46)
the inner product being taken in ¥?". Let b(v, k) be the special case

b(v,k)=<P, U, X)) Py--- Py, UM, X,)
xP, U, X,) PA,,‘I"‘PA,U(V’ X)) folk), ug) 4. (4.7)

THEOREM 4.1. Let v be real-valued and be in the closed positive Weyl
chamber.
(a) Suppose 1, has multiplicity one in U(v) and a(v,k) is not
identically O as a function of k in K. Then the quotient

c(v)y=a(—v, k)a(v, k)

is independent of k. Also c(v) <0 implies that T(v) is not positive semidefinite
on the v 4 K type.

(b) Regardless of whether v, has multiplicity one in U(v),
(—=1)"b(—v, 1) <0 implies that T(v) is not positive semidefinite on the t, K
type.

Part (a) is proved in [1] in the special case n=1. In Section 1 of [2],
both parts of this theorem are proved in full generality.

5. GENERAL ONE-STEP FORMULA

The main result of this section, Theorem 5.1, will give information about
the quantities a(v, k) and b(v, k) in Theorem 4.1 in the case that one advan-
ces by one step in the universal enveloping algebra of g© (for example, from
a(v, k) with n—1 steps to a(v, k) with n steps). Many of the ideas are
already present in the proof of this theorem, and the proof will serve as a
model for a number of later results. We continue with notation as in Sec-
tion 2, and we introduce K-invariant inner products on finite-dimensional
representation spaces of K as needed.

THEOREM 5.1.  Fix an index r with 1 <r <, an integral form y' on b, and
a choice of a sign +. Let A'=(y')Y and A" =(y' +«a,)". Fix a nonzero
vector v' of weight p' in t,., and for each v, let B(v) be a member of
Homy ., 0+ (V?, V°"). Let f, be the member of the induced space given by

filky=B(v) t o(k)~' 0.

580/82/1-12
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Suppose that

(2) the only weight in v, of the form p'to, 4o, or p' o, —a, is u’
itself,

(b} 14 occurs in 1, ®@p", so that v" =E {v'® X, ) is not zero,

(¢c) Egq.(3.18) for A' — A has no solutions with Z,,GA:‘" ks B nonzero.
Then

<PA”U(V’ Xia,)f!(k)7 u0>u’im, |ar|2 <f1(k)9 u0>,u’

Corth) 100 == O T oy

where the subscripts i’ + a, and y’ are as in (4.3), uq is as in (4.5), and d(v) is
given by

2y, £a,)

dv)=(+p) X, +X_,)+ PAE

24 {Bednlﬂ Llay, o

_ 2, BFa,
ﬁ+a,€A’\ﬁ\2>\a,\z,%r%Z>1}

—2# {Bed,,lﬁ Lloay, o,

_ 24, BFa,) }
2 2
BFoa.ed, Bl <|a’l’—'—_—_lﬂioc,|2 22

— # {BeA,,Iﬂ Llay,.a,_;

_ 2 2 2w B¥a) }
ﬂ+arEA9‘ﬁ‘ <‘ar| B |ﬁ$a,lz —1 .

Remarks. (1) In (b) the fact that v” # 0 follows from Theorem 1.5.

(2) If all noncompact roots have the same length, then (b) is
automatically satisfied, according to Corollary 1.4a.

(3) Condition (c) is implied by the condition
(c’) there exists a system A4, S A generated by 4* simple roots
such that
(i) o,,..,a,arein 4,., and 4, has real rank exactly /
(ii) A’ — A is an integral linear combination of roots in 4;..
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To see the implication, suppose (3.18) has a nontrivial solution. Putting
Y. m;a; on the correct side of the equation, we see from (c’) that
2peat, kgB+2, 4 apn,y is in 4. Since 4,. is ger}erated by 4* simple
roots, each B with ks;>01isin 4,.. But 47 4, 1s empty since 4, has
real rank / and contains «, ..., a,.

Preliminaries for the proof. In the proof we shall use formulas relating
the root space decomposition of g© (relative to b¢) and the Iwasawa-like
decomposition

gt =D (mnp)t@atPnt. (5.1)

Some of these formulas are taken from Section 5 of [15], and the rest are
from the preprint version of Blank [6]. Let Py, P,,, P,., P,, and P, be the
projections to the respective summands in (5.1). Here P, and P, are
orthogonal projections, but P; and P, are not. For 1 <</, we have

P(X,)=3H, and  P(X_,)=—3H,
Pa(X“/) = P“(X'“J) = %(Xa/ + X*dj) (52)
Pm(Xa]) = Pm(XAaj) = O

If § is a noncompact root with § L L «, ..., a,, then

P.(Xs)=X, and  PyX,)=P,(X;)=0. (5.3)

Suppose f is a noncompact root with g L1 a,,..,«; , and f 1/l «; and
B # +a;. If the a, root string through f is

B—pa,, .., B+qo;, (5.4a)
then
1
P(Xp)= Y (LX_., Xpl+[X,, X4]1) (5.4b)
P (Xp)=0. (5.4¢c)

In this situation
%Xﬂ_%[X—aja [X—zx,-aXﬁ]] when P=0,q=2
Po(Xpg)= { 3Xp— 3l X, [ Xy, Xp]] when p=2,¢=0 (5.4d)

0 when p<l,g<l.
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The next ingredient in the proof is a formula for ad X' , ad X, and for
ad X, ad X_,. Let p and ¢ be as in (5.4a). Then

[X_., [X,. X, 1]=q(p+ 1) X, (5.5a)
(X, [X ., X, ]1=pl¢+ 1) X, (5.5b)

by [8, p. 143].

The third ingredient in the proof is a start at a computation of
U(v, X) fi(k), where £, is in the space of the induced representation and is
given on K by the formula

fitk)=B(v)t (k)" v’ (5.6)
with B(v) in Homg, ,+(V*, V°*). If ¢(t) denotes any curve in G with
c(0)=1 and with tangent vector Xeg at =0, then

d
U, X) filk) =2 fule(t) " k), - O_dzfl(k k()T k) <o

For ¢(1), let us put ¥=Ad(k)~' X and take
c(t)=k exp(tP; Y) exp(tP,, Y) exp(tP,Y)exp(tP, Y) k!

Because of the transformation law of f; under M* AN on the right, we
obtain

d
dt{ et exp(tP,Y)) o ¥ (exp tP,, Y)

xfi(k(exp tPyY) ")}, 2o
=+ p)P V) fi(k)+a* (P, Y)fi(k)

Ulv, X) f1(k) =

d
+Ef1(k(e"p 1P Y)Y, o

Now we use (5.6) to write

filk(exp tP Y) )= B(v) 1 ({exp tP, Y) t 4(k) "' v

Differentiating and again substituting from (5.6), we conclude
Uv, X) f1(k) = [(v + p)(P. Y)] B(v) 1 4(k) "' V'
+ [6* (P, Y)] B(v) T 4(k) "0
+ B(v) T (P Y) T (k)0 (5.7)
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and this relation extends by linearity to X € g©. We shall refer to the three
terms on the right side of (5.7) as the a term, the m term, and the f term.

Proof of Theorem 5.1. From (2.1) and (2.4), we have | X4|>=2/| 8| for
every root f. Therefore the vectors (§[B|°) X4, Bed,, form an ortho-
normal basis of p©. If X is in p®, we therefore have

Y=Ad(k)"'X= Y 1|82 <Ad(k)" X, X,) X, (5.8)

Bed,

Let us compute the a term of (5.7). We have P, X, =0 unless § = +a, for
some j, and then (5.2) applies. Hence

!
P Y=Y Llal><Adk) ' X, X, + X (X, +X_,)
j=1
and ,
Caterm, upy =) §lo P [(v+ )X, + X_,)]
j=1

x (CBv) 1p(k) 10, ug >CAd(K) ™ X, X, + X, )

=Y §lylP L +p)X,+X_,)]

j=1

x {m(k) ™ (@ X), B(r)* uo® (X, + X _,)),

where 7 =1, ® p®. To this function of k, we apply the projection operator
P, of (42), and we see that the effect is to project n(k)™' (v ® X)
according to 7 .. Hence

(P y(aterm)(ko), o> = 3, §loyl® [(v+p) (X, +X_,)]

Jj=1
X CE ('@ X), ek {B(v)* uo® (X, + X))
We put X=X, , and apply the subscript p’ + o, as in (4.3). Only térms in

B(v)* u,® (X, + X _,) of weight y'+a, survive this operation. Thus the
surviving terms have

(weight of B(v)* up) + o, =y’ +a,
or
(weight of B(v)* up) —a;=p' + «,,
and assumption (a) allows us to conclude that the surviving terms have
j=r, ta;=ta,, and
(weight of B(v)* uy) = p'.
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Now u' is an extreme weight of 7., and v’ is a nonzero weight vector for
this weight. Thus we can write

B(v)* uy=|v"| "2 {(B(v)* u,, v'> v' +irrelevant terms, (5.9a)

and we abbreviate the first term as
a(vyv'. (5.9b)
Thus
(P (aterm)ky), uo) 4o,
=a(v) 5o, P CEL (0@ X 4 ), nlko) '@ X))
X {(v+p) Xy + X )} (5.10)

Next let us compute the m term of (5.7), showing that it makes no
contribution. Using (5.8), we have

(mterm, ug> = ) 3Bt (k)™ 0, BOK)* 6% (P Xp)* o>

Bedy,

x (Ad(K) "' X, X,

= Y LB (n(k) " (' @X), B(v)* 0 * (P Xg)* ug® Xp).

Bed,
To see that the m term does not contribute, we shall show that
B(v)* o™ (P, Xp)* uy=0 (5.11)

for all fe4,. We may assume that B(v)#0. In this case Frobenius
reciprocity says that z .. occurs in U(v). On the other hand, assumption (c)
and Eq. (3.18) say that n0 t; S g |~ s+ OCCUIS in 7 4 | k- 4s» Other than for
A'= . Consequently ¢* (P, Xz)* u, has a nonzero component in 7;. The
roots fe 4, for which P, X, is not zero are of two types, given by (5.3)
and (5.4d). The first kind has § L1 «,,.., o, Then f is M-noncompact,
and ¢* (P, X;)* u, has b_ weight A —f (cf. (2.5)). Thus 7, has A—B as a
weight. But this conclusion is contradictory since § cannot be the sum of
M-compact roots (Problems 12 and 13 on p. 478 of [12]); so the first kind
of B cannot contribute. The other kind of § has § + «; orthogonal to «; for
some j and for some choice of sign. Then B+ a; is M-noncompact, and
0*(P,Xp)*uy has b_ weight A —(f+a;). Thus 7, has A—(f+a;) as a
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weight, and again we have a contradiction; so the second kind of § cannot
contribute. Thus (5.11) holds, and we obtain

(P 4o (m term)(ko), tho ¥ s s, = 0. (5.12)

Now let us compute the f term of (5.7). Arguing as with the a term, we
obtain

(P AT term)(ko), ugp

= Y, 3BV CE (v ®X), n(ko)(t (P Xp)* BUV)* ug®Xp)D.  (3.13)

Bedy

We put X=X, and apply the subscript u' + «, as in (4.3). Only terms in
T4(PyXy)* B(v)* uy® X, of weight u'+a, survive this operation. For-
mulas (2.5) and (5.2)-(5.4) show that 7 ,.(P; X;)* reduces weights by f +«;
or B —ua; for some j. Thus the surviving terms have

—(B+a;)+ (weight of B(v)* ug) + =t a,
or

—(B—oa;)+ (weight of B(v)* ug) + = * a,.

Assumption (a) allows us to conclude that the surviving terms have j=r, a
particular choice of sign on «;, and

(weight of B(v)* ug) = .

As with our argument for the a term, we can therefore replace B(v)* u, in

(5.13) by a(v)r'. Hence
(P (T term)(ko), oDy 1 s,

=a(v) Y 1lBI°

fed,
BLLlog, .,
B L

X <EA"(U,®Xia,), “(ko)(TA'(PrXﬁ)* Ul®Xﬁ)>u’j;a,’ (5.14)

and the only contribution from P,X, comes from a term with (X, , X,].
If B= Fa,, we get 0. If = +a,, (52) gives PrX,,=+3iH,. From

(2.5),

1 2{p, a0,

TP X 3o )0 = ii [+a,? "
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So = +a, contributes to (5.14) an amount

2y, ta, )

EAE

For the remaining f’s, the relevant term of P X, is —(p+gq)”'
[X:,.,Xz], by (54b); here B—p(ta,),..f+q(tx,) is the +a,

root string through f. Thus (2.5¢) shows that the relevant term of
T (P Xg)* v @ X, is

F(P+q) e[ X, X 10V ® X (5.16)

1
a<v>z|a,|2<EA~<v’®XM,>,n(h)(v'@xm,»{ } (5.15)

Let us show that (5.16) is 0 if

26, BFa,

<1. 5.17
IBFa,l’ 17)

In fact, under this condition, the computation
W =Bta, = |p)P==2{p, BFo>+|fFal’

(. 2 BEa)
Y (1 i >>0

shows that p'— f + «a, is too long to be a weight of 7 .. Thus (5.16) is 0
when [ satisfies (5.17).
For any of the remaining fs, (5.5a) gives

T [ X an X 0 ® X,
=Xy, X 410 ®X,) — v ® (ad[X,,, X ,1) X,
=Xy X 0 ®X) — g/ (P + 1)V @Ky, (518)

where p’ and ¢ determine the f root string through Fa, as
Fo,—p'f, ..., Fa,.+q'P. The remaining f’s are in one of the three sets

S]Z{BGA,,|B 1l Oy ey Xp 15

BFaed, |B12> a3 KEL T 00
|BF 2,
S2={ﬁ€An|ﬁ—L—L [ ST S
Ma,eA,W<w{2<_u,_g_+o2z_,>>2}
[BFa,l
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or

S3={ﬂeAn|[3 Ll o, 1;

BFa,ed, |7 <o, P F 00 1}.

VEXAE
We shall show that

EnlX 0y X 510/ ® X)) =CE,(v®X,,),  (519)

where

C={0 if BeS,orfes, (5.19b)

I if BeS,.

Accepting this relationship for the moment, we see from (5.16) that we can
replace the fth term of (5.14) in such cases by

!
a(v)4 | o7 CE0' @ X 4,), ko) (v ® X 10,) )

o, |?

2 2
x{ Linypaes (C—q'(p'+1))}. (5:20)

To verify (5.19) for Be S, U §,, it is enough to check that y’ + f is not a
weight of 1 ,.. In fact, we have

'+ 12— o, > =2<u, BF o)+ B>~ |, |?

_ — 2 2</“'I’B$ar> |B|2—|arl2
-7 5 (S

), (5.21)

and this is >0 if § is in S, or §,. Thus (5.19) holds for f§ in S;v S,.
Putting C =0 in (5.20), we calculate that the expression in braces in (5.20)
is —2 for every possible configuration of root lengths. Thus the roots § in
S, or S, contribute

a(v) § 1o, > CE4 (v @ X 4y,), ko) @ X 10,))
x{—2#{feS ) -2#{BeS,}} (5.22)

To verify (5.19) for BeS,;, we make the following preliminary
calculation:
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[[Xia,v X/f]’ [Xix,ﬁ X —/f]]
= (ad XJ; a,)[X/is [Xia,’ X,,/{]] - (ad X/!)[Xi At [Xtaz,, X—— /{]]
=—q'(p+ DX+, X, 1-plg+ DX X _ 41 (5.23a)

Since f is in S5, we have p=1, ¢=0,p' =0, ¢'=2. Thus (5.23a) is

=2H,, —H,=—H,.,. (5.23b)

the last step following from easy computation. Now under our assumption
that g is in .S;, we have

W ta, BT,y 2w, pFa,) 2(+a,BFx)
|BFa,l? IBFa.l’ IBFa,l®
=1-2=-1<«0, (5.24)

and thus p'+ f=(u' +a,)+ (B F«,) is a weight of 1,.. The fact that the
right side of (5.21) is O shows that u’ + f is an extreme weight. Thus u' + f
and u' +oa, both have multiplicity one in 7,.. Assumption (b) and
Theorem 1.5 show as a consequence that E,.(v'® Xg) and E,.(v'® X ., )
are both nonzero. Taking (5.24) into account, we obtain (5.19a) for some
as yet unknown constant C. Now we apply n{X ., , Xz] to both sides of
(5.19a). Since
(W +B)+ (BFa )= +B12=2{p' + B, BF o> +|BFa,|?

=2{u, BFa)>+|BFa,|*>0,

n[X 1, Xg] E (v'® Xg) equals 0. So (5.23a) gives
LX 50 X 10X 0o X 1 E (v ® X))
=a[[Xz., Xs] [Xio, X p]1] Ef (0" ® Xp)
=—n(Hpz,) Es (0" ® Xp)

KW BT
|BFa,|?

= —E, (v ®X,). (5.25)

E,.(v'® Xp)

Meanwhile (5.19a) gives

ALX 5o Xplal[X o, X 4] EA"(U’®X5)
=CE (n[Xz,, XzlJ0'®X ). (5.26a)
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When we expand the right side, the 7, term gives 0 since
|+ BF o, P =W 1P =24y, BF o>+ Fa,]|*>0.
Thus (5.26a) is
=CE,(v®ad[X ¢, Xp] X,,)
=—Cp(g+1) E4(v'® Xp)
= —CE (v ® Xp). (5.26b)

Comparing (5.25) and (5.26), we obtain C=1, as asserted in (5.19b).
Putting C=1 in (5.20) and using our known values for p, ¢, p’, and ¢’, we
see that the expression in braces in (5.20) is —1. Thus the roots § in S,
contribute

a() 1o, ? CEp(0" @ X 1), mlko)(v' ® X 1, ) > { — # {Be S:}}. (527)

Finally we add the results of (5.10), (5.12), (5.15), (5.22), and (5.27) to
get

<PA” U(V, Xia,)fl(k(})’ u0>
= a1 3101 B @ K ), nlho (6 ® X))

24, +a,p

[a,]? —2#{BeS,}

X {(v+p)(X1,+X_a,)+

‘2#{B€S2}—#{ﬁ533}}

o, |?

d(v) a(v)<E,(v'® X 4,), ko) (v’ ® X 3,)>

|ar|2 —1 . "
=——4—d(v) a(v){t (ko) V", 0"),

with d(v) and v” as in the statement of the theorem. Assumption (b) in the
theorem allows us to divide by (7 4.(k,) ™' v”, v”), and thus we are to show
that

a(v) = {filko), o> /<t 4llkg) " 0", 0. (5.28)
We have
{Silko), gy o= (B(v) Talko) 'V, Uo )y
=t lko) 'V, B(v)* ug) . (5.29a)



190 BALDONI-SILVA AND KNAPP

Since y' has multiplicity one in t 4, the projection to the u’ weight space of
B(v)* uy is |v'] 2 {B(v)* uy, v’ > v'=a(v)v', by (5.9). Thus (5.29a) is

= (talko) v a(v) v’y =a(v)iplhe) 'V, 0, (5.29b)
and (5.28) follows from (5.29). This completes the proof of Theorem 5.1.

COROLLARY 5.2. Suppose [=1and {a,, .., 0,} ={a}. Let A'=(A+a)",
and suppose that either (a), (b), and (c¢) or (a’), (b), and (¢) hold.

(a) A —o is not a weight of 7.
(a") A—o is conjugate to A+ o by the Weyl group Wy, G has no
factor split F,, and o is nondegenerate in the sense of [16].
(b) 1,4 occurs in 1,® pt.
(c) Eq.(3.18) for A" — A has no solutions with 3 ;. 4+ kgf nonzero.

Then t 4 occurs in U(v)| g, and the pair of K types {A, (A+a)"} exhibits
J(cd) as not infinitesimally unitary for ¢ > vy .

Remarks. (1) Condition (c) is implied by condition (¢’) in Remark 3
after Theorem 5.1.

(2) Corollary 5.2 has a dual result obtained by reflection in «. In it
we use A’ = (A4 —a)”. Hypotheses (b), (a’), and (c¢) are unchanged, while
(a) is to say that A+« is not a weight of 7. The conclusion is that
{A, (A —a)"} detects nonunitarity for ¢> vy .

(3) 1Ifz, is known to have multiplicity at most one in U(v), then the
proof will show that (b) and (c) are sufficient without (a) or (a’).

Proof. First suppose that (a), (b), and (c) hold. We shali prove non-
unitarity by applying Theorem 4.1b. Taking (2.1b) into account, we see
that it suffices to show that

b(v, k)= (P UM, X ) Py U, X,) folk), ug) 4

has b(—v, 1) >0 for the indicated values of v.
We put
a(v, k)= (P, U, X,) folk), 1o 4+ (5-30a)

and prepare to apply Theorem 5.1 to +a, u’' =4, vy, and f,. Assumption
(a) of Theorem 5.1 is that A+ 2« is not a weight of 7,; it holds since
A—(A+2a) is not a sum of positive compact roots. Assumption (b) of
Theorem 5.1 is assumption (b) of Corollary 5.2, and assumption (c) of
Theorem 5.1 is trivial. Thus Theorem 5.1 gives

_|0‘|2 (Solk), uo) 4
I P (TR

(ralk) 00",
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where v'=E (v,® X,) and d(v) is the expression in Theorem 5.1 with
adjusted notation. By (4.4) and (4.5),

folk), uo> = CAT4(Rk) ™ 0g, g ) = {1 4(k) ™" 0o, A*uo)
= (k) ' vg, 0o

Also Theorem 2.1c says that d(v)=v(X,+ X_,)+vs . Hence

1 2
a(z c&,k):% Lt k)™ 0, 0 ) {e+vg ) (5.30b)

By Frobenius reciprocity the map V* ®. Homg,, ,.«(¥*, V°*) into the
induced space, given by

v®B - Bt (k) v, (5.31)
is one—one onto the 7, K type of the induced space. Put
fl = PA’U(V’ Xaz)fO'

This is a member of the 7, K type, and it has weight A +a, which is
extreme for 7 ,. Since A4 + o is extreme, it has multiplicity one, and mul-
tiples of v’ are the only ¢’s that can contribute to the realization of f, via
(5.31). Thus

filky=B(v) T (k)" 'V (5.32)

for unique members B(v) of Hom, . ,,«(V*, V7).

We prepare to apply Theorem 5.1 to —oa, u'=A+a, v,, and f;.
Assumption (a) of Theorem 5.1 is that 4 — « is not a weight of 7 ,.; it holds
by assumption (a) of Corollary 5.2. Applying Theorem 1.3 twice, we see
that 7 ,=1,®p® if and only if 7, =7,®p®; thus assumption (b) of
Corollary 5.2 implies assumption (b) of Theorem 5.1. And assumption (c)
of Theorem 5.1 is given as assumption (c) of Corollary 5.2. Thus
Theorem 5.1 gives

b(v, k) zlil—-d(v) Cfilk), U0 44w

4 Crplk)~ 1o, 07
where v” = E ;.(v'® X _,) and d(v) takes on the new meaning attached to it
by Theorem 5.1. Also <{fi(k), ug) .o=a(v,k) by (5.30a), and d(v)=
v(X,+ X_,)— vy by Theorem 2.1c. Substituting from (5.30b), we obtain

b <% cd, k) = (l;:ﬁy (k) 0", 0" > {(c+vi Ne—vd)}

(T ae(k) ™ 0" 0",

Then b(—3cd, 1) >0 for ¢> vy, as asserted.
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Finally suppose that (a’), (b), and (c) hold. We shall prove nonunitarity
by applying Theorem 4.1a. Assumption {c) and the discussion with
Eq. (3.18) say that

LUkt dl=[talhnmeiti]

Assumption (a’) and Theorem 3.3b therefore allow us to conclude that 7 .
has multiplicity one in U(v)|x. Thus Theorem 4.1a is applicable. The
derivation of (5.30b) did not use assumption (a) of Corollary 5.2, and thus

This expression is <0 for ¢ > vy, and the asserted nonunitarity follows.

6. Two-STEP FORMULA WITH SOME CONJUGACY

We now take up a number of results that either relax the hypotheses
of Theorem 5.1 or else impose stronger hypotheses and get stronger
conclusions. Each of them will involve the ideas that enter the proof of
Theorem 5.1, as well as a few new ideas, and we shall emphasize only the
new ideas in each.

Theorem 5.1 says that the v dependence in a(v, k) is under suitable cir-
cumstances a product of linear factors d(v), each coming from a single step
of the action of g on the representation space, times a function of k. A
simple way in which these circumstances can fail is when the theorem is to
be applied twice, first to pass from (u')¥ to (¢’ +a,)" and then to pass
from (u' +a,)Y to (¢’ +a,+a,)"; assumption (a) will fail at the second
step if u'+ «, is conjugate to u'+ a, by the Weyl group of 4. The main
result of this section, Theorem 6.4, addresses this situation, giving a for-
mula for the combined effect of the two steps. We continue with notation
as in Section 2.

Let y be in 4, and let s, be the corresponding reflection in Wy. A
standard representative of s, is a representative w, of s, in K that lies in the
three-dimensional subgroup of K corresponding to y and has square lying
in the center of this three-dimensional subgroup (e.g., w, could be the
image of (_9 ) or of (% {)).

LEMMA 6.1. Let 8, and B, be strongly orthogonal noncompact roots such
that B, = pB, with p in Wy and p*=1. Let p=T1 s, a nonredundant decom-
position of p into the commuting product of strongly orthogonal reflections,
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and let w be a representative of p in K obtained by multiplying standard
representatives of the s.’s. Then

Ad(w)( X5, ® X;,) = X5, ® X, (6.1)
Moreover if c is the number such that
Ad(w) X =cXy,, (6.2a)
then |c| =1 and
Ad(w) Xy, =Xy, AdW)X _g =¢X_g,, Ad(w)X _45,=cX_g. (6.2b)
Proof. Define ¢ by (6.2a) and d by
Ad(w) X, =dXp,.
Since Ad(w) is unitary on p%, (2.1a) gives |c| =|d| = 1. Also it is clear that
Ad(w)(X 5, ® Xp,) = cd( X5, ® X)),
and (2.1b) gives
Ad(w)X _y = —Ad(w)0X,, = —0 Ad(w) X, = — 60X, =X _,,
Ad(w)X _ = —Ad(w)0X 5, = —0 Ad(W) X4, = —d0X, =dX _,.

Thus it is enough to prove cd=1.
We can get a handle on the number cd from the formula

Ad(w?) X, = Ad(w)(cXy,) = cdX,,. (6.3)

The standard representative of each s, is in exp(CE,+CE_,), and the
strong orthogonality of the y’s forces these representatives to commute.
Thus

w’=[]expniH,=expmiy H,,

y 7
and
Ad(w?) X, = {exxv miad ¥ Hy} Xy
= {H exp 27Zi<ﬁ1, ?>/|V|2} Xﬂl

=(=1)= 2<ﬁ1,7>/I7I2Xﬂl. (64)
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We have

po= (11 ) b= -5 2022

by
Taking the inner product with f, gives

2By, 2
'ﬂ]|2=z (B }>'

7]
Thus
4B1 7>
R /TY DA 6.5
RELITNE (63)

Consequently the number of y’s in (6.5) with {f,, y> #0 is at most 2 and is
2 if and only if §, and the two y’s have the same length; in this case the
exponent of (—1) in (6.4) is even and Ad(wz))(ﬁl = Xy, Suppose the num-
ber of y’s is 1. If |y| < |B, |, then again (6.4) shows that Ad(w?) X, = X, . If
7[> 1B, 1, then

ﬂ2=Pﬁ1=S~,ﬂ1=ﬁli”/

shows that B,—f,=+y, in contradiction to the assumed strong
orthogonality of 8, and f,. Thus Ad(w?) X, = X, in every case, and (6.3)
shows cd =1, as required.

LEMMA 6.2. Let y’ be an integral form on b, let A'=(u')", let v' be a
weight vector for T, with weight y', let y be in Ay «» and suppose w is a
standard representative of s.. Then 1 ,(w)v' =v'".

Proof. Under our assumption, X, and X _, act as 0 on v'. Using the
series for the exponential, we see that w acts as 1.

LemMMa 6.3. Let B, and B, be strongly orthogonal noncompact roots, and
let y’ be an integral form on b. Suppose B, and B, are conjugate by a member
p of Wy such that p*=1 and py' =y'. Let p=11s, be a nonredundant
decomposition of p into the commuting product of strongly orthogonal reflec-
tions that fix y' and B, + B,, and let w be a representative of p in K obtained
by multiplying standard reflections of the s)s. Let A'=(u')¥, A"=
W+B)" =W +p,)",and A" = (' + B, + B,)". Fix a nonzero vector v’ of
weight u' in t 4., and define

V=E ' ®X,)  and  vf=1,(0)01.
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Then
EA"'(U;! ® Xﬁz) = EEA’”(vg ® Xﬁ] )’
where ¢ is the number such that Ad(w)X, = cXg,.

Remark. The existence of the decomposition p=]]s, follows from
Chevalley’s Lemma [12, p. 81].

Proof. By Lemma 6.1 we have ¢X; = Ad(w)Xp,. Thus
CE 4n(v7 ® Xy ) = 140 (W) E4(0] ® Xp,). (6.6)

By assumption each s, fixes u' and B, +B,, hence is in A, .4 .4,
Lemma 6.2 thus says we can drop 1 4.(w) from the right side of (6.6), and
Lemma 6.3 follows.

THEOREM 6.4. Fix roots +a, and + o, with r #s and with the two choices
of sign not necessarily the same, and fix an integral form yu' on b. Suppose
that +a, and +o, are conjugate by an element p of order 2 in the Weyl
group of Ay, Let A'=()", A"=(u'+0,)" = (4 +a)", and A" =
(W +o,+a,)". Fix a nonzero vector v’ of weight u' in t .., and, for each v, let
B(v) be a member of Homy .y .(V*, V°*). Let f, be the member of the
induced space given by

filk)y=B(v) 1. (k) '

Suppose that

(al) the only weight in t , obtainable by adding or subtracting some «,
Srom y' +a, or p' +oais y' itself;

(a2) the only weights in t,. obtainable from y' +a, + o, by adding or
subtracting some o, are the two weights p' * «, and p' + a;

(bl) 1, occurs in 1, ®pC, so that v] =E,.(vV® X ,,) is nonzero;

(b2) 1, occurs in 1, ®pC, so that v" = E ,.(v] ® X ,.,) is nonzero;

(c1) Eq.(3.18) for A" — A has no solutions with 3 5. 4+ kyzB nonzero;

(c2) Eq. (3.18) rewritten for A" — A has no solutions with 3.g. 4+ kgp
nonzero; ‘

(dl) no fed, with L1l a,,.,a, ;, B—(+a,)ed, and |B|*<|a,|?
has either

2w B (ka)y | AWt fo(Fa)y
B— (£ B~ (o) !

580/82/1-13
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(d2) no Bed, withp L1Lx, . .,a ,, B—(Fa,)ed, and B> <|z,|’
has either
2(#',5—(i“r)>:1 2(#'i%,ﬁ—(idr)>:1
1B—(£a,)? 1B—(£,)? .

Then v #0 and
<PA”’ U(V, Xias) PA” U(V, Xia,)fl(k)’ u0>u’1a,ids
<_L_Am(k)-1vm, U///

CARER CSilk), ug) .
= e () i)+ o) () T
where
24ps ta,
=t K, X )4 B
—2#{Bed,|BLLla, .., oa,_;B—(ta)ed;
(W' ta,, B—(£a))>>0};
dy(v)is d,(v) with r and s interchanged,
2w, ta,
A= (4 )X, + X )+ R
—2#{Ped,|pLLlay, . ..a ;f—(La)ed)
', = (£a,)>>0}
dy(v) is d;(v) with r and s interchanged.
Remarks. (1) The vectors v/, v7, and v are nonzero by Theorem 1.5.

(2) If all noncompact roots have the same length, then (bl) and (b2)
are automatically satisfied, according to Corollary 1.4a, and (d1) and (d2)

are trivially satisfied.
(3) Conditions (c1) and (c2) are implied by the condition
(¢') there exists a system A4, <4 generated by 4* simple roots
such that
(i) «,,.,a;arein 4,., and 4, has real rank exactly /
(i) A'— A is an integral linear combination of roots in 4,
(ili) A"~ A is an integral linear combination of roots in 4,..
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The argument that (c’) implies (cl) and (c2) is the same as the
corresponding implication in Theorem 5.1.

Proof. In Lemma 6.3, we take i, = +a, and f,= +a,, we choose w as
in the statement of that lemma, and we put v} =1 ,.(w)v). Then Lem-
mas 6.1 and 6.3 give

Adw) X, =cX,,, Adw) X, =cX,,, (6.7a)
AdW) X (o) =CX (40, AdW) X _ (1) =cX (4, (6.7b)
E (0} ®X )= CE (0! ®X ). (6.7c)

Set

fAk)y=P 4. Uly, Xiac,)fl(k)
JkYy="P . Ulv, X ., )} /1(k).

The same argument as with (5.31) shows that we can write

flk)=C(v) 7 (k)" 'o) (6.8)

for a unique C(v) in Hom A 5+ (V*', ¥°"). Notice from Lemma 6.2 that
U, w™') f1(k) = fi(wk) = B(v) 1 4 (k) ' (W) 'v'
= B(v) 1,(k)""v" = £ (k). (6.9)
Thus {6.7a) gives
of (k)= P UG, AdW) X ) f1(K)
= U(V, W) PA" U(V, Xia,.) U(v’ w‘l)fl(k)
= PA" U(V, Xig') U(V, w—‘l)fl(wﬂ 1k)
=PA”U(v’ Xim,)fl(w_lk) by (69)
=f(w™ k),
and (6.8) gives
filky=&f(w k) =eC(v) 1 0.(k)""v]. (6.10)
Hypotheses (al), (bl), and (cl) allow us to use Theorem 5.1 to compute

k), uo Y oy 0, and (fifk), Ug D, 4 .. Because of (d1) and (d2), the result
is simply
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CfAk) uo) rssy, 1217 Cfulk) ug)
2y . 6.11:
I R T R B T R S
{filk), u0>;4’+at» l“lz Sfilk), ug ),
. ta B g - 6.11b
ety ooy~ 4 M ey O
This is all the information we need about the first step taken by U(v).
For the second step, we cannot apply Theorem 5.1 directly to f.(k), since

the appropriate assumption (a) is not satisfied. But we run through as
much of the proof of Theorem 5.1 as we can, obtaining

<PAm U(V, Xia“_) fr(k)9 u0>u'i17i %Ay

/
=3 HoyP[o+p(X,+ X )]

Ji=1
X CE 40! @X o)y mANC(V)*ug @ (Xoyy+ X o)) Dy 424w,
+ Y 3B
Bedy,
X <EA”'(U:®X1%)’ n(k)(TA”(PfXﬂ)*C(V)*uo®Xﬂ)>u'¢u,¢ x5
(6.12)

(The m term gives 0 because of assumption (c2).) In the first sum, only
terms in C(v)*u,® (X, + X _,) of weight p' +a, ta, survive, and in the
second sum, only terms in 7. (P X )*C(v)*u,® X; of weight p' +a, +
survive. Using assumption (a2), we see that

(CO)*ug, v/, {C(V)*uo, vf

v” + irrelevant terms
o i

CvY*uy=

=a,(v)v" +a,(v)v! + irrelevant terms. (6.12)
Substituting into (6.12), we have
(P U, X o) [AK), 0D 0 1 5,15,
=a,(v) {% o 2L+ p)(X o + X )]

X <EA'”(U;’®X11A-)’ n(k)(vr",®Ximj)>y'ia,ias
+ X e

Bea,
L Lo, a1
BL/Lag

X CE 4 (0] @ X 10,), Tk W1 4-(P1 Xp)* 0] ® Xpp) >,u¢a,+a_,}
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ray) { 2L+ )X+ X )]

X <EA”’(U:/ ®X-tazs)’ T[(k)(v.;,® Xia,)>u'tz,ias
+ X s

Bedn
BL Loy, .y
BL/iLa,

X CE (0] @ X 1,), Tc(k)(TA"(PEXﬂ)*U;,®Xﬁ)>p’iayias}'

In the second expression in braces, we can substitute from (6.7c), and then
each term in braces is computed by the same argument as in Theorem 5.1.
Assumptions (d1) and (d2) make the result a little tidier:

(P oUW, X 0) K)o syt s,
= (312, 120,(0) ) HCE 4= (0] @ X 1), Wk )0} @ X 1))
{4 12,12 2a,(v) do(0) }CE e (0 ® X 1), (k) (0} ® X 1))
= (3,12 a,(v) () + 4 12,12 Ea(v) dy(v)} (o (R) 070D, (613)

the last equality following by a second application of (6.7c).
Now (6.12) gives
Sk oD s, = KOOV Tolk) 7107 0D 4,
=t (k)70 COY* oD s,
=a,(v){t (k) "0y, 07D,
and so (6.11a) gives

2
am =L )

<fl(k)5 u0>u‘ (6 143)
RGN '

Moreover (6.12) gives
LK), 40Dy 0, = ECCVY T4 (k) 0], 0D 44,

=it (k) ), COMY*UpD s,
=ca(v){t (k) 'v], 0],
and so (6.11b) gives

E(ZS(V)— 4 <f1(k)’ u0>u’

(ralk)™M0, 07y

Substituting (6.14) into (6.13), we obtain the conclusion of the theorem.

dy(v) (6.14b)
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7. TwoO-STEP FORMULA APPLICABLE TO GAPS IN Sp(n, 1)

In Sections 7-10 we give further results that are in the spirit of Sections 5
and 6 but are more specialized. The ones in Sections 7-9 are all needed in
the classification [5] of unitary Langlands quotients obtained from
maximal parabolic subgroups, and the one in Section 10 is needed for the
determination of the unitary dual of SU(N, 2) in [2]. For each of the
results the proof has three ingredients, partly in common with Theorem 5.1
and partly new:

(1) Calculation of some expression (4.6) or (4.7) corresponding to
application of successive operators U(v, X). In Sections 7-10 the expression
will involve two steps by operators U(v, X). The methods of Theorems 5.1
and 6.4 will handle much of the first step and some of the second. The
remainder of the calculation will require new ideas.

(2) Verification that some projection is nonzero. In easy cases this
follows from Theorem 1.5. In harder cases a direct argument is needed.

(3) Derivation of a multiplicity result.

With the three ingredients in place, we apply Theorem 4.1, and the con-
clusion is a result about unitary representations.

The first result we shall state in some generality. In real-rank-one cases it
leads to the nonunitarity of the gap when there is an isolated represen-
tation. A corollary will make this implication precise for Sp(n, 1).

LemMA 7.1. Ifyisin Ay 4, then

(ad X.,)( y |ﬁ|2Xﬁ,j®X,,> =0.
v

Proof. The product in question is

YO IBPLX,, X s1®Xs+ Y IB1PX _p®LX,, Xp].
i ity

If =y + ', it is enough to show
BRLX,. X 1@ X,+|B °X ,®[X,, X,;]=0. (7.1)

Put

[Xy,Xﬁ']=aXﬁ and [Xy,Xiﬂ:I:a/X‘ﬁr.
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Then
a[X—ﬁ" Xﬁ] = _[X—ﬂ" [Xﬂ” Xv]] = -(p(+ l)q,Xya

where y —p'f’, ..., 7+ ¢'B’ is the B’ string through y. Also
a’[X_ﬂ', X[f] = [[X.',, X—ﬂ]’ XBJ =p(q+ I)Xy’
where y — pf, ..., 7 + ¢f is the f string through y. So the left side of (7.1) is
(@ 1B +alB )X _p®Xp)
=c[p(g+ D) B2 —(p'+ 1) @' 1B IP1(X _p ® Xp),

and we readily check that the expression in brackets is 0. Thus (7.1) holds,
and the lemma follows.

Tueorem 7.2. With =1 and {a,, .., «,} = {«}, suppose that G has no
Jactor split Fy, that o is nondegenerate in the sense of [16], and that « and
—a are conjugate via Wy 4. Let A\ =(A+a)" =(A—a)¥ =4+, and
suppose that {6, a) <0. Let Ay=(A,+a)" =A+3,. Suppose that

(a) 1,4, occursint,@p",
(b) T4, occurs in 1, ®p*, and

(c) the 6+0, subgroup (ie., the semisimple subgroup built from all
simple roots of A needed for the expansion of 6+ 6,) has real rank one.

Then

(1) <PLUW, X ) Py U, Xo) folR), o) 4 = (|o]*/8) e(v)<t 4,(k) "
3, U3,
where

c)=v(X,+X_,)+vi —2#{Bed] <A, >=0,pLa p LA a}
and

02=EA2(EA|(UO®X01)®X—1) (72)

(2) the vector v, in (7.2) is not zero

(

(4) the pair of K types {A, A,} exhibits J(5¢&) as not infinitesimally
unitary for

vi —2#{Bed} <A, B>=0,8 Lo, flAa}<c<vy.

3) 1,4, has multiplicity one in U(v)|

Proof of conclusion (1). By Lemma 3.1, there exist roots of two different
lengths, and o is short. Moreover,

{(4,0>=0, (7.3)
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and 0 =9 =0~ has the property that 4+ is 4} dominant. If w, is a
member of Wy , such that é =w,a, then (7.3) implies

(A, 0y =( A, wiad>=Lw; A, a)=<_A,a)>=0. (74)

Choose w, in Wy , such that w,(4, +«a) is 4f , dominant. We claim
that wy(A4, + «) is actually 4 dominant. In fact, if yisin 43¢ but not 47 ,,
then

2w ta),yy 2{A+wy(0+a)y)  2¢A,7)  2{wy(0+a),7)
I71? Tk 12 Iy1?

can be negative only if 2{A4, y>/|y|*=1 and w,(6 + a)= —7, since 6 + a is a
short root. But (7.3) and (7.4) show that d+« is in 4, ,, and thus
y=—~w,(d+a) is in 4, ,, contradiction. We conclude that w,(4,+a) is
4% dominant.

Consequently

Ay=(A;+a)Y =wy(A4d,+a)=A4+ wy0 +w,o
=A;+ (w0 + w0 —9),

and 8, =w,0 + w,x — J. Therefore

A, 0,>={A,w,0+w,a—36>=04+0-0=0 (7.5)
and
{8,0,)=LA+8,8,>=LA,8,>=L A, a>={A+b,a)={J,a) <.
(7.6)

The argument in the last three paragraphs of the proof of Theorem 3.3
shows that there exist long orthogonal roots y, and y, in 44 , such that the
involution p=s. s,, in Wy , has pa= —a. Let w be a representative of p in
K obtained by multiplying standard representatives of s, and s,,, and
define a number ¢ with |¢] =1 by

Adw)X,=cX_,. (7.7)
Let us prove that
Adw)X_,=¢cX,. (7.8)
In fact, a has to be in the span of 7, and y, and must therefore be given by
a=c,y, +c,y, with |¢,| =]c,| =1. Hence
2910  KOD2) _yieyrer)  isin2Z (7.9)

|Y1]2 ly212
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If d is such that Ad(w)X_,=dX,, then (7.7) gives
cdX,=Ad(w)(cX_,)=Ad(w*)X,=Ad(exp ni(H, + H,,)) X,

2¢a, 2+ 2¢x, 2 _
(_]) Loyt /Il + 2o y2 )/ 12l Xm_Xa'

This proves (7.8).
Now we imitate a certain amount of the proof of Theorem 6.4. Let

v, =E, (0,®X,) (7.10a)

and
vo=1Wv, =cE (1,®@X_,). (7.10b)

(Here the second formula for v_ uses (7.7) and Lemma6.2.) By
assumption (a), 74, occurs in 7, ® p®. Thus by Theorem 1.5, v, and v_ are
nonzero. Let

Slk}= P U, X,) folk)
S (k)="P 4 Uv, X _,) folk).

The same argument as with (5.31) shows that we can write

S k)=B()1,,(k)" v, (7.11)

for a unique B(v) in Hom . o« (V™, ¥°*). Then the proof of (6.10) shows
that

f_(k)y=cB(v)t, (k) "v_. (7.12)

We shall use Theorem 5.1 to compute <{f,(k), up>,,, and
{f_(k), uy> 4_,. Condition (a) is satisfied since A — (4 + 20} = F 2« is not
the sum of positive compact roots. Condition (b) holds by hypothesis. And
condition (c) is satisfied trivially. Since { fo(k), ug> 4= {1 (k) 0o, vo) by
(4.4) and (4.5), Theorems 5.1 and 2.1 give

o) 10> g =5 0 X+ XD (0) 00> (T13)
R 0D 4 =2 (v 30X+ X)) 00> (L14)

Moreover the respective expressions [ for « and —a in Theorem 2.1 are
equal when u' = 4, since {A, > =0, and thus

vi =vg. (7.15)

This is the information that we need about the first step taken by U(v).
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The new ingredient is the nature of the second step. We run through as
much of the proof of Theorem 5.1 as we can, obtaining

CPLUW, X)) folk), ug)
=4[+ o)X+ X )]
XCE (v, @ X ), (k) (B(v)*uy @ (X, + X _,))) 4
+ ) SIBIPCE (0 @ X L), m(k)(x 1, (Py Xp)* B )*ug ® X)) 4.
fed, (7.16)

(The m term gives 0 because of assumption (c).) In the first sum, only
terms in B(v)*u,® (X, + X _,) of weight A survive, and in the second sum,
only terms in 7,,(PX5)* B(v)*u,® X, of weight A survive. Since 4 + 2«
and A —2a are too long to be weights of 7 ,,, we see that

BV *up. vy ) - (BO) o, v )
v, ]2 . lo_|?

=a,(v)v, +a_(v)v. +irrelevant terms. (7.17)

B(v)*u,= v_ + irrelevant terms

Substituting into (7.16), we have
<PA2 Uv, X_,) f(k), up) 4

=a,(v) {% lal*[(v+ p) (X, + X _,)]
X <EA2(U+ ®X—a)’ TC(k)(l)+ ®X-v—rx)>/1

Y LB E L, ®X_), n(k)(rA,(PfX,,)*m@Xp)n}
ped,
BL/la

ra_(v) { 02 (v + p)Xat X )]
X CE (v, ®X ), 2()(o ® X)),

+ Y HIBPKEL (0, ®X L) m(k) (1 (PiXp)*y_ ®Xﬁ)>A}'
Bedn

BL/la (7.18)
Here we can compute a_ (v) and a_(v) as follows: From (7.11), we have
otk uod 4 a=<BOV) 14 (k)7 0y, UoD a4 s
= {t4(k) "o, BO)* U 440
=a,()<tk) o0,
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so that (7.13) gives

|t
a, ()= +V(X, + X)) (7.19a)

From (7.12), we have
Cfo(k) uod 4y =C{BM)T4lk) "0, ued 4,
=&t (k) o, BOY uo 4,
=ca_(v)<t (k)" v_),

so that (7.14) and the equality v{ =v, give
Jal?
4

fa_ (V)= (vg + (X, + X ). (7.19b)

Let us concentrate on the f terms in the first set of braces in (7.18). The
only contribution from P;X,; comes from a term with [X,, X;]. We imitate
a certain amount of the proof of Theorem 5.1, starting after (5.14). The
term f =« gives 0, and the term f= —a has P, X_,= —$H, and gives

F1aCE L (v, @X ), mlk) (v, ®X _,)>{ -2}

For the remaining fs, the relevant term of P X, is —(p+4q) ' [X,, X;]
by (5.4b); here fi— pa, ..., f + ga is the a root string through f. Thus the
relevant term of t, (P X4)*v, ® Xy is

(p+q) "t0[X X plv, ®X; (7.20)

If (A+a,B+a><0 or if f+« is not a root, then the first factor of
(7.20) gives 0. The remaining f’s are those in the set

T,={Bed,|p+acdand {A+a f+a)>0}

For these f’s, (5.5a) gives
T X o X plv, ®@X,
=n[X_,, X 3]0, ®Xp)—v,®(@d[X _,, X z1)X;
=nlX ., X )0, ®Xp)—q'(p'+1)0,. QX _,, (7.21)

where p’ and ¢’ determine the f root string through e as a — p'f, .., a + ¢'f.
For f in T, the weight of v, ® X, is too long to contribute to 14, if
O<|A+a+B>—|A+6+al?
=2{A, B—=8>+|a+ P12 —10+al?=2{A, B>+ |a+ BI*— |6 +a|
(7.22)
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{Here we have used (7.4).) On the other hand, the f’s in T all have
(A+a, f+ad>>0. Since {A,a)=0 and since f+ o is in 4, this latter
condition means

<2<A+a,ﬁ+a>_2<A,B> 2<a,ﬂ+a>_2<A,B>
S B+al? B+ |Btal?  B+af?

4+ (1 or0).

Comparing this condition with (7.22), we see that the weight of v, ® X 1s
too long to contribute to 1 ,, unless f is in

T,={feT|<{B a)<0,[Bl=|al, B —o and {4, f>=0}.

If pis in T,, we make a different calculation of the left side of (7.21),
obtaining

T [ X X _plv, ®X,
=T [X_0s X g1 E4(0,®X,)® Xy
=E,; (0,®ad[X ,,E ;]X,)® X, since (A, f+a>=0
=—q(p+ 1) E (0o® X _p)® X, (7.23)

Now we combine (7.21) and (7.23), taking into account the identity

1BEa(p+1)_
o> p+q

and we see that the T terms in the first set of braces in (7.18) contribute

I CE 0, ®X ), k)0, ®X ) {~2#{fe T\~ T2} ~2)

1
» !ﬁv"(p’” D) g0, ®X ), kN En (10®X_5)® X)),

BeT

2
(7.24a)

Similarly the f terms in the second set of braces in (7.18) contribute

1

7 o) 2CE (0, ®X ), n(k)(o_ @ X)) { —2#{BeTs— T4} —2}

)

<EA2( +®X ) n(k)(EAl(UO®X7ﬂ)®XB)>9
(7.24b)

p(q+
5 Z B> ——
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where
T;={fed,|p—acdand {A—a, f—a)>0}
Ty={BeTs{<{f,a)>>0, |l =|af, f #a, and {4, §) =0},

and where the factor of ¢ enters the second term of (7.24b) because of
(7.10b). If B is in T,, then p=0 and g=1. So q(p+1)(p+gq)~'=1
Similarly if # is in T, then p(g+ 1)(p+¢q) ' = 1. Thus we may drop these
factors from (7.24a) and (7.24b).
Now we substitute into (7.18) from (7.24), obtaining
<PA2 U(V, X~a)f+ (k)9 u0>/l
Jaf
T 16 {
X [KE (v, @X_,), (k) (v, ®X_,))
x{(v+p)X,+X_,)—2-2#{peT,—T,}}
+eCEL, (0, X L) mk)v_ QX,))
x{(v+p) X+ X_,)—2-2#{BeT;—T,}}]
kil

e v +v(X, +X_,)}

v+ v( X+ X))

x[ 5 |ﬁ|2<EAz(v+®Xa>,n(k)(EA.(vo®X,ﬁ)®Xﬁ)>].

BeThruwTs
(7.25)
Let T={fed,|Bf L A} We shall prove below that
Y ABIPE 4, (t 4, (0o ® X _5)® X;)=0. (7.26)

BeT

Assuming this result for the moment, we write 7 as a disjoint union
T=T,uT,wTsuTsuTy0u{a, —a},
where
Ts={feT|f Laand B L/ o}

Te={BeT||fl>|al}
T;={BeT||fl=|xland B L L a}.

The set T, makes no contribution to (7.26) because the weight of ;@ X _,
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has length >|A,|. Let us see that 7, makes no contribution. If fe 7,
makes a contribution, then the weight of v,® X, namely A — f, has the
same length as 4+« in 7, and hence is conjugate to A + o via W. Thus it
is conjugate to A4 + J. Since f is short, 4 — 8 can be made 47 dominant by
a member of Wy ,. Thus § is conjugate to 6 via W, ,. Bringing in the
conjugacy of « and —a via Wy ,, we see that —f is conjugate to J, too.
Thus

§—B= Y my and +8= Y ny,

754/2,4 ’/EA;,A
and one of these relations implies that § is in the é subgroup. But the o
subgroup has real rank one by assumption (c), and no noncompact root
can be strongly orthogonal to a within this subgroup. We conclude that T
makes no contribution.

Next let us observe that T is nonempty. In fact, in our earlier notation
we wrote a=c,y,+c,y,, and f=c¢,y,—c,y, 18 in T5. Let B be any
member of T5. Then we have

EA;;_(EAl(UO@X»ﬂ)@X‘B)
=%EA2(EA1(UO®X71?)® [[Xﬂ’ er], an:])
= _%EAQ(TA] [Xﬁ, X,] EAI(UO®X—B)®X71)
since A — f — a is not a weight of 7 ,,
= _%EAZ(EA,(%@ [[Xﬂa X,] szx])@Xﬂ)
since A is orthogonal to f + «
=E (E (0,@X,)Q@X ). (7.27)

Hence all the members of 75 make the same contribution to (7.26), namely
|| E 4, (v, ® X_,). Moreover we could have replaced « by —« in the
derivation of (7.27), and we conclude from the fact that 75 is nonempty
that

E(Es(0o®@X,)®@X_,)=E (E;(0,®X _,)®X,), (7.28a)

i.e., that
E,(v_®X)=cE,(v, ®X ,). (7.28b)
Using (7.26), (7.27), and (7.28a), we see that the last two lines of (7.25) are

o
8
XCEL(v, @X_,), n(k)(v, ®X,a)>{#{ﬂe Ts} +23}. (729)

=+ (v +v( X, +X_,)}
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Now recall our element pe Wy , with p?=1 and pa= —o. If Bis in T,
then pp has
pB—oaed since pf—a=p(f+a)and f+aecd

{A—a, pf—a>>0 since {A—a, pf—ay=<{A—a, p(f+a))
=(p(Ad—a), f+a)
={A+a, f+a>>0.

Thus p carries T, to T,, and clearly p carries T, to T,. In the process, we
can check that p carries 7, to T, and vice versa. Thus

#(BeT,—T,)=#{BeT,—T,}. (7.30)
Using (7.28b), (7.29), and (7.30), we can simplify (7.25) to

<PA2 U(V, X—-rx)f+(k)9 u0>A

oo *

=5 {Eplv. ®X o), nlk)v, ®X ) [vi +v(X,+X_,)]
X[V +p)X,+X ) —2-2#{feT,— T} + #{feTs} +2].

We readily check that T, is the disjoint union

T,=T,uTs;u{fed,|f+aecdand {4, B+a)>0}.

Meanwhile the equality /=wv, in Theorem 2.1 says

p(X,+X_,)+0-2#{Bed,|B+acdand (A, f+ad>>0}=y{.

Hence

<PA2 U(V, Xfa)f+(k)’ uO)A

4
B ®X ), 1. ® X )T +v(Ka X )]

X [VJ_ +V(X1+X7<x)— #{ﬁe TS}]

This is conclusion (1) of the theorem, except that we have not yet proved
(7.26).

To prove (7.26), we shall show that the vector on the left side is a highest
weight vector {(of weight A). Since 4 # A4,, {7.26) will follow. First suppose
yisin 44 4. Then
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T4, (X)) Y BIPEf(Es(vo®X )@ Xp)

BeT
— £ E,8D 70 {008 T pPx 0, )]
BeT
=EA2(EA1®1){v0®ad (Z IBI?X _ ﬁ®Xﬂ>} since {A,3)>=0
peT
=0 by Lemma 7.1. (7.31)

Since 7,4, by assumption (b) occurs in 7, ®p®, it must occur with mul-
tiplicity one, by Proposition 1.1b. Moreover a nonzero highest weight vec-
toris E ,(E, (vo® X5)® X;,), by Theorem 1.5. Thus we can choose u in
the universal enveloping algebra of 3, 4+ CX _, such that

ﬁz |ﬁ|zEAz A (1o ® X _ ﬁ)®Xﬂ)
eT

=T, (1) E 4, (E (0o ® X5)® X55,). (7.32)

We can discard from u any monomial not of total weight —4—4,. Any
remaining monomial is of the form X  ...X . with y,ed! and
2. y;=0+0,. Taking the inner product with 4 and invoking (7.4), (7.5),
and the 4} dominance of 4, we see that y, is in 4 ,.

Let ye 4 be simple, and apply 7 ,,(X,) to the left side of (7.32). If y is
in 4} ,, then (7.31) shows we get 0. Otherwise X, commutes with each
factor X . in each monomial of u, and (7.32) shows we get 0, since
E.(E Al(vo®X 5)® X5,) is a highest weight vector. Consequently the left
side of (7.32) is indeed a highest weight vector, necessarily of weight 4, and
(7.26) is proved. This completes the proof of conclusion (1).

Proof of conclusion (2). We start from the fact observed above that
E (E (0o®X5)® X;)#0.
Applying the element w; of Wy , such that w;d, = a, we see that
E L (E (0@ X5)®X,)#0.

The weight of this vector satisfies <A+ d+a, d+a> >0 by (7.3) and (74),
and hence

0#1,[X 5, X JEL(E,(1e®X;)®X,)
=E4,(Ey(0o®[[X 5, X_,] X:])®X,)
+E5(E,(0o®X)Q[[X 5, X_, ], X, 1)
= —EL(Ef(00®@X _)®X,)+E(E(00®@X)® X ).
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One of the two terms on the right side must be nonzero. If it is the first
term, then (7.28a) finishes the proof of conclusion (2). Otherwise the
second term is nonzero and remains nonzero when we apply the element
wile Wy , such that w'd =a; again we obtain conclusion (2).

Proof of conclusion (3). It is immediate from conclusions (1) and (2)
that 7, has multiplicity at least one in U(v)|«. Proposition 3.5 and
assumption (c) therefore show that it is enough to prove
[talgameit 1S

First we show that any K~ M* highest weight vector for 7, within 7,
has weight A relative to b. In fact, the vector must be a linear combination
of weight vectors whose weights restrict to 4 on b_, thus are of the form
A+ na with ne Z. For |n| =2, we have

|A+na|22 A7+ 4 |a)2> |A4]% + |a)?
=4+ 6 +al’=|A+5+al>=|4,]%

and no such A + na can be a weight. For |n| =1, A4 + na differs from A4, by
the sum of a noncompact root and a compact root, and this is not the sum
of compact roots (Problems 12 and 13 on p. 478 of [12]). So n=0 is the
only possibility.

Second let K, be the analytic subgroup of K containing B and built from
the root system

we shall show that any Kn M* highest weight vector of weight 4 in 7, is
highest for K. In fact, let ye 4} be given. If |y|* =2 |a|?, then 4 +7 is too
long to be a weight of 14, since

A+ 2 =417 +2{A, 3> + Iy?
ZIAP+2al>> AP+ 6+’ =4+ 5 +a|> = |4,

Since y is in dg,, we may thus assume v is short and y L o. If {A,7y> >0,
then 4 + 7y is too long to be a weight of 7, since

|4 +71%= 1417 +2<A, 7> + 19> > | A1 + |al* = |4, ]~

So we may assume also that y | 4. Let us see that 4+7y cannot be a
weight if y L o but y L/1 a. In fact, otherwise |4 +y|*>=|4+ 8+ 6,2, and
A+7y is conjugate to A+6+6, by Wy and even by Wy ,. So y is
conjugate to  +J; by W, , and

d+8,=y+ ) ny, n;=0.

wed;

S80/82/1-14
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Thus y is in the J + 6, subgroup. Since 7 is M-noncompact, this conclusion
contradicts assumption {c). The only remaining possibility is that y L 1 a.
In this case X, is in (f~m)® and acts as 0 on any Kn M* highest weight
vector.

Third let K* be the analytic subgroup of K containing B and built from
the root system A4, 4, and let K;- be the analytic subgroup of K containing
B and built from the root system

A a=Adg 4N Adg.

If v ,, denotes a nonzero highest weight vector for z,, and if U(t*) denotes
the universal enveloping algebra of (f+)<, we shall show that V= U(f*)v,,,
is irreducible under K* and contains the full A4 weight space of 7,,. In fact,
the irreducibility follows from the Theorem of the Highest Weight. Also V
contains the full 4 weight space by the same argument used in connection
with (7.32).

Fourth we observe that (K*, Ki) is a symmetric pair. The involution is
+1onfi and is —1 on

it { Y, (¢ 7}.
2<y,a)/I7|? odd
Let K. be the semisimple subgroup of K*.

Finally we can complete the proof. Since (K*, K7) is a symmetric pair
and V is irreducible under K*, the subspace of (K n K )-fixed vectors in
V is at most one-dimensional. (This is a well known implication due to
Gelfand and Naimark; see [8, p. 416].) Since V contains the full A4 weight
space, the subspace of (K1 n Ki)-fixed vectors in the A4 weight space is at
most one-dimensional. This subspace is the same as the subspace of K,
highest weight vectors in the A weight space. We saw that every Kn M*
highest weight vector of type 7, lies in this subspace, and hence the sub-
space of K~ M* highest weight vectors of type 7, is at most one-dimen-
sional.

Proof of conclusion (4). In the presence of the first three conclusions,
conclusion (4) follows from Theorem 4.1a.

COROLLARY 7.3. Suppose n=2 and g=sp(n, 1), possibly with abelian
and compact factors, and suppose in the terminology of [5] that the special
basic case for the infinitesimal character Ay is all of A. Suppose that p =0,
that o is adjacent to the long simple root, and that o is the only noncompact
simple root. Put A, =(A+a)” and A,=(A;+a)”. Then 1, and t,, have
multiplicity one in U(3cd), the signature of the standard form on 7, Iis
sgn(vy —c¢)=sgn(vy — ¢), and the signature of the standard form on 14, is
sgn{vy —c)(vg —c—2).
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Proof. We may as well assume g=sp(n, 1). With standard notation for
A%, the long simple root is 2e¢,,, and « is ¢,—e,, ;. The other short
simple roots are compact. The assumptions force A =0. Thend=¢,+e¢, ,,
and 6, =e,—e,, . The hypotheses of Corollary 5.2 are satisfied (with (b)
valid by Corollary 1.4a), and the conclusions about 7, follow from
Theorem 3.3, Proposition 3.5, and Corollary 5.2. The hypotheses of
Theorem 7.2 are satisfied (with (b) valid by Corollary 1.4a), and the
conclusions about 7 4, follow.

8. TwWo-STEP FORMULAS APPLICABLE TO SHARPER ESTIMATES IN SO(N, 2)

We continue with the more specialized results that we began to discuss
in Section 7. The main result of this section we shall state in some
generality as Theorem 8.1. Our interest in this result is in the two
corollaries, which specialize the theorem essentially to SO(even, 2) and to
SO(odd, 2). In reading Theorem 8.1, one should keep these groups in mind
and think of o as e;—e;, ; (in standard notation), B, as ¢;+e¢;, ;, and the
SO(2) part of K as corresponding to weights e;.

THEOREM 8.1. With [=1 and {a, .., a,} = {a}, suppose that

(a) o is long (if there exist roots of two lengths),

(b) there exists a wunique positive noncompact root B, that is
orthogonal to o,

(c) « is conjugate to B, via an element p of order 2 in Wy ,,

(d) if Ay=(A+a)" and Ay=(A+a+ )", then 1, occurs in
7,®p" and 14, occurs in 1, @ p°,

(€) if A'=A+PBy, then 1, occurs in U(v) exactly twice, once
because [14|x~m#:7;]=1 and once because [T, |x~p+:T;]=1 and
6% lxnm*:T2]=1
Then

(1) the vector vy=E 4,(E ,,(vo® X,)® X;,) is not zero, and

(2) (PL,UW, Xg) P UG, X,) folk), WDaiarp = § le* d(v)
{t4(k) " vy, 0, ) for a suitable normalization (independent of v) of a highest
weight vector u' of V' < V", where

dv)=v(X,+ X _,)+vg

% {ﬁeAnlﬁ—aeA,2<A+B0’B_a>>1}

18—l
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+ # {ﬂegnmvae[;,wzl}

B —al®

v3# {pedip-aea g XLy

[B—al®
-3 # {ﬁeanm—aea, |ﬂt2<|a|2,3§|;’_ﬁ+lf‘>=1}.

Moreover if © (, has multiplicity at most one in U(v), then

(3) the pair of K types {A, A,} exhibits J(5cd) as not infinitesimally
unitary for ¢ > d(0).

Remark. Theorem 8.1 has a dual result obtained by reflection in «. In it
we use 4, =(A4—a)", B, conjugate to —a, and A,=(A—a+ ;). The
formula for d(v) is changed by changing v; to v, and by replacing «
everywhere by —o.

Proof of conclusion (1). We begin by defining «'. If y is in 4,4 _,
then {(f,,7y>=0 since otherwise one of +pf,+y would contradict the
uniqueness in assumption (b). Since « is long, it follows that

CX_j+CHy +CXy,

is an ideal in m®, and m is isomorphic to the sum of sl(2, R) and the Lie
algebra of a compact group. The root f, is the positive root of the sl(2, R)
factor of m.

Meanwhile 4 is the Blattner parameter for the representation ¢* of M#,
and the theory of sl(2, R) tells us that the other Kn M* types of 6* have
highest weights A+ f,, A+ 28, ... The element ¢*(Xp)* carries 7, .4,
onto 7, (,_ 1,4 if 7> 0, again by the theory for sl(2, R). Thus we define v’
to be the highest weight vector of 7, , 45 such that

a* (Xp)*u' = uq. (8.1)

This will be the normalization of ' that we use in conclusion (1).
In Lemmas 6.1 and 6.3, we take §, =« and f,=f,, using the element p
supplied by assumption (3). The result is an element w satisfying

Ad(w) X, = cXp, and Ad(w) X, =cX, with [c| = 1.
Moreover we can take

V= EAl(UO®Xu)
vy = TA.(W) Uy =CEA1(UO®Xﬁo)s
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the last equality following by Lemma 6.2, and then
EAZ(EAI(UO®Xa)®XBO) = EAZ(EA1(00®XBQ)®X01) (8.2a)
E (01 Q@ X)) = CE 1,(v) ® X,). (8.2b)

Theorem 1.5 and assumption (d) imply that the vectors v,, v}, and (8.2a)
are all nonzero. In particular, this proves conclusion (1).

Proof of conclusion (2). Define
Juk)=P 4 U(v, X,) folk)
Jilk)= P, U(v, Xg,) fo(k).
The same argument as with (5.31) shows that we can write
filk)=B(v)14,(k)""v, (8.3)

for a unique B(v) in Hom . 4+ (¥, ¥°*). Then the proof of (6.10) shows
that

Sik)=¢EB(v) 14,(k) "0}, (8.4)
Assumption (e) implies that we can write
B(v)=b,(v) B, + b(v) B}, (8.5)

where B, carries V! to the V* subspace of V?* and B carries V' to the
V* subspace. Moreover the decomposition into the two terms in (8.5) is
unique. We shall fix normalizations of B, and B] so that the whole decom-
position (8.5) is unique. First we write

B(v)* =b,(v) BY +b'(v) B;* (8.6a)

with B¥ mapping the V* subspace of ¥°” into V' and with B}* mapping
the V* subspace of ¥°* into V"' The vectors B¥u, and B}*u’ are nonzero
K~ M* highest weight vectors within V"' of respective weights 4 and 1/,
and assumption (e) says these highest weight vectors are determined up to
scalars. Since « is long, it is a simple matter to check that v, (of weight
A+a)is Kn M* highest of weight A and v} (of weight A + B,)is Kn M*
highest of weight A’. We normalize B} and B}* by the conditions

Bfuy,=v, and B\*u' =v}. (8.6b)

We shall apply Theorem 5.1 to compute {f,(k), uy> 4. ., and we shall
compute {f1(k), u') 4, 4, directly. In Theorem 5.1 with u'=A, condition
(a) is satisfied since 4 — (A4 + 2a) = — 2o is not the sum of positive compact
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roots, condition (b) holds by assumption (d), and condition (c) is satisfied
trivially. Since

(fotk), uo ) 4= {1 4(k) 71”0» vy
by (4.4) and (4.5), Theorems 5.1 and 2.1 give

2
(Silk), uo%uﬁ% (vg +v(X,+ X))t (k) "oy, 000. (8.7)

To compute {fi(k), u') 4,4, we review the beginning of the proof of
Theorem 5.1 and see that

<f’1(k)a u,>A+Bo
=1 [+ )X, + X _,) 1Ko, k) (A*u @ (X, + X _.))) 44 o
+ Y 3B, kN A*a* (P Xp)* ' @ Xp) ) 4+ gy

Bedy,

+ Y FIBIPCV, mlk )z (P Xp)*A*u @ X)) 4+ o (8.8)

Bed,

with A4 as in (4.4). Let us refer to the terms as the a term, the m terms, and
the f terms, respectively. Here A carries V' to the V* subspace of ¥**, and
A*:V*— V* vanishes on the V* subspace. Consequently the a term and
the f terms have 4*u’ =0. Thus only the m terms of (8.8) survive. Since « is
long, the only f’s in 4, that have P,,X;#0 are roots orthogonal to a. By
assumption (b), only f, and —f, can contribute. For f=—p,,
o*(P X _p)*u' has weight 1+ 2, relative to b_, and so A* must
annihilate this vector. Hence
LR, 4D g gy =5 1Bol* 0, mE)NA*G* (P X g )t @ X)) s g
= 1o <%, RN A 4o ® X o) 4w gy

=3 || 2Cvy, m(k)(0g ® Xg) )
and

LUK, 0D 40 gy =5 10ty (K) 7105, 00 (89)

Now we can compute b,(v) and b,(v). From (8.3), we have
Cfilk), up) 44 0= <B(v) TAl(k)71 Vi Ug)a sy

= <TA|(k)7lvl’ B(v)*u0>/t+1
=b1(")<711,(k)*ll71, v,
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so that (8.7) gives

bl(v)=l—a4|—(v5' +v(X,+X_,)). (8.10a)

From (8.4), we have

LK), D 40y =ECBOY) T (R) 0, 0D a4 gy
=&t 4, (k)7 0, BOY*U' D 44 gy
= 2b\(v)<t,, (k)" 10}, v} ),
so that (8.9) gives
chi(v)=1|al (8.10b)

Turning attention to the second step taken by U(v), we run through as
much of the proof of Theorem 5.1 as we can, obtaining

(P UG, Xpo) 1K) 4D 104 gy
=5 lal* [0+ o)X+ X )]
X CE 4,(v ® Xpgo), (kY Bv)*u' @ (X=X _2))D 442450
+ Y, SIBIPCEL (0, ® Xp,), (k) B)*o * (P Xp)*u' @ Xp)) 4 1as gy

Bedn

+ Y FIBIPKE (0, ® Xp,), (k)T 4 (PrXp)*u' ® Xp)D s at e
Bed,

In the a term and the f terms, we have B(v*)u’=b(v)v}. If we make this
substitution, we see that the a and T terms are just what Theorem 5.1
calculates when u' =4+ p,, apart from the common factor bi(v).
Meanwhile the m terms are all 0 except possibly for =8, and 8= —§,,
by assumption (b). The term with §= —f, involves a* (X _; )*«’, which
has b_ weight A+ 2, and is annihilated by B(v)*. The term with f=f,
involves B(v)*a* (P, X,,)*u'=b,(v) v,. Hence

<PA2U(V, Xﬂo)fl(k)s u,>A+m+ﬂo
||?

=b1(v) = (E0(0: @ Xig,), (k)01 @ X.))

24+ Bo, 2

x[(v+p)(Xa+X_a)+ PFE

- {ﬂe“"‘ﬁ—aed, Iﬁ12=lalz,2<A+B0’B_“>>1}

B—al®> 7
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~2# {ped, pone s, < LR TR o)
f—ar
~# {pea,ip—aea e <l AP0 ]

|of?

+b,(v) “7 CE (0, ® X ), k)0, ® X ).

Let us write d,(v) for the expression in brackets. Substitution from (8.2b)
and (8.10) gives

<PA2U(V’ X[}g)fl(k)’ u/>A+a+/fQ

4
=WT| <EA2(U1 ®Xﬂo)’ n(k)(vl ®Xﬂo)>[d1(v) +vg Fv(X+ X))

(8.11)
In the expression for d,(v), we substitute for

PN+ X _)+2{A, 0|l

from Theorem 2.1c (taking into account assumption (d)), and we obtain

d,(v)+vi +v(X,+X_))
=2v(X,+X_)+2vf

2<A+ﬁ0’ﬁ—a>>l}
B—a> 7

2<A,ﬂ—a>>1}
B—al> =

—2# {ﬂeA,,lﬁ—aeA,

+2# {ﬁednw—aed,

2<A+Bo,ﬁ—a>:1}
B—al’

2<A,ﬂ—d>_
B—al’ ’1}‘

+ # {ﬂem;f—aed, B12<al?,
o {Beanm—aea, B2 <l

Substituting into (8.11), we obtain conclusion (2).

Proof of conclusion (3). If we refer to [1], we see that Theorem 4.1a
remains valid if u, is replaced by «’ in (4.6). We are assuming 1, has mul-
tiplicity <1 in U(v), and conclusions (1) and (2) show it has multiplicity
> 1. The right side of conclusion (2) is of the form I(k) d(v), and f(k} is not
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identicaily 0. Then the modified Theorem 4.1a says we have nonunitarity
when d(—v)/d(v) is negative, and this is conclusion (3).

COROLLARY 8.2. Suppose n>=2 and g =s0(2n,2), possibly with abelian
and compact factors, and suppose in the terminology of [16, 5] that ¢ is non-
degenerate and that the special basic case for Ay is all of A. Then there is a
choice + of sign to that +a is conjugate by W to the unique positive non-
compact root B, orthogonal to o fix this choice of sign. Put A,=
(A+a+po)” =Ata+ Bo. Then t 4, has multiplicity one in U(Lcd), and the
signature of the standard form on t 4, is sgn(vi, — c), where v, and vy, are
the quantities v§ and vy computed in an su(n, 1) subdiagram containing o
and generated by simple roots of 4*.

Proof. In standard notation let
Ad={te te,|l<i<n+1,1<m<n+1,m#i}
and let the noncompact roots be given in terms of an index j by
d,={te;te|l<i<n+1,i#j}.

We may assume that the simple roots are e, —e,, .., €,—¢€,, 1, €,+¢€,, as
usual. Ife=e;~e;,,, then B,=¢,+¢;,, and B, is conjugate to a by W. If
a=e; _;—e;, then fy=¢; |+e;is conjugate to —a by Wy, Because of the
possibility of reflecting in a, we may assume that we are in the first case.

Thus x=¢;—e;,, and By=e;+e¢,,, for some j with 1 <j<n. Since we
are in a special basic case, Lemma 2.2 of [5] and a little computation show
that A =ae; with ae Z. Actually one can show a>0 from Table 2.1 and
(1.3) of [5]. Hence Wy ,=W,. So conditions (a), (b), and (c) in
Theorem 8.1 are obviously satisfied. Condition (d) is satisfied because of
Corollary 1.4a.

Let us consider (e), taking A, =(A +«)". The Blattner parameter 4 is
the projection of 4 orthogonal to «, hence is A =1a(e;+¢;, ) =1af,. As
we showed at the beginning of the proof of Theorem 8.1, m is the sum of
sl(2, R) and a compact subalgebra. By the theory for sl(2, R), the Kn M*
types of 0* have highest weights A+ mp,, m >0, relative to b_, and they
have muitiplicity one in 6% g, y+. For A+ mp, to extend to a weight
A+mPBy+ ca of t,, relative to b, we must have

A+mBo+co=A+a+ (Z compact roots).

Extracting the coefficient of e, we obtain ja+m+c=a+1. Thus
c=3%a—m+1 and the weight is

Ha+2m) Bo+4i(a—2m+2)a. (8.12)
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Now A+a=(a+1)e;—e;, is an extreme weight of 7, and the ¢, term is
the same for all weights of 7 ,,. Thus the coefficient of e,, | in any weight
must be <1 in absolute value. Applying this fact to the weight (8.12), we
see that

Ha+2m)—5(a@—2m+2)=2m—1 is +1.

Thus m =0 or m= — 1. In these cases, the weight (8.12) is 4 + o or 4+ f,,
and it is extreme, hence of multiplicity one. Thus 7, has multiplicity at
most two in U(v)| . Since « is long, it is a simple matter to check that the
weight vectors for weights 4+« and A4+ f, are indeed K~ M* highest.
Then (e) follows.

Moreover A+4a+fo=A+2¢;=(a+2)e; is 4f dominant and is
orthogonal to all members of 4. Thus t,, is one-dimensional. Con-
sequently 7 ,, has multiplicity at most one in U(v).

Therefore conclusion (3) of Theorem 8.1 is applicable. Since all roots
have the same length and since A is orthogonal to all members of 4, we
have

d0)=vi — # {ﬁEA,,Iﬁ—oceA,-zif}l;’_’_BJ—fzzl}
=vi —#{Blf=e;te withi#jandi#j+1}
=vi —2#{P|B=e;+e withi#jandi+#j+1}
2p, a)
|af?
—2#{B|p=e,+e withi#jandi#j+1}

— gt
=Vo.L

=1+

+2#{fed}|f—aecd}

The su(n, 1) diagram can be taken as the one with roots +(e;—e,,), and
the result follows.

COROLLARY 8.3. Suppose n=2 and g=s0(2n+1,2), possibly with
abelian and compact factors, suppose that « is long, and suppose in the ter-
minology of [16, 5] that o is nondegenerate and that the special basic case
for Ay is all of A. Then there is a choice + of sign so that o is conjugate by
W . to the unique positive noncompact root P orthogonal to a; fix this choice
of sign. Put Ay =(A+a+By)” =A+a+ By Then 1, has multiplicity one
in U(Lcd), and the signature of the standard form on t 4, is sgn(vg, +1—c¢),
where v¢, and vy, are the quantities vi and vy computed in an su(n, 1) sub-
diagram containing o and generated by simple roots of 4™.
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Proof. 1In standard notation let
d={te;+e,|1<i<n+land l<m<n+1,m#i}
u{tell<ign+1},
and let the noncompact roots be given in terms of an index j by
4,={zxe}u{tetell<i<n+li#j}

We may assume that the simple roots are e, —e,,...e,—€,,(,€,,, as
usual. Normalizing matters as in Corollary 8.2, we may take a=¢,—¢;,,
and f,=e;+e;,,, so that f, is conjugate to a by W.

As in Corollary 8.2, we have A=ae; with aeZ and a>0. Hence
Wy 4= Wx. Then (a), (b), and (c) of Theorem 8.1 are certainly satisfied,
but (d) needs to be checked. Let A4, =(A+a)". We have

e;+(a+1)e; if j>1

Ai=tae (e me ) ={0 0T D L7

and in either case, (A+a)" =A+f with § long. By Theorem 1.3, 7,
occurs in 7, ®p©. Also 4, has

Ay=(A+a+Bo)" =((a+2)e)” =(a+2)e, (8.13)

and this is 4;+f with B long. Again by Theorem 1.3, 7,, occurs in
7,4, ®p®. This proves (d).
The proof of (e) is the same as in Corollary 8.2. Moreover 14, is one-
dimensional, by (8.13), and hence has multiplicity at most one in U(v)|.
Therefore conclusion (3) of Theorem 8.1 is applicable. Since A is
orthogonal to all members of A, and since 2{B,, 7)/Iy|* is even when
y € 4 is short, we have

d0)= vy — # {ﬁeAnlﬁ—aeA,M>l}

B—af* ~
=vy —2#{B|P=e,+e withitjandi#j+1}— #{BIf=¢;}
=1+2<”’a>+2#{ﬁeA;|ﬁ—aeA}

|ot|?
—2#{BlB=e;+e withi#jandi#j+1}— #{B|B=¢;}

=vg,+ #{BIB=¢;}

=vg,+ 1

The su(n, 1) diagram is the one with roots +(e;—e,,), and the result
follows.
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9. Two-STEP FORMULA APPLICABLE TO GAP IN SO(2n, 3)

The third kind of specialized result is applicable in certain situations in
SO(2n, 3) and establishes a gap of nonunitarity that is only half the width
of the gap that occurs in Section 7 for Sp(n, 1). We shall state the result in
the same generality as in [5].

THEOREM 9.1. With I=1 and {u«,,.. o} ={a}, suppose n=2 and
g =50(2n, 3). Suppose further that o is long, that ¢ is nondegenerate in the
sense of [16], that the short A™ simple root ¢ is basic (in the terminology of
[5]), and that the special basic case for Ay is the maximal su(n, 1) diagram
containing a that is generated by simple roots of A*. Let { be the sum of the
simple roots strictly between o and ¢ in the Dynkin diagram, and suppose { is
(nonzero and) noncompact. Put A7 =(A—a)" and A,=(A+((+¢))¥ =
A+{+e Then

(1} 1,4, has multiplicity one in U(v)|«
(2) <PA2U(V’ Xa)PAf Ulv, X ) folk), uo) 4

2]

L0+ X v O+ X ) v 1]

X <TA2(k)‘IUZ’ v,

where
UZ=EA2(EAF(UO®X441)®X1) 9.1)

(3) the vector v, in (9.1) is not zero
(4) the signature of the standard form for U(3cd)|yx on t,, is
sgn(vg —c)(vg —1—c).

Preliminaries. In standard notation let

Ad={te, e, |I<i<n+l,1<m<n+1,m#i}
u{tellgig<n+1},
and let the simple roots be e, —e,, .., €, —€,, 1, €,,1 as usual. Then we
have e=e, ., and we define j by the condition x=¢,—¢;,,, 1 <j<n. The

root {=e,,,—e,,, is assumed noncompact. Therefore j is <n, and the
noncompact simple roots are exactly

€ =€ 156417 €12,€,41,
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in order that g =~ so(2n, 3). So
dg={teTe,li#j+,m#j+1,i#m}u{te, ,}.

Notice that {+e;,,} corresponds to an su(2) factor of f. By assumption
the special basic case is to correspond to all roots +(e;—e,,).

Computing with the formulas of [5] (namely (1.3), Table 2.1, and
Lemma 2.2), we find

n+1
A=ae;  + Z

(9.2)

Ni'—

with aeZ and a>=0. Then

A—a=(a+1)e,, + ) te,—1e

i#j

(A—a)" =A—a+(e;—e, )=A+ (e, —€ni1)
This is of the form A4+ 6~ with 4~ long, and thus Theorem 1.3 shows that
1,4 oceurs in 7, ® pC. (9.3)

Since
A+a=(a—1)e;,  +3e,+ ) le,

Iy
we see from the presence of the 3/2 that
A+ ais nota weight of 7 - (9.4)
Meanwhile
nt 1
Ay=(A+e ) =A+e, ,=(a+1)e;, + Z le,. (9.5a)
Notice that another formula for A4, is
Ay =A—~a+e,. 19.5b)
We have
Ay=A+e,;=A7 =6 +e =47 +e,,,. (9.6)

The only short 4 simple root is e, ;, and this is not in 44 , since by
assumption e; , , is not in the special basic case; hence Theorem 1.3 and the
formula (9.6) show that

T4, 0ccurs in 7, @ pC. (9.7)
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Proof of conclusion (1). First let us show that
[U(V)IK:TAQ:Iz[T/h'[s’mM*:T}.] (9.8)

by showing that (3.18) has no solutions. If there is a solution, we have

Ay=A+ Y kgf+ Y ny+mo (9.9)

pedt, yedy

with integer coefficients, k3> 0, n, >0, and some k;> 0. All the f’s and ’s
in (9.9) have zero coefficient for e, if i < j, as we see inductively by taking
the inner product of (9.9) with the dominant form e, + --- +¢,. Con-
sequently no y in (9.9) is of the form —e; +e;. The projection of (9.9) to the
span of e; and e, , , is therefore

e, 1=kle,+e; )+ne ., +mle,—e; ) with kz0,n>0.

The coefficients of e; give 0 =k + m. So m = —k, and the coefficients of ¢, ,
therefore give 1=k +n—(—k). So 2k+n=1, and we conclude £ =0 and
n=1. The remaining contribution to (9.9) satisfies

0=Y (positive roots)

and hence is all zero. Thus X kzf =0, and (3.18) has no solutions.

Next let us see that 4 extends to a weight of 7 ,, in only one way, with the
weight of multiplicity one. Thus suppose 4+ co is a weight of 7,, with
ceZ. From (9.2), we obtain

Adca=(a—c)e;  +(3+c)e,+ Y e,
i)
From (9.5a), we see that any weight of 7, must have e; component
between —1 and +4. Thus c=0 or ¢c= —1. If ¢= —1, the candidate for a
weight is 4 —a. Since (9.5b) gives

A —(A—a)=¢,

which is a noncompact root, 4 —a does not differ from A, by the sum of
compact roots. (See Problems 12 and 13 on p. 478 of [12].) Thus A —a is
not a weight. Thus ¢=0 is the only possibility, and the candidate for a
weight is A. Since A differs from the highest weight A, only on the su(2)
factor of f, and since irreducible representations of su(2) have all weights of
multiplicity one, A has multiplicity one in 7 ,,. Hence 4 extends to a weight
of 7,4, only as 4, and 4 has multiplicity one. Consequently 7, occurs in
Ta,| k.~ p# @t MOSt ONCe.
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Hence 7 4, occurs in U(v)| at most once. The fact that it occurs at least
once will follow from conclusions (2) and (3).

Proof of conclusion (2). Let

0 =E,; (v,®X_,)

This is nonzero by (9.3) and Theorem 1.5. Define
filk)= PAI_ U(v, X _,) folk).

The same argument as with (5.31) shows that we can write

Jilk)=B(v) 14; (k) ', (9.10)

for a unique B(v) in Hom . .+ (V7T V°%).

We can apply Theorem 5.1 with A’ = A to evaluate {f,(k), up) 4_,. The
only nontrivial hypothesis is (b), which was verified above in (9.3). Since
{Solk), ugy 4= <1 4(k) vy, v5) by (4.4) and (4.5), Theorems 5.1 and 2.1
give

|

Silk) uod 4=~ (g +¥(Xu 4 X_))<ear (k) Tog, 000 (9.11)

Turning attention to the second step taken by U(v), we run through as
much of the proof of Theorem 5.1 as we can, obtaining

(P4, Uy, Xe,-) Silk), ug) 4
=3[+ )X+ X )]
X CE (0, @ X,), m(k) B *uo® (X, + X)) >4
+ 2 HBPCE L0, ® X,), n(k)(T 47 (PrXp)* B(v)*uo ® X)) 4.

fed,

(9.12)

(The m term gives 0 because of the calculation that proves (9.8).) In the
first sum, only the terms in B(v)*u,® (X, + X _,) of weight A survive, and
in the second sum, only terms in 7, (P Xp)*B(v)*u,® X, of weight A
survive. Since (9.4) shows that A+ x is not a weight of 7 -, we see that

_{BO)* ug, 1)

B(V)*uo JU 12

v; + irrelevant terms

= b(v)v, +irrelevant terms.
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Substituting into (9.12), we obtain

(P, U, Xy,)fl(k), Uy
— b(v) { WPL( 4+ p)(Xut X )]
X CE (0, ®X,) k)0, ® X,)

+ Y B EL (0, ®X,), n(k)(TAl'(PYXﬂ)*UI®Xﬂ)>A}- (9-13)
Bedy
Bl

Here we can compute b(v) in the usual way: From (9.10) we have

{Silk),ugy 4 o= (B(v) fA((k) _191’ Up) g o
= <TAr(k)_lU1, B(v)*uo) 4,
=b(v){t 4 (k) 1oy, 0.,

so that (9.11) gives

lal®
b(v) == (vg +V(X,+X_,) (9.14)

Let us concentrate on the t terms in (9.13). The only contribution from
P X, comes from a term with [X _,, Xz]. We imitate a certain amount of
the proof of Theorem 5.1, starting after (5.14). The term f= —a gives 0,
and the term f =« gives

(9.15)

31 CE L0, ® X, ). 7)1, @ X.)) {2<A—_“>}

Jaf?

For the remaining fs, the relevant term of P, Xyis —(p+¢) ' [X _,, X;]
by (5.4b); here B — pa, ..., B+ qa is the a root string through §. Thus the
relevant term of 7, (P Xg)*v, ® Xj is

(P+q) 't [Xos X510, @ X (9.16)

If {(A—a, f~ad><0 or if B—oa is not a root, then the first factor of
(9.16) gives 0. The remaining f’s are those in the set

T={Bed,|p—acdand (4—a, f—a)>0}.

The long roots fed, with f—aed are f=te,—e;,, with i#j and
i#j+1. Then f—oa=te,—e,. For such a root B, —2{a, f—a}/
I8 —a|?=1, so that the condition to be in Tis (A, f—a)> = 0. From (9.2),
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we see that (A, f—a)>=0 for f=¢;—e;,, and {A4,f—ad><0 for

7
B= —e,—e;, . Thus the long roots in T are those in

T\={fed,|f=e,—e;, withisjandi# j+1}.

The only short root Bed, with f—aed is f=e; which has
<A—a’ﬁ_a>=<(a+%)e[+1,e[+]>>0.ThUS

T=T,u{e}

The roots f in T we can handle in the usual way: 4 —oa+ f is not a
weight of 1,4, since

A—a+f=A+e,—e,=(a+3) e, +ie,—Le,+1 Y e

other k&

and since 3/2 is too large to occur as a coefficient of a weight (except on
e;.1)- Thus (9.16), when projected by E,,, is

EA;((p+q)7lTA1' [Xa’XAB] 01®XB)
=—(p+q) 'E 0, ®@d[X,, X ;1) X)) =-E,(0,;®X,). (9.17)

For f=e;, which is the remaining root in T, we have p+¢=2, and we
shall prove below that

24, €540

lej+ll2

Ep(tg XX o ®X,)= En (v ®X,).  (9.18)

Putting together formulas (9.13) through (9.18), we thus obtain

(P4, U, X,) fi(k), uo) 4

-_-'_i% CE (0, ® X, ), n(k) o, ® X,)>[v5 + (X, + X_,)]
+[<v+p>(xa+xha)+2—<%(-iﬂ2-2#{ﬂe T} +2%—QTQ]
(9.19)

Let us consider roots fe 4, with S+ ae 4. The only short such root is
B= —e;, and it has (A4, B+ a) =4, —e,, > <0. The long such roots are
B=te;+e;,,, and the subset

T,={ped,|f+acd,|B]=|af, <4, f+a)>>0}

580/82/1-15
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works out as
={ped,|ff=e+e,  withi#jandi#j+1}.

Since T, and T, have the same number of elements, (9.3) and the equality
I=v; in Theorem 2.1 give

p(Xa+Xa)_2—<|%l’2—aZ—2#{ﬁe Tl}::v(;.

The last line of (9.19) is thus
U A, 0) A=, 0y 244, ¢,y
2 2 + 2
[« ol N
2{ A, ej>_

2
Ieﬁ

=v(X,+X_,)+vy +

=X, +X ) +vg + 2

=X, +X_)+vy —1.

Substituting into (9.19), we obtain the desired formula for conclusion (2).
Thus the proof of conclusion (2) will be complete once we prove (9.18).

To prove (9.18), we recall that 4, — A4 =¢,, | shows that A differs from
the highest weight of 7 4, only in the su(2) part of f; thus 4 has multiplicity
one in 7, Since v=E, (1;®X,) is a nonzero highest weight vector
(Theorem 1.5) and since (A, e;.,>>0, 1,[X,, X_,]Jv is a nonzero
vector of weight A. Thus

EAZ(UI®XO()=CTA2 [X11 Xfej] EAz(vl®Xe/) (9'20)

for some constant c.
Before determining c, let us write

[X_,, X, ]=aX and  [X,, X

€+ 1

]1=bX_

—€j ey

Our bilinear form B, has

abBy(X, ., X

€+1° “e/+l)

= BO([Xfa’ Xej]’ [Xat’ X—ej])
= —BO(Xep [Xfo:’ [Xo:’ X-ej]:”
= —BO(Xej’ Xfej)’

and thus (2.1a) shows ab= —1. Hence

[[XfauXej]’ [XasX~e/]]=_[Xej+11X~e,+1]=—H - (921)

€i+1
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Returning to (9.20), we apply 7,,[X_,, X, ] to both sides. Then we find

A e
‘-CMEAZ(W@XF,)

lej 1 1?
=—ct,(H, ) Ef(0: Q@ X,)
=clt,[X_ o X ) 14, [ X0, X _J1 Ef(v, ®X,) by (9.21)
=1, [X 4 X )14, [X,, X_JEL(0,®X,)
=1,[X ,, X,1EL(0,®X,) by (9.20)
=E,(n®[[X_,, X, ] X.])
=—E v, ®X,)

Thus c is nonzero and is given by ¢! =2<{4,,e;,,)/le;, | and (9.20)
gives
2<A2’ej+l>
lej+1l2
=EA2(‘CAF [Xac’ X—‘e]] Uy ®Xej) + EAz(Ul ® [[Xau X—ej-]’ Xej])
= EA;(TAF [X,, X—e,] Uy ®Xe,-) + 2EA2(UI ® X,).

EAz(Ul ®Xa)

Formula (9.18) follows immediately from this equation.

Proof of conclusion (3). We have seen that the vector on the right side
of (9.20) is nonzero and that ¢ is nonzero. The left side is the vector v,, and
hence v, is nonzero. Combining this result with conclusion (2), we see that
74, must occur in U(v)| ¢. This proves the remaining part of conclusion (1).

Proof of conclusion (4). By conclusion (1), t,, occurs in U(v)|, with
multiplicity one. Thus Theorem 4.1a is applicable, and the result follows
from conclusions (2) and (3).

10. Two-STeP ForMuLA GIVING ELLIPTICAL CUT-OFFES

For the final specialized result, we return to a general set {a,, ..., a,}. The
interest is in passing from A to some (A4 +,)" and then back to 4 when
the argument in Corollary 5.2 breaks down. Theorem 6.4 dealt with one
situation where this argument breaks down, namely when there is W con-
jugacy between A +a, and some A +«,. Theorem 10.1 will give a different
estimate in this situation and will treat also the case where 4 + «; is a non-
extreme weight in 7, ,,,., provided the weight has multiplicity one. We
used this result in [2] in the determination of the unitary dual of SU(N, 2),
and the result is especially helpful also with SO(N, 2) and Sp(N, 2).
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THEOREM 10.1.  Fix roots +a, and +a, with r#s and with the two
choices of sign not necessarily the same. Put A" = (A +x,), and assume that
A+ o, is a weight of multiplicity one in t ;.. Suppose that

(a) the only weights in t ;. of the form A+ o, or A—a, are A +a, and
Ata,,

(b1) 1,4 occursint,®p¢,

(b2) no ped, has pL Loy, .o, i, B—(Fa)ed, |BI*>|a,|? and
A, f—(La,)>=0,
(

c) there exists C>0 such that the nonzero vector

V'=EAE (0@ X4, )QX (14)) (10.1)

satisfies

V'=CEAE (06® X 1) ®X_ (44 (10.2)

(d) whenever B in 4, is such that f L1 ay,.,a, ;, B+ (Fua,)ed,
and A — B is a weight of t ., then {A, B+ (+a,)> =0,
(e) Eq. (3.18) for A" — A has no solutions with Zﬂ&,:”kﬂﬂ nonzero.

Then

(P LUy, Xf(ia,)) P, Uy, Xia,)fo(k)’ Ug) 4
= e (k) v
X Clo 2{v(X,, + X )7 = (vi,)?}
+C o Pv(X, + X )% — (vi )} ],

where v, and vy are the versions of vi defined at the end of Section 2 for a,
and o.

Remarks. (1) If all noncompact roots are short, then (bl) is satisfied
automatically, according to Corollary 1.4, and (b2) is satisfied trivially.
(2) When (b1} holds, then also 7, occurs in 7, ® p®. This is a formal
consequence of Theorem 1.3, and also it follows immediately by using
characters.
(3) Theorem 2.1, as amplified in the remarks at the end of Section 2,
applies to v§, because of assumption (bl). Therefore we can write, in
obvious notation,

I(+a,)=~-II(+a,)=v§,.
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(4) A similar formula
I(+a,) = ~T(+a,)=v§,
is applicable to +a,, even though we have not assumed that 7, ,,.

occurs in 17,,® p®. What we have assumed is (b2) above, and the proof of
Theorem 2.1c shows that no further assumption is needed.

(5) The expressions for I(+«,) and II(+a,) simplify under our
assumptions. Let us see that

{ﬁeAnm 11lay, o, _y;

B—(+a)ed; |BI* <ol

2<A,ﬁ—(ias)>=1}
B~ (£,

is empty. In fact, if B is in the set, then —p is strongly orthogonal to
ala eeey as-l and has (—ﬁ)+(i—as)EA’ |_ﬁ|2< ‘as|2, and

264, (=B +(£a)))
(=B)+(£a,)l?

By the contrapositive of assumption (d), applied to —f, we see that 4 + f8
is not a weight of 7. On the other hand, A +«, is a weight of 7, with
A+, B—(+a,)) <0, and thus the sum 4+ f is a weight, contradic-
tion. As a result, I( +o,) simplifies to

2¢4, £a,)
o, |®

—2#{Bed, |pLLay,...a, ;B—(Fa,)e4;
(A, B—(£a,)) >0}

I(to)=p(X,+X_,)+

Similarly

{ﬁeAnlﬂ-LJ- a]"--a asfl;

B (ta)ed, BP<|a XAtk PLe) 1}

EX Ak
is empty as a consequence of (d), and II( +a,) simplifies to

2{A+a,, to,>
|, |2

—2#{Bed,|pLLla, ., a_;B+(Ta)ed;
{A+a, f+a,>>0}.

M(ta)=p(X, +X ,)—
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Proof. Let

v, =FE (v,® Xizr)'

This is nonzero by assumption (b1) and Theorem 1.5. Then v” in (10.1) is
nonzero by remark (2) and Theorem 1.5. Define

JAR)Y =P Uy, X)) folk).

The same argument as with (5.31) shows that we can write

Jk)=B(v)t (k) "o, (10.3)

for a unique B(v) in Hom . 4+ (V*, V7).
Let

v, =E (v,®X,,).

Since v” #0, it follows from assumption (c) that v, # 0. Therefore

v, is a nonzero weight vector in t ;. of weight A +a_. (10.4)

We can apply Theorem 5.1 with 4A'=A4 to evaluate (f,(K), o) 444,
Hypothesis (a) holds because 4 —(A4+a,+a;) is not a sum of positive
compact roots, and hypothesis (c) is satisfied trivially. The only nontrivial
hypothesis is (b), which is given here as assumption (bl). Since
Solk), ugd 4= <1 4(k) vy, 00> by (44) and (4.5), Theorem 5.1 and
remark (3) give

2
|, |

k) U D gz oy == (V3 + V(Ko + X DKo k) o, 0,5, (105)

We can try to use the argument of Theorem 5.1 to evaluate
(fk), ug) 44 ,,- When we treat the f term corresponding to fe 4, we get
0 as usual if f is not strongly orthogonal to «,, .., «, ,, if B —(+a,)is not
a root, or if {4, f—(+a,)> <0. Applying the contrapositive of assumption
(d) to — B, we see in the remaining cases that 4 + § is not a weight of 7 ;..
Therefore 7, [X,,, X 4] moves over in the usual way to act on X, by
—ad[X,,.X ;] We arrive at

o, |2

4

<fr(k)’ u0>Ai1x= (I( ias)+ V(Xd:+ Xfa,\-))<r/l'(k)7lvs’ vs>9
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with I{ +«,) given as in remark (5). By remark (4), we can rewrite this as

IR U0 =5 5, 3K+ X)) () 00,0 (106)

Turning attention to the second step taken by U(v), we run through the
first part of the proof of Theorem 5.1, obtaining

<PA U(v, X~(+a))fr(k)s o) 4
= Z 2l 2L+ )X, + X )]

XCE(0,@ X _(14,)) m(k)BO)*uo® (X, + X)) 4
+ Z % |B|2<EA(Ur®X7(ia,))’ ”(k)(TA'(PfXﬂ)*B(V) u0®Xﬂ)>As

Bedy

(10.7)

with the m terms giving O by assumption (e).

We go through the usual argument with weights to determine as much of
B(v)*u, as possible. Since A+ «, has multiplicity one in 74, (104) and
assumption (a) lead us in the usual way to write

COMNRS
v, | ’

<B(V)*ll0, vs>
T

=b,(v)v, + b,(v)v, + irrelevant terms. (10.8)

B(v)*u,=

v, + irrelevant terms

Here we can compute b,{v) and b (v) as follows: From (10.3) we have
CIAK), ugy = (B(v) T (k)" o, uo) = (10 (k) Mo, B(v)*¥ug)

= br(v)<rA'(k)—lvr, Ur>
+b,(v){t 4. (k)" 'v,, v,) +irrelevant terms.

Taking Fourier coefficients and using (10.5) and (10.6) gives us

Iot |2
b (v) =" (v, + V(X + X, ) (10.9a)

_ca 2

by(v)

(v, +v( X, + X _,)). (10.9b)
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To evaluate (10.7), we substitute from (10.8) and obtain

CPaUG X ) JAK) o) 4
=b,(v) {% o, 2L+ p) (X, + X )]

X <EA(Ur®X7(11,))a T[(k)(l),@ X—»(ta,))>

+ X 3P
BLLlap, .., 21
f L

XCEL(0,@X _(4a0h n(k)(TA’(PfXﬂ)*vr®X/i)>/l}

b ) { 2L+ ) X+ X )]

X <EA(UI®X——(ia,))’ n(k)(vs®X7(i1J))>

+ Y sB?
BLloay, .
B/l a

K CEL0. @K on) n(k)(mmﬁ)*v3®Xﬁ)>A}. (10.10)

Here the only contribution from the first occurrence of < (P X;)* is from
the term involving 7, [X (,,,, X ;], and the only contribution from the
second occurrence of 1,(PiXp)* is from the term involving
TaLX (s X gl

For the first expression in braces in (10.10), we argue just as in the proof
of Theorem 5.1. If we take into account the equality II(+a,)= —v§, in
remark (3), we see that the expression in braces is

% |°‘r|2<EA(Ur®X—(¢z,))’ n(k)(vr®Xf(iaz,))>
x[—vi, +v(X, +X_,)] (10.11a)

For the second expression in braces in (10.10), we begin to process the f
term from f just as in Theorem 5.1. Suppose f# —(ta,) and
T4 [X (44 X_plv,#0. Then f+(£a,)isin 4 and 4 — f is a weight of
7 4. Assumption (d) gives {A, f+ (+a,)> = 0. Hence

(A +a)+ 12— 1417 =2{A, f+ (o)) + B+ (+a,)]*>0,
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and (Ata,)+p is not a weight of t,. This means that the
T [X (14, X_p] moves over as —ad[X_,,,, X ;] to act on X, and
the argument of Theorem 5.1 goes through. We are led to the simplified
expression for II( £ «,) in remark (5), and we see that the second expression
in braces in (10.10) is

S P CEA0,® X (40 MK (0, @ X (15,))

X[—vg, +v(X, +X_)] (10.11b)

Now we substitute (10.9) and (10.11) into (10.10), and then we sub-
stitute (10.2) into the result. The theorem follows.
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