Contemporary Mathematics
Volume 154, 1993

Introduction to Representations
in Analytic Cohomology

A. W. KNAPP

ABSTRACT. This is a survey of background and old results concerning rep-
resentations in cohomology sections of vector bundles. The base space is a
homogeneous space G/L, where G is a connected reductive Lie group and
L is the centralizer of a torus. When G is compact, the representations
in question are the subject of the Bott-Borel-Weil Theorem. When G is
noncompact and L is compact, the representations are identified by the
Langlands Conjecture, which was proved by Schmid. For noncompact L,
difficult analytic problems blocked progress initially. To avoid these difficul-
ties, Zuckerman and Vogan developed an algebraic analog, cohomological
induction, that gave a construction of identifiable representations that were
often irreducible unitary. Recent progress has related the analytic repre-
sentations and their algebraic analogs in various ways.

1. Sections of homogeneous vector bundles

This paper gives some background from representation theory for understand-
ing the connection between the Penrose transform and analytic realizations of
group representations. It is assumed that the reader is acquainted with elemen-
tary facts about holomorphic vector bundles and the elementary structure theory
of semisimple groups. Discussions of these two topics may be found in Wells [19,
Chapter I] and Knapp [8, Chapter V], respectively. The results in this paper
largely are not new, and, for the most part, references will be given in place of
proofs.
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1.1. Setting.

Throughout the paper we work with the following situation, sometimes limit-
ing ourselves to special cases: G is a connected linear reductive Lie group with
complexification G€, T is a torus subgroup, and L = Ze(T) is the centralizer of
T in G. It is known that L is connected; a proof may be constructed by com-
bining [8, Corollary 4.22] with the style of argument at the top of p. 126 of that
book. Therefore the complexification LC is meaningful. Let @ be a parabolic
subgroup of G€ with Levi factor L.

We denote Lie algebras of Lie groups A, B, etc., by ag, by, etc., and we
denote their complexifications by a, b, etc. The complex Lie algebras of complex
Lie groups G, LY, Q are denoted g, I, g. We use an overbar to denote the
conjugation of g with respect to go.

We can decompose the Lie algebra q of Q as a vector space direct sum q = [&u,
where u is the nilradical. Then u and i are both nilpotent complex Lie algebras,
and we have [[,u] C u and [[,T] C u.

We assume that q is a f-stable parabolic; this condition means that

(1.13) anq=[[)‘
It is equivalent to assume a vector space sum decomposition
(1.1b) =uelou

Under the condition (1.1), the natural mapping G/L — G€/Q is an inclusion,
and the image is an open set. Thus the choice of @ has made G /L into a complex
manifold with G operating holomorphically.

An example to keep in mind is the group G = U(m,n) of complex matrices
that preserve an indefinite Hermitian form. Here G = GL(m+n,C). If we take
T to be any closed connected subgroup of the diagonal, then L will be a block
diagonal subgroup within G, necessarily connected. We can choose u to be the
complex Lie algebra of corresponding block upper triangular matrices and 1 to
consist of the corresponding block lower triangular matrices.

1.2. Associated bundles.
It is well known (see [16]) that

(1.2) p:G—G/L

is a C* principal fiber bundle with structure group L. Let V be a finite-
dimensional real or complex vector space, let GL(V) be its general linear group,
and let p : L — GL(V) be a C* homomorphism. The associated vector
bundle

(1.3a) pv :GxpV — G/L
is a vector bundle with structure group GL(V) whose bundle space is given by

(1.3b) GxLV={(g.v) ~} with (gl,v) ~ (g, p(l)v)
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for g € G, l € L, and v € V; the bundle structure will now be described.

The bundle (1.2) can be given in terms of transition functions. Namely for
a suitably fine open cover {U} of G/L, there are fiber preserving C> maps
hy : p~(U) — U x L that specify the local product structure on G, and the
assumption is that, for © € U NV, hyy(z) = hy o halipw:(x) is a member
of L and depends in C*° fashion on z. The functions {p(hyy(z))} are the
transition functions for (1.3). These determine a vector bundle structure for
(1.3) by Steenrod [16, Theorem 1.3.2].

The space of C™ sections of (1.3) is denoted £(G x V). The group G acts
on G xr, V by left translation: go(g,v) = (gog,v) in the notation of (1.3b), and
this action induces an action of G on £(G x, V) by (g07)(g,v) = v(g5 g, v) for
Y € E(G x V). When V is complex, this construction yields a representation
of G (understood to be on a complex vector space) with a natural continuity
property: (go,7y) + go7 is continuous from G x (G xr V) to £(G xz V) if
E(G xr V) is given its usual C* topology.

Similarly

(1.4) p:GC—’G‘C/Q

is a holomorphic principal fiber bundle with structure group . In the above
situation if V' is complex and if p extends to a holomorphic homomorphism
p:Q — GL(V), then we can construct an associated vector bundle

(1.5a) pv : GE xc V = G%/Q
with bundle space given by
(1.5b) G xqV={(g%v)/~} with (¢,v)~ (45 n(g)).

The bundle (1.5) is a holomorphic vector bundle.
The inclusion G/L — G®/Q induces via pullback from (1.5a) a bundle map

(1.6) GxLV — G xqV.

In terms of (1.3b) and (1.5b), this map is given simply by (g,v) — (g,v). The
result is that the C'°° complex vector bundle G % V acquires the structure of
a holomorphic vector bundle. We can regard the space of holomorphic sections
O(G x1 V) of G x V as a vector subspace of £(G x V).

In applications it is important to be able to relax the assumptions on the
original p : L — GL(V) and still be able to use @ to impose the structure of a
holomorphic vector bundle on Gx V. See Tirao-Wolf [17] for this generalization.

To any section v of G xp V' we can associate a function ¢, : G — V by the
definition

(1.7a) Y(9L) = (9,%4(9)) € G xp V.
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Under this correspondence, C™ sections 7y go to C'°° functions ., and we obtain
an isomorphism

(1.7b)
E(GXLV)E{{P:GHV’(POICCMSSC ) }

p(gl) = p(1)"p(g) for le L, g€ G

The usual C* topology on £(G x V) corresponds to the C* topology on the
space of ¢’s.

The correspondence y + ¢, works locally as well, with sections over an open
set U C G/L corresponding to functions ¢ on the open subset p~(U) of G
transforming as in (1.7b). Again 7 of class C™ corresponds to ¢, of class C>.
Let £(U) be the space of C sections over U.

In the special case that G x, V admits the structure of a holomorphic vector
bundle because of (1.6) and (1.5), we can speak of the space of holomorphic
sections O(U) over an open set U C G/L. The first proposition tells how to use
@~ to decide whether ~ is holomorphic.

PROPOSITION 1. Suppose that p extends to a holomorphic homomorphism
p:Q — GL(V) and thereby makes G x, V into a holomorphic vector bundle.
Let U C G/L be open, let v be in E(U), and let ., be the corresponding function
from G to V' given by (1.7). Then v is holomorphic if and only if

(1.8) (Zey)(9) = —p(Z)(4(9))

for all g € p='(U) and Z € q, with Z acting on ¢., as a complex left-invariant
vector field.

PROOF. Suppose v is in £(U). We can regard U as open in G¢/Q and use
the formula

1(9°Q) = (45, 81(6%)) € G x@ V
to define ¢., on the open set p~'(U) C G. The function ¢, satisfies

(1.9a) @+(9%9) = p(g) "1 (@4(9%))
for g© € p~(U) and ¢q € Q, and therefore also
(1.9b) (Z25,)(9%) = —p(Z)($+(g))

for g¢ € p~'(U) and Z € q, with Z acting as a real left-invariant vector field.
We recover ¢, by restricting ¢, to G N p~'(U). By definition of the complex
structure, v is holomorphic if and only if ¢, is holomorphic. We are thus to
show that ¢, is holomorphic if and only if ¢., satisfies (1.8).

Suppose ¢ is holomorphic. The Cauchy-Riemann equations say that

(1.10) (iZ)@y = i(ZG,)
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for Z € g, with Z acting as a real left-invariant vector field. If Z is in q, write
Z =X +1Y with X and Y in gg. For g € G we have
—p(Z)(p4(9)) = —p(Z)($4(9))
= (Z¢4)(9) by (1.9b)
= (X@'y)(g) + (1Y) @, (9)
= (X¢,)(9) +i(Ypy)(g) by (1.10)
= (Xoy)(9) +i(Ye,)(9)
= (Zp4)(9)-

(1.11)

Thus ¢, satisfies (1.8).
Conversely suppose g, satisfies (1.8). Unwinding (1.11), we obtain

(éY)@.,(g) = z'(Y(‘B,F)(g)

whenever Z = X + 1Y is in q. Replacing Z by iZ, we obtain also

(iX)@y(9) = (X By)(9)-

Suitable linear combinations of these two equations give

(i1Z2)p4(9) =i(Z@y)(g) and  (iZ)py(9) = i(Z3,)(g)

for Z in q. Since q+q = g, (1.10) holds for all Z € g for the special case that
g is in p~(U) N G. A general member of p~*(U) in G® is of the form gg with
g €p Y U)NG and ¢ € Q. Taking Z in g and letting a dot indicate where a
vector field is to act, we have

(1Z)py (99 ) = (Ad(q)(12))py(g - 9)
= p(g) " ((Ad(q)(i2))p4(g")) by (1.92)
= p(q) " 'i(Ad(q)Z)p,(g") by the special case
= i(Ad(q)Z2)¢4(9 - q) by (1.9a)
= i(Z¢y)(99)-
Thus ¢ satisfies (1.10) everywhere on p~*(U) and is holomorphic.
REFERENCE. See Griffiths-Schmid [6, pp. 258-259)].
In typical applications to representation theory, p in the proposition is given
on L and extends holomorphically to LS. The extension to Q is taken to be
trivial on the unipotent radical of ). Equation (1.8) holds for Z € Iy for any

C™ section, and it extends to Z € [ by complex linearity. Thus (1.8) may be
replaced in this situation by the condition

(1.12) Zpy, =10 for all Z € u.

The special case p = 1 shows how to recognize holomorphic functions on open
subsets of G/L.
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1.3. Constructions with tangent bundle.

Let M be a complex manifold, and let p be in M. We denote by T,,(M) the
tangent space of M (considered as a C° manifold) at p, consisting of derivations
of the algebra of smooth germs at p, and we let T'(M) be the tangent bundle.
Also we denote by T¢ (M) the complex tangent space of M at p, consisting of
derivations of the algebra of holomorphic germs at p, and we let 7c(M) be the
corresponding complex tangent bundle. There is a canonical R isomorphism

(1.13a) T,(M) S T p(M)
given by
(1.13b) & (¢, where ((u+iv) = &(u) + i€(v).

Let J, be the member of GL(T,(M)) that corresponds under (1.13) to multipli-
cation by 7 in Tg ,(M). Then J = {J,} is a bundle map from T(M) to itself
whose square is —1.

The following proposition allows us to relate these considerations to associated
vector bundles.

PROPOSITION 2. There are canonical bundle isomorphisms
(1.14a) T(G/L) % G %1, (go/bo)
(1.14b) Te(GC/Q) = G xq (g/a)
with L and Q acting on go/ly and g/q, respectively, by Ad.
The inclusion G/L C G€/Q allows us to regard
(1.15) Tc(G/L) = GQ xq (9/9).

At any point p = gL of G /L, the left sides of (1.14a) and (1.15), namely T'(G/L)
and T¢(G/L), are R isomorphic via (1.13). It is easy to check that the cor-
responding isomorphism of the right sides of (1.14a) and (1.15) at p is given
by
(9, X + o) — (g, X +9q) forge G, X € go.
This result allows us to compute the effect of .J.
Complexifying (1.14a), we have

T(G/L)® =G xp, (go/lo)C,

and J acts in the fiber at each point. We let T(G/L)* and T(G/L)"! be the
submodules of T(G/L) corresponding to the respective eigenvalues i and —i of
J, so that

(1.16a) T(G/L)® = T(G/L)*° & T(G/L)*'.
We have

(1.16b) (go/l) =g/l=udu
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as L modules, and a little calculation shows that (1.16b) gives the decomposition
of the fibers under J corresponding to (1.16a). In other words

T(G/L)'° =G xpu

(1.16¢)
T(G/L)** = G xy u.

Taking duals in (1.16a) and forming alternating tensors, we have
(1.17) APIT*(G/L)® = G x, ((APT)* ® (A%u)*).

Via (1.17), members of E(AP4T*(G/L)) correspond to functions from G to
(APU)* ® (A%u)* transforming on the right under L by Ad* ® Ad*.

1.4. 0 operator.
The scalar 0 operator for a complex manifold M is an operator

0 : E(ANPAT*(M)C) — E(APIHLT*(M)E),

and it has 9> = 0. For the case that M = G/L, we can interpret 8 in terms of
(1.17).

Also we can construct a vector-valued version of 9. Namely let G x, V be a
holomorphic vector bundle as above. We introduce 9y = d ® 1 as an operator

By : E(NIT*(G/L)C ® (G x1, V)) — ENPTHIT*(G/L)C ® (G x1, V));

Oy is well defined because the transition functions for G x 1. V are holomorphic.
Also 8% = 0. Using (1.17) and dropping the subscript “V” on dy, we can
interpret dy as an operator

9: E(G x1, (AP0)* ® (AMu)* @ V) — E(G x1 (APT)* @ (AT u)* @ V).
In representation theory one works with the case p = 0. We define
CYG/L,V) = £(G x1, (Au)* @ V)).

As always, this is the representation space for a continuous representation of G.
The operator 9 is continuous and the kernel is closed. Whether or not the image
of 9 is closed, we can define the Dolbeault cohomology space H"9(G/L,V)
as

(1.18) HD‘Q(G/L, V) = ker(é]cu.q(g;,g‘v))/inlage(5|cn.q—1(G‘;L‘v)}.

Since d commutes with G, the vector space H9(G/L, V) carries a representation
of G, but possibly the topology is not Hausdorff.

The question whether the image of 9 is closed turns out to play a major role
in the theory. Sometimes, partly to get around this question, one works with
the subspace ker & Nker 8* of C%9(G/L, V), for a suitably defined “adjoint” 8",
in place of H%4(G/L,V). In addition to its technical simplicity, this subspace
has other advantages that will not be discussed here. Members of C%9(G/L,V)
in ker @ N ker 8* are said to be strongly harmonic.
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2. Bott-Borel-Weil Theorem

The Bott-Borel-Weil Theorem identifies the spaces H*9(G/L,V) of (1.18)
in the case that G is compact. In this situation 0 always has closed image,
and (1.18) can be computed alternatively as the representation on the strongly
harmonic forms in C®4(G/L,V). (See [19, Chapter V].)

In setting up the complex structure for the case that G is compact, there are
two possible ways of proceeding. One is to fix the complex structure (i.e., fix
the parabolic subgroup Q) and identify H%4(G/L, V) for all ¢ and V. The other
is to fix V, adapt the complex structure to V, and identify H*4(G/L.V) for
all g. The first way leads to a more general result when G is compact, but the
relationship between the two ways is more complicated when G is noncompact.

We begin with the most important special case, where L = T. For the first
approach, where the complex structure is fixed before V is given, the notation is

G = compact connected Lie group
T = maximal torus (= L)
A = {roots of (g, t)}
(2.1) A" = a positive system for A
9= % ZQE&"’ o
W = Weyl group of A
B = Borel subgroup built from negative roots (= Q).

The inclusion G/T < G®/B is onto since the compactness of G makes the
image closed, as well as open. Thus we write G/T = G¢/B. If A € t* is an
integral parameter and £y is the corresponding character of T, we abbreviate the
representation of T on C by &, as Cy. The role of V is played by C,.

THEOREM 3. Let A € t* be integral.

(a) If(A+6, a) =0 for some a € A, then H**(G/T, Cy) = 0 for all k.
(b) If (A+6, a) #0 for all a € A, let

(2.2) g=#{a e AT | (A+4, a) < 0}.
Choose w € W with w(A+6) dominant, and put p = w(A+6) — 6. Then
0 if k
2.3 wrGme={], "7
Y 3 T

where F* is a finite-dimensional irreducible representation of G with
highest weight p.

REFERENCES. For an exposition, see Baston-Eastwood [3, pp. 44-48]. The
original paper is Bott [4].

For the second approach, in which V is given and then the complex structure
is fixed, we let G, T, and A be as in (2.1). Let A\g € t* be a given nonsingular
parameter (Ag corresponds to A + & in Theorem 1), and suppose that Ag — &g
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is integral for the half sum &y of positive roots in some (or equivalently each)
positive system. Take
At ={ae A| (X, a) >0}
(2.4) =3 qen+ @
B built from AT instead of — AT,
Again we have G/T = G%/B.

COROLLARY 4. Let Mg € t* be nonsingular with Ao — by integral. With A™,
8, and B defined as in (2.4),

0 if k # dime(G/T)

HGJC G T‘ C = {
( / )50+-’5) F,\o—{su gfk = dlmC(G/T)

PROOF. If we put A = g — &, this becomes a special case of Theorem 3.

The Bott-Borel-Weil Theorem extends to the general G/L with G compact
and L the centralizer of a torus. We state the generalization of Theorem 3,
omitting the generalization of Corollary 4. The notation is

G = compact connected Lie group

T = a torus in G

L= Zg(T)

T extended to a maximal torus T in L

A = {roots of (g,t)}

A(I) = {roots of (1)} C A

AT chosen with A([) generated by simple roots
6= é' ZOE&*' o

W = Weyl group

(2 = built from [ and negative roots.

Then we have G/L = G©/Q.

THEOREM 5. Let V* be irreducible for L with highest weight \.

(a) If (A + 6, a) = 0 for some a € A, then H**(G/L, V*) = 0 for all k.

(b) If (A+ 6, a) #0 for all @ € A, define g as in (2.2), choose w € W so
that w(\ + 8) is dominant, and put p = w(A+6) — 6. Then

0 Uk#gq

0,k N
HY(G/L, V) {Fp e

3. Discrete series

For a unimodular group G, an irreducible unitary representation m is in the
discrete series if it is a direct summand of the right regular representation on
L%(G), or equivalently if some nonzero matrix coefficient (7 (g)vy,vz) is in L%(G).
(See Godement [5].)
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Let G be linear connected reductive, and let K be a maximal compact sub-
group. For G compact (so that K = G), every irreducible unitary representation
is in the discrete series. For G noncompact, the discrete series representations
were parametrized by Harish-Chandra. His work can be summarized in the
following two theorems.

THEOREM 6. G has discrete series if and only if rank G =rank K.

REFERENCES. For an exposition, see [8, p. 454]. The original paper is Harish-
Chandra [7].

The condition on ranks means that a maximal torus T in K is maximal abelian
in G. For simple groups that are not complex, the equal rank condition is usually
satisfied, but not always. For example, it is satisfied for SO.(p,q) if p or ¢ is
even, for SU(p, q) and Sp(p,q) always, and for Sp(n,R). It is not satisfied for
SL(n,R) for n > 3.

Now let us assume that the equal rank condition is satisfied. Fix a maximal
torus 7" in K. Let Ag and A be the respective root systems of & and g with
respect to t, and let Wg and Wg be their Weyl groups. The members of Ag
are called compact, and the other members of A are called noncompact. Fix
a positive system A™ for A, and let § be half the sum of the members of A*.

THEOREM 7. Assume rank G = rank K. Suppose Ao € t* is nonsingular and
Ao —9 is integral. Then there exists a discrete series representation wy, of G such
that the global character of my, is given on the conjugates of T by the function

ZwEWK (sgn w)ewro

ZwEW(; (sgn w)e®

Every discrete series is obtained this way, and two such are equivalent if and
only if their parameters Ay are conjugate under Wiy .

(3.1) E

REFERENCES. For an exposition, see [8, pp. 310, 436, 454]. The original
paper is Harish-Chandra [7].

REMARKS. For G compact, Ag is equal to the sum of the highest weight and
0 when )g is dominant; compare with Ao in Corollary 4. Also for G compact,
(3.1) reduces to the Weyl Character Formula. For any G, if § is not integral, the
numerator and denominator of (3.1) are not separately well defined. But we can
replace e*¢ and e"? by e?*0=8 and ewé-4, respectively, and then the numerator
and denominator are well defined.

Harish-Chandra’s proof of Theorem 7 does not give an explicit realization
of each discrete series. Instead it produces a discrete series representation for
each parameter by finding a subspace of L?(G) with suitable properties. Soon
after Harish-Chandra’s work became known, Kostant [11] and Langlands [12]
independently conjectured generalizations of the Bott-Borel-Weil Theorem that
would realize all discrete series. Over a period of years beginnning with his
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thesis, Schmid settled these conjectures. The particular conjecture by Lang-
lands avoids some analytic problems by replacing H%*(G/T,C,) by the space
HO*(G/T,C,) of strongly harmonic square integrable forms. One analytic prob-
lem that is avoided in this way is whether the image of 0 is closed; another is
how to incorporate square integrability into the hypothesis. The notation is

rank G = rank K

T = maximal torus in K, hence maximal in G
A = {roots of (g, t)}

A* = a positive system for A

.l
6 =3 Laca+ @
B = Borel subgroup built from negative roots.

(3.2)

THEOREM 8. Let A € t* be inlegral.

(a) If (A +4, a) =0 for some a € A, then HO*(G/T, Cy) =0 for all k.

(b) If (A +6, a) # 0 for all a € A, let
(33) q=#{a € A" |a is compact and (A + 6, a) < 0}
; + #{a € A" | @ is noncompact and (A + 6, a) > 0}.

Then

0 if k #£q

TA+6 3fk =y

where w515 s the discrete series representation of G with Harish- Chandra
parameter \.

HOR(G/T, Cy) = {

REFERENCE. Schmid [15].

The particular conjecture by Kostant works with the actual Dolbeault coho-
mology space H*¥(G/T,C,). In this case one has to arrange that the nonzero
cohomology appears in the highest possible degree. The result is then a gener-
alization of Corollary 4.

Thus let A\g € t* be a given nonsingular parameter, and suppose that Ag — &g
is integral for the half sum of positive roots in some positive system. Take

A+ ={aeA|(X,a)> 0}

(3.4 6=} Tacare
B built from AT,

THEOREM 9. Let Ay € t* be nonsingular with A\g — 8 integral. With A*, 6,
and B defined as in (3.4),
(a) H**(G/T, Cxy45) =0 if k # dimc(K/T);
(b) HY*(G/T, Cx,+s) is a Frechet space if k = dimg(K/T) (i.e., @ has closed
image in CO*(G T, Cy,+5)), and the underlying space of K finite vectors
of H**(G/T, Cy,+s) is equivalent with the space of K finite vectors of

TAg+6-
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REFRENCES. Schmid proved this result in [13], except for the identification of
Txq+6, under the additional assumption that Ag is very nonsingular. He gave the
identification with 75,46 in [14], with the same additional assumption. Aguilar-
Rodriguez [1] extended the theorem to the form stated here.

4. Schmid’s Penrose transform

In his 1967 thesis, Schmid [13] introduced an operator for passing from the
top-degree cohomology space in Theorem 9 to the space of sections of a complex
vector bundle over G/ K, and Wells and Wolf [20] developed the operator further.
In fact, the operator readily generalizes to the setting in §1.1, and there it played
an important role in [2]. When G /K is complex, the generalized operator reduces
to the G equivariant Penrose transform as described in Baston-Eastwood [3].

The setting for this section will be like the one in Corollary 4 or Theorem 9,
except that we allow a general L, possibly noncompact, in place of T. That is,
we shall in effect adapt the positive system A™ to our given parameter so that
the cohomology of interest occurs in the maximum possible degree.

In this exposition we shall assume that rank G = rank K in order to keep
matters simple. The notation is

G = linear connected reductive Lie group
rank G = rank K
T = a torus in G
(4.1) L =7Zg(T)
T extended to a maximal torus T in L
A = {roots of (g,t)}
A(T) = {roots of (I,§)} C A

Instead of fixing the parameter of a representation of L and then introducing
AT, we shall fix AT and say what parameters are allowed. Thus we use the
following additional notation:

AT chosen with A(I) generated by simple roots
@ built from [ and positive roots
g=I[du

(4.2) A(u) = {roots contributing to u}
A(unp) = {noncompact roots contributing to u}
(5(11) = % ZHE&(U) et
Sunp) =3 2 acA(unp) &

We work with an integral parameter A € t* that satisfies
(A,a)>0 forallae A"
(\a)=0 for all @ € A(I).

(4.3)

Then A is the (unique) weight of a one-dimensional representation &£, of L, and
we write C, for the action of £, on C. For such a parameter A, the degree of
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interest for cohomology is
s = dimg(K/(L N K)).

The complex manifold G/L € G%/Q has s-dimensional compact complex
submanifolds, namely {g - K/(L N K)}, and the operator of interest will come
from a kind of integration of (0, s) forms over these submanifolds.

First we formulate the operator abstractly. It will help to identify sections
v and functions @, under the isomorphism (1.7). Using the Bott-Borel-Weil
Theorem, we have an isomorphism

(4.4) HD‘E(K/(K nL), CA+26(u}) o FA+26(ur‘rp)’

the object on the right being a K representation with the indicated highest
weight. (This instance of the theorem is a specialization of Theorem 5 in the
same way that Corollary 4 is a specialization of Theorem 3.) Noting that the
space of top-degree forms C%*(K /(K N L), -) consists only of cocycles, let

(4.5) P : C%*(K/(K N L), Casas)) — F>+2600)
(u)

be the map implementing (4.4). Let R : K/(LN K) — G/L be inclusion, let R*
be the pullback to (0, s) forms, and let

(4.62) P : CO%(G/L, Cayastw)) — E(G X FAH2600))
be given by
(4.6b) Pf(z) = P(R(f(z)))-

More concretely let {¢;} be an orthonormal basis of FA*+26(47) and let ¢ be
a nonzero highest weight vector. Fix a nonzero wy € A*(uN€)*, and let

pi = (P20 k)¢, 6iJwo.

This is in C*°(K/(L N K), C_x_25(s)), and its product with a member h of
C%*(K/(L N K), Cxy26(u)) is a volume form on K/(L N K). For such an h we

can therefore define
P(h) = /
( Z( K/(LNK)

h‘Pi)‘i’r

This version of P coincides with the one in (4.5), and then P is defined in terms
of P by (4.6).

PROPOSITION 10. The operator P defined by (4.6) descends to a well defined
operator

P HU’S(G/L, CA+26{u}) — S(G XK F.\+26(uﬁp) )

REFERENCES. Schmid [13], Wells-Wolf [20], and Barchini-Knapp-Zierau
2, §10].
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5. Zuckerman functors

Zuckerman functors provide an algebraic analog of the analytic construction
in §1. They were introduced by Zuckerman [21] in a series of lectures and were
developed further by Vogan [18]. Their full theory requires relating them to ring
theory, and this step was carried out initially in [10]; for more detail, see [9].
For this section we use the following notation:

G = linear connected reductive Lie group
K = a maximal compact subgroup
T = a torus in G

(5.1) L = Zg(T)
Q = parabolic subgroup in G® as in §1
g=I&u

(o, V) = smooth representation of L.

The space V can be infinite-dimensional, but the reader may wish to regard it as
finite-dimensional for purposes of motivation. The representation (o, V) gives us
a representation of [, and we extend this to a representation of q by making u act
as 0. It will be helpful for purposes of motivation to think of the representation
of g on V as coming from a holomorphic representation of  on V, but this
assumption can be avoided.

In the analytic setting, 0 is an operator

(5.2) 9:E(G xp (A™u)* ® V) — E(G x1, (A™1u)* ® V).

Using the isomorphism (1.7), we regard d as an operator with domain the space
of smooth functions ¢ from G into (A™u)* ® V satisfying

(5.3) plgl) = (Ad() ' ®a())p(g) forgeG,lelL

and with range the corresponding space of functions into (A™+'u)* ®@ V.

In the algebraic analog we try to construct only the K finite vectors of H%™,
thus obtaining a (g, K) module. (Recall that a {g, K) module consists of com-
patible representations of g and K on the same vector space with every vector
K finite. Let C(g, K') be the category of all (g, K) modules.)

The idea is to work with the Taylor coefficients at ¢ = 1 of the function ¢ in
(5.3), regarding each coefficient as attached to a left-invariant complex derivative
(of some order) of ¢ at ¢ = 1. Thus the idea of passing to Taylor coeflicients
gives us a linear map

¢ = ¢* € Home (U(g), (A™u)* ® V).
The transformation law (5.3) forces

(5.4) ©¥* € Hom(U(g), (A"™u)* ® V),
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where [ acts on U(g) on the right. If we assume that ¢ is K finite, then the action
of LN K on the left of ¢ gives an action of LN K on ¢* by Hom(Ad, Ad* ® o),
and ¥ will be LN K finite. Thus ¢# lies in a subspace that we denote

(5.5) Hom(U(g), (A™u)* @ V)rnk

to indicate the L N K finiteness. On (5.5) we have a representation of g (via
the action of U(g) on the left) and the representation of L N K, and (5.5) is a
(g. L N K) module.

The passage from the space of ¢’s as in (5.3) to the space of ¥’s in (5.5)
loses information because

(a) formal power series do not have to converge and
(b) convergent power series do not have to globalize.

The modification that gets around the difficulties in (a) and (b) is to define away
the problem. Let I' be the functor

[':C(g, LNK) — C(g, K)
given by

I'(V) = sum of all € invariant subspaces of V for which
the action of £ globalizes to K,

L(%) = ¥|rv) if ¢ € Hom(V, W).
The functor I is covariant and left exact and is called the Zuckerman functor.
IDEA #1. Impose O between spaces
(5.6) T'(Homy(U(g), (A™u)* @ V)rnk),
and take the kernel/image as a (g, K) module analog of H*™(G/L,V).
Now we bring in homological algebra. We assume temporarily that L C K.

Then we make the following observations:

1) For the case m = 0 at least when V is finite-dimensional, the condition
that ¥ come from a section v with 8y = 0 is that -y be holomorphie, hence that
Zp =0 for all Z € u, by (1.12). Thus the kernel/image space for m = 0 should
be regarded as

(5.7) I'(Homg (U(g), V) Lrx)-

2) Identification of (5.7) as the space of interest for m = 0 suggests looking
at the sequence

0 — Homq(U(g), V)Laxg — Hom(U(g), (Au)* & V)1nk

(5-8) Loy ]
— Homy(U(g), (AN'u)* @ V)paxg — +--
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in the category C(g,L N K). In fact, (5.8) is an injective resolution of
Homg(U(g),V)rak in the category C(g,L N K). The maps will be made ex-
plicit before Theorem 11 below, and a proof that (5.8) is an injective resolution
will be given in that theorem.

3) The category C(g, L N K) has enough injectives. Combining (2) and Idea
#1, we see that the m'" space of interest, namely the m*" kernel/image of (5.6),
is

(5.9) '™ (Homq(U(g), V)Lnk),

where I'™ is the m'™" right derived functor of I'. (In fact, (5.9) is defined as the
m*™ cohomology of the complex obtained by applying T' to (5.8), since (5.8) is
an injective resolution.)

4) The space (5.9) gives the underlying (g, K) module of K finite vectors of
HY™(G/L,V) for the cases of compact groups and the discrete series. These
results are due essentially to Zuckerman [21] and are proved in Vogan [18]. See
also [9].

These observations lead us to the second crucial idea.

IDEA #2. Even when L is not compact, define the m'® space of interest to be
(5.9).

In short, the Zuckerman construction is to pass from V in C(I[, L N K) first
to Homg(U(g),V)Lnk in C(g,L N K) and then to '™ (Homy(U(g), V)Lnk) in
C(g,K).

Finally let us return to the details of observation (2) above. First we need a
formula for the differential in (5.8). From §1.4 we have dy = O ® 1, and thus
it is enough to understand 9 for V = C. A formula for d on a function ¢ as in
(5.3) (but with V' = C) is given in Griffiths-Schmid [6, (1.6)]. It works with an
expansion

@)= Y. fuin(@wy A Awi,
1< <im

where the w; are left-invariant complex 1-forms obtained from a dual basis to a
basis {Y;} of u. Let us regard the corresponding ¢# as in Hom;(U(g) ® A™u, C).
IfY;,,...,Y;, have increasing indices, then

lp#(u® }/}1 Moo A Y?m) — uf.?l}m(]'}"

where u acts by left-invariant complex differentiation. A little computation with
the formula for @ in [6] shows that the element J¢ corresponds to the element
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(0p)# given on elements of U(g) and monomials in A™!u by

(Op)*(u® X1 A A Xt1)
m+1
= z (—l)chp#(uX,- ® X1 NN iﬁ Az /‘{m+1)
=1

¢ 1
+ Z (=1 o™ (u® [Xr, Xs] A X1 A= A Xy Donis NXy s KXo i e
T8

(5.10)

The formula for general V looks the same; the only difference is that the terms
in (5.10) have values in V.

Formula (5.10) defines the maps in (5.8) except for the map going out from
Homg(U(g), V) nk, which we take to be the obvious inclusion.

THEOREM 11. Under the assumption that L C K, (5.8) is an injective reso-
lution of Homq(U(g),V)Lnk-

PROOF. In the notation of [9], we have
(5.11) Homy(U(g), (A™u)* ® V)1nk = IPm (A™u)* @ V).

Since L is compact, (A™u)* ® V is injective in C([,L N K). The functor
I ?r{‘r?fi( carries injectives to injectives, and therefore the members of (5.8) af-

ter Hom, (U(g), V)Lnk are injective in C(g, L N K).
For exactness we note that exactness at Homg(U(g),V)rnk is trivial since
the map out is defined as an inclusion. For exactness at

(5.12) Homy(U(g), (A°w)* @ V)rnk = Homy(U(g), V)Lnk,
we see from (5.10) that the map out has
(0p)*(u® X) = o™ (uX) forueU(g), X eu.

This is 0 for all « and X if and only if o* respects the u action, hence is in
Homg(U(g), V) Lnk. Hence we have exactness at (5.12).

For exactness at the other members of (5.8), we rewrite the right side of (5.11)
as

= 1900k (Mg (A™u)* ® V)
= 910K (Homy(U(q), (A™)* ® V)ink).
Now I:”f,[,"g is exact, and hence it is enough to prove that
-« — Hom(U(q), (A™u)* ® V)rnx — -~

is exact if the differentials are given as in (5.10). Since passage to L N K finite
vectors is exact in such a Hom, it is enough to prove that

(5.13) oo — Homy(U(q), (A™u)* ® V) — - --



18

is

A. W. KNAPP

exact. But

Hom(U(q), (A™u)* @ V) = Hom(U (1) ® U(I), (A"™u)* @ V)
= Homy(U(I), Homg (U (u), (A™u)* ®@ V))
= Homge(U(u), (A™u)* @ V)
= Homg(U(u) ® A™u, V)
= Homg (X, V),

where X, is the Koszul (projective) resolution of C in C(u,1). (See [9, Theorem
4.6].) It is easy to check that the differentials for (5.13) are the ones induced from
the differentials for X, and hence (5.13) is exact. This completes the proof.

10.

11,

13.

14.
15.
16.
17.

18.
19.

20.

REFERENCES

- R. Aguilar-Rodriguez, Connections between representations of Lie groups and sheaf coho-
mology, Ph.D. dissertation, Harvard University, 1987.

. L. Barchini, A. W. Knapp, and R. Zierau, Intertwining operators into Dolbeault cohomology
representations, J. Func. Anal. 107 (1992), 302-341.

- R. J. Baston and M. G. Eastwood, The Penrose Transform: Its Interaction with Repre-
sentation Theory, Oxford University Press, Oxford, 1989.

- R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.

- R. Godement, Sur les relations d’orthogonalité de V. Bargmann, 1 and 11, C. R. Acad.
Sci. Paris 225 (1947), 521-523 and 657-659.

- P. Griffiths and W. Schmid, Locally homogeneous compler manifolds, Acta Math. 123

(1969), 253-302.
. Harish-Chandra, Discrete series for semisimple Lie groups 11, Acta Math. 116 (1966),
1-111.
- A. W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on
Ezamples, Princeton University Press, Princeton, 1986.
. Lie Groups, Lie Algebras, and Cohomology, Princeton University Press, Prince-
ton, 1988.
A. W. Knapp and D. A. Vogan, Duality theorems in relative Lie algebra cohomology,
duplicated notes, Cornell University and Massachusetts Institute of Technology, 1986.
B. Kostant, Orbits, symplectic structures, and representation theory, Proceedings of the
U.S.-Japan Seminar on Differential Geometry, Kyoto, 1965.
- R. P. Langlands, Dimension of spaces of automorphic forms, Algebraic Groups and Dis-
continuous Subgroups, Proc. Symp. in Pure Math. 9, American Mathematical Society,
Providence, 1966, pp. 253-257.
W. Schmid, Homogeneous comples manifolds and representations of semisimple Lie
groups, Ph.D. dissertation, University of California, Berkeley, 1967, Representation The-
ory and Harmonic Analysis on Semisimple Lie Groups, Math. Surveys and Monographs,
American Mathematical Society, Providence, 1989, pp. 223-286.
. On the realization of the discrete series of a semisimple Lie group, Rice University
Studies, Vol. 56, No. 2, 1970, pp. 99-108.
, L?-cohomology and the discrete series, Ann. of Math. 103 (1976), 375-394.
N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, 1951.
J. A. Tirao and J. A. Wolf, Homaogeneous holomorphic vector bundles, Indiana U. Math.
J. 20 (1970), 15-31.
D. A. Vogan, Representations of Real Reductive Lie Groups, Birkhiuser, Boston, 1981.
R. O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York,
1980.
R. O. Wells and J. A. Wolf, Poincaré series and automorphic cohomology on flag domains,
Ann. of Math. 105 (1977), 397-448.




INTRODUCTION TO REPRESENTATIONS IN ANALYTIC COHOMOLOGY 19

21. G. J. Zuckerman, Construction of representations via derived functors, lectures, Institute
for Advanced Study, 1978.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, STONY Brook,
NeEw YORK 11794-3651, USA

E-mail address: aknapp@ccmail.sunysb.edu



