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Let G/H be a semisimple symmetric space. Here we take G to be a linear
connected semisimple group and H to be the identity component of the subgroup
fixed by an involution 7. Such spaces were classified by Berger [2]. Examples
include ordinary symmetric spaces, the groups themselves (the group case, from
(G x G)/diagonal), any simply connected complex group modulo a real form, and
various spaces obtained from splittings of quadratic forms.

The space G/H admits an invariant measure, and the left regular representation
on L2(G/H) sometimes has irreducible direct summands. Such an irreducible repre-
sentation of G is said to be in the discrete series of L*(G/H). Under the equal-rank
condition (1.1) below, Flensted-Jensen [3] gave a construction of many such discrete
series. Oshima and Matsuki [13] obtained all remaining discrete series and also
showed that Flensted-Jensen’s equal-rank condition is necessary for the discrete se-
ries of L2(G/H) to be nonempty. Schlichtkrull [14] found the Langlands parameters
[9, Theorem 14.92] of generic such representations (“generic” to be defined in (1.2));
that is, he found how such representations fit into the classification of all irreducible
admissible representations of G.

Vogan [20] gave an argument suggesting that all discrete series occur with mul-
tiplicity one in L*(G/H). In this case there should be an essentially unique G-
commuting operator carrying a particular copy of a discrete series representation of
L*(G/H) into its realization in L*(G/H).

The particular copy that we have in mind is the Langlands realization [9, The-
orem 14.92] used for classification of irreducible representations. Our objective
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therefore is to find an intertwining operator carrying such a discrete series repre-
sentation in its Langlands realization into a space of functions on G/H. We restrict
attention to the generic case, where the Langlands parameters are known, and The-
orem 3.1 gives such an operator £. Under an additional hypothesis (that a subgroup
L defined in §1 has the same real rank as G), Theorem 3.2 shows that £ has image
in L?*(G/H), and Theorem 3.3 shows that £ is nonzero if some choices are made
suitably. The detailed proofs of these theorems are carried out in §§4-7.

The opposite extreme to our additional hypothesis is that the subgroup L is
compact (in which case the representation is in the discrete series of G)). In this
case we have a heuristic argument that £ is nonzero in general. In two special cases
with L compact (the group case and SO(2,1)/S0(1,1)), we give in §8 a rigorous
argument that the image is in L?(G/H) and £ is nonzero.

Our interest in the subject of this paper came from trying to understand from an
analytic point of view the unitarity of some representations shown earlier by Vogan
[19] to be unitary by algebraic means. We realized that the formula we sought could
be derived for one particular example (the one in §2), and we were able to guess
the rest. We are happy to acknowledge crucial assistance of D. A. Vogan, as well
as suggestions of T. Oshima and W. Schmid, that helped us carry out this work.

Contents. 1. Parameters for generic discrete series. 2. Motivating example.
3. Outline of argument. 4. Intertwining operator. 5. Construction of linear
functional I. 6. Image in L*(G/H). 7. Operator nonzero. 8. Some cases with L
compact.

1. Parameters for generic discrete series

Qur semisimple symmetric space will be G/H. Lie algebras of G, H, etc. will
be denoted gg, §o, etc., and their complexifications will be denoted g, b, etc. Let
go = ho ® qo be the decomposition of gy relative to our given involution 7, and
let go = €y @ po be a compatible Cartan decomposition of go. We write K for the
maximal compact subgroup of G corresponding to &.

Let ty be a maximal abelian subspace of &, Nqp, and let T' = exp ;. The space ty
need not be maximal abelian in &, but any two choices of t; are conjugate via HNK,
according to [9, Theorem 5.13] applied to the noncompact dual of K/(H NK). Let
A and A, be the sets of roots of g and & with respect to t, let At and A} be
compatible positive systems, and let § and 6. be the corresponding half sums of
positive roots with multiplicities counted.

In the notation of Schlichtkrull [14], Flensted-Jensen [3] considers parameters A
in the dual t*, along with the corresponding parameters

pr=A+6—26, int*,

such that



97

() (ux, a)/|e|* is an integer >0 for all @ € AT
(i) pa(exp~{1} Nt) C 2Z
(iii) (A\+86,a) >0 foralla€A*.
Here (-,-) and | - | are the inner product and norm induced by the Killing form for
g.
Let (t;)o be a Cartan subalgebra of B containing ty, and extend px to t; by
making it be 0 on the orthogonal complement of t. Write iy also for this extension.
In terms of a compatible positive system of roots of & with respect to t;, conditions
(i) and (ii) are equivalent with the requirement that be the highest weight of a
representation 7,, of K with a (K N H)-fixed vector. (See [9, Theorem 9.14].)

For each such ), Flensted-Jensen constructs a specific nonzero function ¥y in
C*=(G/H) of K type pux. With two additional assumptions, he proves that ) is
square integrable on G/H and that it generates an irreducible direct summand U*
of L?(G/H). The assumptions are that an equal-rank condition holds, namely

t is maximal abelian in g, (1.1)
and that ) is generic in the sense that
(A, )| >C  foralla€ A, (1.2)

where C is a constant depending only on G/H.

Schlichtkrull [14] gives the Langlands parameters of U? for generic A. Let L
be the centralizer of T in G, let My ANy, be the Langlands decomposition of a
minimal parabolic subgroup of L, let pz be half the sum of the positive roots of [
with respect to a, with positivity determined by N, and let MAN be a cuspidal
parabolic subgroup of G having the same split component A and having N € N.
By choosing N suitably, we may assume that pr is G-dominant (i.e., dominant
relative to N). Then Vogan's Proposition 4.1 in [18] associates to the K type
py a discrete series representation o of M, and U* is infinitesimally equivalent
with the unique irreducible quotient of the induced representation (with normalized
induction)

U(MAN,o,pr) = ind§y sn(c @ exppr ® 1) (1.3)

that contains the K type . This irreducible quotient will be denoted J(MAN,o,
pL,pta) and is called the Langlands quotient containing the minimal K type pa.
Let pg be half the sum of the positive roots of g with respect to a. We shall use
the fact that
acCh, (1.4)
which allows us to define py as half the sum of the positive roots of h with respect
to a. To prove (1.4), we shall use the equal rank condition (1.1). First note that

a@®t is abelian. (1.5)

since a C I. Now let X € aand Y € t. By (1.5), [X,Y] = 0. Since 7(Y) = -Y,
[r(X),¥Y] = 0. Thus X — 7(X) commutes with ¢ and, by (1.1), must be in t. But
also X — 7(X) is in p, and hence 7(X) = X. Then X is in B, and (1.4) follows.
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2. Motivating example

Let G = SO(4,1), so that g consists of 5-by-5 complex matrices that are skew in
the first four rows and columns, are symmetric in the last row and column, and are
0 on the diagonal. Let the automorphism 7 be conjugation by diag(—1,1,1,1,1),
so that H equals SO(3,1) imbedded in G as SO(1) x SO(3,1). Then the nonzero

entries of members of h are in the last four rows and columns.
With E;; denoting the matrix that is 1 in the (i,7)*® entry and 0 elsewhere, let

to = R(Ey2 — E21).

Then
lo = to ®s0(2,1)

with so0(2, 1) imbedded in gy in the last three rows and columns. If we take
ap = R(Ey5 + Es4),

then M is the upper left copy of SO(3) in G.
For G, there is one positive restricted root, say «, and it has multiplicity 3. The
half sums of positive restricted roots are then

i o 3
pL=30 pH=a  pc=3a.

According to Schlichtkrull, g = 0 is an allowable parameter leading to a discrete

series for L?(G/H). The trivial K type u, leads by the Vogan construction [18] to
the trivial M type o = 1, and thus the irreducible quotient of

ind§; s v(1 @ et ®1) (2.1)
containing the trivial K type occurs in L*(G/H). (As it happens, (2.1) is irre-
ducible, but this fact is not important for us.)

Functions f in the space for (2.1) transform according to the law

f(zman) = e~(3otia) loga £(7) for man € MAN.

Here the term 2a = pg in the exponent is required for normalized induction. For
z € Gand h € H, put f,(h) = f(zh). Then

fe(hman) = e~(ete)loga g (py for man € HN MAN.
Since the second a in the exponent is just py, f is in the space for
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This is exactly the induced representation of H for which the trivial representation
of H occurs as Langlands quotient. According to the Langlands theory, the quotient
is picked out by a certain intertwining operator. Briefly
Ef.(h) = f f:(hn)dn, withz € G, h € H,
HnN

is constant in k. (Here N is the nilpotent group opposite to N.) Thus the operator

Ef(z) = anN‘ f(zn) dn, with z € G, (2.2)

carries f to a function right invariant under H.
The key property in the above analysis was the identity

3
5& + EG =a+a
in the form
pL+ pG = 2pH. (2.3)

This identity turns out to be completely general.

The one way in which formula (2.2) is not completely general is that the function
f in the general case has values in the space V? on which o operates, while the
image functions on G/H are to be scalar-valued. The passage from V7 to scalars
will be accomplished by a linear functional denoted I below.

3. Outline of argument

The development of our intertwining operator takes the following five steps. De-
tails of these steps will be provided in subsequent sections. Notation is as in §1.

1. Formula for operator. Let I be a continuous linear functional on the space of
analytic vectors of V7 that intertwines o|gnm with the trivial representation:

lo(m)=1 forme HNM. (3.1)

Construction of such an [ will be addressed in Step 3 below, under the assumption
that ) is generic. For K-finite functions f in the space of the induced representation
(1.3), define

£f(z) =f I(fak))dk ~ forz € G. (3.2)
HNK
Since the image of K under f consists of (K N M)-finite vectors in V7, which are

necessarily analytic, it follows readily that £f(z) is a well defined function on G.
See Proposition 4.1.
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2. Intertwining property.
a. The formula

PL+pe = 2pn (3.3)

is valid in complete generality. See Proposition 4.2.
b. On any K-finite f, the operator & of (3.2) is given also by

Ef(z) = /H _1(f(en)dn, (3.4)

as a consequence of (3.3) and the definition of I. See Corollary 4.3. Thus the formula
(3.2) for our intertwining operator is consistent with the formula (2.2) in the special
case SO(4,1)/S0(3,1).

¢. For K-finite f, £f is right H-invariant. See Proposition 4.4. Thus £ gives a
well defined (g, K') map from the Harish-Chandra module of ind§; , v(0 ® e+ @ 1)
into C*(G/H).

3. Construction of | when A is generic. If A is generic, then o is an integrable
discrete series representation of M. This result, given as Proposition 5.1, uses the
necessary and sufficient condition for integrability of & due to Trombi-Varadarajan
[17] and Hecht-Schmid [5].

Now fix a (K N M )-finite vector v in V7, and let

D(o) = {o(f)vo | f € Com(M)}. (3.5)

By a result of Schmid [15, Corollary 1], D(o) coincides with the space of analytic
vectors for V7,

Under the assumption that o is integrable (valid, as we have seen, if A is generic),
fix u in D(c). Then Proposition 5.5 shows that the integral in the definition

l(v)=lu(v) = / (e(m)v, uydm  for v € D(a) (3.6)
HOM
is convergent, and it follows that
l(e(m)) =I(v) forve D(o), me HN M.
Thus I satisfies (3.1). We can summarize the above steps as follows.

Theorem 3.1. Let A be the Flensted-Jensen parameter of a generic discrete
series representation U* of L%(G/H), and let (MAN, o, py, 12) be its Langlands
parameters. Also let I be a linear functional as in (3.1), such as the one in (3.6).
If £f is given by (3.2) for K-finite functions f in U(M AN, o, py), then £ defines a
(g, K) intertwining operator from U(M AN, o, p1) into C*(G/H).
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4. Image in L*(G/H). Since the K type px occurs with multiplicity one in
U(MAN,o,pL), there exists a nonzero operator P in Homgna(pa, o) unique up
to a scalar. For v in the space for 7,,, let f, be the K-finite function on K given

by
fo(k) = P(muy (k) o). (3.7)

Then f, extends to a member of the space for U(MAN,0,pr) with K type p.
Adapting an argument of Flensted-Jensen [3], we show in Lemma 6.1 that £f,(z)
is bounded for z in G, under the assumption that L and G have the same real
rank. Whenever £ f,(z) is bounded for z in G, Proposition 6.2 derives as a conse-
quence that £f, is in L?(G/H) provided A is generic. Thus we obtain the following
supplement to Theorem 3.1.

Theorem 3.2. With notation as in Theorem 3.1, suppose that £ f, is bounded,
as is the case when L and G have the same real rank. If £f is given by (3.2) just for
K -finite functions f in the cyclic span of the uy K type in U(MAN,0,py), then €
defines a (g, K) intertwining operator from J(MAN,o,pr, p ) into an irreducible
subspace of L*(G/H) of type U*.

The one conclusion in Theorem 3.2 that needs further explanation is that £
actually descends to J(MAN,a,pr,py). In fact, let U’ be the cyclic span of the
px K type in UM AN, 0, pr,). Since £(U") is unitary and has a finite composition
series, it is fully reducible. Assume it is not 0. The cyclic K type j has multiplicity
one in U' (being of multiplicity one in all of U(MAN,o,pr)). Since it has to
be cyclic for £(U'), it has multiplicity one in £(U’'). Therefore it has to occur
in some irreducible constituent of £(U'), and £(U') must be irreducible. In the
case that £(U’) is nonzero, £(U') is thus identified as an irreducible quotient of
U(MAN, o, pr) containing the K type px. Hence £(U") is infinitesimally equivalent
with J(MAN,a,pr, t3), and £ must descend in the required fashion.

5. Operator nonzero. We are at present able to show that £ is nonzero only in
certain circumstances, as mentioned in the introduction. For now we shall give a
qualitative version of the main result that we have in this direction. The proof will
be given in §7.

Theorem 3.3. With notation as in Theorem 3.1, suppose that L and G have
the same real rank. Then with suitable choices of the subgroup A and the element
win (3.6), the function £ f, is not identically 0. In particular £ is not the 0 operator
on J(MAN|U1 PL» nu'/\)‘
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4. Intertwining operator

Sections 4-7 carry out the detailed steps announced in §3. The notation for these
sections is as in §1. In the present section, we shall prove the results in Subsections
1 and 2 of §3. Let the G = K(M Nexpp)AN decomposition of an element g of G

be g = &(g)u(g)et@n.

Proposition 4.1. If f is a K-finite function in the space of the induced repre-
sentation (1.3), if / is a continuous linear functional on the space of analytic vectors
of V7, and if z is in G, then the integral

JARGEDLE (4.1)
HNK

is well defined and is a continuous function of z.

Proof. We have

f(g) = e~(prtra)H0 g (4y(g)) 1 £(x(g)). (4.2)

The K-finiteness of f implies that each member of f(K) is an analytic vector. Since
the space of analytic vectors is stable under M, (4.2) is an analytic vector. Thus
the integrand of (4.1) is well defined. As g varies in G, we see from (4.2) that
f(g) varies continuously in the space of analytic vectors. Since [ is continuous, the
integrand of (4.1) is continuous in the pair (z, k). Therefore (4.1) is well defined
and is continuous in =.

Proposition 4.2. p1, + pe = 2py.

Proof. By (1.5), a @ t is abelian, and (1.4) shows that it is stable under both
and the Cartan involution. By (1.1) we can therefore find a subspace s C § such
that a @ t @ s is a Cartan subalgebra of g. We introduce a lexicographic ordering
that takes a first and that is compatible with our choice of positive restricted roots
in §1.

For any root a with a|, > 0, let X, be a corresponding root vector. Then we
have

n= ) CXo® Y C(Xa+7Xa)® Y. C(Xo—7Xa)

ala > 0 ola >0 ala > 0
altl=10 alt > 0 all > 0
—(mnhemn®Hen)emng). (43)

If 2p(-) denotes the sum of the positive restricted roots contributing to (-) with
multiplicities counted, then (4.3) shows that

2pa = 2p(nN 1) + 2p(n N (5 © 1)) + 2p(n N q) (4.4)
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with
20(nN 1) = 2p1, (4.52)
2p(nN(h 1) =2p(nNq) (4.5b)
2p(nn 1) +2p(nn(hS 1) =2pH- (4.5¢)

Substituting (4.5) into (4.4), we obtain
2pc = 2pu + (2pH — 2pL),
and the proposition follows.

Corollary 4.3. The operator £ on K-finite functions f in the space of the
induced representation (1.3), given by

BFEy= jm (f(zk)) dF, (4.6)
is given also by
£f(x) = f} ERIGEOL (47)

Proof. The expression (4.6) is well defined, according to Proposition 4.1. If mis
in HN K N M, then

1(f(zkm)) = 1(a(m) ™" f(zk)) = L(f(zk))-
Applying the change of variables formula [9, (5.25)] to the group H, we see that
/ 1(f(zk)) dk = f 1(f(zk(R)))e2en H P dn
HNK HNN
= [ (@) @dn by (1)
HnN

= / I(f(zn(ﬁ)p(ﬁ)emﬁ))) din by Proposition 4.2
HNN

i f 1(f(zn)) di.
HnN

Proposition 4.3. For any K-finite function f in the space of the induced
representation (1.3),

£f(zh) = €f(z) forallz€G, heH. (4.8)

Proof. Since H = (HNK)(HNM)A(HN N), it is enough to handle h in each
factor separately. For h € H N K, (4.8) follows from (4.6). Forh € HNN, (4.8)
follows from (4.7).
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Now let h € H N M. Then (4.7) gives

Ef(zh) = /Hnﬂl(f(x(hﬁh'l)h)} dn
= / 1(f(z(hnh™'))) dn by (3.1)
HNN
= f _U(f(=n))dn by change of variables
HAN
=iEf{x).

The argument for & € A is similar, and (4.8) follows.

5. Construction of linear functional [

In this section we shall prove the results in Subsection 3 of §3. An observation
by W. Schmid helped simplify the proofs.

Proposition 5.1. If the Flensted-Jensen parameter A is generic, then the Lang-
lands M parameter o is an integrable discrete series of M.

Proof. We shall make use of some qualitative features of the Vogan construction
[18] for passing from py to M and o. First we extend t; to a Cartan subalgebra
(t1)o of & as in §1, and then we extend (t;)g to a Cartan subalgebra (t2)o of go. Let

A] = A(g, tl)., ﬂz = A(g, tz), &],c = A(f, ll).

We can extend A} to a compatible positive system A;':c for A; ., and we can use
the result to define a compatible positive system AJ for A, as in [18, p. 19] such
that py + 26, . is &;’ dominant and such that the positivity for members of A,
consistently defines A} by restriction. Since ) is generic, Al will be consistent
with A* under restriction.

Proposition 4.1 of [18] instructs us to work with py + 26; . — 8. Since A is
generic, this and all of its bounded translates have large positive inner products
with any member of A7 that is nonzero on t. Consequently the imaginary roots
Bi,...,Br constructed in [18, Proposition 4.1] all vanish on t. As a result, the a
that is constructed is always in [, no matter how the f; are chosen. And the Harish-
Chandra parameter of o, which we shall call Ay, differs from gy + 261, — 62 by a
linear functional vanishing on t. Thus (A, a) > C for every a € AJ that is nonzero
on t.
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Let AT be the set of positive roots for M (i.e., the members of A7 orthogonal
to B1,..., B and carried on ;). The condition for integrability of o is that

Co.B) 25 3 (1h)
veat
(1’,,&))0

for all B € At that are M-noncompact, according to [17] and [5]. For this condition
to fail for some 8, 8 would have to vanish on t, according to the previous paragraph.
But then the root vector Eg would centralize t and so be in [. But Schlichtkrull [14]
says that A corresponds to a minimal parabolic subgroup of L, and thus L has no
M-noncompact roots. The result follows.

We turn to the integrability of matrix coefficients of o over H N M. The first few
steps are general facts about integrable discrete series of a linear reductive group
M whose identity component has compact center; these steps are carried out in the
lemmas below.

Let Aps be an Iwasawa A of M, and let ¢} be the 0™ spherical function, as in
the notation of [9, Chapter VII]. As in §3, let D(o) be the space of analytic vectors
of o, given by (3.5) according to [15].

Lemma 5.2. For f and g in C,,(M), let Ey =support(f) and E; =support(g),
and put
C = (sup|fl)(suplg”l),
where g*(z) = g(z ). For ug € D(0),

(o (2)o (f)uo, o(g)uo)| < C|E1||E2| sup |(o(zzy)uo, uo)l;
YyEE,

1
!G(Eg)‘ 1

where |E;| and |E;| denote the measures of E; and E,.

Proof.
(o(2)o(f)uo, o(g)uo) = (o(g%)o(2)o (£ uo, uo)
L ] ] (o(2)o(=)ey)uo, uo)e® (2)f (y) dz dy,
MJM

and the result follows directly.
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Lemma 5.3. If ug is (K N M )-finite and if € > 0 is sufficiently small, then there
exists C' such that
l{o(z)uo, uo)| < C'pg (2)**° (5.1)

forallz € M.

Proof. We refer to the analysis of asymptotics of matrix coefficients of o, as in [9,
Chapter VIII]. Let A}f_} be an exponentiated positive Weyl chamber for A, let pu
be half the sum of the corresponding positive restricted roots, and let {w;} be the
dual basis to the basis of simple restricted roots. By [9, Theorem 8.48], integrability
of o implies that every leading exponent » — pys of o has

{y — pM:“"f) < _2<pMwa}a

ie.,
(v,wj) < —(pm,wj)-
Thus
(v,w;) < —((1 + 26)pm, w;5) (5.2)
if € > 0 is sufficiently small. By [9, Theorem 8.47], (5.2) implies that there is a
g > 0 such that each (K N M)-finite matrix coeffcient of o is dominated on A}, by
a multiple of e~ (2+2€)pmloga(] | ||a||)9, hence by a multiple of e~(2+9)Palose  Since

ce~Pmloga < ,M(g) each (K N M)-finite matrix coefficient is dominated on A}, by
a multiple of p} (a)?*¢. Then (5.1) follows readily.

Lemma 5.4. Let € be as in Lemma 5.3. If u and v are in D(o), then there exists
C" (depending on u and v) such that

o (z)v,u)| < C"pM ()t

forallz € M.
Proof. Write v = o(f)ug and u = o(g)ug. Then Lemmas 5.2 and 5.3 give

[{o(z)v,u)| < C|E||E.| sup [{o(zzy)uo, uo)
¥
ZE(E:)l_'

< CIE||E2| sup ! (zay)*te.
yEE,
ZE(EQ)_I

Now [9, p. 429] shows that

@g! (2zy) < ( seElces BRI R e 5 “"’) %' (2),

and hence the lemma follows.
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Proposition 5.5. If o is an integrable discrete series on M and if u and v are
in D(o), then the integral
(e(m)v, u)dm
HNM
is convergent.

Proof. Let Iwasawa A groups for M and H N M be denoted Ay and Apnm,
respectively. We may suppose that Agny € Ay. We denote typical open Weyl
chambers in (agnn)o and (ap)o by Cuam and Cpr.

Let Cf;py be a fixed posmve Weyl chamber for (azna)o, and consider all Cp
with the property that Cas N Cj;nps has nonempty interior in Cjy. There are
finitely many such, and they cover Cj;,. Since @i is bi-(K N M)-invariant, we
are to show that

f oM (exp X )2 Hee2runn(X)gX < oo,
X€CHnn
in view of Lemma 5.4. It is enough to show that

/ - r,o(‘,w(exp X)erz"’”"“(x)d}{ < oo
XECMNCH A

for each Cy; as above. Define pyy relative to Cp. Proposition 7.15¢ of [9] gives
M (exp X) < Coe™ (1 4 || X||)"
for a suitable integer r. Then
gf(exp X)“f < C{,e“”"""(x’(l ) I|X||)r(2+e) < Cge—(zﬁe)m(X),

and
sog‘f(expx}z-i-!e‘lpnnm(x) = Cé’ez[PHnM(X)_PM(Xn_'}gpM{X)’

If a is a restricted root for H N M that is positive on Cjjy,, then a is positive on
C?I“IC;}”M‘ Let & be an extension of a from agnp to aps as a restricted root for
M. Then & > 0 on Cpr N CHiaprs @ > 0 on some of Cpy, and @ > 0 on all of Cy.
Thus every « contributing to pgny contributes to pps. The roots g cont.rlbutmg
to par that are not counted in this way at least have §(X) > 0 for X € O G
Thus

e2leunn(X)—pu(X)] < 1 for X € Cm N Cliaum-

Hence
gf(expx)2+feﬂpﬂnu(xi < Cé’e—‘}fpm(x)_

For X € Cat» pm(X) > 0 (since {(pp,w;) > 0 for all j and since every element of
Cpr is of the form Y cjw; with ¢j > 0). Hence our integrand is dominated by an
exponential whose integral is convergent, and the proposition follows.
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6. Image in L*(G/H)

In this section we shall prove the results in Subsection 4 of §3. T. Oshima
suggested to us that the square integrability of £ f,, where f, is as in (3.7), should
follow from his adaptation [11, 12] of the theory of asymptotics of matrix coefficients.
D. A. Vogan showed us how to carry out such a program under the assumption that
€f, is bounded. A similar result was proved by Tong and Wang [16, §2], using a
somewhat longer argument to obtain a more precise theorem.

We are able at present to show that £f, is bounded only under the additional
assumption that L and G have the same real rank. The argument is a variant of
the proof of Theorem 4.8(i) of Flensted-Jensen [3]. We let by be a maximal abelian
subspace of pg N go, and we define B = exp by.

Lemma 6.1. Suppose that L and G have the same real rank. For v in the space
for 7y, , let f, be the K-finite function on K given by (3.7). Then £f, is a bounded
function.

Proof. According to [10, p. 161], we have G = KBH, and it follows that it is
enough to prove that £f, is bounded on B.

Let 7 be any finite-dimensional representation of G, and introduce a Hermitian
inner product so that the action of the compact form is unitary. Since {7(b)|b € B}
is a commuting family of self-adjoint operators, it has an orthonormal basis of
simultaneous eigenvectors v;, say with eigenvalues A;(b) € R. Let w be the highest
a-weight of 7, and let £ be a unit vector of a-weight w. Since M is compact (because
L and G have the same real rank),

|f'n'($)§]|2 = ¢2wH(z) for z € G. (6.1)
‘We shall use this identity to prove that
“HOY > 1 forbe B, ke HNK. (6.2)

In fact, the involution 7 leaves K and N stable and fixes A. Thus H(z) = H(7z).
Since 7(bk) = b~k for b€ B and k € H N K, (6.1) gives

2 HOB — ||x(bk)E||? = || (6~ k)E1%. (6.3)
Let us write m(k)¢é = Y ci(k)v; for constants c;(k) with 3 |ci(k)[* = 1. Then
= (BR)EN = 11 Y cilk)Xi(b)uill® = D les(k)I*Ai(5)?
w6 R)EN* = || Y cilkNi(®) M uill® = D le(k) P Ai(b) 2,
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so that (6.3) gives

ZOHOD = ™| (k)2 %(;\i(b)f* +0(0)72) 2 k) =1.

This proves (6.2).

Since N was chosen to make p; dominant for G, and since pg is automatically
dominant, (pr, + pc)H () is a nonnegative combination of expressions 2wH (z) with
w as above. Then it follows from (6.2) that

e~r+e)HOK) <1 forbe B, ke HNK. (6.4)

Since M is compact, we have

£ = [ 1O dE= [ Gt MO (i) k. (65)

Since f, is bounded on K and since V' is finite-dimensional, [ ( f, (x(bk))) is bounded
as a function of b. Thus (6.4) and (6.5) allow us to conclude that £ f,(b) is bounded

as a function of b.

Proposition 6.2. Suppose A is generic. For v in the space for m,,, let f, be
the K-finite function on K given by (3.7). If £f, is bounded, as is the case when L
and G have the same real rank, then £ f, is square integrable on G/H.

T. Oshima [11, 12] developed a theory of asymptotic expansions on B of K-finite
functions on G/H that are eigenfunctions of D(G/H ), the algebra of invariant linear
differential operators on G/H. D. A. Vogan showed us how to apply this theory to
£f, and deduce Proposition 6.2. The remainder of this section gives the details of
the proof. See also [16, §2].

The function £ f, is right H-invariant on G and is an eigenfunction of the cen-
ter Z(g) of the universal enveloping algebra U(g) of g, since £ is equivariant and
U(MAN,a,pr) has an infinitesimal character. The relationship between Z(g) and
D(G/H) is subtle, however. Restriction to right H-invariant functions yields a map
of Z(g) into D(G/H), and Helgason [6, Theorem 4] proved that this map is onto
for classical G but not for certain exceptional G. Consequently € f, is an eigenfunc-
tion of D(G/H) at least for G classical. In the general case, Lemma 6.6 gives a
substitute.

For purposes of Lemmas 6.3 through 6.5, let G = K AN be the Iwasawa decom-
position of a linear connected semisimple group, let M be the centralizer of A in K,
and let by be a Cartan subalgebra of mg. Then hh = a @ b is a Cartan subalgebra
of g. Let A be the set of roots of (g, ). We shall study D(G/K). Let W = W(h)
and W, = W(a) be the usual Weyl groups, and let I(§) and I(a) be the respective
subalgebras of Weyl-group invariants in U(f) and U(a), There are Harish-Chandra
isomorphisms

7y : Z(g) — I(h) and 7a: D(G/K) — I(a),
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and any (simultaneous) eigenvalue for the operation of Z(g) or of D(G/K) is given
by a member of h* or a*, respectively. Lemma 6.3 sorts out the effect on eigenvalues
of the map of Z(g) into D(G/K) given by restriction to right K-invariant functions.

Let A* be a positive system for A compatible with the positive restricted roots.
Let Ay € A be the set of roots of (m, b), let AL = At N Ay, and let 8y be half
the sum of the members of A¥,.

Lemma 6.3. Let ¢ € C°(G/K) be an eigenfunction of D(G/K) with eigenvalue
v €a*. If z is in Z(g), then

2 = (v + 8m)(75(2))ep-

Proof. Define the spherical function ¢S as in [9] by

(pf(a:) :f e (P H(z™'k) dkz/ =P H(zk) g3
K K

Then [7, p. 431] shows that
D¢ = v(7a(D))pS  for D € D(G/K). (6.6)

In other words, ¢¢ has eigenvalue v. Now ¢ is a matrix coefficient of U(M AN,1,v),
which has infinitesimal character v + 67, by [9, Proposition 8.22]. Therefore

268 = (v +E)m(2)pS  for z € Z(0). (6.7)
If z denotes the image of z in D(G/K), then (6.6) and (6.7) together show that

v(Ya(20)) = (v + m)(19(2))- (6.8)

By assumption, D(G/K) acts on ¢ with eigenvalue v, and (6.8) therefore proves
the lemma.

Lemma 6.4. There exists C' > 0 with the following property: Whenever » and
A4 in a* and A in b* have

Aa+Ay, @) >C  forallae At witha ¢ Ay

and
v+ 6y =w(Aa+ Am) for some w € W,

then v = wpA 4 for some w, € W,
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Proof. We fix C' as any number greater than the maximum value of 2|(6p,a)]
for @ € A. Then

v+ 6m,0)] < C (6.92)
for at least the roots a of Ajys, while
|(Aa+Am,B)| < C (6.9b)

for at most the roots # of Aps. Since v+ 6p and A4 + Au are conjugate by w € W,
(6.9a) and (6.9b) must hold for exactly the members of Ays.

It follows that v+ &y is nonsingular. In fact, (v + &, a) = 0 says that « satisfies
(6.9a), so that a is in Aps. But then

0= (v+bm,a) = (0m,a)

is a contradiction.

By [9, Lemma 5.16], we may assume without loss of generality that v is dominant
with respect to the positive restricted roots. Also we may assume that Ay is AL
dominant. Then A4 + Ay is At dominant. If we can show that v + 8y is AT
dominant, then w =1 and v = A 4.

Thus let o be in A*. If a is in A}, then

(V+6Mra) = <6M:a) > 0.

For other a in At, we let @ be the member of AT with &|, = a|; and &|s = —ale.
Suppose (v + 6p,a) < 0. Then

0 <2(v,a) = (v+bum,0) + (v +bp,a) < (v + 6y, @),
so that (6.9a) gives (v + 6p, &) = C. Hence
(v +6p,0) = (v + 0pr, @) —2(0pr,@) = C — 2(bpp,a) > 0,
contradiction. We conclude that v 4 s is AT dominant, and the lemma is proved.

Lemma 6.5. D(G/K) is a finitely generated Z(g) module.

This is a special case of [4, Theorem 1]. Now let us return to the notation of
Proposition 6.2. Let ¢y be a maximal abelian subspace of qo containing by, and let
¢o B 0o be a Cartan subalgebra of go containing cp. Let G° be the Flensted-Jensen
dual [3] of G, with a maximal compact subgroup H? and with other notation as in
[3]. Under the duality we have

D(G/H) = D(G°/H") = I(c) (6.10a)

Z(g) = Z(a°) 2 I(c D). (6.10b)

The Cartan subalgebra t @ (a @ s) of g in Proposition 4.2 is conjugate to ¢ @0 under
an element wy € Ad(G®) that carries ¢ to t and ? to a @ s. Define wf’ to be the
transpose map from t* @ (a @ 5)* to ¢* G 0™.
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Lemma 6.6 Let A be generic. Then the vector space of functions
V = {D(£f,) | D isin D(G/H), v is in space of 7, }

is finite-dimensional, and D(G/H) acts on it with a single generalized weight. Un-
der the isomorphism (6.10a), the weight is w{"(A + 1), where 7 is a member of t*
independent of A.

Proof. The representation U(M AN, o, p;,) has an infinitesimal character of the
form Ao + pr, where Ap is as in the proof of Proposition 5.1. We can rewrite this as
(A 4+ 1) 4+ n' with n and 7’ independent of A, with n in t*, and with 7’ in (a & 5)*.
Then £f, is a left K-finite eigenfunction of Z(g) with eigenvalue w§'((A + 1) +7')
relative to ¢* @ ?*.

The finite-dimensionality of V now follows from Lemma 6.5 and Flensted-Jensen
duality. By [8, p. 43], V is the direct sum of generalized weight spaces. Via (6.10a)
we can regard each weight as a member of ¢*. Fix such a weight v, and let ¢ be a
member of V that is an eigenfunction of D(G/H) with weight ».

Since ¢ is an eigenfunction of Z(g) with weight wg'(A +7) 4+ wg'n', Lemma 6.3
shows that v + &y is in the same orbit as wiT(A + 1) + wi'n’ under the Weyl group
of ¢ @ 0 for a certain 637 in *. Since A is generic, Lemma 6.4 says that v is in the
same orbit as wi (A + 1) under the Weyl group of ¢. Lemma 6.6 follows.

Now we can prove Proposition 6.2. The idea is to apply Oshima’s theory [11,
12] to €£f,. Lemma 6.6 says that £f, belongs to a generalized eigenspace under
D(G/H), and Oshima’s theory is directly applicable only to eigenfunctions. But
the theory is easily modified to handle generalized eigenspaces, as long as one is
not too fussy about what powers of logarithms are involved, and we shall take this
extended theory as known.

The proof consists in playing off Theorem 4.1 and Corollary 4.3 of [11]. Oshima’s
a is our by, his a is our by @ i(co © by), and his A is our \' = w'(A +17) in Lemma
6.6. For other notation, we refer the reader to Oshima’s paper. Suppose £ f, is not
square integrable. Let wy,...,w; be dual to the simple roots relative to b. Then
Corollary 4.3 of [11] says that FBIx(€f,)P%w=1P? has an interior point for some
w € W(c) satisfying

(w',wj) >0 for some j = jo. (6.11)

Since there are only finitely many orbits in Oshima’s G¢/P? under his HY,
FBIy(£f,)Pw=1P4 contains an open orbit in G¢/P? for some w as above. By
Remark 4.2i of [11], FBIx(£ f,)Pw=1P4 D woP? for some wy € W(b). In the
notation of [11, p. 591, W(FBIx (€ f,), woP?) contains some w € W (c) satisfying
6.11).

( Siglce (wX',wj,) > 0 and since X is generic, (wX',wj, ) is large and positive. Taking
I={1,...,1} in [11, p. 591], we see that

vr(wX') = (o= Nyw1)y oy (p = Ny 1))
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has vj(w)');, < 0. For some such w (one with an extremal property), the set
A = E((FBIx(Ef,) : woP%4 N)

contains vr(w'), by comparison of the definitions at the top of [11, p. 592]. Theorem
4.1 of [11] says that

Efu(gwoar(y)wi H) =Y cou(gly” +1(9,y) Y v"¥§ (6.12)
vEA VEA
1<l

with ¢,  continuous on G and not identically 0 for v in a subset A’ of A, and with
r(g,y) continuous on G x [0, 00)!. The relevant behavior is as y — 0, and the second
term represents error terms that are small relative to the first term when the first
term is not 0.

By Remark 4.2iii of [11], A’ = A. Thus A’ contains the element v = v;(wA') with
vi(wX');, < 0. For this v, y” blows up as y — 0 suitably. If we choose go so that
¢,k(g0) # 0 for this v, then (6.12) shows that € f,(gowoar(y)wy ' H) blows up as
y — 0. But this behavior contradicts Lemma 6.1.

7. Operator nonzero

In this section we shall prove that £ is not the 0 operator, provided L and G have
the same real rank and our parameters are lined up suitably. Recall the definition
of I =1, in (3.6) and the definitions of P and f, in (3.7). Recall also from §1 that

Tu, has a nonzero (H N K)-fixed vector, say v.

Lemma 7.1. Ef,,(1) = (Puvg,u), so that a suitable choice of u makes £ # 0 if
P‘Uu 7,": 0.

Proof. We have
Efu()= [ 1(fun(h)) d

“ f f (oY P (s (k) 0); uY s
HnK JHNM

- L no fH (P (k) ) dm

= (Pvg, u),

the last equality holding since vy is fixed by H N K and the subgroup H N M.
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The operator P may be regarded as a certain orthogonal projection within the
space for m,,, namely the projection to the subspace of M type o. Let v, be a
nonzero highest weight vector for m, .

Lemma 7.2. Py # 0 if v, lies in the image of P.

Proof. If v, lies in the image of P, then (Puvg,vs) = (vo, Pui) = (vo,vs). Thus
the lemma follows from [9, (9.36)].

Recall the abelian subalgebras and root systems used internally in the proof
of Proposition 5.1. We have t C t; C t; ; is a Cartan subalgebra of €, and
t, is a Cartan subalgebra of g. We used the notation A = A(g,t), A; = A(g, t1),
Az = A(g, t2). The positive system At = A*(g, t) is fixed, and the Flensted-Jensen
parameter ) is very dominant.

We have at our disposal the choices of compatible positive systems &?’ and
AF, which determine vy, and the choice of A, which determines the group M and
ultimately the projection P.

The subalgebra t; is a Cartan subalgebra of [, and the members of A(l,t;) are
the roots in A, vanishing on t. In [1, §1 and §11], it is shown how to construct
a positive system AT([,t;) and an ordered sequence aj,...,am,m of noncompact
imaginary roots in A([, t) such that

(i) the a; are strongly orthogonal
(ii) af = Z;.';l R(Ea; + E-q;) has, for suitable normalization of root vectors,
ap = ay @ (t2 © t;) maximal abelian in [ N py
(iii) each a; is (positive and) simple in the subsystem of roots of A(l,tz) that
are imaginary and orthogonal to a;,...,aj-1.

Together A*(l,t;) and At determine A7 (and therefore also AT). The above
construction defines a as a Cayley transform, and M and m are defined as usual. The
proof of Proposition 3.1 of [1] shows that the m-cyclic span V"' of v, is irreducible and
has vy, as a highest weight vector. The same proof shows that the one-dimensional
space Cuy, is stable under L N K, and it follows that V' is irreducible under M, say
of M type o'. The construction has the property that 7, is a minimal K type of
the induced series U(M AN, o',v). By the uniqueness in [17, Proposition 4.1], it
follows that ¢’ is equivalent with o. In the above notation the image of P is then
the M-cyclic span V' of v;. In particular, v, lies in the image of P. Application of
Lemmas 7.1 and 7.2 then completes the proof of Theorem 3.3.
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8. Some cases with L compact

In §§6-7 we addressed the square integrability and nontriviality of the image of €
under the assumption that L and G have the same real rank. The opposite extreme
is that L is compact, in which case A = {1} and M = G. The representation in
question is just o. Since N = {1}, (3.4) shows that the formula for £ reduces to

Ef(z) = 1(f(2))- (8.1)

There is no difficulty in showing that [ exists as in (3.1) making £ nonzero with
image(€) C L%(G/H). This existence follows from the existence and identification
of generic discrete series for G/H proved in [3] and [14]; we have only to set up an
abstract intertwining operator from the discrete series ¢ into L?(G/H) and take I
to be evaluation at the identity coset of G/H.

The question is whether [ is given by integration, as in (3.6). We suspect that
is indeed always given by integration in the generic case, and we give some evidence
in this section for such a conjecture. The cases that we can handle are the group
case and G/H = S0(2,1)/50(1,1).

In the group case the total group is G x G, and the subgroup H fixed by 7 is
{(v,y) | v € G} = G. An exposition of the Flensted-Jensen construction for the
group case appears in [9, Chapter IX]. The parameter A is essentially the Harish-
Chandra parameter of a discrete series ) of G, and ¢ is 7} ® mx. If m acts on
V, then 7} acts on a space V whose elements are the same as those of V but
whose complex structure is opposite to that of V. When we want to emphasize the
distinction, we shall write members of V with overbars. The mapping v — ¥ is
conjugate linear. Let dy be the formal degree of 7).

Proposition 8.1. In the group case with ¢ = 7} ® 7, the linear functional [ of
(3.6) is given by

1 N ——
la;@u, (01 @ v2) = a(%vl)(uzaul)- (8:2)
For the element
folar,22) = 0(z1,22) 7 (01 @ v2) = 73(21) 01 ® ma(z2)  va,

£ is given by
] . & e
Efo(zr,22) = E;(WA(EI% 1)‘”2&’1)(”2:“1)- (8.3)

Therefore the image of £ is nonzero and is contained in L?.
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Proof. We use Schur orthogonality [9, Proposition 9.6] twice. For (8.2) we have
lasoua(1 © 1) = [ (5@ m(1,1)(01 8 v2), 11 @ wa) dy
= [ 3w, an)ma@yon, ) dy
= [ @)@, u) dy

1 e
= I (v2,v1)(uz, u1),
A

by a first application of Schur orthogonality.

Using (8.1) and substituting f,(z1,22) as the argument of I/, we obtain (8.3).
When 27 = 24, u; = up # 0, and v; = v, # 0, this expression is nonzero. Note that
the value of (8.3) is unchanged upon replacing (z1, z2) by (z1y,z2y). Integration
over the quotient (G x G)/(diagonal) is achieved by replacing z;z;' by a single
variable and integrating over G. Consequently the square integrability of (8.3) over
the quotient follows by a second application of Schur orthogonality.

The other case we can handle is SO(2,1)/S0O(1,1). It is a little simpler to

consider G = SU(1,1) with H = {h} = {(:?ﬁk}:: z;r;ﬁtt)} The holomorphic

discrete series D, of G is given in the space of analytic functions for |z| < 1 with

1A = Sfpcx |F 21 = 2[2)"=2 d dy by

27 (§ 2) =Bt arnr (S22,

Here n is an integer > 2, and n is to be even if the discrete series is to descend to
S0(2,1). The only other discrete series of G are the antiholomorphic ones, whose
formulas are similar.

Proposition 8.2. For SU(1,1)/H and the discrete series D,; with n > 2, if u
is taken to be the function 1 on the disc, then the linear functional I = [, in (3.6) is
not 0, and the corresponding £ is nonzero. Moreover, if in addition n is sufficiently
large, then € has image in L?(SU(1,1)/H).

Proof. The subgroup B at the start of §6 is

coshs isinhs
B ={b} = {(—isinhs cosh s )}
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The K type mp, is the minimal K type of D, which corresponds to the constant
functions on the disc. We have

L(D=(b)1) = [m (D= (h)Dx(bs)1,1) dt
= [~ @z Dr (-0
- /W f[ (cosh s + izsinh ) ™(cosht + Zsinht)™™(1 — |2|*)"~% dz dy dt
—00 |z]<1
=(coshs)™" ./;m(cosht)_" I:]/I;Iﬂ(l +tztanh s)™"(1 + zZtanht)™"

(1= |2?)* 2 dz dy] dt.

For s = 0, the expression in brackets is the nonzero constant

) /Ma“ — |22~ de dy,

and thus (D5 (bo)1) # 0. For general s, let z = re’®. Then the expression in
brackets is

=2,r/n‘ i
<o [i

= ffi ke ) RS S B |2|2)"~2 dz dy,
z|<1

(_k“) (ir tanh s)* (r ta.uht)"] (1 - r2)"2rdr

2
( k ) (r tanh 3)"(1‘ tanht)k(sgnst)k] (1-—1"2)"_21- dr
0

in absolute value

which is the inner integral that arises with h_,gn(st) and h_,. Hence

=]

Hl{D;(ba )l)l < / (D; (h-s sgn(st))lu D;(h—t)l) dt

= / (D7 (hecsngageny)Ls 1) dt

= /w [cosh(t — ssgn(st))] ™" dt

-0

o0
52/ (cosht)™™dt < oo.
—co
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In other words, £(1) is bounded on B and hence is bounded everywhere. By Propo-
sition 6.2, £(1) is square integrable on SU(1,1)/H if n is generic.
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