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dw Introduction

In earlier work [6] we have developed a class of intertwining
integrals for semisimple Lie groups. These operators exhibit various
members of the principal series of representations as unitarily
equivalent in a way that mirrors the action of the Weyl group. Where
members of the Weyl group act with fixed points, the operators give
self-equivalences of representations of the principal series and
thereby provide information about reducibility. One of the main
results of the present announcement is that for (at least) some of
these groups, the operators actually give complete information about
reducibility of principal series representations.

To be more specific, let G be a connected semisimple Lie group
of matrices and Let MAN be a minimal parabolic subgroup. Here M
is compact, A is a vector group, and N is nilpotent. (For details
of the notation, see §6 of [6].) The principal series consists of
those representations U(o,A) of G obtained by inducing from MAN
the finite-dimensional representation man - A(a)g(m), where o is an
irreducible unitary representation of M and A 1s a unitary
character of A.

Let W = M!'/M be the Weyl group relative to A. The members w
of M' act on representations of M and characters of A by
wo (m) = o(w tmw) and wr(m) = h(wﬂlmw). A central result of [6]

is that, corresponding to each triple (w,g,7), there is a unitary
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operator (. (w,0,\) with the property that
(l'l) U(WGQW?\) Q(W:U:U = a:(W:O':}\)U(U:?\)O

The dependence of these operators on A is holomorphic (in a neigh-

borhood of A unitary), and they satisfy a cocycle relation
(1.2) &(WlWQ:U,M = af(wl:weciweh) a(wa,ﬁ,h).

Fix (w,0,A) and suppose that wg is equivalent with o and
that wA = A. Then it is possible to extend ¢ to a representation
of the subgroup of M' generated by M and w. (The enlarged o
operates on the same vector space as before.) With ¢(w) defined in

this way, (1.1) yields
(1.3) U(o,A)[o(w) Alwso,N)] = [0(w) A(w,0,7)]U(c,7)-

If g(w) d{w,0,\) is not scalar, then (1.3) exhibits U(g,A) as
reduclible. With ¢ and A fixed, we shall call the set of all such

operators o(w) (L(w,0,\) the set of intertwining operators for (g,A).

This paper deals with the following two problems:

(1) Normally many of the operators o(w)d(w,o,A) coincide.
Give an explicit description of the distinct operators in the set.

(2) Decide whether the linear span of the set of intertwining
operators for (0,A) is the entire set of bounded operators L - such
that U(g,A)L = LU(0,n).

For G of real-rank one, problem 1 is solved by Theorem 5 of [6],
and the question raised in problem 2 is answered affirmatively by the
proof of Proposition 20. For G of higher real-rank, the two problems
ostensibly are independent. However, progress by our methods on the
gecond problem for a given G has occurred only after the first

problem was solved for G. Our main conjectures are as follows:

Conjecture 1. Tet W, Jbe the subgroup of elements w of W
2
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such that wg is equivalent with ¢ and wh = A. There exist

subgroups W' and R of Wb A such that W' is abstractly
3

isomorphic to a Weyl group, R is a direct sum of copies of ze, w!

is the subgroup on which 0(w)d(w,0,A) is scalar, W, , 1is the
2

semidirect product W& e W!'R with W' normal, and the set of all
>

operators o(r) d(r,o,\) for r in R 1is linearly independent.

Conjecture 2. In every case the intertwining operators for (g,A)

do span the space of bounded operators L such that U(g,A)L =LU(0,7).

The first conjecture if true is a sufficiently precise answer to
problem (1) provided the subgroups W' and R are defined explicitly
enough.

As evidence for these conjectures we have the following new
results:

(12) a proof of Conjecture 1, together with an explicit descrip-
tion of W' and R, for the case that G is split over R and O
and A are arbitrary. See §2.

(1b) a proof of part of Conjecture 1 for general G. In this
case the subgroups W' and R are not defined explicitly enough to
provide a useful solution to problem (1). See the end of §2.

(2) a proof of Conjecture 2 when G has real-rank 2 and when
G =SL(n,R). The method in these cases applies to other groups as
well; no group is known for which it fails. However, we as yet do not
have an argument that works simultaneously for all G. See §3 and &4,

We should mention that the solution (1b) shows that the basic
intertwining operators o(r)d(r,o,7\) are those whose normalizing
factors (see §18 of [6]) are regular at A. If Conjecture 2 is true,
it would appear that the order of R (and hence the decision between
reducibility and irreducibility) could be expressed in terms of the

Plancherel measure and similar quantities (cf. Theorem 5 of [6]).
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Other authors have worked on the problem of deciding
irreducibility of principal series. In addition to [6], one should
consult Gelfand-Graev [4], Bruhat [3], Kostant [7], Helgason [5],
Zelobenko [12], and Wallach [11].

2. Operators when G 1s split over R

In this section we assume that the group G, satisfying the
conditions of §1, has the further property of being split over R.
Then the Lie algebra ¥ of A is a Cartan subalgebra, Ty is O,
and M is a finite abelian group. To simplify the exposition, we
shall assume that G is simple, so that @ is completely determined
by one of the standard Dynkin diagrams.

From work of Satake [8, p. 93], for example, M is completely
understood. For each root a Ilet Ha be the member of &
corresponding to a and let H! = 8<a,d>_lHa. Set Yy, =exp 7 i Hl
The element i is in M and has order 1 or 2. Let sl,...,sn
be the simple roots. Then the elements yei, Lo Ay
generate M.

Let ¢ be an irreducible unitary representation of M. Then o
is one-dimensional and c(Ya) = 11 for each root «. In view of the
remarks above, ¢ is completely determined by specifying which
simple roots e; satisfy U(Yei) = =1,

As in §1, the group M' acts on the representations ¢ and
characters A. Since ¢ is one-dimensional, equivalence becomes
identity, and the action of M!' reduces to an action of W. Then
our concern is with the subgroup wc,l of elements of W that
leave ¢ and A fixed. Again since ¢ 1is one-dimensional, we can
disregard g(w) in (1.3). By (1.3) the operators (w,0,\) for
w in Wﬁ,h commute with the principal series representation

U(o,A,x). Normally many of these operators coincide. Qur problem

in this section is to give an explicit description of the distinct
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operators in the set. The case that ¢ 1s trivial is of no interest
for the problem since (@A (w,1,\) is easily seen to be scalar if w

is in wl,h'

For simplicity we shall assume until after Theorem 1 that the

.

character A of A is trivial. ILet W_=W
(o] UJl

We say that the representation ¢ of M is fundamental 1f

there is exactly one simple root € such that c(y€ ) = -1. 1In this
k

case we write g =0 The condition that ¢ be fundamental for G

K
ig a mod 2 analog of the condition for Gc that an integral form

be dominant.

Proposition 2.1. Each nontrivial representation 0 of M is

equivalent under W with a fundamental representation.

That is, there is a p in W and there is a k such that
P = g, Now it is shown in [6] that A(p,0,1) is a unitary
equivalence of U(c,1) and U(gk,l), and it is easy to see from
Theorem 7 of [6] that ((p,0,1) conjugates the intertwining operators
{ A(w,0,1) | w e Wy} into

{a_,(w',ok,l) | w' € wck. TR, wc, p-Lj'

Thus if we characterize the intertwining operators for Ops We have
characterized them for o. So for the rest of the section we assume
¢ is fundamental. Say g, = Ogs

et A and [ be, respectively, the roots and simple roots for

G. Consider the following conditions on a positive non-gimple

root o:

(1) olyy) = 1.

(ii) U(Yﬁ) = -1 for every B > 0 different from a such that
PP < 0.

(11') <o,e> L 0 for 1 # k.
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Here (ii) implies (ii'). [In fact, if {a,e;> » 0, then p, €; <0
and (ii) gives o(ye ) = =1. But ¢ =

=
G(Yei) = 1.]

o and i #k imply

Lemma 2.2. There is at most one positive non-gzimple root «

satisfying both (i) and (ii).

We shall define a new root system A' in terms of «. If there
is no o 1in Lemma 1, let p! consist of the Bly Boris i Bhilkes S a

does exist, let ' consist of o and the foxs 1 s o et

3
A' Dbe the subset of A generated by ' and the Weyl group reflec-
tions corresponding to members of ['. By (ii') A' is a root

system in which ' can be taken as the set of simple roots. The
Dynkin diagram of [I' we shall call the a-diagram of G and Ok’
Ordinarily the o-diagram is not connected.

Computation of o in examples is simplified by the following

lemma.

Lemma 2.3. The least positive o in A satisfying (i) and

(ii') satisfies (ii).

Let W(A') ©be the Weyl group for the root system Af. One can
show that W(A') ¢ W,. Let R be the subgroup of members w of
W& such that w(n') ¢ n'. Each element of Rc defines an auto-
morphism of the o-diagram of G and o©. If o exists, distinct
members of Rc lead to distinect automorphisms. In this case, in
particular, if the a-diagram admits no nontrivial automorphism, then

R = (1}.

Theorem 1. wg is the semidirect product WU = W(a')RU with

W(A') normal. W(A') is the subgroup of WU on which A(w,0,1) is

scalar. Consequently if w = Wy T is the decomposition of a member

of WU according to the semidirect product, then Q(w,0,1)

=¢ A(r,0,1) for a scalar c of modulus one. Moreover, the set of

all operators A(r,o,1) for r in R; is linearly independent.
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With a case-by-case argument, one can check that lef =125 orils
The case [Rcl = U4 occurs only for G of type Dn with n even,

&

and when IRG[ = Uiy R is Z,e Z,. If G is of type A/

IRc[ =1 or 2; this case is discussed in §4. For G of type Bn or
Cps |R;| can be 1 or 2. But in F, and G,, |%I| s o e - 7
In E? there is a fundamental ¢ for which |R°| = 2.

For an explicit example, take G of type Cn. In standard

notation the simple roots are

€1

Choose ¢ =0,.. Then a = B gy By and
HI = {31!52!"'}gn_l:a}0

The a-diagram of ¢ 1is of type Dn, and Rc = {l,pn}.
We pass to the case of general ¢ and A. If (9,A) is given,
we first apply to (¢,A) a member of W that makes A dominant.

After this change it is quite easy to check that W is the Weyl

1A
group generated by the simple reflectionsthat fix A. These simple
reflections correspond to a Dynkin diagram and fall into components
corresponding to the components of the Dynkin diagram. We then

operate with a second member of W, this one in W to make o

Lgh?
fundamental on each component. Let A' be the roots corresponding to
the union of the a-diagrams for the components, and let ' be the

corresponding simple system. Let

By, x = fwew 5 | wiz') ¢ u%.

Theorem 2. Wc,x is the semidirect product wc,h =W(A')RG,A

with W(A') normal. W(A') is the subgroup of WU 5 on which
e 2

A(w,0,\) is scalar. Consequently if w = w;r 1s the decomposition

of a member of W according to the semidirect product, then
g

A(w,0,\) = ¢ A(r,0,1) for a scalar c _of modulus one. Moreover,




204

the set of all operators @(r,o,A) for r in RU , s linearly
2

independent.

An example of this situation is in §4. 1In any event, one can
use the form of R; = Rg,l to show that Rc,k is a subgroup of a
(perhaps large) direct sum of copies of 22 and therefore itself isa
direct sum of copies of ‘ze. This completely settles Conjecture 1
for G split over R.

For the case of a general G not necessarily split over R, one
can prove an analog of Theorem 2 but without a satisfactory descrip-

tion of A' and R . To do so, let
s A

A' = (B | Py € wﬁ,k and c(pﬁ)cl(pﬁ,c,k) is scalar},

where pJB is the reflection relative to B, and let
o fp e Wy o | pp> 0 for every > O in A'}.

It is easy to see that A' is a root system and thus has a Weyl

group W(A'). Once again we have the semidirect product decomposition
wc,x = W(A')Rg,k with W(A') the normal subgroup corresponding to
trivial operators and with the operators ol G 7 o o [ o5 R e B o
Rc,% independent. This result is considerably easier to prove than
Theorems 1 and 2. However, it has the shortcoming that vl BT
defined in such a way that one can prove rather little about Rc,l.
These facts make clearer the thrust of Theorems 1 and 2, namely

the possibility of conjugating ¢ and A suitably so that the simple

roots of A' can be expressed readily in terms of T and special

roots a.

S Completeness theorem for G of real-rank two

Return to the notation of §l. Fix an irreducible unitary
representation ¢ of M and a unitary character A of A. If w

ic a member of M' for which o is equivalent with wg, then the
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operator g(w) Q(w,0,A) is defined. Here g(w) is determined up to
a scalar factor; once a choice is made for the scalar, the operator

depends only on the coset of w in W = M'/M. We make such a choice
of scalars for each member of w&)x without imposing any consistency
conditions on the different choices. Then we can speak unambiguously

of the linear span of the operators o(w) Q(w,0,A) for w in w& A\
L

Theorem 3. Let G be of reagl-rank two. For any (g,A), the

linear span of the operators g¢(w)@(w,0,\) for w in W& is the

A
2
set of all bounded linear operators L such that U(g,A)L =LU(g,A).

Consequently U(9,A) 4is irreducible if and only if all the
operators g(w) (L(w,0,\) are scalar. The detailed proof of the
theorem shows exactly which operators o(w) A(w,0,\) are scalar.

The exposition will be simpler if we sketch the proof for a
particular case and then describe the extent to which the general
case differs from the special case. Temporarily take G to be the

real symplectic group Sp(2,R). Let

e; be the shorter simple root
and €5 be the longer one. In the notation of §2, let g = oo and
N = 1. ‘Then Wc x = Wc is all of W and has order 8. So

2

Recall the Bruhat decomposition:-of G: The MAN double cosets are in
one-to-one correspondence with the elements of W, and

G = UMANWMAN with the union over a system of representatives of the
cosets of M' modulo M. Let C(w) be the double coset
corresponding to w.

cosl

Iet ¢ operate in the space EU, let be the subspace of

functions in Cw(G,EU) that lie in the representation space for

U(g,1), and let be the standard mapping of C. (G,E°) onto

o,1 com
Cc’l, given by the case A =1 of
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(3.1) (1,2 (x) = [ e P (exp () o (m(s)) e (en) -
MAN

If L is a bounded operator commuting with U(g,1), then the

mapping 61, given by

(3.2) £ Lt e PUED

m
G‘:l

is an End(Ec)—valued distribution on G. (See [1].)

Bruhat [3] examined 51, and found that it satisfies a function-
al equation under translation on the right and left by MAN. For w
in W he showed essentially that if

(i) 6y, Vvanishes on C(w!) for each w! # w such that
CwT) o C(w) and

(ii) 3, does not vanish on c(w),
then

(i') w is in Wﬁ,l (here this conclusion is empty)

(11') the component of §; transverse to ¢(w) vanishes

(1ii') the restriction of ¢ to C(w) is a multiple of a
distribution 5w that is independent of L.

The idea of the proof is to construct a "pseudo-operator" T(w)
for each w in Wc such that the main part of the distribution
corresponding to 1(w) is 6y Subtracting from L a sultable
linear combination of the T(w), we obtain an operator whose
distribution vanishes on certain double cosets and satisfies a

functional equation reflecting properties of both L and the T(w)'s.
This functional equation will have no solutions unless each T(w) that
was subtracted from L is already one of the operators o(w)a(w,0,)).
Consequently L is in the span of the operators glw) a@(w,o,n).

We shall describe parts of the proof in more detail, but first

we must define the pseudo-operators T(w). Let w be in W and

let A, be the set of all positive roots a such that wa { O and
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olyy) = +1. If we regard A as a variable on A or its Lie algebra,
we can speak of differentiation Da of a function of A with respect

to the vector a. Define the pseudo-operator T(w) by

- D_) A(w,0,% ;
T (w) %%W(ﬁ (w,0,7) |54

This operator is well-defined if we use the compact picture for the
induced representation. It has three main properties:

(1) It maps g%t

into itself.

(2) It satisfies an obvious functional equation. This equation
comes by applying the differential operator nDa to both sides of
(1.1), using the Liebritz rule for differentiating products and using
a formula relating U(o,A) to U(g,l) in the compact picture. The

result is of the form
(3+:3) U(o,1,x)T(w) = T(w)U(o,1,x) + remainder terms.

(3) Its distribution, defined in analogy with (3.2), coincides
with a nonzero multiple of 5W on the union of all double cosets of
dimension > dim C(w).

There is a helpful (though slightly inaccurate) notation for

dealing with these operators. We write formally

T(py)= Ty T(pyPppy) = TyHTy
T(py) = H, T(pppyPp) = HoTyH,
T(pyPp) = T1H, T(p,pppyPy) = TyHST Hy.

T(Pepl) = Hle

Each T(w) is written as a product of T's and H's, with the
subscripts matching those in a minimal decomposition of w into the
product of simple reflections. We use T or H in the kth factor
according as the kth operator ¢l in the expansion of (A(w,ad,}A)

by (1.2) is or is not, respectively, scalar for A = 1. [The
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notation here is meant to suggest that T(w) is formally the product
of rank-one pseudo-operators, T being a rank-one pseudo-identity
and H being a rank-one Hilbert transform. Actually the product of
these operators is not exactly equal to T(w), but it is equal in
first approximation, in the sense that the main part of the distribu-
tion for the product operator is 5w.]

Form as in equations (3.2) and (3.1), and consider the open

8%
double coset C(plpeplpe). In view of property (3) of T(w), we can
find a constant ¢ such that the distribution v of L -cT(plpeplpe)
vanishes on C(plpeplpe). Combining (3.3) and the commutativity of

L with U(0,A), we see that L -cT(plpeplpg) satisfies an analog of
(3.3). It follows that v satisfies a functional equation under
right translation by MAN. Also property (1) of T(w) implies that
V  satisfies another functional eguation under left translation by
MAN.

It turns out that the main contribution to v is on C(p,P;P,),
and one can show from the functional equation that v has no
transverse derivatives to this double coset. It follows readily that
the restriction of v to C(Pzplpz) makes sense and is a function.
Evaluating this function at a representative w'! of PoP1Py and
using the functional equation for right translation by a in A and

lw"l, we are led to the equality of a

left translation by wa
bounded expression and ca(log a) for a certain root a. Consequently
¢ =0 and §; vanishes on C(pPoPPs) e

Next we attempt to show that &, vanishes on C(plpepl) and
C(peplpe). (The transverse derivatives to these double cosets must

vanish, according to [3].) We form
L-Cl’I‘(pngPl) = CET(peplpe)

and argue similarly. The conclusion ¢, = 0 will come immediately

3.
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from considering C( Plp2)’ but the conclusion ey = 0 will come
only later by considering (1) after L has been handled on the
double cosets that lie between C(p2plp2) and C(1).

The argument continues in this way, with L adjusted on double
cosets of lower and lower dimension. The details are cumbersome to
list, but we can say the following. For each w we push L off
C(w) by using T(w). The contradiction that eliminates T(w) comes
from the double coset corresponding to the formal expansion of T(w)
in H's and T's, but with one T deleted. The root in the final
equation that gives the contradiction is obtained as follows: If the
factor pik is deleted from pil"-pin, then the root is

Dy #ioop It is possible for a linear combination of as many

n o igg Sl
as two roots to appear in the final equation, but these roots will be
distinct and hence independent.

In the end, L will be expressed as a linear combination of
T(pe) and T(1l), that is, of H, and I. These are the operators
A(w,0,1) for w = Pp and w = 1, with no differentiations, and the
theorem is proved for this special G and g.

Now congider the case of general G of real-rank two. In view
of the results in [6] concerning the real-rank one case, We may
assume that G is simple. We are given ¢ and A, but the same
kind of argument as after Proposition 2.1 shows that there is no
loss of generality in taking )\ dominant., Observe that
s Sl oy
simple reflections that it contains. If there are no simple

With A dominant, Wl A is generated by the
L)

reflections in wl,h’ then Wl,l = {1}, and the the theorem follows
from Bruhat's results [3]. If there is one simple reflection, the
problem is substantially a rank-one problem and is handled by a
simpler version of the argument to follow. If both simple reflec=-

tions are in W then A = 1; this is the only hard case.

10
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Thus suppose A = 1. Call a restricted root a d 0 primitive
if o/2 4is not a restricted root. Fix w in wc:l and consider
the primitive restricted roots a)» O such that wa ¢ 0. Recall from
§18 of [6] that the restriction clM is equivalent with a multiple
of a single irreducible representatign Oq of Ma' We shall say
that a primitive o with wa{ O is in A if the rank-one inter-
twining operator ga(pa)cza(pa,ca,l) is scalar. (A necessary and
sufficient condition for this is given in Theorem 5 of [6].) Define

the pseudo-operator T(w) by

T(W) = ( I DG)U(W)Q(W,U,K}] ]
aE&w A=1

with notation as in the case of Sp(2,R). Just as in 8p(2,R) it is
convenient to have symbolic notation for T(w). If w decomposes
minimally as w = Py *** Py » We write T(w) formally as a product
1 n
9
root p, =+**p €. is in A and using H
in ij+1 lj W 3
we are thinking of T(w) as a product of pseudo-identities T and

of = Mg and HYsgmsing, T at the jth stage if the associated

5 otherwise. (Again

nontrivial rank-one operators H, and again this is only an
approximation. In this general case, the symbol H; 1is standing for
both an operator and its inverse, and each H in a string must be
interpreted suitably.)

With this notation we describe Wb,l and the associated pseudo-
operators. A case-by-case check using the results of [10] shows that
we can conjugate g by a member of M! in order to arrive at one of
the following situations:

(1) A, as restricted root diagram. Here [w| = 6. WE can be
any of {1}, {l,pl}, {l,pz}, W. In all cases each T(w) is formally
a product of T's.

(2) @, as restricted root diagram. Here |W| = 12. WG can be

2
11}, {1,p1, {1,p,}, or W with each T(w) a product of T's.
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Alternatively W, can be {1, p;, PP1P,P1Pps P;P,PiP,P1P,} With
formally T(pl) = Hy, T(P291PQP1P2J = HyH T H H,, and the other T(w)
given as the product.

(8) BC, as restricted root diagram. Here |W| = 8. Let

and €5 be the simple restricted roots, with El longer than €5
Then 292 is a restricted root. Lhere are two possibilities for W&.

o

(a) w& = W. Then T(pl) = Ty, T(pe) = H, or T,, and the other
T(w)'s are given as products.

(b) W ={1, Py P1PpPy» DpPiP,P;}. Then T(p,) = H, or T,
and, independently, T(p1p2pl) = H)T;H) or H;HJH,. The other
T(w) 4is given as the product.

(4) B, as restricted root diagram. Here |W| = 8. Let €1
and 52 be the simple restricted roots, with € shorter then €ne
Then W, and the pseudo-operators can be as in (3a) and (3b) above,
or else W; can be (1}, {l,py}, or {l,pe} with only T!'s
occurring.

We need one more fact. This is a result due to Steinberg
[9, p. 127] for Chevalley groups, and to Borel and Tits [2] in the
general case. Namely let w = pil--.pin be a minimal decomposition
into simple reflections. Then the closure of C(w) is the union

of the double cosets C(w') as w' runs over all products (in order)

of subsets of the P; -
J

Putting this fact and the detailed description of the pseudo-
operators together, one sees that a simple modification of the
completeness argument given for Sp(2,R) and the special g works

for all G of real-rank two and all O.

4, Completeness theorem for SL(n,R)

For SL(n,R) the completeness theorem is as follows.

Theorem 4. Iet G = SL(n,R). For any (o0,A) the linear span
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of the operators @&(w,0,\) for w in W, , 1is the set of all
2

bounded linear operators L such that U(g,N\)L = LU(G,7).

As we shall see, this linear span has dimension 1 or 2.
Dimension 1 is necessary and sufficient for irreducibility. Partial
results on irreducibility for SL(n,R) were known already. Gelfand
and Graev [4] settled n odd, and Wallach [11] proved the
irreducibility of U(g,\) when all @& (w,0,1) for w in W
are scalar.

Before commenting on the proof, we introduce notation. 1In
SL(n,R), we shall take M to be diagonal matrices with 1 in the
diagonal entries and A to be diagonal matrices with positive
diagonal entries. The Weyl group W is the permutation group on n
letters, and it operates by permuting the diagonal entries.

Turning to the proof, we may without loss of generality deal with
a convenient image of (0,A) under the operation of W. First
conjugate (g,\) so that A is dominant. The effect of this is to
decompose {1,...,n} into disjoint strings of consecutive integers
in such a way that the members of wl,h are exactly the permutations
that leave each string stable. Next, ¢ 1is given as a product of
certain signs of diagonal entries, and we make a further conjugation
leaving each string stable so that the signs that are used within
each string occur consecutively at the beginning of the string.

With (0,\) in this form, one can check that there are only
two possibilities:

[(BlD) W&,R ig a direct product of smaller permutation groups,
and each T(w) for w in wu,% is formally the product of T
operators only.

(2) n 1is even, and exactly the first half of the entries in
each A-string obtained above is used in computing g. In this case

WU A has a subgroup W! of index 2 that is a direct product of
E
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smaller permutation groups. Write Wb,h = W'y wow1, where Wy
is the element of shortest length in the nontrivial coset. Then
T(wb) is a product of H operators only, and therefore

CI(WO,G,R) is not scalar by property (iii) of T(wo). Say,
CZ(WO,C,A) = Hy. In addition, each T(w) for w in W' is a
product of T's, and each T(w) for w in woW' 1s the product of
HO by a product of T's.

The rest of the proof proceeds along the lines of §3. The only
additional thing that is needed is an algebraic result to ensure
that if Theorem 3 fails, then the functional eqguation satisfied by
the difference of L and its first approximation is actually
contradictory. This result is given as Proposition 4.2.

Let W be a Weyl group, and let 4 (w) be the length of the
element w of W. If p and q are members of W, we sghall say
that p is a parent of the child q if 4(p) = ¢(q)+l and if q
can be obtained from some (or any, in view of Steinberg's result
mentioned in §3) minimal decomposition of p by striking out one
of the simple~reflection factors. In this case it is a simple matter
to see that p = aw,, for some root-reflection w,. We write

a = ap q For fixed g, let Pq be the set of parents of q.
2

Lemma 4.1. Let W be any Weyl group, let p and g be mem-

bers of W with 4(p) = 4(gq)+l, and suppose p = qw, for some a.

Then p 1is a parent of the child gq.

Proposition 4.2. Let W be the Weyl group of SL(n,R), and fix

a length 4. Suppose that to each element p in W of length 4 is

associated a complex number °p in such a way that the set {cp}

satisfies

E: Cp ap:q =50
€ P

et

for all g in W of length 4-1. Then all the cp are equal to O.
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