IRREDUCIBLE UNITARY REPRESENTATIONS OF SOME GROUPS
OF REAL RANK TWO

e * ¥
M. W. Baldoni-Silva and A. W. Knapp

We have been collecting data on the unitary duals of various
linear connected semisimple Lie groups in an effort to find out whether
it is reasonable to have a simply-stated explicit classification for
all such groups. For groups of real rank one, Baldoni-Silva and
Barbasch [2] obtained an explicit classification, and our paper [5],
when specialized to these groups, shows how that classification can
be stated simply.

Our concern here is with simple groups G of real rank two. We
prefer to think of these as divided into two classes, those with
rank G = rank KX (for X maximal compact) and those with
rank G > rank K. Within each class, some of the groups appear to us
as "regular cases," some are variants of regular cases, and some are
exceptions.

For rank G = rank K, the regular cases are the "single-line"
cases: SU(n,2), S0(2n,2), SO*(lo), and E6(—14}' The groups
Sp(n,2) may be viewed as variants of SU(n,2), while the various

S0(2n+1,2) are variants of S0(2n,2) . The group GE

is exceptional.
We gave a classification for SU(n,2) in [4]. Angelopoulos [1]
announced a classification for 56(2n,2) and §5(2n+1,2), but we are

unable to relate his results to Langlands parameters nor do we have

enough details to check his results. Thus we have recently obtained
our own classification (unpublished) for these groups. Our methods

appear to handle 8p(n,2) as well, but they are insufficient for
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SO*(lO) and E6(—14)' The classifications for all these groups have
a qualitative similarity to them, but a detailed statement of the
clagsification requires (at present) treatment of one class at a time.
In short, we find these classifications discouraging.

The situation is nicer for rank G » rank K. The regular cases
are those with one conjugacy class of Cartan subgroups and with A2
as restricted root diagram: SL(3,€), SL(3,H), and Eg (-26) (which
we regard as SL(3,0) with 0 = {cayley numbers}). The group
SL(3,R) 1is a variant of SL(3,€), while Sp(2,€) and G are
exceptional. Classifications were done by Tsuchikawa [18] for
SL(3,€) , Vogan [23] for SL(3,H), Vehutinskii [19] for SL(3,R),
end Duflo [6] for sp(2,¢) and Gf. Our objective in this paper will
be to complete the classifications for the real rank two groups with
rank G » rank K by doing E6(-26)' In doing so, we shall work with
an abstract group with one conjugacy class of Cartan subgroups and
with A, as restricted root diagram. This refusal to use explicit
knowledge of E6{—26) is in line with our desire to have a simple
final classification.

Turning to the precise statement of our result, we begin with
notation and background. We let G be linear connected simple, K be
maximal compact, and G = KAN be an Iwasawa decomposition. For any
subgroup we denote the Lie algebra by the corresponding lower-case
German letter. We assume that G has just one conjugacy class of
Cartan subgroups, that dim A = 2, and that the restricted roots (the

roots of (g,a)) form a root system of type A,. Let M= ZK(A) be

the (compact) centralizer of A in K, so that P = MAN is a
minimal parabolic subgroup of G. For ¢ an irreducible (finite-
dimensional) representation of M and vy in (a')c, the

representation U(P,0,v) given by normalized induction as

U(P,o,v) = indi(c@ e¥® 1)
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is a member of the nonunitary principal series. If v has the

additional property that Re v 1s in the closed positive Weyl chamber
of a! relative to N, then it follows from Ianglands [16],

MiliGié [17], and Knapp [9] for this kind of G that U(P,0,v) has a
unique irreducible quotient J(P,o,v) , which is known as the Langlands
quotient.

The representations J(P,o,v) exhaust the candidates for
irreducible unitary representations, and the classification problem is
to decide which of them are infinitesimally unitary. From [14] and
[12], it is known that J(P,0,v) admits a nonzero invariant Hermitian
form (on its K-finite vectors) if and only if the following formal
symmetry condition holds: there exists w in the normalizer NK(A)
such that w® 1is in M, wo=g, and wv=-y. This form 1lifts to a
form {:,:) on U(P,o,v) that is given by an explicit intertwining

operator G on LQ(K): {(£,2) = (Cf,g) 2( ). Moreover, J 1is
L (K
infinitesimally unitary if and only if {-,+) 1s semidefinite, if and

only if G 1s semidefinite. By a theorem of Vogan (see Theorem 16.10
of [11]), it is enough to decide the unitarizability for v real.

Let us denote the simple restricted roots by ap =€) - & and
a; = e;-e3. The Weyl group W(A:G) = N (A)/M is the symmetric group
on three letters, and the only Weyl group element of order two sending

a real element v #0 in the closed positive Weyl chamber into its

_ 1 n 3, =
negative is the reflection S“R in the sum Qp = Ggptap = &) -€5.

The set of wv's to study is therefore the one-dimensional set v = cap
with e }_ 0, Let Wio s Wo3s and Wy3 be representatives in K of

the Weyl group elements s :, s n, and s_ . The formal symmetry
%R %R %R

condition w13 =g imposes a certain nontrivial condition on ¢ that
we consider later.

The group M 1is compact and connected, and thus o 1is given by
the theory of the highest weight. ILet b € m Dbe a maximal abelian

subspace, so that b®a 1is a Cartan subalgebra of g . Let AM"'
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be a positive system for the root system A, = A(mc,bc), let A be
the highest weight of ¢, and let GM be half the sum of the members

of Aﬁ, so that KO = X-+6M is the infinitesimal character of o .
Let A = a(s% (690)%) ©be the root system of g; we can regard
Ay 8s the set of members of A that vanish on @ . We introduce a
positive system At for & containing ﬁ; so that A is A'
dominant and ib comes before o . (For example, we can use the
lexicographic order obtained by adjoining an orthogonal basis of a'
at the end of an orthogonal basis of ib! that starts with A.)
Let L = L(c) be the analytic subgroup of G containing b &a

L of all roots B in A with

and corresponding to the set A
(7,8 = 0. Since A is dominant, A¥ 1is generated by AT simple
roots. The group L is another real rank two group, though not
necessarily simple, and it has an Iwasawa decompesition

L= (KNL)A(NNL) . TLet p;, be half the sum of its positive

restricted roots, counting multiplicities; is a positive multiple

of Op = el-e3.

PL

Main Theorem. Let G be linear connected simple of real rank
two with just one conjugacy class of Cartan subgroups and with
restricted root diagram of type Ag. Let o ©Dbe an irreducible
representation of M such that Wigo=c, let L= L(c) , and let
li be the semisimple part of L. Then s has real rank one or

two. Moreover, for v real in the closed positive Weyl chamber,

J(P,0,v) is infinitesimally unitary if and only if vy = Py, with

o0 edl if L,y has real rank one

D% e < & op ei=T if L,, has real rank two. (0.1)

Remarks. The classification of real groups shows that Lss is
locally SL(2) over €, H, or ¢ if L., has real rank one;
alternatively L, 1s locally sQ(asL)) Sfor n= 3050 g g

LSS has real rank one. IT LSS has real rank two, Lss is locally
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SL(3) over €, H, or 0. The statement of the theorem is that the
unitarity for the series for ¢ in G is the same as the unitarity

for the series for 1 in Lss’ which is given by the simple
formula (0.1).

1. Structure of I and the roots

We proceed with I as in the introduction but temporarily do not

PR L x
assume w1302=c . The positive restricted roots are ap =€) = €5,

"o T 2l _
aR-ee —e3, and aR-—aR-FaR._el e3.

Let us bring to bear some results from [9]. Since there is just
one conjugacy class of Cartan subgroups, there are no real roots in A.
Then Lemms 2.2 of [9] says that all restricted roots are "even," in the

sense of that paper. Moreover, all the restricted roots are "useful,"

as one sees from §4 of [8]. For any root B in A, we decompose B

as B = ﬁI-+5R, its parts on ib and a , respectively. If g 1is
complex, Lemma 2.5 of [9] says that
2 2 2
1812 = 2lp.| !

= ElﬁR : [3s3)

Therefore all complex roots have the same length.
. 5 T "
For each of the simple restricted roots B, = ap or aR) y Al
is possible by Proposition 3.1 of [9] to choose B in ib' so that

ﬁI'FﬁR is in A, so that the reflection sﬁ preserves A;, and so
it
that the linear extension of the map
IR II-*G."
£ Rl 1 R
to a' is an isometry of a! dinto ib'. Put a. = al+al. Then
TS Ty

it follows that ap +ag is in A. Theorem 3.7 of [9] says that we
obtain an action of W(A:G) on ib' from this correspondence—with

8 ; acting by s_1 and so forth.
R 2

The group M is connected. In fact, M = M* in the notation of
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[9] (see §1 of that paper), and Lemma 2.1 of [15] shows that M1F = M, -
Therefore ¢ 1is determined by its highest weight. If the highest

welght of o is A and if w is a representative in K of a member
s of W(A:G), then Proposition 4.7 of [9] says that wo has highest

weight sA, with sA defined from the previous paragraph. Therefore

W f=0¢ 1if and only if (?\,ai = 0 (1.2a)
Wyg0 =0 if and only if (?\,GP = 0 (1.2Db)
Wy0 =0 if and only if (}\,QI} =00 (1.2¢c)

Lemma 1.1. Suppose B = Bp+op is in A and {N,p}) = 0. Then

— ! "
(A,aI) = 0. Similar results hold for ap and ap.
Proof. Without loss of generality, we may take B to be

positive. By (1.1l) we may assume By is not a multiple of « Then

T
we have
(B,a1+aR) =(BI,uI) + |ccR|2>0 sy

by (1.1) and the converse of the Schwarz inequality, and similarly

I

(B siop=ag) =By ) = ¥ 0.

Therefore pr+a; and By -a; are both roots. From (1.3) it follows

1, and from (1.1) we can then conclude

that 2B, ap +ag)/|ap +op|?

that (‘BI . aI) = 0. Hence saI(|61+aI) = py-op, and the defining
T £ 890 Ry

Meanwhile, g = ‘BI'HZR is positive, and our choice of A+ makes

property of a. forces BI+a to have the same sign.

‘BI - op positive. Thus EﬁI is the sum of positive roots, and it

follows that ,BI-t-cx and ‘BI -a are both positive. Finally B is

i I

equal to
(BI—aI)+(aI+aR) = (BI+aI)+(-uI+aR) - (1.4)

and either aI+aR
1L

A" . Hence one of the expressions in (1.4) exhibits PR as the sum of

or -a;+oap will be positive, by our choice of
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positive roots. Since (A,B) =0 and A is A" dominant, we

conclude {A,a.) = 0.

I

Proposition 1.2. Under the assumption wl3cao oL e has real
rank 1 or 2 and contains the roots = aIt op - Moreover, the following

conditions are equivalent:
(a) Lgg has real rank 2

' 1 1 "
(b) L, contains the roots #ar*ap and *ap*ap

(¢) The whole Weyl group W(A:G) fixes the class of o .

Proof. TIn any case, the subspace a is an Iwasawa a for L.
Thus the real rank of Bz is equal to the dimension of the span of
the restricted roots that contribute to L. Since we are assuming
Wyg0=0, (1.2¢c) shows that *ap® o contribute to L; hence =*op
are restricted roots for L. Thus the real rank of L, ., 1s 1 or 2.

With these considerations in mind, we see from (1.2) that (b) and
(c) are equivalent and imply (a). On the other hand, (a) implies (D)
by Lemma 1.1. This proves the proposition.

We need to relate our positive system AT to the positive systems
in various other papers, seeing that they are the same. What we need
to see is that the infinitesimal character ?\O=?\+&M of o is A"
dominant and that any positive system for A that takes 1b Dbefore

o and makes ?\+6M dominant automatically makes A dominant.

Lemma 1.3. Let (&+)’ be any positive system for A that takes
ib before a and contains A; If g is a (A"T)' simple root that

is complex, then (GM,,S} = 0.

Proof. We shall pair the members e of .L\.B; having {e,B) < 0
with the members e' of ‘QM+ having (e',p) > 0, the pairing being
€' =€ +2p; (where B = ,BI+,8R) and satisfying (e+e',p) = 0.

Notice from (1.1) that {B,88) = 0. Let (e,p) < 0, and put
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Y =€ +B. Then 6y and B are complex (at)' positive roots

(necessarily of the same length) with
(By,B) = {e+8B,p) = (e,p) < 0.

Hence 6y +p =¢ +8B+B =¢ +2;3I is a positive root in &M of the
same length as §8 .

Conversely if €' in A; has {e',p) > 0, then ¥y =e'-p is

in (A")' (since B is simple). Our choice of ib before a makes

8y Dbe positive, too, and
(By,p) =(e'-8p,8) =(e',p) > 0.

Since B is simple, 6y -B =¢!' -8B-B =¢! - 28y 1s a positive root
in Dy » The roots 8y and p are complex and must be of the same
length; hence e! —2;31 has that same length.

Consequently we have a pairing € <> e' by addition or
subtraction of 231 » and what we have just seen implies
lel = |gl = le'| . mhus 2e,p)/|pl® = -1 and 2(e',p)/|g]® = +1,
and it follows that e +e' is orthogonal to B. Summing on e

completes the proof of the lemma.

Proposition 1.4. The infinitesimal character Ap = ?\-f-ﬁM is

is any positive system for A

+

A" dominant. Conversely if (a")'

containing A;'i, taking 1ib before @ , and making 7\0 = ?\+6M

*)'  dominant.

dominant, then A is (A

Proof. A A" simple root B is either imaginary or complex.

If it is imaginary, then (8,,)/|g|% = 1, while if it is complex,

Lemma 1.3 gives Q(GM,,B)/|£.|2=O. Thus &, 1s Al

dominant, and
hence so is K-+6M.

Conversely let B be (/_\.+)' simple. If B 1is imaginary, then
2(%+6M,ﬁ)/]3|2 2> 1 and hence 2(%,3)/lﬁ|2 2 0. If B is complex,
then 2(7\+5M:15>/|;512 = 2(7\,;3)/|;3|2 by Lemma 1.3. Hence A is

(at)'  dominant.
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Let G3 be the centralizer in G of the subspace ker ap of
a, and define ¢*2 ana ¢®3 from aﬁ and a; similarly. These

groups are mutually conjugate by representatives of members of W(A:G) .

The Lie algebra (313)0 is the sum of (nf%b)c and all root spaces
for roots whose a part is a multiple of Op + Let Al3 denote
this subsystem of roots.

The semisimple part G]S'g of Gl3 is then a group of real rank
one with no real roots, and it is consequently locally isomorphic to
the product of some S0(2n+l,l) with a compact group. Similar remarks
apply to G]‘2 and G23 .

Suppose henceforth that W1362=C. Let L13 be the centralizer
in I of the subspace ker og O el Tt AL denotes the root
system of L, then the root system of L13 is ALr\A13, the set of

roots in A13

orthogonal to A. From Theorem 1l.la of [5] and the
identification of our positive system AT in Proposition 1.4, we

obtain the following result.

Proposition 1.5. The standard intertwining operator of Gl3 for
1584

the nonunitary principal series of G with M parameter o and A

parameter cp 13 (i.e., the operator that defines the invariant
L
Hermitian form on the Langlands guotient) is semidefinite and

nonsingular for 0< ¢ < 1 and is not semidefinite for c DI,

If Lss has real rank one, then = Op are its restricted roots,

by Proposition 1.2. Therefore

if real rank(L = b (1.5a)

Pr. = P )
L L13 ss

Suppose L has real rank two. Then the restricted root system

ss
of L is of type A,. In the inclusion W(A:L) € W(A: G) we thus

have equality, and we can therefore take our representatives Wio s w23,

and w13 of Weyl group elements to be in L, hence in Lss' Then we

can define L12 and L23 to be the centralizers in I of the
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subspaces ker ué and ker aﬁ of a, and the three subgroups L13,

Ll2 , and L23 are conjugate via representatives in T of members of

W(A:G) . So g s a.é , and a; all have the same multiplicity as

restricted roots in L, and it follows that

P, = 2pL13 if real r&nk(LSS) = 0, (1.5b)

2. Use of intertwining operators

We continue with the notation of the introduction, now assuming
w1302c: . In this section we shall prove the part of the Main Theorem
that deals with cp, for 0¢ ¢ < 1 and also the part for c =1
when Lss has real rank one.

The tool will be the intertwining operators of [13], except that
we write them consistently with an action by G on the left in the
induced space. For w in NK{A), the operator A(w,o,v) is given

initially by

A(w,0,v)E(x) = [ £(xvd) a7
oNN w lnw

It is continued meromorphically and then normalized suitably. We
reguire that the normalizing factor have no poles or zeros for Re v
in the open positive Weyl chamber, and we let G(w,o,v) be the
normalized operator. The operator that defines the Hermitian form of

interest is

U(W13)G(W13:U P (2.1)

Here c(wl3) is defined by means of Lemma 18 of [13].
We can take Wi3 to be in D and we can take Wip to be in

L, 1if L., has real rank two (see the end of §1). Then

s
Wog = WigWig¥ho

is a representative of s _n.
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Lemma 2.1l. For w13v = -y and v real, the operator (2.1)
satisfies

u(wlS)G(w]_B,cr,v) = G(WE_%’G:VJ*[(U(WIBJG (w23,w1%c,wi%‘v)]G(w]__%‘,c,v) A
(2.3)

Moreover, the operator in brackets on the right side may be regarded as
W1 (W3)G (Wpg, w130, WIgv) - (2.4)
Proof. From properties in [13], the operator (2.1) equals
{“(“13)6(le’”23wiéu’“23w1%“)}ﬁ(Wes’“i%“’“ié“)a(“ié’c’“)’
and the operator in braces equals

G (W) 250 (Wy3) (WpgW 200 (wy3) ™, wpgW w0 (W 3) - (2.5)

Here

c(w13)(w23wiéc}(m)c(wla)_l = U(w13)c(w12 E%mw23 12)c(wl3)

o (Wy3%5 23m“23 12 13)

-1
o (W mwy5) by (2.2)

-1

W0 (m) .
-1

Moreover w13v = -v implies WioWogWigV = =V, and thus

& =1 .
w23w1év = -wy5v . Thus (2.5) is

@ (g0 w7305 =w730)0 (1 3)

= G (w73,0,v) "0 (wy3) by [13].

This proves (2.3). To prove that the operator in brackets may be

regarded as (2.4), we must verify that wi%cr(w%) intertwines wié‘o
and wé%‘wi%‘c and that its square is equal to wi%‘c(wgs) , according
to Lemma 18 of [13]. We have
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-1

wi%c(wEB)WE%U(m)wiéc(wé%) = u(wlB)c(wlemwi%)a(wl3) by (2.2)

I

-1 -1 -1 -1
u(wl3w12mw12w13) = c(w12w23mw23w12) by (2.2)

-1 -1
w23w120(m)
and

[w”lv

2 =
127 (W23)1° = 0.(wy3)° = o (w3) = o (wyuiuil) = wy5o (wi3) »
and thus the lemma follows.
Now let us return to the Main Theorem. The operator in brackets

in (2.3) is an operator for a simple reflection in G, and [13] and

§5 of [12] show that this operator is semidefinite if and only if the

same operator for G23 is semidefinite. Let us write the operator for
6?3 as in (2.4) and use the conjugation a3 = 12G23 l;' This
conjugation carries the induced space for G23, wl%c, and wie to

the induced space for Gl3, g, and v, and the operator (2.4) is

carried to the operator o(w13)ﬁ(w13,c,v) defined in Gl3. By
Proposition 1.5 this operator is semidefinite for v = ep 13 with

0 c< 1. Thus the operator in brackets in (2.3) is semidefinite
for v = (‘.le3 with 0¢{ ¢ < 1. sSince (2.3) shows that (2.1) is just

B*CB, with C +the operator in brackets, the operator (2.1) is
semidefinite for v = cp ;5 with 0 { e 1. Taking into account
L

(1.5), we see that J(P,0,v) is infinitesimally unitary for v = epr,
with

Qe il if L,, bhas real rank one

0{el % if L., has real rank two.

Now suppose L., has real rank 2. Then W(A:G) has
representatives in L, by Proposition 1.2, and it fixes the class of
. From [13] and §5 of [12], we know that the nonsingularity of the

right-hand operator G(wi%,a,v) in (2.3) is the same as for that
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operator in Gle, which depends only on the projection of v in the

direction of ap. Write v = cp = ECleB- Since v 1is a multiple

of ap and
1
Cap,ap) !
g 3
| gl
" 12 N
we can replace vy in our operator for G by cp 10 * Proposition
L
12

1.5 says that our operator in G is nonsingular out to p .5,
L

hence for 0{ c< 1.
Thus for vy = cpr, with 0< ¢ < 1, the operator (2.1) is of the
form B*CB with B nonsingular. Hence (2.1) is semidefinite only if

C 1is semidefinite. But € 1is not semidefinite beyond p 3 = épL,
L

i.e., for ¢ > #. Therefore J(P,0,v) is not infinitesimally unitary

for #< c< 1.

3. Use of derived functor modules

We continue with the notation of the introduction, and we assume

W..0=0 . Our goal in this section is to prove that J(P,u,pL) is

13

infinitesimally unitary if LSS has real rank two; this result will be
stated as Proposition 3.4. (We know already that J(P,0,p ) is
infinitesimally unitary if LSS has real rank one, and that case will
not concern us in this section.)

The proof is rather similar to the proof of unitarity of some
isolated representations that occur in [5]. It uses Zuckerman's
derived functor modules Aq(p) , as explained in Vogan and Zuckerman
[24], but with the parameter u outside the usual range. (see also
Enright and Wallach [T7].) A big theorem due to Vogan [22] establishes
unitarity for such representations under suitable conditions. The
supplementary arguments in §12 of [5] are due in part to Vogan as well,

and we give the proofs only when they differ from those in §12 of [5].
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Our subspace b (see §1) is maximal abelian in 1, and we let
c.C

Ay be the set of roots A = A(17,67) . oOne knows (see, e.g., [10])
that the members of Ap are the restrictions to b° of all members

of A except the noncompact roots of aM (of which there are none in
our case). We take AE to be the restrictions to 5% of the positive
members of A; this is a positive system since we have taken ib
before a in defining A 7 EK be half the sum of the members
of &;-

For v in the closed positive Weyl chamber, U(P,0,v) in our
situation has a unigue minimal K-type A in the sense of Vogan [20],
i.e., a subrepresentation t, of U(P,c,v)lK with highest weight A
for which |A +28,|% is a minimum, and Theorem 1 of [10] and the
present Proposition 1.4 together say that the minimal K-type is
given by

A== +8-28,. (3.1)

Moreover, T, occurs with multiplicity one in U(P,o0,v) and lies in

J(P,cg\’) .

Proposition 3.1. 1In the situation of §1, suppose that J(P,0,v)

and J(P,0',v') each admit a nonzero Hermitian form and that they have
the same real infinitesimal character and same minimal K-type. Then

J(P,0,v) and J(P,0',v') are infinitesimally equivalent.

Proof. The theory of [20] shows that the assumption of a minimal
K-type in common implies we may take o =o' . (This is clear from
(3.1) only after a little work, since one must first adjust the
positive systems suitably.) Since our representations admit invariant
Hermitian forms, v and v' must both be mapped into their negatives

R
infinitesimal characters are equal, we conclude |v| = |y'| and then

by wlB’ hence must both be multiples of o_ = el-e3. Since the

v =v'. This proves the proposition.
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We shall use Proposition 3.1 to match J(P,a,pL) with a suitable
Aq (b) . We shall not need the detailed construction of Aq (b) , only
its existence and properties in Theorem 3.2 below. We have already

L

defined A" and we let A(u) be the set of positive roots (of A')

outside A'. Tet 8(u) be half their sum. In the Vogan theory, the

symbol stands for IcﬁBu .

There being no noncompact roots in By s We let &(pc) be the set
of restrictions to bc of the complex roots of A, and we let
a(uFWPC) be the set of restrictions to bc of the complex roots of
Alu) . Let b(uripc) be half the sum of the members of A(u ﬂpc).

TF GK(u) denotes half the sum of the members of L\% that arise by

restriction from A(u) , then we have

5(a) = 8, (u) +6(unyp®) . (3.2)

Theorem 3.2 (Vogan [22]). Suppose G, I_\.L, and I. are ag in

the introduction; here 1 1is the analytic subgroup of G with Lie
algebra

1 =gN(b+a+ Zg.).
1. B
BeA
If w4 in db' 1is the differential of a unitary (one-dimensional)
character of I such that
(u+8(u),p) 20 forall g in A(u), (3.3)

and if
. C
At =p+28(unyp™),

then there exists an admissible representation Aq (W) of g with

infinitesimal character n +& such that

(a) the K-types have multiplicities given by the following version of
Blattner's formula:
A = L (det s)P(s(A" +6K) - (A +5K)) .

SEWK
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where HK K

function relative to a(uITpc) , and

is the Weyl group of A and P 1s the partition

(b) the representation Aq(p) admits a positive definite invariant
inner product.

Proof. This is derived from [22] and [21] in the same way that

Theorem 12.2 is proved in [5].

Proposition 3.3. Under the assumptions of Theorem 3.2, suppose

that A' s a} dominant. Then Aq(u) is nonzero and the K-type
T, ocecurs with multiplicity one. If in addition (h'+26K,ﬁ) 2 0 for

all B in A(u) , then Tar is the unique minimal K-type of Aq(u).

Proof. The argument is the same as for Proposition 12.3 of [5].

Proposition 3.4. In the setting of the introduction, let A be

defined by (3.1). If L, has real rank two, then J(P,c,pL) is

infinitesimally unitary.

L

Proof. We shall use A from the introduction, together with

the corresponding u built from A+, as data for Theorem 3.2. Put
w=A-28(unp®. (3.14)

First we exponentiate u ; this is a little tricky.

LK

There is no loss in generality in assuming that G is simply

connected. Vogan and Zuckerman [24] show that 26(ur1pc)
)C

is integral,
i.e., exponentiates to (b®a) . To see that A = N is integral, let
us note first that E(K,ﬁ>/|ﬁ]2 is an integer if B is in A;, since
A 1s the highest weight of o . Suppose B is a complex root:

B =pBp+Pg- The o part B is one of =*ap, iaé, and iaﬁ. Since

the proof will be the same in all cases, let us suppose BR::aﬁ' Then

it follows from the first part of the proof of Lemma 1.1 that ﬁI-+aI

and ﬁI-ai are both roots. Hence

B = (Bp-od) + (o} +ap)
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and
2( X:B) 2<}\ 3 IBI e ai)
= |2

(3.5)

2 1
I|B| |BI_aI

by Proposition 1.2. (Here we use that Lo has real rank two.) Since

A 1s integral for members of 4, (3.5) shows A 1s integral for

- Y

A Since G is simply connected, we conclude e is a well

defined one-dimensional quasicharacter of (bGBu)c.

Next we show that u 1is orthogonal to the members of AL. We

know that A = A 1is orthogonal to A", by definition of A", and we
have to check the orthogonality of 28(uNp®) with al. Tt is clear
that 28(u) is orthogonal to AT, and (3.2) says it is enough to

prove that eaK(u) is orthogonal to A, Now 26K(u) vanishes

(term-by-term) on @ and therefore sees only the restrictions of

members of &L to b. We have observed that these restrictions are
exactly the members of A% (since m has no noncompact roots), and
thus we are to prove that 28,(u) 1is orthogonal to aé. But this is
clear since the roots contributing to QBK(u} are permuted by
reflections in members of ai.

Therefore the Theorem of the Highest Weight supplies an irreducible

finite-dimensional representation of Lc

with highest weight u .
Naturally this representation is one-dimensional. Since u vanishes
on a, the restriction of e” of this representation to I is
unitary.

To apply Theorem 3.2, we need to verify (3.3). We have

p+8(u) =A-28(unp®) +6(u)
= Ny +6 =28, - 28 (u ne®) 48 @) vy (3.1)
= Ay +8 —25K+26K(u) -8 (u) by (3.2)
= k0-+b(lc)-25K(IC) in obvious notation.

The right side is the sum of AO and a real combination of members of
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AL, and any member ¥y of AM satisfies I wy = 0, where W(A

wew (A"
is the Weyl group of the root system AP. since u and &(u) are

5

invariant under W(.&L) , wWe obtain

p+8(u) = T WA, -
L
welW(a™)

Thus £ in A(u) implies

(w+8(w), 8 = T Op,wip) Do,
wew(aL)

since w'lﬁ is in A(u) and <>\0,w'1g) is thus > 0 (Proposition
Tl

Thus Theorem 3.2 applies. The form A' in the theorem is our A,
by (3.4). The theorem says that Aq () has infinitesimal character
W+6 and is unitary. By (3.1), A+26, is Ay +6, which is N
dominant by Proposition 1.4. Thus Proposition 3.3 applies, showing
that Aq (u) is nonzero and that A is the unigue minimal K-type of
GV

Now J(P,c,pL) has minimal K-type A and infinitesimal character
}\O+pL. By Proposition 3.1 the proof of Proposition 3.4 will be
complete if we show that 7\O+pL is conjugate to u +8 Dby the Weyl

group of A. Here
) (¥
B+8 =p+8(u) +8(17) .

The first two terms on the right side are fixed by w(AL) . Applying a

member of W(QL) that results in a positive system for A¥  that takes

@ before ib, we see from (3.1) and (3.4) that u +8& is conjugate to

po+8 (u) +6M(lc) +pp. = 7\0+6 -26K-—26 (uﬂpc) +8 (u) +5M(!c) +pr, - (3.6)

Now Lemma 3 of [10], applied to 1%, says that

8(1€) - 28, (1%) = 5,,(1%) - 28

ne s -

Since MNL is compact, the right side is just —6M(Ic) . Thus
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¥ ¥ LY
8, (1) = 28, (1% -8 (1%,
and (3.6) becomes

Ao +8 28, -28(unp® +a(u)_+2aK(z°) -8(1%) +p,

I

Ao +8 =28 (u) -2 (unp®) +8(u) -8 (1) +pr

A8 =28 (u) +8 (u) -8 (1%) +p

= X0-+pL.

This proves the required conjugacy and completes the proof of the

proposition.

4, cut-off for unitarity

To complete the proof of the Main Theorem, we are to show that
there is no unitarity beyond Py, - Our argument uses the techniques
of [3], as amplified in §§1-2 of [4] and §3 of [5]: We produce a
K-type on which the signature of the invariant Hermitian form rules out
unitarity. This kind of argument involves a certain calculation that is
briefly indicated in [3] and [4] and will be written in more detail
later. Accordingly, in the present paper, we merely identify what is
to be calculated, what the result is, and what its effect is on
unitarity.

In the setting of the introduction, we assume that wlBUass. Thus
(1.2) gives (7\,aI> = 0, and hence (3.1) gives (.&,al) = 0 for the
minimal K-type A . The representation o of M occurs in Tl
and we let B be a nonzero M map from the space on which T
operates to the space on which ¢ operates. If VA is a nonzero

highest weight vector for T e then

£50k) = B(r, ()", )
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is a member of the induced space (in the compact picture). We

normalize our invariant Hermitian form ¢{-:,:) so that (fo, :E‘O> = 1.
+

Let A' be the result of making A + oy dominant for Ap DbY
applying a member of the Weyl group of Dy and let 3&' be the
projection of the induced space to the Tat subspace. ILet o be the
root ap +0p and let Ea be a root vector in gc for ao. Then we

have the following result.

Proposition 4.1. 1In the setting of the introduction when

wlscracr » the function
£, = By U(P,0,cp,E,-OE )f,

is a nonzero member of the induced space, and (fl, fl) is a positive

multiple of 1 - c2 ;s

Then it follows that the form {-,-.) is not semidefinite on the
sum of its T, and t,, subspaces, and hence U(P,o,(‘.pL) is not

infinitesimally unitary for c¢ > 1.
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