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The purpose of this paper is to discuss positivity of (p,p) forms, to
generalize Wirtinger's Ineguality (2], and to indicate a relationship among
the generalization, the results of (7], [4], and [5], and the Hodge Conjec-
ture. In the first section three notions of positivity (weak, regular, and
strong) for (p,p) forms over a complex vector space are examined, and a
canonical form for positive (p,p) forms is described. The canonical form
implies one of the two generalizations of Wirtinger's Ineguality that we ob-
tain, and it allows us to answer negatively two questions of Lelong [101]
concerning weak positivity. In the second section a conjecture (I} concern-
ing positive Plateau problems on a complex projective manifold is stated.
This conjecture is equivalent to another conjecture (I1) proposing a suffi-
cient condition for a cohomology class to be determined by a rational posi-
tive analytic cycle. The conjecture (II) easily implies the Hodge Conjec -
ture (III).

It is our pleasure to thank Bob Kujala, John Polking, Bernie Shiffman,
and Al Vitter for helpful conversations, and David Mumford for providing us
with an example of a strongly positive integral class which does not contain

a positive analytic cycle.

1. POSITIVE (p,p) FORMS

Suppose E is a complex vector space of complex dimension n with A
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the operation of multiplication by V=1. sSee Weil [13] for a more complete
discussion of the complex exterior algebra described below. Let K;F de-
note the space of exterior r-vectors over E considered as a real vector
space of real dimension 2n, and let ﬁ;E denote the complexified space
of exterior r-wvectors over E or, equivalently, the space of exterior
r-vectors over EE , the complexification of E. The notion of conjuga-
tion on Ec extends to A;E and will be denoted by bar. The operation

1.0E

i extends to AiE with eigenvalues +i. Let A dencte the eigen—

space corresponding te i and AO'lE the eigenspace corresponding to -i.
Then AiE = hl'oE ® ho'lE. This decomposition induces a natural direct
sum decomposition NE=13 AP'qE, where AF'?  denotes the space of

r-vectors of type (p,q) and the summation extends over all (p,q) where
1,0
E

p+g=r. The map of E into E¢ followed by projection on A is

a natural complex isomorphism.
Let E' denote the space of real-valued linear functionals on E con-
sidered as a real vector space, and let E* denote the space of complex

linear functionals on the complex space E. The operation on E' dual to
5 5 1,0

the operation Z on E will also be denoted <. Note that E* = A"""E'.

1'0E'

It is customary to identify E' with A by taking the projection on

nl'OE' of twice the natural injection of E' into its complexification
Eé , since this identification agrees with the usual isomorphism E' & E*
defined by sending F(x) into F(x) - iF({ix). The natural isomorphism

r\I;R'PE' = u\ﬁépm' will be used below.

Let I be a multi-index, say I = (il,...,ip}. 1f {el.u..} isl a
set in E* = Al'QE', let s e, A...he, . 1f {el,...,en} is a
1

basis for E* = Al’OE', then D
I =d < ; .
{fe" Ae: I and J strictly increasing, |II = P |J| = g}
is a basis for AP'9E'. Therefore each & in AP'IE! may be uniquely
expressed as Z! alJeI A ;J with the coefficients in €, with I' de-
noting summation over strictly increasing multi-indices, and with |[I| =p
: - - - J
and |J] = g. In such a basis, Lo="T" aIJe Al .
Let o, = 2™®  if k is even and o, = i27¥  if k is odd. For
For e ,...,e in E* = Al'OE' and I= (1,...,k), we have
1 = g — 1 = I —T
) A s = = A 5
S e, A e, Ne daiAs e A =08 e
;i k,0 : = .
if & and n are in A E, then the conjugate of @& AN is

k
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o N A T

A form A in A;E' is said to be real if A = A or equivalently if
A is in n;E‘. Let Herm E be the real vector space of complex-valued
functions  H(u,v) on E x E that are i-linear in u and satisfy
m = H(wv,u). Passage from H to minus its imaginary part gives us a

real-linear isomorphism

1
Herm E —+ .“lm'lE', (1.1)
¢ 4 1,0
expressed in terms of a basis {el,...,an} for E* = A E' as
Ia, e 8e, ZLa,.e Ae, with the matrix {a..) Hermitian. In ad-
ij i 3] 2 1331 J 1]

dition, we have a real-linear isomorphism
n;'PE' + germ (AP* %E) (1.2)

, b ’ e f -1 =
given by sending A into the Hermitian form H with H(E,n) = A{cp EAM).

This map is given in terms of a basis {el,...,en] for E* = :\l'OE'
and its dual basis [gl....,gn} for il by sending an element
=l ' :
A=3I'a oe AE of APPgr  into B e Herm(AP'®E) defined by
I J =
El L} = Al = 5 3 = . 3
H{ ;Ig Pt an ) £ alIJcInJ Combining (1.2) and (1.1), we obtain
a real-linear isomorphism
B.D_, 1,2 PO,
Am E' > AR (i i Sy WL F ).
An exterior (p,0) form that can be expressed as eI with e, '”"Ei
1 P
in E* = Al'OE' is called decomposable. An exterior (p,p} form will

be called elementary if it can be expressed as ci A T with ¢ in T

nP;O

and £ in E'; and it will be called decomposable if in addition T

can be chosen decomposable.
2n n,n

A form A e A"E' = AT"UE'  is said to be a positive volume form if
A= ciel A Eln...n ien A En , with e = 0: This notion of positive vol-
ume form is of course independent of the choice of basis {el,...,en}.

Definition 1.1: A form A& e A°'PE'  is weakly positive if

A A o'keI A ;I is a positive volume form for all
el, ey € A

P+ k=n.

E! = E* with I=(l,...,k) and (1.4)
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A form A e AP'PE'  is positive if
AAOLA T is a positive volume form for all ¢ ¢ 15O
with p + k = n. (R
PrPisy - i .
A form A e AN'7E is strongly positive if
A can be expressed as L 0 . A 7. with each . € RP'OE'
REYe j 1.6)

decomposable.

Let WPP, Pp and SPp denote the cones in A?R’PE' defined by (1.4),

(1.5), and (1.6) respectively. If ¢ is any element of AP’OE', then

P e ey
to the positive wolume form anc AnAT AN for an arbitrary n in

Ak'DE' .

3

ap; A E is in PP. since gC A E A Oyl A _n- can be checked to be egqual

Therefore SPP c Pp = WPP s pi=l or n- 1, then

: A -1,0 A
P _ wp®  since every form in A O5r  or A" Y% is decomposable.

An immediate consequence of Theorem 1.2 below (for p=1 and p=n-1)
is that SPP = Pp = W‘PP for | Fpl= T or T =15

The condition (1.4) may be eguivalently stated as follows: If L: El+E2
is a complex linear map let  L*: !\p'qu - a'\p'qu denote the usual pull-

back of (p,q) forms from Ez to El.

L*A is a positive volume form for all complex linear maps
.4
L:-F = E with dim¢F = p. o )

To check that (1.4) and (1.4)' are equivalent consider the case where F

is a subspace of E and L is inclusion. Let [el,...,en] be a basis

for Al'DE' = E* with {el....,ek} vanishing on F. Then
I ~T I —=I 3

L*A A cke Ae =AA oke A e where T o= (daaaek)s and L*A is a

= is a positive vol-

positive volume form if and only if L*3 A ckeI Ae
ume form.

A weakly positive (p,p) form A is said to be non-degenerate or def-
inite if A A dkeI A EI in (1.4) is greater than ZEero for all
{el,...,ek} linearly independent. Similarly a positive (p,p) form &
is said to be non-degenerate or difznite if AAo L AL din (1.5) is

Op,

greater than zero for all Crell L # 0. Note that the set of

(weakly) positive (p,p) forms that are non-degenerate is the interior of
weF) pF.
Suppose E is furnished with a Hermitian inner product. In terms of

¢ o r ; .
the extension of this inner product to AG:E', we obtain a canonical form
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for real (p,p) forms and for positive (p,p) forms. This theorem is well
known for p=1 but we include the proof for the sake of completeness.
One can easily show that for [ in hp'OE‘.', 1;|2 = 2P if and only if
cCAcg| = 1.

lo 2 Tl

Theorem 1.2: Let N = (n 2 If a is in ;'\?R'PE', there exist real
numbers {Al....,AN} and a ‘set [gl....,gN} of mutually orthogonal
N
veetors with |-:.|2 =P in WP % such that A=Y AOL.AC..
J =1 1P ]

The numbers A. and their multiplicities are unique, and the subspaces
spanned by {;j: '\j = A} are unique. In addition, A <is positive <f
and only if each Aj i8 2 0.

Proof (for p = 1): Choose a basis {el,n.,en} of E* = A E'
2 i e
with <e,,e,>=0 for i#3 and |e.|“=2. Then [Fe ne|=1
s i | ils et 7]
Write A = Lu & ey e with (a,.) Hermitian. Diagonalize (a,.)
2 ij i J b5y | 1]

by a unitary matrix and change the e's accordingly. The existence of the

decomposition follows. Aany different choice of orthogonal basis [ei} with

le;1?
1

(b_j} that is conjugate to (aij) by a unitary matrix. Consequently the
i

= 2 (in particular, a second choice for the Ej) leads to a matrix

uniqueness follows from standard linear algebra. From (1.4') A is weakly

positive if and only if (aij) is positive semidefinite and hence if and

only if all '\j are = 0. Q.E.D.
; i = . 1,0 . o .

Remark: Since 5 L AL with o B! is positive, this argu-

ment proves that weakly positive implies positive for p =1 (and for

p=n-1 by duality).

' 1, .
Proof (for general p): Let L: AB PRt & nml(Ap'DE'J be the isomor-
phism of (1.3). If A is in J’LPI’R'P b B can be expanded in terms of a
I i 3
basis as a. L' aIJe A ?] with (aIJJ Hermitian. Then L(A) is posi-

tive (weakly positive = positive for L(A)) if and only if {aIJ] is pos-

itive semidefinite, and ( ) 1is positive semidefinite if and only if A

a
1J
is positive. Hence the result for general p follows from the case p =1.

OEESDh

Remark: The notion of positivity does not depend upon the Hermitian in-

ner product on E, and hence the theorem shows that all the Aj are 20
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for one inner product if and only if they are 2 0 for any other inner
product. More generally the numbers of J\j that are respectively > 0,
<0, and =0 are independent of the inner product.

The Hermitian inner product on E induces an operator on th' usually
denoted *. If K is a cone in J'\I?I';pE the dual cone KO is by defi-
nition the set of all B e AI;R'kE' (p + k = n) such that A A B is a

positive volume form for all A e K.

Corollary 1l.3:

ta) If A and B are positive thenm A A B 18 positive.

(b) If A is positive thenm =»*A 18 positive.

(c) If A 1is positive and L: F + E then L*a is positive.

0
(d) The dual cone (pF) equals P with P +k=

Proof: (a) By Theorem 1.2 it suffices to check the result for

A:csn.r\-_ and B=anAH_ Then A!\B=o;r\€!\una’\;:
P . WS g9 P q

=g T NENUASE AT which is a positive volume form. Similarly (b) and

(c) need only be checked for A= cp; A z with L e AP'OE' because

of Theorem 1.2; hence (b) and (c) follow. Part (d) is an immediate conse-

quence of Theorem 1.2. Q.E.D.
Corollary 1.4: The set of extreme rays in the cone of positive (p,p)
forms is the set of rays determined by positive elementary (p,p) forms
(i.e., {opc AZ: e :'\p'oE'})-

n i i
Proof: First consider the case =% Suppose Z % 5 ej
determines an extreme ray in P]' < n;R'lE'. Then obvmusly all J\] must
vanish but one. Hence each extreme ray is determined by a decomposable

i == 1,

vector %e A e for some e in E* = A OE'. Conversely, each decom
posable wvector % e A e determines an extreme ray in Pl. Suppose

f o 1
%e A e is expressed as the sum of two positive elements a,B € P°. Then

@ and B must be dependent since otherwise the rank of eAe=no+B

.
2
would be at least 2. This proves Corollary 1.4 for p =1 The case
P =1 easily follows from the case p=1 by using the isomorphism

(1.3). Q.E.D.

In fact the cone P of positive (p,p) forms is nicely stratified

with strata Sj equal to the set of A in P with exactly j positive
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eigenvalues. The lowest stratum Sl, which is the set of extreme rays, is
G(k,n,T) % :|R+, where G(k,n,C) denotes the Grassmannian of complex
k-planes in complex n-space.

Our notion of weak positivity coincides with the notion of positivity
occurring in Lelong [10]. Lelong ([10], p. 60) asked two guestiens, which
translate into (A) and (B) below:

() Is every weakly positive (p,p) form strongly positive?
(8) If B is in "i{p‘:' and B is in n‘}R'qz- and both are weakly

positive, i& A A B weakly positive?

Obviously (A) implies (B). In addition (B) for g =k =n-p implies
(A) as follows. Since SPp is the cone on the convex hull of the compact
set G(kn,@ in A2PE', it is a closed cone. By definition
(s2P)°= we*  and hence sPP = we™)°. mhat is,

the cones spP  and ka are dual. (17

If (B) is true for g=k=n-p then weP « (WPk)D. Since {wpk)oz
= spP this proves that (B) implies (A). Now there is a variety of ways
of showing (A) and (B) are false for S pis N = 2

For example if (A) were true then certainly the notions of positive and
strongly positive would have to agree. However the next result shows that
if T e !\P'GE' is not decomposable, then although crpc AT is posi-
tive it is not strongly positive. (If 22 P S n=2 then there exists
L e P % ot decomposable. )

Proposition 1.5: An elementary vector A = 0 L A T with T e np’oE'
ig strongly positive if and only if A is decomposable (i.e., t 1is a de-
composable (p,0) form).

Proof: If A is strongly positive, then by Theorem 1.2 A = Zopi;j ALE

= J
with each Cj a decomposable (p,0) form. Since A= op; AL deter-
mines an extreme ray in Pp c Ai];'pE by Corollary 1.4, it must be a pos-
itive multiple of 085 A Ej for some j. This implies ¢ is a multi-
ple of cj and hence decomposable. Q.E.D.

3 ! : 4
In particular, if {El'ez'eii'ed.} is a basis Soran & then
= A + e Ae. +te Ae i itd
A (el e, e3 A 94) A (el A ez + e, A e.q) is a positive (2,2) form

4
on € which cannot be expressed as the sum of positive decomposable (2,2)
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forms, since e, Ae_+ e Ae is not a decomposable (2,0) £form.

Corollary 1.6: For 2<ps<n-2 the inelusions spY c pP < wpP

are proper.

: k k
Proof: SPP # Pp from above, and pF # WPP by duality since P # SP

with P+ k='n. Q.E.D.

To explicitly construct a weakly positive (p,p) form which is not pos-

o k; 0 *  —

itive, suppose El e \"TE is not decomposable and |ck§l A Cll = 1.
Extend ";I to an orthogonal basis {;;I, o .,;;} for Ak'OE' - Let
{;l,...,gﬂ} denote the dual basis for AP'OE', and set

N - .
A, = ]Z;? Ajcspi;j A cj with each J\j > 0. Let B = Al - Ecpcl ATy
with € > 0 to be chosen. AJ. A gn r\*n is z (J’|r for all ne nk'oE
and equal to zero if and only if n= c;l. Since (;l is not decomposa-

ble, Al A ukn A r_f is >0 for each n e a’\k'OE' with n decompo-

sable and nonzero. Choose £ >0 strictly less than the minimum of

Al A okn A ;1— over all decomposable n with |0kn A ﬂ = 1. Then A

is weakly positive (in fact non-degenerate) since

A A_— i n
A, A Gniam ecrn(clnn}n(;lf\n)>0

e
for all decomposable nonzero n. Since A A oki;l A :‘l equals -t times

a positive volume form, A cannot be strongly positive. The above is just

a matter of finding a hyperplane (linear functional) through zero in Ak'kE'

*

—
separating ckcl A Cl and SPk. Also note that although A is in weP
* —
and B = ck;l A ;1 is in SPk (with k+p=mn), the product A A B
is a negative volume form (cf. (B) and Corollary 1.3 (a); ol course

A,B € SP imply A A B € SP).

I£ A=o A T with ¢ decomposable, say g =e Anuhe with

{el, e ,en} an orthogonal basis for E* = .I’L]"OB' and |ej | 2 - 2,
then *A = 0. N A F where n=e A...he . Therefore:
k p+l n
: c S 4
* 1is an isomorphism of SPP onto 5SP and hence
by duality an isomorphism of we? onto WPk (where (1.8)

p+k=n.
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Also by (1.4') and an elementary calculation

part (c) of Corocllary 1.3 remains valid with P
(1.9)

replaced by WP or SP.
The statements (1.7), (1.8) and (1.9) above provide the analogue of Corol-
lary 1.3 for WP and 5P.

Next we generalize Wirtinger's Ineguality. We continue to assume E has
a Hermitian inner product, and we consider the induced =+ operator mapping
AP g isometrically onto APeRTAg, If A and B are in A;E' P
then (A,B) = *(A A E] defines the Hermitian inner product on .'\;E'.
Let |-

w € AJ]'R']'E' denote the image of the given element of Herm(E) under the

5 denote the norm associated with this inner product. Let

map defined by (1.1). This positive (1,1) form w is called the standard

Kdhler form on the Hermitian space E. In terms of an orthogonal basis
Pl i1
T =
Sk * i =2 h. == e, A &
{el, ,en} for E* with |ej[ , one has e j‘gl 5 ej
- =
Let w denote WA AW taken k times.
The classical Wirtinger Inequality says that for a decomposable form

Aeﬂ.ifE' and p+k=n

1l k . .
*® (A A Pl ) = I.l!‘|2 with equality if and only if A

is a positive decomposable (p,p) form. (-39

Seze Federer [2], p. 40, for a nice proof. Before generalizing (1.10) to

forms A that are not necessarily decomposable, we must discuss some other

norms on .I'\G:E' that agree with |[2 on decomposable 2p-forms.
Definition 1.7: (1) Let |-|l (called the mass norm) denote the
norm on J'\ifE‘ whose closed unit ball is the convex hull of

D=1{ac I\i;E': A is decomposable and |}'-\|2 = 1}.

(2) Let | |1 denote the norm on AifE' whose closed unit ball is
the convex hull of D u E where
E={aef?Pr:a=120gA7 with ze A’ % and [a], =1}
IR P 2
Note that D < DuE c {a: |z;|2 =1} implies that |A|2 < [lall, = |a}

2Py
for all A € J'\RE: .

Theorem 1.8 (Generalized Wirtinger Inequality): Suppose A is in A];;;‘-,E'
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fand p+ k =n). Then
() w(AA 11—. o) s |a|, with equality if and only if A e spP.

(B) *a Ao W) < ||all, with equality if and only if A e PP,

Of course the inequality in (b) is stronger than the inequality in (a)

since ”AHl < ]A[l. Before proving Theorem 1.8 we give some alternate
descriptions of the norms |-|1 and !l-1l.
If A is in D, then A belongs to the convex hull of 0¥ so that
]A|l A Also 1 = |A]2 < [AEl for a e D. That is,
|;a|l = |.n.|2 for A e D. (1.11)

(In fact |A|l = |Al2 if and only if a multiple of A belongs to D,
since every point of  {A: |A|2 = 1} is extreme.) Since for arbitrary

A, A/|A|1 belongs to the convex hull of 0, there exist 0 < tj = L

with Evt,s1 and B, e D such that A/|a|l; = Z¢&.B.. Let
173 j B 73

A, = tj|AllBj ., sothat A=1 A;. Note that |.l:;],|l = tj|n]1 since,

by (1.11), 1133.|l = 1. Therefore I |1xj|l < [a], and 1A[l =T 1Aj|1.

This proves

(") |h!l equals the infimum of I |Aj taken over all collections nj

|2
with a multiple of each nj belonging to P and A =1L Aj.
similarly, one can show that a multiple of A belongs to PuvE if and

only if |[|a]l; = [a], and that

(2") |[A||1 equals the infimum of I |Aj [2 taken over all collections

Aj with a multiple of each Aj belonging to D u E and A =L Ay

Let |B|_ = supl|A A B|f A e D}). This defines a norm (the comass norm)
k

2
on ALE' (p+k=mn) dual to |-|l.

1) |A!l = sup|a A B|2 taken over all B ¢ hifE' with [B| < 1.

similarly ||B||_ = sup{|a A B|2:A e Du E} defines a norm on AifE'

-

dual to

1

(2") ||}'-\||l = sup|A A B|2 taken over all B ¢ hifE' with |[|B]|_ =< 1.
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Proof of the Generalized Wirtinger Inequality:

(a) Choose A. with Ajz‘ EAjll el and A=1L Aj so that |A[l =
= I |A l,» By (1.10)
L 1 k
t(AA-k—‘m)=E *(nj Aw) €1 |aj|l= |A|l.

This proves the inequality part of (a). Equality holds if and only if
*{A_ A ]—:—'I—m y = ]Aj|1 for each j. By the equality part of (1.10) if
these equalities hold for all j, then each Aj is a positive decomposable
(p,p) form and hence A = I Aj is in spF. Conversely, if A =L A, is

in SP with each Aj positive and decomposable, then equality in (1.10)

k A

for each Aj implies that *(A A —ll- w ) =k [Aj]l > [A|1 , which proves
eguality in (a).
(b) Suppose A =1ZL'a__g ] belongs to AP Per yhere {e.,...,e }

IJp R A n

1 ;
is an orthogonal basis for E* = A P51 with |Ej|§ = 2. Since
L}
k — T
= w = Z o eJ A eJ r *(A A o u:k) equals a f the trace
k' k k! II
|a]=k I[=p
of (aIJ) . Let H'l’ o ,,\N] denote the eigenvalues and {cl o EN}
the eigenvectors of A given by Theorem 1.2. Then, since the trace of
(a__LJJ equals I A g
N
k
*(AA—]v'—w}=§ Na s (1.12)
k! b |
J=

Just as in (1.11), for A ¢ AiPE', ”A”l = |il\|2 if and only if a mul-
tiple of A belongs to E. In particular, for }\j = }\jopcj A Ej we
have ”hj”l = |lj|. Therefore if A is positive,

]
*(A A £y g A= ”AjHl > ]|A!|1.

In particular, if a multiple of A belongs to E, then

|t{}\n§‘—m)] ”A”l and t(AA—ILu) ||?-\||
(1.13)

with equality if and only if A is positive.

The proof of the inequality in (b) proceeds exactly as in (a) except the
A, are chosen so that A, / ”Bjul is in D u E. Because of (1.13)
above and the fact that a multiple of Aj belongs to E or Panks,

t(?-'\. A oL w ) ||A with equality if and only if Bj is positive.

Iy
Therefore
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I ek 1l k
* = = * = < =
(A AT w) =T *a; A $2 |I.1\j||1 llall, -
with equality implying that each Aj is of the form cpc A E for some
e AP’OE' - Therefore equality implies that A is in . QE:D:

As noted above each positive (p,p) form is not necessarily a positive
combination of positive decomposable (p,p) forms. We finish this section
by proving that each real (p,p) form is the sum of real decomposable (p,p)

forms.

Proposition 1.9: There exists a basis for h‘;PE' consisting of pos-
itive decomposable (p,p) forms.

Proof: Suppose {el,....en} is a basis for E* = J'\LOE'. The proof
is by induction on p. It suffices to show that AP'PE' has a basis con-
sisting of positive decomposable (p,p) forms. For p =1 it is true by

i ==
Theorem 1.2 or because 2 Re (5 ei A ej) =

i = 5 =
== A + = A
2 & Ej 3 e__I e;
i - = i - i -
= = + + - = - = A
2{91 e} A (ei ej) 3 Ei A ei 5 EJ eJ '
and 2 Im(i e, ne,) =
2 i j
1 = 1 —
== A - = A
> e Ej 5 Ej e,
i ; = i o i =
== + A - - = A - = 3
2{6 lej} {ei ie.) LT T 5 eJ A e]
s I = + 7 4 .
Consider e A e . Lét- | Lfe= [12,---.J.p] and J' = {32;-...391.
— 1 — L} —T
Then ceIAEJziie, Ae, ) A (o eI AEJ) :
p 2 i 3 F-l

and by the induction hypothesis for 1 and p - 1, respectively, the two
factors on the right can be expressed as linear combinations of positive

decomposable forms. Q.E.D.

Coreollary 1.10: The (p,p) form pil WP belongs to the interior of

the cone sP® (i.e., is stromgly positive non-degenerate) .

Proof: It suffices to show that ilr(pi1 u.rp A B) >0 for all non-zero
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B e W'Pk, by (1.7). Choose a basis {Al,...,AN} for AE;R'pE‘ consis-
ting of positive decomposable (p,p) forms with [lez = 1. We may choose
2 1L
an orthogonal basis {El.....en} with ;ej|2 =2 for g+ =AM O
so that A = cpeI e e o B )
I =J

Suppose pir qu AB=20 for some B € W‘Pk. Let B=1" hIJe Al .

As noted before *(gf W AB) =1 by If |z| =%y |7| =ps I and
i J =J
J strictly increasing, and I u J = {1,...,n}, then Bants *(cpe Ae” AB);
s
which is z 0 since B is in WPk. Therefore *57 mp AB=EL' bII =0
if and only if each bII = 0. In particular, this proves that if
k

piluP AB=0, with BewWe", then, for I= (L,...,0), O =b_ =
= *(i\l A B) = (Al ¢ *B). Similarly [Aj , *B) must vanish for
1<j<N sothat B=0. 0.E.D.

2. ANALYTIC CYCLES ON KAHLER MANIFOLDS

Suppose % is a Kihler manifold of complex dimension n, with Kdhler
form w. Suppose T e D'Zp(x) is a real-valued current on X of degree
2p which is representable by integration (i.e., when expressed as a 2p
form with distribution coefficients, the distributions are measures). Let
||T|| denote the positive measure defined by letting [lz]] £y =
= sup {|T(¢)]|: |o(z)],
on X and let M(T) = ||T|| (1) = sup (|T(d)]: [#]_ < 1} (the mass norm

I

f(z)} for each positive continuous function £

of T). Then there exists a [|T|| measurable function % from X to
anEn with T{(¢) = f <$,¢>xd||T|I (see [2]). A current T defined on
an open set {I contained in " and of degree (p,p} (with p + k = n)
will be called weakly positive if for all ¢!£C:($l)_. % =2 0, and all com
plex linear projections 3] Q‘.’n =+ (I!k, the push forward T, (UT) is a
positive measure. Such a current T will be called positive if for all

k —
L€ A 0eh, ¢ oA oL AL isa positive measure on §. The current T
will be called strongly positive if for all B ¢ A;‘ka“

k ! -
WP, T AB is a positive measure on fl. A current T of degree (p,p)

which belong to

on X is said to be weakly positive, positive, or strongly positive if the
restriction of T to each coordinate chart is weakly positive, positive,
or strongly positive, respectively. One can show that a current T on X

is weakly positive, positive, or strongly positive if and only if T is



56 R. HARVEY AND A. KNAPP

representable by integration and %(z) is weakly positive, positive, or
strongly positive, respectively, for almost all =z in X (with respect to
izl

For the proof that a weakly positive current T on c” is representable

by integration see Lelong [10] or use Proposition 1.9 to chocse a basis

k., k ;
{Bl,...,EN} for nJR' E' consisting of positive decomposable (k, k)
forms and let {Al,...,An} denote the dual basis for A;’pE' where
p+k=n. Then expressing T in terms of the basis Al""'% ’ we

see that the coefficients T A Bj are positive measures.
The Generalized Wirtinger's Ineguality immediately applies to currents,

since T(ﬁ W) = [« @ a kl—lmk)d”'l‘” and [ d||7| = m(m).

Theorem 2.1: Suppose T is a real-valued current of degree 2p on X

(with p + k = n) which is representable by integration. Then

(a) T(ﬁ wk) < M(T) and equality holde if and only ©if T <8 strongly
positive.

(b) T(% wk) < M'(T)  and equality holds if and only if T 4is positive,
where  M'(T) = sup {|T(¢)]: ”¢”m <TLE:

The next three results are well known. First we briefly sketch how lo-
cally rectifiable currents can be used to compute cochomology with coeffi-
cients in % on an oriented manifold. See Federer [2] for similar results
concerning homology. Suppose X is a real n-dimensional oriented Cw man-
ifold. Let D'F = D]L (p+ k=n) denote the sheaf of germs of currents
of degree p or dimension k on X. Let RF = Rk (p+k=n) denote
the subsheaf of germs of locally rectifiable currents of degree p or di-
mension k on X (see [2]). The exterior derivative d operating on
smooth forms of degree p extends as a differential operator to currents
of degree p, and we have the complex

6=t p Kl Lot Ly
which is an exact resolution of the sheaf € by fine sheaves D'p. This

proves that
#(x,0) = {1 e 0P(x): ar = o}y a0 P (x) .
A locally rectifiable current is said to be locally integral if its ex-

terior derivative is also locally rectifiable. Let b dencte the sheaf

of germs of locally integral currents of degree p. Then
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i e i G e L ST (2.1}
is an exact resolution of the sheaf % (if X is not oriented the se-
quence is an exact resolution of the orientation sheaf). The usual cone
construction provides a proof of local exactness of (2.1} (see [2]). Each
sheaf Ip is soft. That is given a locally integral current T on a
neighborhood U of a closed subset F of X, there exists a locally inte-

gral current S5 on X with S egual to T in a neighborhood of .

Choose £LE c”(x) with Fi=a ] on a neighborhood 'of X -0 and
s S ) on a neighborhood of F, and g=f =1, Let )(E dencte the
characteristic function of the set {x e %: £(x) < €}. Then it follows

easily from Federer's theory of slicing [2] that xsT is a locally integral
current for almost all €. Now take S = XET. This proves each s s
soft. The fact that (2.1) is an exact resolution of the sheaf #Z by soft

sheaves IF implies the following theorem, on a smooth oriented manifold X.
-1
Theorem 2.2: HPtX,Z! = {T ¢ RI;oc(X)‘ ar = o]xdj.‘li’ﬂc (X) .

Note that the natural map of I-IE:I (X,2) into Hp(x,rt) is induced by
the inclusion map of Ri’oc (X) into P

Mow assume that X is a complex manifold of complex dimension n. Inte-
gration over a subvariety defines a current on X (see [10], [7], and [5]1).
Let Reg V  denote the regular points of a subvariety V. The second re-

sult is the following:

Proposition 2.3: If V is a pure k dimensional subvariety of X
then  [V1(¢) defined by integrating ¢ € Dzk(x) over RegV 18 a
locally rectifiable current on X which is d-closed and positive of type

(pep) (p+ k=n).

Remark: Let T = [V]. Since ${z) is decomposable for z € Reg V,
the three notions weakly positive, positive, and strongly positive all agree
for T.

an analytic cyele of dimension k (or holomorphic k-chain) on X is a
current T of type (p,p) (p + k = n) which can be expressed as I nj [Vj]
where each nj € & and V=u \?j is a pure k-dimensional subvariety
of X with irreducible components {Vj}. An analytic cycle is positive if

and only if each nj = 0L Let zktx) denote the group of all analytic



5g R. HARVEY AND A. KNAPP

oy i
cycles of dimension k on X and let Zk(X) denote the set of positive
analytic k-cycles. If T can be expressed as [ r.[VjI with each rj a
rational number then T is called a rational analytic k-cycle. The third

result is a slight generalization of Proposition 2.3.

Corellary 2.4: Fach analytic k-cycle is a locally rectifiable, d-closed
current of type (p,p) (p + k = n).

Using Theorem 2.1, we see that each analytic k-cycle L nj[Vj] deter-
mines a cohomology class in HZp (X,2Z) where p+k=n. Let
m: Hzp(x,z) = HZP(X,G) denote the natural inclusion map.

2
Now assume that X is a compact Kihler manifold. Then each H i (X,C)

can be expressed as the direct sum i3t Hs’t(x} where s+t=1x and
Hs'ttx) denctes the space of harmonic forms of type (s,t). Suppose
Te zk(x); then T determines a cohomology class in Hzp(x,¢) (p+k=n).

This cohomology class must belong to HP'P(X) since IT ¢ =0 for all
¢ € Hs't(xj with s + £=ik; s #Fot That is, 7T maps the subspace of
#°P(x,2)  determined by z, () into HP(x).

Now assume that X is a complex submanifold of some complex projective

space. The original conjecture of Hodge [6] was that

II1TI (over %=): Each elass «c e H2p (X,22) with T7c e HP'p{x) 18 de-

termined by an analytic k-eyele (p + k = n).

While this is true for p=1 (Kodaira-Spencer [9]), it is false for
p>1 (Atiyah-Hirzebruch [1]). Conjecture III has been reformulated for

general p over the rationals @.

III (over @): FEach class c e B2'P(x) n mH2 (%, 2) < HP(x,€) s de-
termined by a rational analytic k-cycle, %T (T € 2, (x), mez and
p+ k=n).

A smooth form ¢ of type (p,p) is strongly positive definite if ¢
remains positive under small perturbations or equivalently if (for each
point z € X) each of the eigenvalues Aj is positive for j from 1

to ; ¢ or eguivalently if for each point z € X, ¢(z) belongs to

the interior of SP ¢© Apmfp'ré (X).
Consider the following two "Plateau problems" on X (instead of fixing

a boundary, we fix a cohomology class). Suppose a class ¢ e nHzp{x,ZZ)
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is given. Let M(c) denote the infimum of {M(T)} taken over all
T e REP (X1 2 :with Piescy and let m(c) denote the infimum of {My)}
2 (x)

taken over all we D with Y e c. Find a rectifiable current

T e R%P(X) with T e c such that
(1) M(T) = M(c) or (2) M(T) =m(c).

It follows easily from Federer [2] that problem (1) always has a solution T;
however, it is not always true that this solution T is also a minimum

among the larger class of competitors in (2) (cf. Mumford's example at the

end of this section). Let Tk denote a solution to problem (1) for the
+

class kc, where ke Z (i.e., M(Tkj = M{kc)). Then mie) =

< %M(TkJ s M(e), since M(ke) = kM(c). Federer has shown that

lim = M(T = m(c).
X ( k) )
Next we state a conjecture about "positive Plateau problems", which con-

cludes that equality holds in the above limit for some finite number k.

I Suppose «c € P x) n szp{x,zz) c H‘?p{x,ct) eontains a strongly pos-
itive definite (p,p) form ¢. Then there exists an integer m e =zt
such that for the eclass mc a solution T ¢ RZP(X} to (1) above also
satisfies (2).

The following conjecture will be shown to be equivalent to I in the

next theorem:

11 Suppose ¢ e #'P(x) n WP R,z < u?P(x,a) contains a strongly pos-
itive definite (p,p) form ¢. Then there exists an integer m ¢ w
and a positive analytic k-cycle T ¢ z; (x) such that % e &
(p+k=n).

Theorem 2.5: For a given compact Kihler manifold X, I 1is true if and
only if I1I 1is true.

2 .
Proof: First assume that I is true. Let T e R Pix) with T e mc,
and let ¢' = md. Then by Theorem 2.1

M(*) = [ ¢ r\k—l!-r.uk < M(T) (2.2)

(the first equality uses the Generalized Wirtinger Inequality, as opposed
to the usual Wirtinger Inequality). If T is a solution to (2) then equal-

ity must hold in (2.2). By Theorem 2.1 this implies that T is positive.
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By the structure theorem of [7] (cf. [4] and [5]) T must be a positive
+

analytic k-cycle. This proves II. Conversely, suppose Sile Zk{X) and

S € mec. Then by Theorem 2.1

1

1 %k k
= = = il <
M) = [sAaSw = fvase s MW

+ a

for each P € c. This proves (2) for S € Zk (X). However if (1) is
+

true for T € mc and S € Z;(x) ne then T must belong to Zk (X)
(see (2.2) with ¢' =8 to conclude T is positive of type (p:p)).
Therefore II implies I. Q.E.D.

Next we note that II implies the Hodge Conjecture III. Assume X is a
submanifold of :IPN and let w denote the Fubini-Study (1,1) form on EPN
restricted to X. Assume II is true and let ¢ e Hp'p(X} n HZP(X,Z} 5
Then, given a smooth representative Y ec of type (p,p), we can find
a positive integer g such that ¢ =1y + g EIT o is strongly posi+tive
definite because of Corollary 1.10. By assumption there exist g Zk(}{)
and me Z with [T] = m[¢]. Since ‘—J'T WP determines the same

. B 5T
class as a k-linear section S5 of X in JPN (S € Zk (X)), T-mgsS € mc

(and T - mgS ¢ Zk(XH.

Remark: It follows from Theorem 5.8 in Kleiman [14] that if the Hodge

Conjecture III is true then Conjecture II (and hence I) is true for (using

the above notation) classes ¢ of the form [W+g Pl_' mP] h if q is
chosen sufficiently large depending on . Therefore, Conjecture I (a "Pla-
teau problem") for classes c of the form [W+q ;lr— wP] with g large

is equivalent to the Hodge Conjecture III.

The statement II is of course true for p=1 by the Kodaira Embed-
ding Theorem as follows: There exists a line bundle L over X with first

Chern form ¢. By Kodaira (8] there exists an integer m such that the

mapping X 2> p(°(x, L H™) is an  embedding. Therefore
m$ - £*([H]) = d) where [H] is a hyperplane section of £ (X).

One might conjecture that statement II (or equivalently I) is valid
module torsion. That is, if ¢ ¢ H‘p’p{X) n nﬂzp(x,iz) contains a
strongly positive definite (p,p) form ¢ then c contains a positive
analytic k-cycle T e z]: (X). David Mumford's example, mentioned in the
introduction, shows that this is false in the simplest case p=1 and

dimension X =2, See [11] and [12] for the results about ruled surfaces

needed below. Suppose X s c is a ]Pl bundle over an algebraic curve
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of genus g = 4. Choose X homeomorphic to C X Pl and generic.
Then HZ(X,Z) =Z-e & Z-f where e contains € x {z}, =z ¢ Pl
and f contains {w} x Pl ¥ w e C. Briefly, one can show that, since X
is generic, e + mf does not contain a positive divisor for m < [%] i
and using the Nakai~Moi;ezon criterion, that § + mf is ample for

m € Z+ (i.e., e + mf contains %S where k € zz" and S 1is a
hyperplane section for some projective embedding). Consequently e + mf
contains i—w where w is the Kihler form induced on X by some projec-
tive embedding. Therefore e +mf, m € Z+, contains a positive definite

(1,1) form, while for m < f%] it does not contain a positive divisor.
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