Status of (Classification of Irreducible Unitary Representations

By A. W. Knapp* and B. Speh*

One of the first questions that one would like to answer for
Fourier analysis with a particular group is: "What are all the
irreducible unitary representations of the group?" For semisimple
groups this problem remains unsolved—in fact, very far from solved.
our intention here is to give a survey of some aspects of what 1s
known about the problem for semisimple Lie groups. For an earller
survey of this kind, see [23].

Most of the survey will be of old results, but we shall include
some new facts as well:

1) a useful reformulation of the known criterion [23] for
unitarity of an irreducible admissible representation. This is given
as Theorem 1.2. Progress to date in applying this or some equivalent
criterion to settle concrete unitarity questions is summarized in §2.

2) a description, given in a diagram in §3, of some
representations of SU(N,2) that we can prove are unitary. The
diagram is complicated enough to illustrate the difficulty of the
general problem yet simple enough to suggest a number of inductive
approaches to a solution. In §4 we summarize briefly some techniques,
including those needed for our result about SU(N,2), for applying
the unitarity criterion to determine whether a particular irreducible
admissible representation is unitary.

3) an extension in §5 of one of the techniques listed in 84,
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namely use of explicit scalar formulas obtained from intertwining
operators. We have already applied this extended technique to our
own classification [19] of the irreducible unitary representations
of su(2,2).

§1. Unitarity criterion

Let G denote a connected semisimple Lie group with a faithful
matrix representation, let K be a maximal compact subgroup, and let
8 be the corresponding Cartan involution. Fix a minimal parabolic

subgroup e and let Pmin = MminﬂminNmin be its Langlands

decomposition. Here Mitn is compact, A is a vector group,

min

N

L is simply-connected nilpotent, and G = KA ; N .. is an

Twasawa decomposition of G. A standard parabolic subgroup P of

G 1is any closed subgroup containing e There are finitely many

such subgroups P, and each has a Langlands decomposition P = MAN.

Here M is noncompact unless P = Pﬁin’ and also A E-Amin and

N Ny;.- The group P is called cuspidal if rank M = rank (KN M).

Let w be an irreducible unitary representation of G. A
vector v is K-finite if the span of w(K)v is finite-dimensional.
Then w defines an irreducible admissible representation of the Lie
algebra of G on the space of K-finite vectors, by [11]. (We shall
abuse notation and speak of an irreducible admissible representation
of G.) We recall the statement of the Langlands classification [27]
of irreducible admissible representations; the statement below has

been sharpened by the incorporation of a result of Milicic [28].



Langlands classification [27]. The (equivalence classes of)

irreducible admissible representations of G stand in one-one

correspondence with all triples (P,m,v), where

P = MAN is a standard parabolic subgroup

7 4is an irreducible "tempered" unitary representation
(equivalence class) of M

v 1is a complex-valued linear functional on the ILie algebra

of A with Re v 1in the open positive Weyl chamber.

The Laenglands representation J(P,m,v) is the unigue irreducible

quotient of the induced representation
U(P,m,v) = ind.ﬁmN(W@] e’ ® 1) (2.2)

and is given as the image of an explicit intertwining operator

A(8P:P:m:v) applied to U(P,m,v).

Tn (1.1) we have arranged parameters so that unitary
representations induce to unitary representations, and we adopt the
convention that G acts on the left. The intertwining operator
A(6P:P:m:v) is given by a convergent integral in the context of the
theorem; its general definition and properties may be found in §86-7

of [22]. The representation w 1s assumed "tempered" in the sense

that (m(m)p,y) 1is in 127 (M) for every ¢ > 0 and for all
(kN M)-finite vectors ¢ and . The irreducible tempered
representations were classified in 1976, with detaills appearing in
[24]; their classification will be combined with the ILanglands
classification in Theorem 1.1 below.

An irreducible admissible representation comes from the space of

K-finite vectors of a unitary representation if and only if it 1s



infinitesimally unitary (in the sense of admitting a Hermitian inner

product such that the Iie algebra of G acts in skew-Hermitian
fashion), and in this case the unitary representation is unique (up to

unitary equivalence) and irreducible.

Corollary [23]. J(P,m,v) is infinitesimally unitary if and
only if
(1) the formal symmetry conditions hold: there exists w in K
normalizing A with wpw L = 8P, wr=m, and wvw = -v, and
(ii) the Hermitian intertwining operator w(w)R(w)A(8P:P:m:v), where
R(w) denotes right translation of functions by w, is positive

or negative semidefinite.

For connected linear semisimple groups, it is proved in [24]
that the irreducible tempered representations are all induced from

cuspidal parabolic subgroups MlAINl with a discrete series or limit
of discrete series representation on Ml and a unitary character on
Al; moreover, the 1imit of discrete series representation may be

assumed to be given with nondegenerate data. Conversely such an
induced representation is always tempered, and it is irreducible if
and only if a certain finite group, known as the R group, is
trivial.

Most of the steps needed to extend this result to handle an
irreducible tempered representation w of the (possibly disconnected)
group M obtained from a standard parabolic subgroup of G are
already present in [24], and it is easy to complete the argument.

Then we can substitute for 7 in the Langlands classification, and
we arrive at Theorem 1.1 below (Theorem 5 of [23]). The information

from the R group ensuring that 7w 1s irreducible needs to be



built into the statement, and we accordingly recall some definitions
from [23]. Let MAN be a cuspidal parabolic subgroup of G, let
W(A: @) be the Weyl group of A, let ot be the Lie algebra of A,
and let © ©be a discrete series or limit of discrete series of M

with nondegenerate data. For each oL root a, let Mg a(v) be
2

the Plancherel factor of §7 of [24]. Define

A' = {useful o roots a | sy =v and u, (v) =0} (Ls2)
and
Wc; y = Weyl group of root system A", (1.3)
: ]

The group w‘; is a subgroup of
2

Y

W = {w e W(A:6) | wo =

e o and wv =v} . (1.4)

We can then reformulate the completeness of the Langlands
classification as Theorem 1.1. The idea is that the R group of the

concealed tempered representation w d1s isomorphic to WU v/wc; o
2 2

Theorem 1.1 [23]. ILet P = MAN be a cuspidal standard
parabolic subgroup of G, let o be a discrete series or limit of
discrete series representation of M with nondegenerate data, and
let v be a complex-valued linear functional on ov with Re v in

the closed positive Weyl chamber. Suppose that W, = Wc; G 2 Then
bl L

the induced representation U(P,0,v) has a unique irreducible
quotient J'(P,o,v), and every irreducible admissible representation

of @ is of the form J'(P,0,v) for some such triple (P,o,v).

The effect of Theorem 1.1 is to rewrite the completeness of the

Langlands classification in terms of more manageeble representations.



What is lost i1s the simple criterion for equivalences, but
equivalences can always be sorted out by going back to the earlier
statement. If we take these matters into account, then we can
translate into the present language the unitarity criterion given

in the corollary stated earlier.

Theorem 1.2, Let (P,0,v) be such that the irreducible
admissible representation J'(P,0,v) is defined. Then J' (P,o,v)
is infinitesimally unitary if and only if
(i) there exists w in W(A:G) such that we =1, w %o, and

w = -V, and

(ii) the standard intertwining operator U(w)AP(w,c,v) of §§7-8 of

[22], when normalized to be pole-free and not identically zero as
o (w) aP(W,U,V) ’ (1.5)

is positive or negative semidefinite.
If J'(P,0,v) 4is infinitesimally unitary, then every w satisfying
(1) is such that the operator (1.5) is positive or negative
semidefinite.

Proof. By way of preliminaries let us introduce notation that
mekes clear how to regard J'(P,0,v) as a Langlands quotient. With
P = MAN, 1let m, o, and . be the Lie algebras of M, A, and N.

Define oy, to be the span in ov of the vectors H, such that the
ov root a is orthogonal to Re v. Let oy be the orthocomplement
of oy, in Ol Define M, to be the centralizer of o in 7,

Mg to be the natural complement of m, in 7, and mq to be

m, = moa, On, &N, .



Then we can form a corresponding standard parabolic subgroup

Pl = MlﬂlNl of G with

M,A;N; D MAN
and with MA N, a parabolic subgroup of M. These definitions
are arranged so that Vlon* is imaginary and so that Re(“lubl) is

in the open positive Weyl chamber of 01.]'_ . The representation

M
™= ind.Mi*N* (0® exp(v]g ) ® 1)

is tempered and, by assumption, irreducible. Then we have

T (P,0,Y) = T(P,mvly ).
1

Now we come to the proof of the theorem. The main step will be
to prove that J'(P,0,v) infinitesimally unitary implies that (1)
holds. Once this is done, we can argue as follows: If (i) holds for
some w, then (1.5) is defined (by Lemma 7.9 of [22]), and Corollary
8.7 of [22] shows that the sesquilinear form

W = [ (@w) Qplno,v)ulk),v(k) a (1.6)
K

is invariant (in the sense that the ILie algebra of G acts by skew-
Hermitian operators) and Hermitian. Since wv = - ¥V, we have

w(Re v) = - Re v . (1.7)

From (1.7) it follows that wal, = ol, and therefore that wa, = a.

Another application of (1.7) then shows that

w(Re v| —Revlm .
al

ut.l) -



Since Re vhn ig in the open positive Weyl chamber of ULi ;
1

WA = Bﬂj_. Thus wle'l = SPl. From this equality and Corollary
7.7 of [22], we see that CLP(w,c,v) can be regarded as a composition

of the Langlands operator A(8P,:P,:m:v|_ ) followed by another
i | ol

operator. Since the image of the Langlands operator is irreducible,
the image of (1.5) must be equivalent with J'(P,0,v). Consequently
(1.6) descends to a nonzero invariant Hermitlan form on J'(P,0,v).
By irreducibility of J'(P,0,v), such a form is unique up to a
scalar, and JT(P,a,v) is infinitesimally unitary if and only if a
nonzero such form is semidefinite.

Thus the theorem will be proved if we show that J'(P,0,V)
infinitesimally unitary implies that (i) holds. Thus suppose
J'(P,0,v) 1is infinitesimally unitary. Then so is the equivalent

representation J(P;,m,v|_ ). By the corollary above, there exists
5 ml

W, in the normalizer Np(ov;) such that

-1 = -
W Pwl© = 8Py, wWyr =7, and Ad(wl)v|ml = -viml. (1.8)

We shall apply the equivalence criterion for irreducible tempered

representations to the formula w,m = 7. (See Theorem 4 of [23] or

Theorem 14.2 of [24]. These theorems are stated in the connected case,
but they extend to groups like M without difficulty.) The criterion

says that the eguivalence of

M.
i
T = indMA*N* (o @ exp “'ot* ® 1)

and



M
indwi(m* N*)wj-_l (wlc ® exp (Ad(wl)v) lAd(wl)m.* ® 1)

e

W

1l

implies there is an element W, in KﬂMl with

wleil = wE,Mw,-él (1.9a)
wlA*wil = weA*wél (1.9b)
W,0 = wpo (1.9¢)

We shall list some properties of wélwl. Since w, is in Ml’

(1.8) gives

- - -1
(welwl)Pl(welwl) =8Py . (1.1o0a)

Also w; in NK(‘"'J.) and W, in the centralizer Z (o) imply

i

-1 "
5 is in NK(ml), and (1.9b) shows w, w; is in NK(EI'L*). Thus

W W

ik

-1
Wy Wy € NK(GL)YWNK(on*) X (1.10b)

From (1.9¢) we have

wyrwo T o, (1.10¢c)

By (1.9d) and (1.10b), we have Ad(witw;)(v|. ) = (vl. ), which is
ik a, oL,

imaginary. Hence

ad(wtwy) (Vg ) = =Fly ) 5

and (1.8) gives
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=1 A
Ad(w, Wy = . (1.104)

Dropping "Ad" for simplicity, let us observe that wélwl

normalizes the system A' of (1.2). [In fact, a in A" implies
wélwla useful, and we have

<1 =) - =
s (wy wl)sa(we wl) N == wglwlsav

w

]

v
élwla

= wélwlg =)

by two applications of (1.10d). Also

o ) = s e (e )
uc,welwla (welwl) lr:,cx 2
=ty o((w3hu) ™) by (1.10¢)
= kg, o (V)

since My o depends only on the o, component and since wélwl

fixes v|m'.J Then we can choose Wy in Kr1Ml representing a
*

member of W' such that
T\

51w51w15'+ = b, (1.11)

w

Then it is clear that

(wglwélwl)Pl(wglwélwl)'l = 8P, (1.12a)

wélwélwl e M(ov) NN (o) - (1.12b)
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since W . c W (1.10c) and (1.104) give

g,v = g,v’
il .
W Wy W0 = O (1.12¢c)
and
B e —
Ad(wB Vo wl)v = -v . (1.124)
-1 -1 i 2
Let w be the class of w3wy w; in W(A:G). Then w° fixes
o and v, by (1.12c) and (1.12d), and so is in Wy ye Since 7w is
2

irreducible (in order to have J'(P,0,v) defined), we have

Thus w° 1s in W' From. (1.11), w°A'Ft = A"t

o
W =W 3,9

g,V o,V’
and thus w° = 1. This identity and formulas (1.12c) and (1.12d)

together prove (i) and complete the proof of the theorem.

§2. Progress

The problem of classifying irreducible unitary representations
comes down to deciding which parameters (P,0,v) in Theorem 1.2
satisfy (i) and (ii) of the theorem. Here (i) is easy to decide, but
(ii) is often hard. There are several sufficient conditions for
deciding one way or the other, and we shall list a number of them in
§L. Tt is unlikely that the final answer will be a group-by-group
investigation, but it does give some idea of the nature of the
problem to tell what simple noncompact matrix groups have been
completely settled.

The groups handled so far are the following.
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Before the Langlands classification historically:

SL(2,R) Bargmann [2], 1947
SL(2,¢) Bargmann [2], 1947
Gelfand-Naimark [9], 1947

SL(3,R) Vahutinskii [36], 1968
SL(3,r) Tsuchikawa [35], 1968
Soe(n,l), double cover Hirai [13], 1962
SU(n,1) ottoson [29], 1968

Kraljevié [26], 1973

After the ILanglands classification historically:

c

sp(2,¢) and Gy puflo [47, 1976

SL(4,R) (actually GL(4,R)) Speh [33,34], 1977

sp(n,1) Baldoni Silva [1], 1980
SL(4,c) and sSL(5,C) Duflo [5], 1980

su(2,2) Knapp-Speh [19], 1981
soe(3,2) Several people independently,

including the authors.

In retrospect, the groups done before 1973 can be settled quickly
with the aid of the Langlands classification. The groups settled
since 1973 are qualitatively different in that the pattern of
unitarity is substantially more subtle.

Let us list some approaches to the general problem that cut
across broad classes of groups:

1) Unusual constructions of unitary representations.

a) Representations with a highest weight vector. These were

introduced by Harish-Chandra [12], and a systematic study of which
ones are unitary was begun by Wallach [38] and Rossi-Vergne [31] and

has now been completed by Enright-Howe-Wallach [7] and Jakobsen [43].
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b) Dual reductive pairs. Two groups form a dual reductive
pair 1f they are each other's centralizer in a real symplectic group.
Howe earlier conjectured and recently proved [15] that the reduction
of the Weil representation of the symplectic group should lead to a
natural one-one correspondence between some unitary representations of
one of the groups and some unitary representations of the other.

¢) Occurrence in LQ(G/H). See Flensted-Jensen [8].

2) Zuckerman's method. Zuckerman [41] has given a construction,
by means of an analog of the realization of discrete series, of some
irreducible admissible representations that are conjectured to be
unitary, and this conjecture has been verified in some special cases.

3) Results for complex groups. Enright [6] has classified the
infinitesimally unitary representations (of complex groups) with
regular integral infinitesimal character. More recently, Enright
has results on infinitesimally unitary representations (of complex
groups) with a K-fixed vector and with regular infinitesimal

character.

§3. Some results for SU(N,1) and SU(N,2)

In this section we announce the unitarity of some degenerate
series representations of SU(N,2) that one might not have expected
to be unitary. We shall give the proof on another occasion, being
content now with the statement of the result, a diagram illustrating
the result, and the necessary preliminaries reformulating the length
of the complementary series in 8U(n,1).

We begin with the preliminaries about SU(n,1). These matters
were brought to our attention by G. Zuckerman in 1973-T4. Our concern

will be with induced representations from Poin® Here Amin is
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one-dimensional, and we can therefore write v = zp, where 2z is in

€ and p 1is the half-sum of the positive Oy roots with

multiplicities counted. If o 1is an irreducible representation of

M ;n» then the results of §§14-15 of [21] show that J'(P ,.,0,%p)

is infinitesimally unitary for Re z » 0 if and only if z is real

with 0< z é Zos where Z, is the critical abscissa, defined as

the least z » 0 that is a multiple of 1/n such that

(1) z_lpu’a(zp) = o (with o the short positive ot root), or

min

(ii) “g,a(ZP) #0 and Ap : (w,o,-2p) has a pole (with w
min

representing the nontrivial element of W(Amin:G)).
It is always the case that 0 < Z, £ 1.
The Plancherel factor Ho o in the definition of "critical
2

abscissa" is given as follows: If A denotes the highest weight of

o and p  denotes the half-sum of the positive roots of M oin?
then apart from a multiplicative constant we have
pc,a(zP) =z f T (x+p +2p, ﬁ)) £ (nmz/2) ,
B =a
%nin

: n+l

where f is tan or cot according as whether a(v,) is (-1)"7°I
n :

or (-1)"I, for a certain element YOE of order 2 in Mmin defined

in (3.1) below. (See §12 of [21].) The values of 2z for which f

has a pole are exactly the values of 2z for which the infinitesimal

character of U(Phin’c’ZP) is integral. The result we need is as

follows, and we give a proof after Lemma 3.2.
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Proposition 3.1 (Zuckerman). In 8SU(n,1), if o is an

irreducible representation of Mmin’ then the critical abscissa Zq

for o 1is the least 2z Z 0 such that the infinitesimal character of

U(gnin,c,zp) is integral and is not orthogonal to two linearly

independent complex roots. Equivalently, Zo is the least
nonnegative

(i) odd multiple of 1/n in the tangent case such that

(A+p +2p,B) =0 for at most one B with ﬁlm, = q
min

(ii) even multiple of 1/n in the cotangent case such that

{A+p +2zp,B) =0 for at most one p with ﬁ] =G
Tmin

Lemma 3.2 (Zuckerman). In the tangent case if p a(%i:) # o,
e »

then ﬁP

(w;,0,zp) has a pole at z = - 1/n .
min

Before proving the lemma, we make the notation more concrete.
We suppose that SU(n,1l) is given in its standard representation,
with XK = S(U(n)x U(1l)). Diagonal matrices in the Lie algebra form
a compact Cartan subalgebra, and we let ej denote evaluation of the

Jth diagonal entry. The group Amin is one-dimensional, and we

choose to form it by Cayley transform of the root e -e . Half

n n+l

the sum of the positive restricted roots, with multiplicities, is then
n
p =5 Cayley(e -e ;) -

The group Mmin is given by
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u In-1
{ 16 ) with wu unitary and }
—— ik 3
nin 10 | total determinant = 1
1

and v is the element of M r0 given by

Y = -1 . (3'1)

We can write the highest weight of o as

n-1
A = le cjej z

where {cj} is a nonincreasing seguence of integers or half-integers.

The function fCc is

tan if all e

5 & Z +-J§‘(n+l)

n (3.2)
cot 1 fiee v B cj € Z+-gn.

A palr of complex conjugate roots B with Jsla = a is of the
min

'y 3 " n s
form {ei ~ie 5 By= en+1] if we drop the notation "Cayley," and its

contribution to u a(zp} is
£}

[ey + %(n—Ei) + %zn] [ey + %(n— ei) - %zn] 5 (3.3)

Proof of Lemma 3.2. For Mo a(%p) not to have a pole, there

must be an index i for whiech (3.3) vanishes at z = 1/n. Then

(el %) + -]g'(nnEi) +-]2'On =0 (3.4a)
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or

fog = -Jg') +é(n—21) +%On =R (3.41)

Let o' and o" be irreducible representations of Mmin with
highest weights

n-1 1 n-1 1
z (cj - E)ej and jzl(cj - g)ej -

respectively. Then o' and o" correspond to cotangent cases, by

(3-2), and (3.4) says pu_, (0) =0 or u., .(0) =0, say the first.
a',a a",a

We shall now use some detailed information about intertwining
operators given in the results and proofs of [21]. By Proposition
27 (vii) and Theorem 4 of [21], the kernel of the intertwining operator
for ©!' has mean value # 0. In the notation of page 558 of [21],

g equals ((n—kl),co), where o, has highest weight

ENJ+%W*1”335 the kernel for ¢ at z =0 is

(||xu“+|y;2)-n/2( Lxll® + yo )'“'1 %(I _2(llx)|® +ya)xx ® )

xll ™ + x| %)= =™ + |vl®
(3:5)
Also o' equals (n,ao), and the kernel for o' at z =0 1is
4 2,-n/2 Ix)® + v2 \™®
(™ + 1 212) ( o o (same) ;
i RET Rl S

since HXH4+|Y|2 is radial, the mean value satisfies
an, [(11xN™ + 1¢12)PO" (| x]|2 4 ¥2) ™ o (same)] # O (3-6)

Now we check the criterion for AP (w,o0,-zp) to have a pole
min
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at z = 1/n. We refer to pp. 523-524 of [21]. If ye (X,Y), then

we find that
o(1+2)pH(Y) _ 1 4 [|xII2 + 2(lIxI* + 1212272, (3.7)

Choose a smooth f supported near the identity to be given near

y=1 by
£k (y)) = NIxN? + va . (3.8)

The Taylor expansion of the product of (3.7) and (3.8), when

rearranged so as to be homogeneous, is

(1 + %(1-+z)ilxl|2 + higher order terms)(||x||® + vi).
Thus, in the notation of pp. 523-524 of [21], we have

e,(z,y) = I1xll® + vi (3.9)

hy(2,5) = (%1% +1¥]2)P¥" (kernel for o)e(2,y)

Il + 12122007 (%112 +v2) ™ o (seme)

by (3.5) and (3.9). By (3.6), this has nonzero mean value, and then
(9.13) of [21] shows the operator has a pole.

Proof of Proposition 3.1. We consider the tangent case first.

When z is an even multiple of 1/n, fa(nrz/Q) = 0 and thus
Hy a(Zp) = 0. Consequently the critical abscissa is an odd multiple

of l/n. If pg a(%p) = @, then 2z, = 1/n and also

{N+p +I—];_p, BY # 0 for all B with ﬁlﬂ = a3
min
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hence z, 1is indeed given as in (i) of the proposition. If
My a(%p) # ©, then Lemma 3.2 says that the intertwining operator has
»

a pole at z = -1/n. From the top of p. 551 of [21], the
intertwining operator has a pole at every negative odd multiple of

1/n. Hence z, ds the least positive odd multiple of 1/n such
that a(ZP) # 0, and thus z, i1s glven as in (i) of the
]

proposition.
In the cotangent case, matters are easier. When =z 1is an odd

multiple of 1/n, fa(nwz/e) = 0 and thus u; a(zp) =0,
i
Consequently the critical abscissa is an even multiple of 1/n. If

ua,a{O) £ 0, then z, = 0 and also

(AN+p +0p,s By #0 forall B with 3|u‘ =aqa;
min

hence z_ is given as in (ii) of the proposition. If a(O) = 05
»

then Theorem 4 and Proposition 27 of [21] say the intertwining
operator has a pole at z = O. From the top of p. 551 of [21], the
operator has a pole at every negative even multiple of 1/n. Hence

Z, is the least positive even multiple of 1/n such that

Mg a(zP) # 0, and z, 1is given as in (ii) of the proposition.
r

Corollary 3.3. In SU(n,1l) 1let o be an irreducible

representation of Mmin’ and let Z, be the critical abscissa.

(i) 1In a tangent case, Z, > 1/n if and only if u (%p) = Mot

0,0

i.e., if and only if there exists i with 2<{i<{n-1 and

i s
ci-l = ci = ?(Ql_n—l)-
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n-k+1
n

(ii) In a tangent case, B = with k { n if and only if

k is the smallest integer = n mod 2 such that the index 1

of conclusion (i) satisfies

1gi—%‘-(n—k) and i+%(n—k)in

and

cy = %(21-41-1) for all J with i—%(n—k) % i i+7jg'(n'k)-

(iii) In a cotangent case, z, > 0 if and only if g cmllfo) = 0,

i.e., if and only if there exists 1 with 1< i {n-1 and
il
cy = §(2i -n) .

(iv) 1In a cotangent case, 3z = n—§+1

5 with k< n+1 if and only

if k is the smallest integer ¥ n mod 2 such that the index
i of conclusion (iii) satisfies

l$1+1—%(n-k+1) and i+%(n—k+l)$n

and
= 4 =
cy = -,2(21 -n) for all j with

i+l—%(n—k+1) <. J X i+%(n—k+1) 4

We omit the proof, which is a combinatorial exercise in the
presence of Proposition 3.1.
Now we turn to SU(N,2), and we suppose N > 3. The roots

relative to ﬂ'min form a system of type (BC)Q, generated by
fl - f2 » f2 s and 2f‘2. We can arrange that Mmin consists of all

matrices
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u (3.10)

with u unitary of size N-2 and with the total determinant equal

to one. An irreducible representation o of M in? when applied to

(3.10), has the form

o(—) = ol (n8+mep) o5(u) 5 (3.11)

where o is an irreducible representation of the unitary group

0
U(N-2).
If we restrict o to matrices (3.10) with o = 0, we obtain

an irreducible representation oq of the Mmin of an imbedded
subgroup SU(N-1,1) of SU(N,2). Let zc(cl) be the critical
abscissa (see the previous discussion) for 0q- Similarly if we

restrict o +to matrices (3.10) with 8 = 0, we obtain an irreducible

representation 95 of the Mmin of a different imbedded subgroup
SU(N-1,1). Let zc(cg) be the critical abscissa for o,.

We study the series of representations attached to Pran and to
c. The parameter v on O dn will satisfy the formal symmetry

condition (i) of Theorem 1.2 if v 1is real. Let us write

v = af1-+bf2, with a and b real. To have v 1in the closed

positive Weyl chamber, we assume a ) b > 0. We seek values of a

and b for which J‘(Pmin,c,afl+bf2) is infinitesimally unitary.

Under an assumption on o, the nontrivial values of a and b for
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which we know the representation is infinitesimally unitary are given

in the following theorem.

Theorem 3.4. TIn SU(N,2) with N > 3, let o be given as in

(3.11). If 2z (o4) > 0 and z,(o,) > 0, then J'(P;.,0,af;+bf,)
is defined and infinitesimally unitary whenever
ag (N—l)Zc(O‘l),

0<{b< (N-l)zc(oz),

and a=|n-ml +2k +b for an integer k > 1.

To understand the statement of the theorem, let us refer to

Figure 1. There N=8, n=0, m=1, and g, is trivial. Two

Weyl chambers of u”éin are exhibited for clarity. The dotted

rectangle marks off the influence of the end of the complementary
series for SU(N-1,1), and the assertion of the theorem is that
the diagonal lines sloping up to the right correspond to unitary
representations.

There are other points in the figure that are asserted to
correspond to unitary representations that are not addressed by the
theorem, and they are easy to check: The triangle that abuts the
origin gives unitary representations because the operator (1.5) at
vy =0 for w= -1 is scalar and has to remain semidefinite within
the triangle by continuity. Along the axes out to the horizontal or
vertical dotted lines, J' can be regarded as unitarily induced from
a parabolic subgroup of SU(N,2) whose M has semisimple part
SU(N-1,1); the unitary representation of M is in the
complementary series. The other triangles correspond to unitary

representations by a continuity argument. (Analogous triangles were
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RL= a.f-l"'bfz’

two

Positive chamber:

Key: and /

Figure 1.

with v real, a. =

0

Unitary J'(

1,

chambers showing
0<b<a

unitary points
reducible points

edge of region of
bounded matrix
coefficients

P ips9sY) in SU(8,2)

n=0, end m='1;
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discovered earlier by Guillemonat [10] for another group. )

The representation J' along the diagonal edge a+b = 3 of
the triangle that abuts the origin in the figure is a degenerate
series, induced from a finite-dimensional representation of a
parabolic subgroup whose M has semisimple part SL(2,€). The linear
functional on o is real, with 0O corresponding to the point where
8= D For the data in the figure, the finite-dimensional
representation of SL(2,&) is nonunitary, yet J' is unitary. The
degenerate series continues along the line a = b+3 after it meets
the wall b = 0 of the Weyl chamber. In similar fashion the other
representations J'!' addressed by the theorem are degenerate series.

Whenever m # n and we form the corresponding diagram, we
expect that there are no further points corresponding to unitary
representations. However, when m = n, Wwe expect another unitary
point in the diagram. This is clearly the case for o ‘trivial, and
we know it also for certain other choices of o, by a suitable

application of the work of Flensted-Jensen [8].

§l4. Techniques for deciding whether J' 1s unitary

We record here a number of known techniques for deciding whether
a representation J'(P,0,v) satisfies condition (ii) of Theorem 1.2

and is therefore infinitesimally unitary.

1. Continuity arguments with Hermitian forms [20]. A continuous

function from & connected set into nondegenerate Hermitian forms on a

finite-dimensional complex vector space has values that are everywhere
definite or nowhere definite. Formula (1.6) gives a Hermitlan form on
an infinite-dimensional space to which this fact can be applied, since

the space is the orthogonal sum of its K-isotypic (finite—dimensional)
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subspaces. Nondegeneracy will occur wherever QTJW,U,U) has zero

kernel, and the kernel can be investigated by means of the identities
given in §§6-8 of [22].

It is true also that a continuously varying definite Hermitian
form will be semidefinite on the closure, and this fact can be applied

to the form (1.6).

2. Irreducibility arguments for degenerate series [33].

Degenerate series, induced from finite-dimensional representations of
nonminimal parabolic subgroups, occur as nontrivial gquotients of
representations U(P,0,v), and the style of argument (1) does not
immediately apply. However, often an invariant Hermitian form can be
constructed for the degenerate series representation directly, usually
from an intertwining operator, and then the style of argument (1)
applies if one can prove irreducibility of the degenerate series
representation. Techniques for proving irreducibility are developed
in [33]. They start from an investigation of other Langlands
parameters with the same infinitesimal character. Theorem 3.4 avove

is proved in this way.

3. Induction of representations from parabolic subgroups. A

representation induced from a unitary representation of P = MAN is
of course unitary. This observation produces interesting unitary
representations when applied in the case of a complementary series
representation of M and the trivial character of A, as was the
case with G = SU(N,2) in §3. A variant of this observation is
useful [34]: Suppose 7 1is an irreducible admissible representation
of M that admits an invariant nondegenerate Hermitian nondefinite

form and has 7w equivalent with wmr, where wa—l —llsh e

indd (T® 1@ 1)
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is irreducible, then it is not infinitesimally unitary.

L4, sufficiency of studying cases with real infinitesimal

character. In unpublished work Vogan has proved the following
theorem: Any irreducible unitary representation with nonreal

infinitesimal character is of the form
: i
1ndﬁANf"T® el ® 1) »

where MAN is a proper parabolic subgroup, w is an irreducible
unitary representation of M with real infinitesimal character, and
elh is a unitary character of A. The proof is constructive and
therefore reduces the classification problem to the case of real

infinitesimal character.

5. Dirac inequality. This inequality has its origins in work

of Schmid [32] on realization of discrete series. The Dirac operator
was used for it by Parthasarathy [30, p. 29] and Hotta-Parthasarathy
[14, p. 163]. Iater Enright [6] used a form of it in deciding whether
certain representations were unitary. Baldoni Silva gave it in the
form below and used it in dealing with Sp(n,1). See Borel-Wallach
[3] for further discussion.

Suppose that rank G = rank K and that 7 is an irreducible
unitary representation of G with real infinitesimal character A.
Choose a positive system of roots relative to a compact Cartan
subgroup, and let p, and p, be the half-sums of the positive
compact roots and positive noncompact roots, respectively. Suppose
that @ is the highest weight of a K-type appearing in w(K). i
w 1is a member of the Weyl group of K such that w(p -pn) is

K-dominant, then

1812 < lwl-pg) + pyl ®
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6. Minimal K-type arguments. Minimal X-types were introduced by

Vogan [37], and Baldoni Silva [1l] used them in proving that certain
representations of Sp(n,l) are not unitary. The key fact is that
the Langlands intertwining operator is nonvanishing on a minimal
K-type, under suitable hypotheses. Baldoni Silva has two ways of
applying this fact.

For certain representations of M, she proves that the
intertwining operator is nondefinite at v = 0 on the span of the
minimal XK-types, and she is able to conclude the same thing for
other v by the key fact and by (1) above.

For certain other representations of M, she applies the Dirac
inequality above to J'(P,o0,v), taking p to be a minimal X-type
of the induced representation U(P,o0,v). It is the key fact that
shows that a minimal X-type of U(P,o0,v) occurs as a K-type in
J'(P,0,v). The result is a computable bound on |v| if J'(P,0,v)

is unitary and v 1is real.

T. Isolation of trivial representation (Kazhdan [17] and Wang

[40]). If G is simple and dim A, 2 2, then the trivial

representation is isolated in the Fell topology of the unitary dual
of G. It follows that the trivial representation is isolated in

the unitary points of J‘(Pmin,l,v}.

8. Asymptotics of K-finite matrix coefficients (Howe-Moore [16]).

The K-finite matrix coefficients of any nontrivial irreducible
unitary representation vanish at infinity. Hence J‘(P,c,v), for w
real, can be unitary only if v 1lies in the interior of the convex

hull of the half-sums of the positive roots in the various orderings.

9. Detailed analysis of intertwining operators. This is a

technique introduced by Duflo [4] for complex groups and developed in
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part from the work of Kostant [25]. Duflo uses explicit formulas
for intertwining operators for SL(2,¢) and product formulas for
intertwining operators for complex groups to show that certain
representations are not unitary. This technique will be extended
in the next section, whose results are used in [19] to handle

su(e,2).

§5. Explicit formulas for intertwining operators

In [4] Duflo introduced a technique, developed in part from the
work of Kostant [25], for analyzing intertwining operators for complex
groups. 1In this section we shall generalize the technigue to real
groups by beginning with the analysis done by Wallach in §8.11 of
[39].

We shall study only the series of representations associated to

Pmin’ and we therefore systematically write P, M, A, and N in

place of Pmin’ Mﬁin’ Amin’ and Nmin'

Tet T Dbe an irreducible representation of K on a space V"r

with character X and degree d., and let o be an irreducible
T T

representation of M on a space Vg with character : and degree

da' We recall that

K

L = indM

(o]

acts in the space of V&-valued functions on K satisfying
-1
f(km) = o(m) ~f(k)

by L(ko)f(k) = f(kalk), with norm given by the 12 nom on K. Let

%F be the subspace of this space that transforms according to T,
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i,e., is fixed by

Ay IKX.,IETL(k) dk .

The first result was noted by Wallach in §8.11 of [39].

Proposition 5.1. For v in Vv and E in HomM(VF,Va),

define

%y, 5(K) = B(T(1)71) .

Then mv’E is in %F and the extension & of the resulting
bilinear map
v x HomM(fr,Vé) > Wﬂ
to the tensor product
v ®¢ HomM(VT,VB}

is an isomorphism onto Wﬁ.

Now we shall interpret the standard intertwining operators of
§§4-8 of [22] in the context of Proposition 5.1. Let o be a simple

ov root, Vﬁ be the exponential of the sum of the root spaces for the

negative multiples of o, and Py be half the sum (counting

multiplicities) of the positive multiples of o that are roots. We

use the notation

g = k(g)(exp H(g))n

for the Iwasawa decomposition of g relative to G = KAN. One of
the standard intertwining operators of [22] is given by the analytic

continuation of
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= (py ™ H(D)
£

A(S;]‘PSQ:P:U:?\)f(k) =/ £(kk(n)) dn ; (5-1)

a

this operator maps V'r into itself. We define

o) (@)L af . (5.2)

The next result is stated and proved in §8.11 of Wallach [39].

Proposition 5.2. The operator & _(A) 1s in HomM(VT,VT),
r

and the operator A(s;lPsa: P:o:n) is given on V' by the formula

s~ a(s lps s Pio:n) 8= I® (right by & (M) . (5.3)

Remarks. The formula for the intertwining operator, in more

concrete terms, is

-1

A(sg Psa:P:a:?\)t‘pv’E = cpv,Ea,r ()2 (5.4)

There is a certain amount of flexibility in how we write (5.3)

or (5.4); only the part of a, a(?\) that deals with the o-subspace

of V' is relevant. More precisely, define

T
B, = 4, j'MxUtmi T (m) dm

)
Il

y = G fmxo m) o(m) dm .

(The latter operator is just the identity.) Then E = B.E = EP .

Since P; is a projection and is in the span of the Tt (m),
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g 2 Rt 4
RUaT,a(K) = () aT’d(X) g Pba?,a(})r} i
Thus

Ba o (\) = E(Bja, (M) . (5.5)

Now suppose that w represents an element in the Weyl group
W(A:G), and suppose wo = g. We shall abuse notation, writing Weyl
group elements and representatives in the same way. If we decompose

w dinto a minimal product of simple reflections as w = Sy ---san,
is
then the operator whose normalized version is (1.5) is the operator

c(w)AP(w,o,x) - (5.6)
and it expands according to a cocycle relation as
= a(w)AP(sal,sae...san?,sae---sanx)-...-AP(sun,c,x) ;
Here

-1
ép(sa,sl,xl) = R(SG)A(SG PSG:P:GT:kI) 5

where R denotes right translation, and thus we can compute (5.6)

from (5.3), as follows.

Proposition 5.3. If wo = o, then the operator c(w)AP(w,c,K)

is given on v

by the formula
=1
3 c(w)ﬁxp(w,o,?\) B =10 T,

where T 1is the successive composition of the following endomorphisms

of HomM(V’,UB):
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E > U(W)ET(W)—I

. -1
right b T a A
gnt by T(sg wvesg Jag o (T (g 005 )
. -1
right by T(s_ ---8 )a (s. MN)T(s, =++8 )
) = N R P s %y Sy
- y =
right by T(s_ )a, (8. =+e8_ N)T(s. ) ”
O'.l T,U.l &2 an o4
T
]
Proof. For E' in HomM(v ,v&l), we have
-1
AP(sa,c',X')mv’E,(k) = [A(sa Psa:P:c':ki)mv,ET)(ksa)
B = =l
= B8, (AT (85) THr (k)
=9 (k) »
-1
v, Bay ()7 (s,)
s -1 T
with Ea¢’a(h)¢(sa) in HomM(V ,vsdc). Thus we can calculate
AP(w,c,A)m inductively and obtain
v, E
a(w)As(w,0,0)0 = o(w)Ea (AT (s }"la (s Mr(s )_1
P Vv, E Ts0, oy T’an—l [ Q1
=
sestd S ++e8_  A)T(S
oy (a7 8 VT (5
_ o (W) ET(w) "N (5, +ee8y Ve o (V)T (8 +resy )7
25 n % %1 %n

=
‘[t(s, ++-8 ), (s, N)t(s_ +--8 Yied
il el 12%p-1" Sn i BTt

teoes[T (sal)a'r ’al(sae. ol san}\)'r (sal) ‘l] .

Fach of the factors in brackets is easily seen to be in HomM(Vr,VT),
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and the factor in braces is in HomM(VT,VE). The proposition

follows.

In practice one repeats for each '"right by (—)" operator in
Proposition 5.3 the argument that led to (5.5). The endomorphisms in
the proposition may be thought of as endomorphisms of HomM(f;,?&),

where V; is the image of Eﬁ on V. They become

E > c(w)ET(w)‘l

and the various operators of right multiplication by

-
7(s_ s )P a, (s w8 A)P T(s_ 8
@ ey, s 07,0 a s 5,0 '@

Cx I
$41 ©n iy S e, 3

w =

In some cases this operator will be scalar; in some others, only its
determinant is needed. 1In such cases we can drop the conjugation by

T(sul---saj).

For these formulas to be useful, we have to know the wvalue of

R;aT u(h)rﬁ. The idea is to reduce matters to computations of
]

expressions

i () =) e~ ()P (@) (k@) am (5.7)

in the real-rank-one connected simple group Ga built from a.
(Ga is defined as the group generated by the exponentials of the

root spaces for the nonzero multiples of «.) However, carrying out
the reduction turns out to be a little trickier than is at first

apparent.
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Let Ka =K Ga and Mcz =MnN Ga. It is easy to see that M

normalizes Ka‘ We now make the special assumption on G that

every automorphism of ch defined by conjugation by M is an inner
automorphism of Ku' This assumption is valid if M is connected,

as in a complex group G. It is valid also if G = su(2,2), but it
is not valid if G = SL(3,R) or G = Sp(2,R).

Under this assumption we can proceed as follows. Decompose T |K

o
into its primary components
e = R e
Ky 3 J
with nyTy acting on V. Oour special assumption implies that T lM
* leaves each Vj stable. Now a!M is primary by the corollary to
a

Lemma 57 of [21]; thus find the subspace (Vj)OIM of each Vj that
a

transforms according to O‘IM . The operator
a

% i
Pcma a"rj,a(?‘) PcriMa

is essentially just a real-rank-one expression to be formed from (5.7).

Thus to complete the reduction, all we need to do is to reduce each

(lealMu under o; this is possible since M = MaZM(Ma)’ by Lemma
57 of [21].

Finally we need to be able to compute (5.7) for G of real-rank
one and T an irreducible representation of K. Formulas for

89(n,1) and su(n,1) may be found in Klimyk-Gavrilik [18]. See also
Theorem 8.11.9 of [39]. We reproduce here the most useful such

formulas, which are the ones for SL(2,R) and ST (2,005



For SL(2,R), let

) ( cos sin B) NG

N -sin 8 cos 6

If we put n = (; g), we are led to the integral

(1+y°)

o0 ik
0. =5 (1) 5 4 4 N
a (€) =[(1+y®) % L el
N -0
which is easily evaluated as

.,Tl/ar(c-!N]) IN i

For SL(2,€¢), let L be the representation of gSU(2) in

homogeneous polynomials of degree N in two complex variables. The

monomials {z*l‘zg, k+4=N] form a basis, and a (¢) is diagonal
N

in this basis. If we put n = (; g), we are led to the integral

-(146) - 5(k4L)
aTN(c)(zI{zg) =[a+1s1® ()2 (21 - F2,) 5 (v2, +2)* ay ,

yet

which can be evaluated to give

k 4
rzp2,0 T (6+5 (k-2-29))3 1 (¢+5 (4-k-23))]
aTN(c)(zll‘z",;) = et f L Jed . (5.9)

I (c+5 (tb42-25))
=1
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