SOME NEW INTERTWINING OPERATORS FOR SEMISIMPLE GROUPS

A. W. Knapp and E. M. Stein’

1. Background and problem

This paper gives a progress report on work not yet complete on
the construction of further intertwining operators beyond those
studied in [8]. The general problem we have in mind is to understand
the reducibility of degenerate series of unitary representations of
a semisimple Lie group G with finite center. The hope is that the
information obtained will be a step toward classifying the irreduc-
ible unitary representations of G.

The setting consists of a maximal parabolic subgroup of G with
Langlands decomposition MAN relative to a maximal compact subgroup

K of G. We consider the series of induced representations

inad, (g & e ® 1), (1.1)

where € 1is an irreducible unitary representation of M and ex

is a character of A. Parameters are arranged so that the induced
representation is unitary when ex is unitary, and we write the

action of G on the left. Usually we abbreviate (1.1) as

indi(z @ eM). (1.2)
We study self-intertwining operators for (1.2) when e is unitary.
It is known (Harish-Chandra, unpublished) that if € has a real
infinitesimal character and A is nonzero imaginary, then (1.2) is
irreducible. Thus we shall confine our investigation of intertwining

operators to the case A = 0.

* Supported by grants from the National Science Foundation.
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The first systematic study of this problem was made by Bruhat
[1], who associated distributions on double cosets of MAN\G/MAN to
such operators. Some, but usually not all, of these double cosets
are indexed by the Weyl group W(gt) of the parabolic, defined as
the normalizer modulo centralizer NK(A)/ZK(A). If w represents
a member of W(01), the associated MAN double coset is MANWMAN. For
these nice double cosets, there is a preliminary algebraic obstruc-
tion to having any associated operator at all—namely that we must
have wg = g (and wA = A, vhich holds for A = 0).

If this condition wg = g is satisfied, then Kunze and Stein

[9] discovered that the relevant operator is formally roughlyl

A(w,g, N E(x) = [ £(xwv)dv, (1.3)
VoW Nw

where V = 6N and & is the Cartan involution of G corresponding
to K. We call (1.3) a standard intertwining operator. The integral
(1.3) is divergent, but [8] shows how to define it by analytic con-
tinuation in M. Normalization of (1.3) by dividing by a suitable
scalar-valued meromorphic function of A yields a unitary operator
for e“ unitary, and the dependence of the operator on A 1is holo-
morphic for these values. When w is non-trivial and the normaliz-
ing factor is regular at A = 0 (so that the operator is well-
defined without normalization), the operator exhibits reducibility.
If the normalizing factor is singular, the normalization effectively
pushes the mass of the distribution off MANwWMAN to lower-dimensional
double cosets in the closure, defining an operator associated with
these other double cosets. 1In a sense the operator should have been
studied in a different setting.

In practice, the intertwining distributions of [1] are hard to

1 mme self-intertwining operator is €(w)A(w,g,2). See §7 of [8].
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understand on G. But we can consider the induced representations
(1.2) in the noncompact picture (by restriction of functions from
G to V), ﬁnd then the distributions can be regarded as on subsets
of V that mirror the double coset structure of G. This approach
will be useful in §2.

The standard self-intertwining operators, then, are well under-
stood. The problem here is to study those self-intertwining opera-
tors whose distributions are attached to MAN double cosets not coming
from W(OQ). We shall give in this paper a way of dealing with such
operators sometimes (all the time?) by associating diamond-shaped
diagrams to these double cosets. Understanding of the operators will
come from going the long way around the diamond.

The plan of the paper is as follows. In §2, we discuss in
detail the examples that led us to consider diamonds. The rigorous
part of the paper begins in §83-4 with results on double cosets,
ineluding in Theorem 4.1 a proof of a conjecture by Bruhat concern-
ing their structure. In §5 we define diamonds and work with the
algebraic formalism of them. The analytic problems of diamonds are
listed in 86. We conclude in §7 by showing how diamonds can be used
to account for a number of known phenomena.

Our discovery of diamonds was facilitated greatly by examples
and suggestions provided to us by B. Speh, R. Strichartz, and M.
Vergne. We thank these people for all their help.

2. Motivating examples

In this section we shall reinterpret known reducibility phenomena
for two groups as motivation for using diamonds.

1. SU(2,2). The reducible continuous series representation in
this example has been understood for some time and has been studied

more recently by Jakobsen-Vergne [5], Kashiwara-Vergne [6], and Speh
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[12]. The restricted roots form a system of type C,, and we shall
denote the simple restricted roots e, -¢€, and 2&2. If we build a
parabolic subgroup MAN out of ey - €y then the M of the para-
bolic is isomorphic to SL(2,¢) with the scalar matrix iI adjoin-
ed. The representation we study is U = indﬁ (L@ 0).

e -

g [

More concretely we can conjugate SU(2,2) so that its Lie

algebra takes the form

B
2,2 = (] o) (2.1)

with the 2-by-2 matrix a-a of trace O and with § and y
Hermitian 2-by-2 matrices. The Lie algebra of the parabolic in
question is all matrices (2.1) with y = 0. The group V 1is abelian,
isomorphic with the additive group of Hermitian 2-by-2 matrices, and
the representation U takes on a nice form in the noncompact

picture, namely

U(g)£(x) = det(a+bx) 2£((c+dx)(a+bx)™) (2.2)

for g_l = (2 3), x Hermitian 2-by-2, and f in L2. Holomorphic
such f (i.e., boundary values of functions in the associated Hardy
space) form an invariant subspace, as is apparent from (2.2), and
antiholomorphic f also form an invariant subspace. But these two
subspaces do not exhaust L2. (on the Fourier transform side, these
subspaces become the spaces of functions supported on the positive
definite matrices and negative definite matrices, respectively, and
the functions supported on the indefinite matrices are missing.)

The third subspace is invariant and easily seen to be irreducible,
and it follows that the space C of self-intertwining operators for

U has dimension 3.
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We look at the standard intertwining operators coming from the
Weyl group of the parabolic. Here A is one-dimensional, and the
group has two elements. The identity element leads to the identity
operator, and the nontrivial element leads to a standard operator
that does not require normalization (to become regular) and is there-
fore not scalar. We therefore obtain two independent members of C
but still need a third operator.

To get a clue to the nature of a third operator, we note that
the Cauchy kernel and the conjugate Cauchy kernel provide inter-
twining operators when we pass to boundary values. The limiting
operators are convolutions with the distributions

lim det(x+1ieI)”2 and 1lim det(x-ieI)™ .

e} 0 el0
We form the difference of these distributions, which will eclearly be
supported on the set {det x = 0}. A little computation shows that
the difference (away from the origin) is not a signed measure on the
set f{det x = 0} but involves a first-order transverse derivative.

A second clue comes from consideration of MAN double cosets.
Let MpApr be a minimal parabolic subgroup of G contained in
MAN. The Weyl group w(o7p) of the minimal parabolic has 8 elements.
Bruhat [1] noted that we obtain a map of W(ﬂ?p) onto MAN\G/MAN by
passing from w in w(oqp) to a representative (also denoted w)
in G and then to the double coset MANwMAN. If NM denotes the
subgroup of W(Cﬂp) with representatives in M, then we can pass to

the gquotient and obtain a map
WNW(OT ) /iy —2E0 S MANNG/MAN.

By Theorem 4.1 below (originally conjectured by Bruhat) this map is

one-one. Thus we can determine the MAN double cosets by reference

to W(O7P). The group w(aIp) consists of all permutations and sign
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changes on a two-element set, and the elements fall into double
cosets of wg\w(cqp)/ﬁﬁﬁ according as how many sign changes (0,1,
or 2) they involve. Zero and two sign changes, respectively,
correspond to the two elements of the Weyl group of the parabolic
MAN, and it is the middle double coset (with 4 members) that will
be of interest.

Fix w in this middle double coset. General considerations in

the spirit of [1] and [9] still indicate we should look at

I Df (xwv { )dv , (2.3)
Vv TMANw
where D is some differentiation of f transverse to the space of
integration and where the arrow points to the place where group
elements are to be inserted for the differentiation. Our previous
clue above indicates that D should be first-order. The four
choices for w from the middle double coset do not lead to obvious-

ly equal expressions. But let us take W = p, (second sign
2

change) anyway. Then (2.3) becomes

: i Df(xpeeev\l, Ydv .
e,te, 2e2
We can hope that D will be a constant coefficient operator on V,

and then the only possibility is D = X _,, - Hence our guess at a
1L

third self-intertwining operator is

LE(x) = [ x_eelf(xpgeevJ, )dv (2.4)
el+e2 2&2
in the induced picture.
One can check by a long calculation that (2.4) is formally an
intertwining operator. However, the integral in (2.4) is not con-
vergent, and we need to make analytic sense out of it. In concrete

terms, with f didentified with a function on Hermitian matrices,
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equation (2.4) at x = identity becomes

2

d ft+r]|s|® =rs

LE(0) = f( = ) ds dr. (2.5)
seG{re]ﬂ =8 T Jt=0

Even if f has compact support, the integrand does not; this fact

is the source of the analytic problem.

A first—and natural — attempt at regularization is to intro=-
duce a parameter N\ corresponding to inducing from 1 @ ex(el+82)
and write down the expression corresponding to (2.5), namely
2 f(t4-£[s|2 rs) lrlhds dr. (2.6)

o t=0

sel, relR %

Then we let A tend to 0 from the right half plane. It turns out
that the 1limit of (2.6) exists and gives a distribution, but the
result is not an intertwining operator for TU.
Experimentation shows that the limit (as A > 0) of
2
I 3 f(t-szsl rs

se€, reR 5% EE r)t:o

L,f(0) = [r[k|s|}ds dr

also exists and does give an intertwining operator for U. A heur-

istic calculation indicates that this regularization corresponds to
Ae, A(e1+e2)

using e in place of e . However, 292 is not a para-

meter in the A direction— there is not enough space—and it is not

Ae
possible to use e & as part of the inducing parameter. We need

to make it possible by providing enough space.

It is at this stage that we introduce a diamond to provide the
extra A-parameter needed for regularizing L. We back away from our
M= Mel—e2 to the minimal parabolic, using the imbedding of the
trivial representation of M in the nonunitary principal series of

M at parameters (1,-(e;-e;)) on (MP,OTP), and pulling back via



310

a standard intertwining operator o = A(pe x5 ). Schematically the
2

picture is that given in Figure 1.

G
G
) AMD(Pzel’ L€ e

M M

e;-e, 232
1o (1,-(eq-25)) (1,e,+ep)
o=A(p. __.) X (differentiation within

SAlPn 2% "sn(2,R) c Mo, )

"o

( 1, el—-82)
Figure 1. Diamond for SU(2,2).

With » introduced, the diamond picture becomes that in Figure 2,

/ \Mp(p28 » 1, (168) e +ey)
MEe

1+?\)e2) (1, (14+7) eq+e,

A

(l,(1+1)el~e2}
Figure 2. Diamond for SU(2,2) after A is introduced.

There are several analytic facts that need proving, and they can all

be carried out. See the beginning of §6 for a list.

2. 8U(3,3). Kashiwara and Vergne [6] treated a reducibility
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problem in SU(n,n), and we specialize to n = 3 to translate

matters into diamonds. The restricted roots form a system of type

03:
1 1 2
(o B 0
81 - 32 62 - 93 233

sd(2, 1) sf(2, ¢) sd(2, R)

= (sgn det ® eo).

61—92, 32—63

We consider U = in

Again V can be identified with Hermitian matrices, this time
3-by-3. 1In the noncompact picture, the irreducible invariant sub-
spaces of U are given on the Fourier transform side by support on
matrices of a particular signature (4 such subspaces). The identity
and the standard intertwining operator give two self-intertwining
operators, and we need two more. There are two remaining MAN double
cosets, and we can construct a diamond for each. We drop the para-
meter on Mp’ which involves a signum, in the diamonds in Figures 3
and 4. The operator (det 3) is a differential operator in SU(2,2)
studied in [4] and [5]; its role in a diamond for SU(3,3) is

deduced by a direct attempt at proving L dis an intertwining operator.



312

/ \(pEe pee

M. 1-€ps €€ 3
(-2e 1+2e3 (2e +2&
_e\ /293

( 2e1—233)

Figure 3: First diamond for SU(3,3).

e

—92, 82—63 2_ 339
(- 291+2e3) (29 +2eq
\ /ket 3) 2(e +eg
(Qel— 2)
A
(pel_e3) ‘
"
(231-2e3)

Figure 4: Second diamond for SU(3,3).
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3. Generalities on double cosets

et G be a connected semisimple Lie group with finite center,
or more generally a reductive group satisfying the axioms (1.1) of
[8]. Fix a maximal compact subgroup X and corresponding Cartan
involution 6. Let MPAPNP be the Langlands decomposition (relative
to 8) of a minimal parabolic subgroup of G. We work with the
finite collection of standard parabolic subgroups MAN —those para-
bolic subgroups containing Mp‘quNp‘ In addition, we let V = 6N and
we let 27, 01, N, and ~~ denote the Lie algebras of M, A, N, and V.

The Weyl group W(mp) is the quotient of the normalizer
NK(O‘{p) by the centralizer ZK( ﬂ?p). The choice of N determines
which Wp—roots are positive and imposes a notion of length ]w]
on the members w of W(O?p).

If MAN is given, we let AM =MN Ap and NM =MDnN Np. Then
MpAMNM is the Langlands decomposition of a minimal parabolic sub-
group of M. The Weyl group W(J?M] is naturally identified with
the subgroup WM of w(mrp) leaving each element of 4] fixed.

For the purposes of the remainder of this section, fix a double
coset of WM\W(O?p)/WM. et 4 be the shortest length of all ele-

ments in the double coset. We consider two conditions on a member

w of the double coset:

(I) If o is any a?p-root> 0 with a =0 on 0], then either
w"1a< 0 or wla=0 on 07 (or both).

(II) If B is any 0?p—root> 0O with B =0 on dJ7, then wB > O.

Lemma 3.1. If w; in the double coset has [wy| = ¢, then wy

and wg_l both satisfy (II).

Proof. If w, does not satisfy (II), then there is an Wp-root

B> 0 with B=0 on 07 such that wl,B ¢ 0. Without loss of
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generality we may take B to be simple. Then the reflection p,e

is such that Wlpﬂ is not a minimal product, and pﬁ is in WM'
Hence ]wlpﬁl = 4-1 and wlpﬁ is a shorter element of the double
coset. This contradiction shows that w; satisfies (II). Similar-

1y w;' satisfies (II).

Lemma 3.2. If w; in the double coset has |wy| =4 and if

u 1is in WM’ then uwy is a minimal product.
Proof. Failure of the product to be minimal would mean there is
an azp-root a> 0 such that ua< 0 and wzla { 0. Since ua<{ O,

a is 0 on /7. Then wila { 0 contradicts Lemma 3.1 for wil.

Lemma 3.3. If w and w' are in the double coset and satisfy

(II), then w' =uw for some u in Wy

Proof. Write w' =uwv with u and v in WM, and among all
such decompositions assume that v dis as short as possible. We
shall show v = 1. Thus assume (on the contrary) that y is simple,

vanishes on 07, and has vy { 0. We have [va| { |v] and

= -1,.-1 s
UWV = uwvp VW TWvp, = (upwvv)w(va),

and it is enough to show that Pty is In Wy, i.e., that wvy =0
on Of. We know vy< 0, and (II) for w gives wvy< 0. If
wry #0 on O], then 0 > uwvy = w'y in contradiction to (II) for

w'. Thus wvy = 0 on O], and the lemma follows.

Proposition 3.4. The element Wy of minimal length 4 in the

double coset is unique.

Proof. If w and Wy in the double coset have length 4,
they both satisfy (II), by Lemma 3.1, and so w =uw; with u in
WM’
[wl = [w

by Lemma 3.3. By Lemma 3.2, the product uwy is minimal. Hence

1[ implies u =1 and W = W;.
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Lemma 3.5. If Wy is the unique element of length 4 in the
double coset and LY is the long element for WM’ then Wy
satisfies (I).

Proof. By Lemma 3.2, WyWy is a minimal product. If y > O
is an d?p—root vanishing on 07, then wﬁly = wyy is { 0. Since

wilwil is minimal we have wilwﬁly { 0. Hence (I) holds.

Proposition 3.6. Within the double coset, there exists one and

only one element w that satisfies both (I) and (II). The element
w is characterized as the unique shortest one satisfying (I).

Proof of existence, Let w be any element in the double coset
that has the shortest possible length among elements satisfying (I);
w exists by Lemma 3.5. We prove w satisfies (II). Thus suppose
wB £ 0 for some d7p—root B> 0 with B =0 on 0#7. Without
loss of generality we may assume B is simple. Then leﬁI < |wl,
and the minimality of lengths implies that WP g does not satisfy (I).

However, consider an ﬂp—root a> 0 with @ =0 on 47 such
that (I) fails for wPg and «. Then both (i) pﬁw_la > 0 and
(ii) pﬁw"la #0 on J47. By (ii) we can apply g to pﬁw"la with=
out changing the sign. Then (i) gives wla > 0. Since w satis-
fies (I), we conclude that wla =0 on 07. But then pﬁw"la =0
on 0], in contradiction to (ii). This contradiction means that B

does not exist. Hence w satisfies (II), and existence is proved.

Proof of uniqueness. Let w and w' both satisfy (I) and

II). By Lemma 3.3 write w'!' =uw with u in W,. Then we have
M

1prw'_l nvwv

Lo
WW p

1

W i 1 Yoy
w'(w N, W nw Iwa )w

1

=7 =] = = o
1 W 1 vV ' T T 1
w'(w Np NvVnANw o ) (w lew n NP nw V?w Yw

by (II) for w
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= W'(wﬂlew nvn w'_IVw‘)(w'lew NN N W'-1wa')w"1

p
by (I) for w!

= w'(w_lnpw nvn w"le')(w'lew NN N w'"1wa')w"l
by (II) for w!'
= w'(w'lew nvan w'"le‘)(w"le NN N w'"l\?’pw')w"1

by (I) for w

= w'(w"lﬂpw nvn w'le}(w';le' NN N w'"thw')w'"l
since w' = uw

= {1]9

{1} and

]

the last equality holding since w"l(Np nv)w

1

w (N n Vﬁ)w' = {1}. Hence w'w — = 1, and uniqueness is proved.

Remarks. Apart from gquestions of connectedness, one can compare
1pr by examining their Lie algebras, and

one sees readily that a necessary and sufficient condition to have

wlMANW N V with v, N w

an equality

wiMANW NV = v, N w'lew (3.1)

is that V 0w 'Vw = {1} and Vy N w‘lnpw = {1}, i.e., that (I)
and (IT) hold. Hence Proposition 3.6 says that each double coset

contains exactly one element w for which eguation (3.1) holds.

4. A conjecture of Bruhat

In this section we allow ourselves to use the same symbol W
to denote both a member of NKfﬁ?p) and the corresponding member of

W(O?p). With this convention the map sending WywW, to MANWMAN
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is a well-defined function from the double coset space WM\w(mp}/wM
into the double coset space MAN\G/MAN. This function is onto, by
the Bruhat decomposition theorem for G. Bruhat conjectured in [1]
that this function is one-one. We shall prove his conjecture in
the theorem below. The theorem provides for us a convenient para-
metrization for the double cosets of MAN\G/MAN.

Theorem 4.1. TLet w; and w, in w(a?p) be such that
MANw,MAN = MANw,MAN. Then w, and w, are in the same double
coset of WM\W(arp)/‘wM.

Proof. Without loss of generality we may assume Wy and Wy
are as short as possible within their respective double cosets in

WM\W(O';p)/W . Then Lemma 3.1 implies that

(4.1)

n
=

T""]_Nlt*l"'“l - 'p

and
W NMWE cN_ . (4.2)

Using the Bruhat decomposition of M, we see that W, is in

MANwlMAN

MANw-( U Nys N,,) AN
1SEWM MPAMM

-1
U MAN( wyNywy ) Wy s% %Np
S€Wy,

In

U MANN wisM AN, by (4.1
et M AN, vy (4.1)

U MANw. s N_ .
SEWM 1MpApp

Thus we can choose s in WM, man in MAN, and mpapnp in MPApr

such that

Wy = (man) lwlsmpapnp,
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Ieew,

an'mw, = wysmoa ng . (4.3)

Applying the Bruhat decomposition theorem to m and using (4.2), we

have

_1 n

= m'an'tn" = m'a'n't =ik
m = mjagnitng = miaing we(w2 npwg)we

for some t in WM. Hence

an'mw, = an’mﬁaﬁnﬁtwen;'. (4.4)

By the uniqueness part of the Bruhat decomposition theorem for G,

we conclude from (4.3) and (4.4) that tw, and w;s give the same

1
element of W(Cﬂp), and the theorem follows.

5. Algebraic framework of diamonds

The Weyl group associated with the parabolic MAN is W(A)
= K(m)/zl{(r;q). Any element in w(mp) that normalizes &7 yields
an element of W(d1) by restriction. Conversely every element of
W(Ol) arises this way (see Lemma 8 of [7]). Among all members of
W{J?P) yvielding a particular element W of W(d1), there is a
unigue one w of shortest length, and it is characterized by the
property that wy > O for every rﬂp-root Yy > 0 vanishing on 07,

Let w, and w; denote the long elements of Wy and W(O?p),
respectively. There is an element W of W(0f) carrying all the
positive O1-roots to negative roots if and only if w; normalizes
g1, and in this case W,W, is the shortest representative of W
in W(ﬂ?p). The element W has order 2, and hence so does W Wyge
It follows that w, commutes with w, when w exists.

A standard parabolic is completely determined by its M compon-

ent, and we shall often drop the AN in referring to it. For
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discussion of diamonds, fix M corresponding to a standard para-

bolic. We shall assume that MAN is maximal parabolic, i.e., that A

has dimension one. A diamond is a diagram of parabolic subgroups
and elements of W(J?p) of the form in Figure 5 that respects
inclusions and has M, = M N M'. We assume that M, 1is a proper

subgroup of M*.

G
we=ww "t W, =W W
0 0 G M*
*
M M
w'::wMﬂM*
M*

Figure 5: General diamond.

The diamond in Figure 5 is an allowable diamond if

(i) w, represents an element of the Weyl group of the parabolic

(0]
*
corresponding to M , and

(ii) w, commutes with Yy, *

our intention is to use allowable diamonds to construct self-
intertwining operators L for representations induced from the
standard parabolic corresponding to M. A formal (divergent) expres-

sion for &y ks

Tf(x) = [ Df (xwv § )dv , (5.1)
VAW MANwW

where D is a suitable left-invariant differential operator for

which the differentiations occur in the position marked by the arrow
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and are transverse to the space of integration. We shall make sense
out of L by introducing operators on the sides of the diamond

corresponding to the eguation

ch2 = A(Wo)D‘ (5.2)
as in Figure 6.
G
L (wo)
M M
P2 D!
M*
?1

Figure 6: Operators associated with a diamond.

The operators in Figure 6 require some explanation. The dia-
gram uses the same notation for an intertwining operator B within
a subgroup Ml and the induced operator E for representations

G <
ind’ (=) given by
dy ]
(BF) (x) = B(F(x)).

The operator ¢ = 050 is assumed to be the minimal decomposition
of a standard unnormalized intertwining operator within M whose
image is exactly the given representation € of M; to interpret
Loy, we must induce o, to G. The operator 9, occurs within
My, and D' 1is an M -intertwining differential operator between
two representations of the continuous series

indﬂi (image o, ® A, parameter).
The operators D and D' will be related by the formula
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D = Ad(w')D' . (5.3)

Finally the operator A(wo) is a standard unnormalized intertwining
operator between two representations of the continuous series

1ndG* (image D' ® A" parameter).
M

Unfortunately ¥ is usually not invertible, and the equation
(5.2) does not obviously define L consistently. Moreover, A(wo)
is defined by analytic continuation, and it is necessary to vary the
A* parameter to understand A(wo). When we vary this parameter,
the representations and operators on the left side of the diamond do
not remain attached to the parabolics in question but need to be
reinterpreted as representations and operators for the nonunitary
principal series of G and its subgroups.

In this section we develop some algebraic background and prove
a formula (5.2) for an operator (5.1), but with domain Cg_ (G).
This domain has zero intersection with the spaces of induced repre-
sentations, and the problem of altering the domain will be addressed

in the next section.

Lemma 5.1. 1In any diamond,

(a) Wy = ww' is a minimal product, and .

(b) wywy is a minimal product.
%

Proof of (a). Assuming the contrary, suppose y > 0 is an

a?p-root such that wow'_ly <{ 0 and w"ly { 0. From W'—ly < o,
-1
L ]

we conclude that vy dis a restricted root of M. Let a = -w' "y,

so that a 1s a positive restricted root of M. We have w,a > 0,
and consequently o is a restricted root of M*. Hence a is a

restricted root of M N M = My, and wﬁia'( 0. Then

T e gl O -1
0>WM*Q'_'M*W' Y="'wmy='wMYs
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and hence vy > 0. sSince y is a restricted root of M, this is

a contradiction.

Proof of (b). If y> 0 is a root vanishing on 47 , then
WoY > 0 since w ,y{ 0. Hence Yy > 0, wyy< 0, and Wy, y { 0 are
M My

impossible together, and WoWy is a minimal product.
*

Lemma 5.2. In any allowable diamond, the element w satisfies

conditions (I) and (II) of §3.

Proof of (I). Suppose on the contrary that a)» O is an sz-

root with a =0 on &, wla > 0, and wta #£0 on O]. Then wtt

does not change the sign of w”la, and we have wala = wly g SN0
Axiom (i) for allowable dismonds implies that ws = 1, and thus
Vg @ > 0. Since Lemma 5.1a shows that w, = ww' 1s a minimal

product, we deduce that w'a > 0. Consequently
w(~-w, a) =w (—w"la) = —wla < 0
ML, M\ "M, :

Since a vanishes on 7, we obtain “Wy @ 2 05 el Wy a 0s
* *

On the other hand, wta > 0 and o #0 on ¢7 imply that

“1,1g > 0. By axioms (ii) and (i) for allowable diamonds,

Yim

e = wilw‘"lw_l = wﬁlw'l.
Therefore WyWy @ > 0. But then we have a > 0, Wy @ < 0, and
* ¥

Wy, © > 0, in contradiction to Lemma 5.1b.

Proof of (II). Suppose on the contrary that B > 0 1is an
o?p-root with B =0 on 07 and wB { 0. Since Wy = ww'! 1is a
minimal product, we must have wLp > 0. On the other hand, B =0
on O] implies w&lﬁ { 0, hence wﬁi(W'-lﬁ) ¢ 0. By Lemma 5.1b,
NOWM* is a minimal product. Hence we can conclude from w"lﬁ >0
and Wﬁi(w'ﬂlﬁ) { 0 that wow'_lﬁ > 0. But wow'“l = w, and we
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arrive at the contradiction wg > 0.

Lemma 5.3. In any diamond suppose B and vy are positive

w™l

mp—roots with the properties that B #0 on 7, y £ 0, and

B-y 1is a positive ﬂ?p-root. Then w(B-y) < O.

Proof. The facts that y > 0, w Ly { 0, and W, = ww' 1is a
minimal product together imply that wy > 0. Thus wp { 0 would
imply w(B-y) < 0. So we may assume in the proof that wB > 0.

Under the correspondence a = WyEs We observe that

a> 0, a#0 on d, wa) 0
if and only if e > 0, wye > 0, wwye > O,

if and only if € > 0, wye > O, LT < 0. (5.4)
In fact, the first of these equivalences is clear. To see the sec-

ond equivalence, we write

= 1 = =
Wi = Wy, WoRy, = Wgh Wy (5.5)

*

and use the fact that -Wg Dpreserves positivity of roots.

If the lemma fails, them B and B -y are both positive roots
nonvanishing on 61 such that wg > 0 and w(B-y) > 0. We can
apply the above observation. Putting y' = —wﬁly, we obtain

€ = wﬁlﬁ and ¢! = wﬁl(ﬁ—y) = ¢+ y' satisfying

el O, W€ 50, wM*WM*e o0 (5.6)
e' > 0, wye! 5.0, WM*WM*&:' & 0. (5.7)

In (5.6), € > 0O and Wye > 0 imply Wy € > 0. Hence e" =w, ¢
*

is a ositive -root such that w E:" < 0.
b M*
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Let us study y' =—ﬁly. Since y > 0 and w"'ly< 0; ¥ ds
0O on Jl. Then y» O and y =0 on 47 imply y' is > oO.

From the first paragraph of the proof and from (5.5), we have
= = s !
0 { wy W Y Gwm*(wM*Y )

and hence wM*(wM y') > 0. Also by hypothesis in the lemma,
s

-1
W, = =W W,
M, Y M, "M Y

= -—w"ly 50,

Therefore y" = wy y' is a positive 07 -root such that w,y" > O.
*

Recall that e" = Wi
*

wM*e“ { 0. Since o7 is ordered before ﬂM*’ we conclude

WM*(E“—FY") > 0. But

e 1is a positive ﬂp-root such that

A o SIS er ) =i el
¥ WM*( 3 { ) M, ]

and WM*(E"+'Y") > 0 ‘therefore contradicts (5.7). This contradictica

finishes the proof.

Lemma 5.4. In any diamond suppose a and B are positive
mp-roots such that a and B are #0 on O, a+p is a positive
o'ip—root, wa is > 0, and wB is < 0. Then w(a+8) < O.

Proof. Define e = ""1:11“ and e!' = wi;llﬁ, and run through the

proof of (5.4) to conclude

e> 0, wye >0, WM*WM*(-:' {0

1
e! > 0, Wyr€ >0, WM*WM*E:' >0
e+e!' dis a positive Wp-root.

From wye > 0 we obtain Wy € > 0. Similarly Wy €' > 0. Thus
* *
wM*e and wM*e‘ are positive, and wm*(wM*e) is ¢ 0 while

w o (wy €) 1is > 0. Since J1° 1is ordered before JZM* , we conclude
M *
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WM_,(_(WM*E+WM*B’) B3 (6
That is, e+ e' satisfies

e+e! > O, WM(E:+E'} 205 wm*wu*(e+e') DE0

Running through the proof of (5.4) again, we find that o+ 8

= wyle+e') satisfies

a+B > 0, a+B #0 on 07, wla+pB) <€ O.

This conclusion proves the lemma.

Lemma 5.5. In any allowable diamond, let Sl be the Lie
algebra generated by ﬂ?p-root vectors X__ with o SN0, ta A0 on
01, and wa > 0, and let S, be the Lie algebra generated by C‘Zp-
root vectors X—a with a> 0 and wa< 0. Let D be in the

universal enveloping algebra Z{(sl}.

(s.) If u is in the analytic subgroup whose Lie algebra is

spanned by OTP—root vectors Y—,B with B> 0 and w'B < 0, then

ad(w'uw'™1)D € D+ S, ().

(b) If v 4is in the analytic subgroup with Lie algebra 52,
then
Ad(v)D € D+ ¥ (=) Ss -

Remarks. Since the diamond is allowable, the space of integra-
tion of L is

V N owiMANw = VP n w_lew

by (3.1). One assumption is that the differential operator D is

built from root vectors for V that are transverse to the space of

integration. Conclusion (a) is that Ad(w‘uw'"l)D is the sum of D
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and terms having at least one derivative parallel to the space of

integration.

1 jjes in the analytic sub-

Proof of (a). The element w'uw'
group with Lie algebra spanned by ﬂp—root vectors XY with y > 0

and w'ly { 0. We first observe that such an X satisfies

[XY’ 51] c S,
(5.8)

In fact, choose a generating vector X_. for 51 or S,. Then
a>0 and a#0 on 7, since w satisfies (II) by Lemma 5.2.
If a-y is an a'[p-root, it has to be positive since y must vanish

on O]. Hence Lemma 5.3 says w(a-y) { 0, and [Xy,X_a] is in S,.

Now expand Ad(w'uw"'l) in exponential series and apply each
term to D. The zeroth order term gives D. The other terms, in
view of (5.8), give a sum of monomials, all of whose factors are
from sl or S, and one or more of whose factors are from 52.
We can commute an 52 factor to the left end of each monomial if

[sq5 52] S S, and this is the case by Lemma 5.4. Also S, + 52

= 2 since w satisfies (II).

Proof of (b). Expand Ad(v) in exponential series and apply
each term to D. The argument in the previous paragraph can be

repeated to yield (b) since [S 12 S sl € S,

Proposition 5.6. In an allowable diamond, if o, and A(wp)

are defined on Ccom{G) by

ooh(x) = I§ h(xw'u)du
Vpnw‘_lew'
and
A(WO}F(X) = _[_ F(xwo?;}d? =
V. Nw., " N_w

p 0 poO
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then I is well-defined on the image of @5 by (5.1), and Lwe
= A(wy)D' holds if D' is defined by D = Ad(w')D!.

Proof. We compute

A(wy)D'h(x) = I—l D’h(xwd?i )dv
Vﬁﬂwo pro

= J' { I D'h(xwov'u$ Ydv! Jdu
-1 1 Wz =1 1
ueVbnw' pr v'eVﬁﬂwolewoﬂw‘ wa

since Wy = ww'! dis minimal. Under the change of variables
=1

v! = w' “vw'! the expression in braces is

- Il D'h(xwvw'u | )dv
v iN_w
P b
= i Ad(w‘uw‘-l)Ad(w')D’h(xwv# w'u)dv
Vpﬂw_lNPw
= if Ad(w'uw‘-l)Dh(xwa( wiu)dv . (5.9)
Vbﬁw_lmpw

We apply Lemma 5.5a. 1In the error terms the S, contribution can
be absorbed into the v, by a change of variables; hence the error

terms contribute nothing to the integral. Thus (5.9) reduces to

I Dh(xwv | w'u)dv ,
vprm lew

L

and the space of integration can be rewritten as V N w ~MANwW by

(3.1). This completes the proof.

We conclude this section with some remarks about the role of
double cosets in this construction. Any diamond determines an MAN

double coset in G, namely the double coset to which w5 and w
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belong. If the diamond is allowable, then w has a characterizatior
independent of the diamond by Lemma 5.2, Proposition 3.6, and Theorer
4,1, In this case we can define L and relate it to the double co-
set; Proposition 5.6 is predicting that when T is rigorously
defined later, the distribution associated with L will be attached
to the double coset of w and will involve transverse derivatives
determined by D.

Examples show that the map of allowable diamonds to double co-
sets need not be one-one, but the fact that w 1is canonical should
be expected to mean that allowable diamonds corresponding to the
same double coset should yield the same operators L. Other examples
show that the map of diamonds to double cosets is not onto, even if

all diamonds are used.

6. Analytic framework of diamonds

Fix a maximal standard parabolic subgroup MAN, an irreducible
unitary representation £ of M, and an allowable diamond with nota-
tion as in §5. In giving a rigorous construction of a self-inter-
twining operator L for 1ndﬁ(§ ® eo) compatible with the algebraic
framework of §5, one encounters the analytic problems listed below.
Some of these problems are only partially solved, and we shall omit

our partial solutions.

1. Introduce a parameter A 1in the 07* direction, with A =C
to correspond to the situation of interest. Construct for each A
with Re A sufficiently large a holomorphic equation of G-inter-
twining operators
La®a, 3 = A (W) D!
for representations induced from the minimal parabolic at the corres-

ponding parameter values. Continue the operators and equation
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meromorphically to all A. This problem is solved under general

hypotheses, and the solution is given in Theorem 6.1.

2. Find a criterion for deciding when AR(WO)D' is holomorphic

at A = 0. This problem seems to be the heart of the matter.

3. When AK(WO)D' is holomorphic at A =0, show that L, can

be defined on the image of ¢, 0°
2

4, When A..A(WO)D' is holomorphic at A =0 and L, is de-
fined, show that the expression for L, is given by (5.1). (This
equation captures the support of the distribution corresponding to

L and is a step toward handling linear independence of intertwin-

0]
ing operators.) This problem is solved at the same time as the first

problem,

5. When AI(WO)D' is holomorphic at A =0 and L, is
defined, show that the image space of L0 transforms appropriately

under the group MAN.

The solution to Problems 1 and 4 is contained in the following

theorem.
Theorem 6.1. In the above context, suppose that

(i) & imbeds as a guotient at parameters (c,no) of the nonunitary
principal series of M, with Re Mg in the open positive Weyl
chamber of M,

(11) Wex Y, represents an element (necessarily -1) of the Weyl
group of the parabolic corresponding to M, in M*,

(1i1)if Ay = Wy+Hy 1is the orthogonal decomposition according to
” = my @ X It My = —u-+u* is the orthogonal decomposi-
tion according to ogf ® o1, and if €, denotes the Langlands

quotient
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M, M, Mo
€ = AMP(WM*,G.HO)[inde(U ®e )1,

then D' is an intertwining differential operator between
representations of M*, namely

DI -

* =
=M - M M
in ® e -+ in ® e -
Reinterpret D' as an intertwining operator on the

G level by the
(p'£) (g) = D'(£(g))-

The following things then happen:

formula

(a) any function f in the domain of the reinterpreted D', i.e.,
in

¥* *
indC, (ind (g, ® e™H) ® eH *7), (6.1)
M ¥
can be identified with a member of

inaﬁp(c ® exp w, (Ay+1)) . (6.2)

(b)

under this identification if f is a K-finite member of the

space (6.1) and if Re N 1is sufficiently far out in the posi-
tive Weyl chamber of 47, then

G G
(Ad(w,)D! )AMp(w, Wy 05 Wy (Ag +2) )AMp(w',wM*c, wM*(ﬁ0+ i
= AG*(WO, image D‘,u* +A)D'E
M

with each factor a G-intertwining operator holomorphic in A.
{e) if

L, = (Ad(wo)n')nﬁp(w, 1,05 Wy (Ag + 1))

9o, 5 = Ay

p(w’,wM*o,wM*(A0+?\))

*
A?\(WO) = A;*(wo, image D', 4 +2A) ,
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then L} is given for large ReA by the convergent expression
(5.1) with D = Ad(w')D', and the eguation

Lpn®z,n = A\(Wp) D!

extends to a meromorphic identity for all A.

Remark. The reader is invited to identify all these para-
meters in the case of SU(3,3) with those displayed in Figures 3
and L.

Sketch of proof. Conclusion (a) follows by tracking down the
double inductions and imbeddings as subrepresentations that are
involved. For (b), the two standard intertwining operators on the
left are a minimal product and collapse to a single operator

Agp(w ,WM*U,WM*(ﬁO—FE}). One checks that the domains and ranges of

the various operators are compatible, and then matters reduce to the
integral formula

[ (Ad(wy)D')£(x | wy¥)dV = [ D'f(xwovj, )a¥

=1 =
Vbnwo pro Vbﬂwo pwo

with both sides known to be convergent. The proof of the integral
formula is similar to the proof of Proposition 5.6 and relies on
Lemma 5.5. In (c), each factor extends to be meromorphic by [8],
and the formula (5.1) for Lh follows by use of Lemma 5.5b.

7. Further examples

We shall give six examples in which our philosophy of the dia-

mond is partly or wholly applicable to explain known phenomena.

1. Sp(n,R) , n cdd. The reducibility in this example was

studied by Kashiwara and Vergne [6]. The f%—roots form a system of
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type C,, and standard notation for the simple roots is

-e e,-e 2e

€ =€y €p=C3 eeny € g€, 5 e

Let
M=M : (7.1)

el—ee, 92—33, seny En_l—En

The group M has two components, and we take € %o be 1 on the

%{n+l}
identity component, (-1) on the other component. We study

indg(g ® eo). By [6], the commuting algebra has dimension %(n+3).
The standard intertwining operator has a regular normalizing

factor, and so the standard operator and the identity give two inde-

pendent members of the commuting algebra. We can form n-1 allow-

able diamonds as follows: Fix k with 1 g.k g n-1 and let

*

M =M, _ (7.2)
Ce+1™8k2?  ** 2 ®n-17%n2 2%y

W = Do Dina v oD (7.3)
0 Eel 292 2ek

M = M .
R ™Y e T LR R

It is clear that the resulting diamonds are allowable.

At first it seems that we will obtain one new operator for each
diamond and end up with (n+l)-fold reducibility, but something goes
wrong when we search for D'. To see what happens, we need the
parameters that are involved.

The group M is essentially Sp(n-k,R), and M, has two
components. The representation E imbeds in the nonunitary prin-
cipal series with JE} parameter ~P and the ﬂ?p parameter at

the Mp position of the diamond is therefore
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1 Al 1
Py = g(n-l) +g(n—3)t-:e2 Fsrers +§(1—n}en. (7.4)
The standard intertwining operator for Wiy has image the repre-
*
sentation
+1 on identity component of M,
g =

5(n+1)
(-1) on other component of M, ,
and the continuous series representation upon which D' is to act
is
¥*
M -M
in o® e

ay, ( i

where

= - (e, g Feen o). (7.5)

The operator D' must be fixed by Ad(M,), and its homogeneity is
dictated by p. If k is odd, no D' of the appropriate homogeneity
can be fixed even by Ad(Mp). On the other hand, if k is even, a
determinant-like differential intertwining operator is available
through the work of Jakobsen [4]. We take the operator D' to be

5k M U M
det 3 : i ® e™H) » 1 ® eM).
(det d) n%h(c e ™) 1n%h(c e™)

Thus allowable diamonds indicate the existence of %(n-l) opera-
tors L, and we should expect the commuting algebra to have dimension

%(n+3), in agreement with the result of [6].

2. Su(n,n). The reducibility in this example was studied by
Kashiwara and Vergne [6], and our treatment of it is a direct gener-
alization of Figures 3 and 4. The G?P—roots form a system of type

C,» as with Sp(n, R) , and we take M to be as in (7.1). The group

M has two components, and we take § %o be 1 on the identity

component, (-1)" on the other component.
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Then M  and Wy are as in (7.2) and (7.3), but this time
py 1s twice what it is in (7.4). Hence u is twice what it is in
(7.5), and the result is that we can find an operator D' for each
of the n-1 allowable diamonds.3 The standard intertwining opera-
tor has a regular normalizing factor, and thus we should expect the

commuting algebra to have dimension n+l, in agreement with the

result of [6].

3. §5e(n,2), n even. The operators in this case were con-

structed by R. Strichartz, in answer to a question from us before we

introduced diamonds. The OTP—roots form a system of type B,. Let

M and let E be 1 on the identity component, (-1)n/2 on

e
2
the other component. There is just one choice for M*, namely

M

M, _, , which is essentially SL(2,R). The operator D' can be
3 LA ik
5(n-2)

taken as (X_(el_eg))

The resulting operator 1L, the standard intertwining operator, and

. The analysis proceeds as with SU(2,2).

the identity span a space of dimension 3 in the commuting algebra,
and this space of operators is complete by an argument using the

non-compact picture and Fourier transforms.

4. 8U(3,2). Pichet [11] studied certain analytic continuations
of discrete series of G when G/K is Hermitian, and produced a
number of examples of reducibility as a result. We shall interpret
the reducibility for SU(3,2) by means of diamonds. (This example
has the property that D' 1is defined for an induced series in which
the N group is nonabelian.) The tﬁb-roots form a system of type
(BC),, and we let M = Mel_ee. The group M is then the product
SL(2,¢) x T, where T is a circle, and we take E =1 ® et®, hen

*

M =M is the product of a circle and SU(2,1), and the

e2,232

k
3 For parameter k, 1 { k { n-1, D' 1is (det 3)".
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differential operator D' within SU(2,1) is to carry the nonunitary
principal series with parameters (8,-e2) to the one with parameter:
(e,e5). Within sU(2,1) let f{x__ ,Y . } be an orthonormal basis
)
of the d)_-root space for -e,, and let X be in the space for
D 2 ~2e,
-2e,. Then

=D 2
DL = (X5, ey )+cx_2e2

et il
has the reguired properties for a suitable choice of the real number
¢, and A}(WO)D' is holomorphic at A = 0. See [13] for generaliza-

tion of this D'.

5e sEgeze!. The reducibility in this example was discovered by
K. Gross [3] and was studied later by Duflo [2]. The :ﬂb—roots form
a system of type C,, and we let E Dbe the trivial representation

of M =M The standard intertwining operator has a pole but does

2o
not become Ehe identity upon being normalized; hence it exhibits
reducibility. But the normalized operator is difficult to understand
directly. By means of a diamond, we can construct a self-intertwin-
ing operator L that requires no normalization. Namely, we use
Tl Mel"ee = sL(2,¢), and we take D' = x?(el_ee]4-Yf(el_ee) in the
obvious notation. One sees that Am(wo) is convergent, hence holo-
morphic at A = 0, by using the fact that the image of D' is tem-

pered.

6. SL(4,R). This example was brought to our attention by B.
Speh, Let M = 1\481_323e'j_e’_l consist of two 2-by-2 blocks, and let
E be 1 on the identity component, -1 on the other component. The
standard intertwining operator has a pole but does not become the
identity upon being normalized. Reducibility is into two pieces, and
a diamond gives a realization of a nonscalar intertwining operator
that does not require normalization. The group M* is Mee_EB, and

D! is X‘(92—63)'
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