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Introduction

These lectures lead by a relatively straight path from the end of a one-semester
course in Lie groups through the Langlands classification of irreducible admissible
representations of linear connected reductive groups. The lectures are for the most
part distillations from the first author’s books [K1] and [K2], which have extensive
bibliographies. A continuation of this introduction, a section called “Motivation”,
places the content of these lectures in a broader representation-theoretic context by
relating the subject matter to the so-called unitarity problem.

The prerequisites are the elementary theory of Lie groups as in Chevalley [C],
including elementary facts about Lie algebras over R and C. In addition, it is
assumed that the reader knows standard material from algebra, analysis, and point-
set topology as is commonly taught in first-year graduate courses in the United
States. Any advance knowledge of complex semisimple Lie algebras, universal
enveloping algebras, and representation theory of finite or compact groups would
be quite helpful for orientation, but no such knowledge is really assumed.

Too much mathematics is involved along the path of these lectures to allow
time for many proofs. Instead these lectures work a great deal with examples. It is
a wonderful feature of representation theory that examples are easily at hand and
much of the general behavior can be anticipated from fairly simple examples.

Lecture 1 gives some basic definitions but is otherwise exclusively about exam-
ples. For the most part, the group under discussion is the group G = SL(2, R) of
real 2-by-2 matrices of determinant 1 under multiplication. A number of concepts
from later lectures are introduced at this stage in the context of this G. Lecture 2
defines semisimple groups in general, gives a host of examples, and examines the
structure theory of these groups and their Lie algebras.
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Lecture 3 develops the abstract representation theory of compact groups and
the theory of induced representations. Both these notions are tools for what is
to come. The theory for compact groups is also a prototype for the more general
theory that will follow, and a certain class of induced representations provides
easy examples of infinite-dimensional representations of semisimple groups that are
almost irreducible. Lecture 4 specializes to the representation theory of compact
connected Lie groups, where the Theorem of the Highest Weight parametrizes the
irreducible representations of such a group. Universal enveloping algebras figure
into the proof of this theorem.

Lecture 5 begins to develop tools for handling infinite-dimensional representa-
tions. The center of the universal enveloping algebra of a semisimple Lie algebra
turns out to be large. The Harish-Chandra isomorphism identifies the center and
makes it available for defining a nontrivial invariant, known as the infinitesimal
character, of an irreducible infinite-dimensional representation. When using the
Lie algebra to work with an infinite-dimensional representation, one works only
with nice vectors in the representation space, and these are the next objects of
study.

Lecture 6 discusses global characters, which are tools for characterizing more
complicated irreducible representations. The first part of Lecture 7 discusses the
most important of these representations, the discrete series. The remainder of
Lecture 7 and the first part of Lecture 8 discuss some preliminary notions for the
Langlands classification, and the end of Lecture 8 actually states the Langlands
classification and gives its meaning for SL(2, R).

At the end of each lecture is a brief section “Notes” that tells where one may
do further reading about the material of the lecture. The Notes refer to expository
sources, not repeating historical information that may be found in those sources.
For most lectures, a few gentle exercises appear in a section at the end of the
lecture. Readers who seek more exercises may consult [K1] and [K2]. References
are collected at the very end of this article.

We use the following notation beyond what one might expect. The dual of a
vector space V is V 0, the transpose of a matrix or linear transformation L is Lt,
and the conjugate transpose of a matrix L is L∗. For a topological group G, G0

denotes the identity component; this is a closed normal subgroup. For a Lie group
G with Lie algebra g, Ad and ad denote the natural adjoint actions of G and g,
respectively, on g. If V is a complex vector space, S(V ) denotes the symmetric
algebra of V . Generally we use the expressions ZA(B) and NA(B) to denote the
centralizer and normalizer of B in A; these notions need to be interpreted according
to the nature of the objects A and B.

Motivation

Let us place the content of the lectures in a broader representation-theoretic
context. This discussion will help show the importance of the Langlands classifi-
cation and indicate the nature of the path we shall take to get there. Necessarily
we shall have to make some definitions quickly here that will later be made with
more deliberation and with more use of examples. The context for this section is
an overview of one of the fundamental problems in the representation theory of Lie
groups: the problem of determining the “irreducible unitary representations” of a
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Lie group G. We shall be largely interested only in such representations in the case
where G is “semisimple” or, more generally, “reductive”. This section consists only
of motivation, and the reader who wants to do so may postpone looking at it until
any later stage of the lectures.

A unitary representation of G is a continuous norm-preserving group action of
G by linear transformations on a Hilbert space. It is irreducible if it is nonzero and
the only G invariant closed subspaces are 0 and the whole space. The interest is
in classifying the irreducible unitary representations of G up to the obvious kind
of equivalence. The set of these equivalence classes is called the unitary dual, and
we use the term unitarity problem to refer to the effort to find the unitary dual. A
substantial fraction of Lie theory since 1950 was developed to tackle the unitarity
problem, and the point of this section is to provide motivation for this lecture series
from the point of view of this problem.

We begin with some motivation for the study of unitary representations. The
classical theory of Fourier series decomposes an arbitrary function in L2(S1), S1

being the circle group, into a discrete sum of imaginary exponentials einθ. We may
regard the Hilbert space L2(S1) with the translation group action as a unitary
representation of S1. When the exponentials einθ are viewed as homomorphisms
of S1 into the multiplicative group of nonsingular 1-by-1 complex matrices, the
exponentials are precisely the irreducible unitary representations of S1. Thus one
aspect of the classical theory of Fourier series is that the unitary representation
of S1 on L2(S1) gets decomposed into a discrete “sum”, with limits allowed, of
irreducible unitary representations.

From this point of view, the theory of the Fourier transform on R is more inter-
esting and indicative. The noncompactness of the real line forces the decomposition
of an element of L2(R) via the Fourier transform to be no longer discrete: the sum
is replaced by an integral. Only the purely imaginary exponentials appear in the
definition of the Fourier transform, and again these are all the irreducible unitary
representations of R. Once one knows about invariant measures on Lie groups, it
is natural to ask for the analogous decomposition of L2(G) for any unimodular Lie
group G, i.e., one having a nonzero two-sided invariant Borel measure.

It is natural also to expect that the representation of G on L2(G) by left
translation, say, will decompose discretely if G is compact and continuously if G is
noncompact. In 1947 Bargmann made the remarkable discovery that the analysis of
L2(G) for G equal to the group SL(2, R) of 2-by-2 real matrices of determinant one
involves both a discrete part and a continuous part. The representations appearing
in the discrete part are called “discrete series” and play a decisive role in the theory.
Of course, since L2(G) is unitary, the discrete series are necessarily unitary.

The name Harish-Chandra figures prominently in the decomposition of L2(G)
in the case that G is semisimple or reductive (terms that are defined in Lecture 2).
In 1966 Harish-Chandra succeeded in parametrizing the discrete series for such
groups. The description involves a great deal of structure, and we shall not get to
it until Lecture 7.

Ten years later Harish-Chandra published the full decomposition of L2(G) for
this class of groups. The irreducible unitary representations that appear in L2(G)
do not nearly exhaust the unitary dual; the trivial representation is absent, for
instance, if G is noncompact. Roughly, but not exactly, the members of the unitary
dual that appear in L2(G) can be obtained by a process called “induction” that



10 A. W. KNAPP, P. E. TRAPA, REPRESENTATIONS OF SEMISIMPLE GROUPS

starts from discrete series of certain reductive subgroups of G. Induction is discussed
in an example in Lecture 1 and in general in Lecture 3.

As we said, these lectures deal with representations largely in the case that G is
semisimple or reductive. Before proceeding with the motivation, let us comment on
how the unitarity problem for these special groups fits into the theory for general
Lie groups. The Levi decomposition for Lie algebras says that a real Lie algebra
is the semidirect product of a solvable Lie algebra and a semisimple Lie algebra,
and it follows that a connected Lie group is, up to a covering group, the semidirect
product of a connected solvable Lie group and a semisimple group. The unitary dual
of solvable Lie groups is by now fairly well understood, and, at least for “Type I”
groups, the effect on the unitarity problem of the semidirect product construction
is understood, too. Thus the unitarity problem for semisimple groups is the main
thing standing in the way of solving the unitarity problem for all Lie groups of
Type I. As was noted in the previous paragraaph, a portion of the unitary dual of a
semisimple group G is obtained by induction starting from discrete series of certain
reductive subgroups of G. In this construction, it is not enough to use semisimple
subgroups, and thus we are led to study reductive groups instead. Fortunately the
analogous subgroups of a reductive G are still reductive, so that we do not need
to enlarge our class of groups a second time. This matter is discussed more in
Lectures 2 and 3.

For the remainder of this section, we shall assume that G is reductive in the
sense of Lecture 2. Such a group has a maximal compact subgroup, which we denote
by K, and G is topologically the product of K and a Euclidean space. Early on,
Harish-Chandra realized that the Hilbert space structure of an irreducible unitary
representation is so rigid that it is essentially superfluous. This matter is treated
in detail at the end of Lecture 5, but we indicate the basic picture here. In the first
place, the restriction of any unitary representation from G to K is a discrete “sum”
(allowing limits) of irreducible unitary representations of K (Lecture 3), and, in
the case of an irreducible representation of G, each equivalence class of irreducible
unitary representations of K is represented only finitely many times in this sum.
This finite-multiplicity property plays such a prominent role that we make it into
a definition: we say that a representation of G with this property is admissible.
Irreducible unitary representations are admissible.

Let us now assume only that the given unitary representation of G on V is
admissible. Let VK be the algebraic direct sum within V of the spaces of the
irreducible representations of K. This is a countable-dimensional dense subspace
of V , and we disregard its topology. The idea is that for many purposes we may
replace V by VK and work with the representation algebraically. The action of G on
V can be differentiated on VK to give VK the structure of a module for the universal
enveloping algebra U(g) of the complexification g of the Lie algebra of G. In the
passage from G to U(g), any information that helps distinguish covering groups of
G from G itself is lost. On the other hand, K acts on VK by construction. Since K
captures the fundamental group of G, the action of K keeps track of the information
that helps distinguish covering groups of G from G itself. The space VK , equipped
with the actions of U(g) and K, is called the underlying (g,K) module of V . The
restriction of the G invariant Hermitian inner product on the Hilbert space V is
invariant in the natural senses under the actions of K and the Lie algebra of G,
and the underlying (g,K) module is said to be infinitesimally unitary.
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One is led to define a (g,K) module to be a vector space together with a
left U(g) module structure and a locally finite linear action of K satisfying some
expected compatibility conditions. When the underlying (g,K) modules of two
admissible unitary representations satisfy the expected notion of isomorphism,
the original representations are said to be infinitesimally equivalent. It is not
immediately obvious that (g,K) modules form the appropriate setting for studying
unitary representations, but they do: Every “irreducible” infinitesimally unitary
(g,K) module is the underlying (g,K) module of an essentially unique irreducible
unitary representation, two irreducible unitary representations are equivalent if
and only if their underlying (g,K) modules are infinitesimally equivalent, and all
questions of reducibility of an admissible unitary representation can in principle be
addressed on the level of underlying (g,K) modules. If we write bGu for the set of
equivalence classes of irreducible unitary representations of G, what we are saying
is that the original problem of identifying bGu amounts to the same thing as finding
all classes of infinitesimally unitary (g,K) modules, the classes being defined by
infinitesimal equivalence. In this formalism the Hilbert spaces have disappeared
from the picture.

Because of this passage from G to U(g) and K, we may expect that the
representation theory of compact groups will be an important tool in studying
unitary representations of noncompact groups. We study the abstract theory of
representations of compact groups K in Lecture 3, and we identify the unitary dual
of K in Lecture 4. In fact, it is important to remember that K itself is an example
of a reductive group. Thus we cannot expect to say more about the representation
theory of reductive groups than we can about the representation theory of K.

A natural starting point in the classification of irreducible U(g) modules is
restriction to a large abelian subalgebra of U(g). In Lecture 5 we shall see that
the center Z(g) of U(g) is large and that Z(g) acts by scalars in any irreducible
U(g) module. Thus we may attach an algebra homomorphism from Z(g) into
C to any irreducible (g,K) module X. In Lecture 5 we give Harish-Chandra’s
result establishing that the set of all nonzero such homomorphisms is canonically
isomorphic to h0/W . Here h0 is the dual of a Cartan subalgebra of g and W is the
Weyl group of h in g. If ∏ is the Weyl group group orbit in h0 attached to X, we
say that X has infinitesimal character ∏. All these matters are in Lecture 5.

Unlike the case of irreducible unitary representations, two irreducible admissi-
ble representations can have infinitesimally equivalent underlying (g,K) modules
without being equivalent by bounded operators. In defining what set of equivalence
classes of irreducible admissible representations to consider, we have to decide what
kinds of equivalence to use. We choose infinitesimal equivalence. Let bGa be the
set of classes of irreducible admissible representations. Then bGu ⊆ bGa in a natural
way.

The set bGa is large enough to contain the classes of unitary representations, but
small enough to have a well-developed character theory. Characters are discussed
in detail in Lecture 6, but we mention a few highlights here. In the theory of finite
groups, the character of a finite-dimensional representation is the numerical-valued
function on G whose value at g ∈ G is the trace of the action by g. Characters
are constant on conjugacy classes of G, and one knows that characters provide
a powerful means to pass between representations of a group and the structure
of the set of conjugacy classes in G. When G is compact, a similar theory is
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applicable (Lecture 3). If G is also connected, each conjugacy class meets any
particular maximal toral subgroup of G, according to Lecture 6, and the analysis of
representations of G can thereby be reduced to the theory for the toral subgroup.
In particular, the Weyl Character Formula of Lecture 6 gives a relatively simple
expression for all irreducible characters of a compact connected Lie group.

Because elements in bGa may be infinite dimensional if G is noncompact, some
serious care is required in generalizing character theory to the noncompact case. It
turns out that we can attach to each element of bGa, not a conjuagation-invariant
function on G, but rather a conjugation-invariant distribution on G called a global
character. The modifier “global” is meant to indicate that the distribution is at-
tached initially, not to a (g,K) module itself, but instead to a global representation
of G with a given underlying (g,K) module. Such globalizations of a (g,K) module
always exist—typically there are many—but the global character does not depend
on the choice of globalization. Because of this fact, we need not be careful to
specify whether we are dealing with an irreducible admissible (g,K) module or one
of its globalizations. As in the case of finite groups, global characters are complete
invariants in the sense that two elements of bGa are infinitesimally equivalent if and
only if their global characters coincide. In fact, the global characters corresponding
to the members of bGa are linearly independent.

Unlike what happens in the compact case, the conjugacy classes of a non-
compact G need not meet a particular abelian subgroup. What does happen,
however, is that each conjugacy class in an open dense set meets exactly one of
a given particular finite set of abelian subgroups. The fact that each element of
bGa has an infinitesimal character implies that the global character satisfies a large
system of differential equations coming from the center of Z(g), and the simple
structure of most conjugacy classes essentially reduces the system to a system of
differential equations on Euclidean space involving the infinitesimal character. This
is discussed in Lecture 6. These equations can be solved, and the result is that the
global character takes a particularly simple form on an open dense set; in fact, the
formula for the global character bears a striking resemblance to the Weyl Character
Formula in the compact case. A deep theorem of Harish-Chandra asserts that the
complement of the open dense set of conjugacy classes cannot contribute anything
interesting to the global character, and as a consequence one deduces that, for each
infinitesimal character, the space of solutions satisfying the system of differential
equations mentioned above is finite dimensional. Since the global characters of
members of bGa are linearly independent, each of the sets of members of bGa of
infinitesimal character ∏ is finite.

In any event, the unitarity problem can be stated as follows: parametrize
the set bGa, and determine the subset of parameters corresponding to unitary
representations. The rephrased problem is potentially useful only because it is
possible to parametrize bGa. This is the content of the Langlands classification
as treated in Lecture 8, and a subsequent classification of “irreducible tempered”
representations by Knapp and Zuckerman. We now briefly outline the shape of the
Langlands classification.

The Langlands classification (Lecture 8) first builds a family of irreducible
admissible representations of G from a special kind of irreducible admissible rep-
resentations of certain reductive subgroups of G. This construction proceeds by
parabolic induction (Lecture 3). The hard step is to show that this family exhausts
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the irreducible admissible representations of G. The technique here is to analyze
the asymptotics of the matrix coefficients. Lecture 7 deals with asymptotics; the
core of the idea is as follows. It turns out that we can write G = KAK, where A is
a certain Euclidean group. Given an admissible representation of G, we can think
of the elements of G acting by some infinite-dimensional matrix whose coefficients
are functions on G. If we arrange our basis to be compatible with the restriction
of the representation to K, then the KAK decomposition implies that a block of
matrix coefficients is determined by its restriction to the Euclidean space A, and it
makes sense to study its asymptotics there.

The idea of the classification is then to take an irreducible admissible represen-
tation and study the asymptotics of its matrix coefficients. If these coefficients do
not have the best possible growth characteristics at infinity, then it is possible to
write the original representation as parabolically induced by means of an irreducible
admissible representation of a smaller reductive group H with best possible decay
characteristics at infinity. “Best possible decay characteristics at infinity” means,
for this purpose, that the block of matrix coefficients is in L2+ε(H) for every ε > 0,
hence that the representation is almost in the discrete series of H; in this case we
call the representation tempered. Qualitatively the theorem is that the irreducible
admissible representations of G are obtained by parabolic induction by means
of irreducible tempered admissible representations of certain subgroups H of G.
When the subgroup H is G itself, we recover the irreducible tempered admissible
representations of G, in a kind of tautology. These tempered representations of G
require a separate analysis, which is carried out earlier in Lecture 8, and they are
obtained as constituents of representations essentially induced from discrete series
of the subgroups H of G.

Thus we are left with problem of locating bGu in terms of the above parametriza-
tion. We have an easy chance of succeeding only if we can relate the property of
being unitary to the asymptotic growth of matrix coefficients. Already this seems
like an unattainable goal: the discrete series, whose matrix coefficients are in L2,
are unitary; and so is the trivial representation, whose unique matrix coefficient is a
constant function. This example is a little misleading—the trivial representation is
anomalous in some sense—but even the more precise statements that are available
are not very useful. The unitary representations simply do not fit nicely into the
Langlands classification. This behavior helps account for the fact that the unitarity
problem, if considered group by group, remains open except for GL(n, R), GL(n, H),
complex classical groups, and most groups for which the dimension of the Euclidean
group A above is ≤ 2.





LECTURE 1
Some Representations of SL(n, R)

Group Representations for the Case n = 2

We are going to be studying group representations, and we begin with some
examples. The group in question will be SL(n, R), the group of real n-by-n matrices
of determinant 1. Mostly we consider SL(2, R) for the time being.

A representation of G on a complex vector space V is defined to be a homomor-
phism Φ of G into the group of invertible linear transformations from V to itself.
If G and V are topological, the map G× V → V is assumed continuous.

Equivalently, a representation is a group action G × V → V with (g, v) 7→ v
linear for all g ∈ G.

The continuity condition for a representation Φ of G on a Hilbert space V is
equivalent with the condition that kΦ(x)k be bounded in a neighborhood of the
identity and that Φ(x)v → v as x → 1 for each v in a dense subset of V . (See the
exercises.)

Here are three beginning examples. We do not need to specialize G to SL(n, R)
yet.

Example 1. Let G be any subgroup of GL(n, C), i.e., the group of all n-by-n real
or complex matrices, and let V = Cn. Define Φ(g)v = gv, matrix product. This Φ
is called the standard representation of G.

Example 2. Suppose that a group G acts on a set X. Let V be the vector space
of all functions f : X → C, and define (Φ(g)f)(x) = f(g−1x). This Φ is called
the left regular representation of G on the space of all functions on X. The use of
g−1 rather than g in the formula for Φ makes Φ a homomorphism instead of an
antihomomorphism.

Example 3. Let Φ be a representation of G on V . An invariant subspace U of V ,
i.e., a vector subspace such that Φ(G)U ⊆ U , defines by restriction a representation
of G on U . This is called a subrepresentation.

A unitary representation Φ of G on V is a representation in which V is a Hilbert
space, finite or infinite dimensional, and each Φ(g) is unitary, i.e., invertible linear
and also norm-preserving. The condition “norm-preserving” means that kΦ(g)vk =
kvk for all v and g, and it is equivalent with the condition that the inner product
satisfy (Φ(g)v1,Φ(g)v2) = (v1, v2) for all v1, v2, and g.

15
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Example. The space V = Cn may be made into a Hilbert space in the usual way.
Define the unitary group U(n) to be the subgroup of all matrices g ∈ GL(n, C)
with g∗g = 1, where ( · )∗ denotes adjoint. In Example 1 if G is a subgroup of the
unitary group U(n), then Φ is unitary. If G is any subgroup of GL(n, C) that is
not contained in U(n), then the Φ in Example 1 is not unitary.

The obvious notion of isomorphism for two representations of the same group G
is known as “equivalence”: The representations (Φ1, V1) and (Φ2, V2) are equivalent
if there is an invertible linear map E : V1 → V2 such that the action of G on V1

by Φ1 matches the action of G on V2 by Φ2. In symbols, EΦ1(g) = Φ2(g)E for all
g ∈ G. If G, V1, and V2 are topological, then E and E−1 are assumed continuous.

Now let us specialize G to be SL(2, R), the group of all 2-by-2 real matrices of
determinant 1.

Here are some examples of finite-dimensional representations of G = SL(2, R).
We start from Example 1, the standard representation of G on C2. Since a
representation is in particular a group action, we can use Example 2 to form the
corresponding left regular representation of G on the space of functions from C2

to C. Restrict in the sense of Example 3 to the subrepresentation on the space
of polynomial functions in two variables homogeneous of degree N . This means
that P

° z1

z2

¢
is a linear combination of monomials zN−k

1 z2 as k varies, and the
representation is given by

µ
Φ

µ
a b
c d

∂
P

∂µ
z1

z2

∂
= P

√µ
a b
c d

∂−1 µ
z1

z2

∂!

.

The dimension of the space is N + 1 because the monomials form a basis.
The above representations turn out to be irreducible, having no (closed) invari-

ant subspaces. Up to equivalence, these are all the irreducible finite-dimensional
representations. We omit the proof.

Theorem 1. Every finite-dimensional unitary representation Φ of SL(2, R) is
trivial, i.e., has Φ(g) = 1 for all g.

Proof. Say Φ maps SL(2, R) into U(n). Since
µ

r 0
0 r−1

∂µ
1 x
0 1

∂µ
r 0
0 r−1

∂−1

=
µ

1 r2x
0 1

∂
,

all
≥

1 x
0 1

¥
with x > 0 are conjugate. So all Φ

≥
1 x
0 1

¥
with x > 0 are conjugate. Since

U(n) is compact, its conjugacy classes are closed. Thus the limit Φ
≥

1 0
0 1

¥
= 1 is in

the conjugacy class. Hence Φ
≥

1 x
0 1

¥
= 1 for x > 0. Similarly Φ

≥
1 x
0 1

¥
= 1 for x < 0,

and Φ
≥

1 0
y 1

¥
= 1. The elements

≥
1 x
0 1

¥
and

≥
1 0
y 1

¥
together generate SL(2, R). So

Φ(g) = 1 for all g.

Yet there are nontrivial infinite-dimensional unitary representations. The group
SL(2, R) has a nonzero left-invariant Borel measure dx (“left Haar measure”). We
obtain the left regular representation of SL(2, R) by using the action of G on G and
then taking the action on functions. The representation space is L2(SL(2, R), dx),
and the action is

(Φ(g)f)(x) = f(g−1x).
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This representation Φ is unitary by the invariance of dx:

kΦ(g)fk2 =
Z

G
|f(g−1x)|2 dx =

Z

G
|f(x)|2 dx = kfk2.

Proving continuity requires observing by dominated convergence that
Z

G
|f(g−1x)− f(g−1

0 x)|2 dx −→ 0

as g → g0 for f ∈ Ccom(G) and knowing that Ccom(G) is dense in L2(G).
Similarly SL(2, R) has a “right Haar measure” (it is actually the same as left

Haar measure), and the right regular representation of SL(2, R) on L2(SL(2, R), dx)
has (Φ(g)f)(x) = f(xg). Note that the formula for this action uses g and not g−1.

The above unitary representations, namely the left and right regular repre-
sentations of G on L2(G) are not close to irreducible. We shall next give some
examples of unitary representations that are irreducible except in one particular
case. The idea for constructing a nearly irreducible family of representations is to
start from a transitive group action of G on a small coset space G/H and pass to
the regular representation on functions. It turns out that the group-action property
remains valid when certain kinds of coefficients, called multipliers, are included in
the formula, and we use multipliers that make the representations unitary.

The examples we have in mind are the members of the principal series of
SL(2, R) in the noncompact picture. The principal series consists of two infinite
families P+,iv and P−,iv of representations. Here v is an arbitrary element of R,
and we get one member of each family for each v. The space is L2(R) for each
representation, and the action is given by

P+,iv

µ
a b
c d

∂
f(x) = |− bx + d|−1−ivf

µ
ax− c

−bx + d

∂
,

P−,iv

µ
a b
c d

∂
f(x) = (sgn(−bx + d))|− bx + d|−1−ivf

µ
ax− c

−bx + d

∂
.

The group action property needs to be checked in each case. The unitarity property
is proved by an easy change of variables.

We shall sketch a proof that the principal series representations are almost irre-
ducible. But first we isolate a fundamental property of any unitary representation:

(∗) If U is a closed invariant subspace, so is U⊥.

The argument in obvious notation is that

(P(g)u⊥, u) = (u⊥,P(g)∗u) = (u⊥,P(g)−1u) = (u⊥,P(g−1)u) ∈ (u⊥, U) = 0.

Unitarity has been used in the formula P(g)∗ = P(g)−1.
Returning to the question of irreducibility of the principal series, let E be the

orthogonal projection on a closed invariant subspace U . This commutes with all
P(g) by (∗). The operator P

≥
1 0
y 1

¥
acts in L2(R) by translation by −y. So E

commutes with translations on L2(R). From Fourier analysis on R, one knows
therefore that (Ef)b(ξ) = m(ξ) bf(ξ) for some m ∈ L1(R). where bf(ξ) denotes
the Fourier transform bf(ξ) =

R
R f(x)e−2πixξ dx. The equality E2 = E shows that

m2 = m a.e. Hence m takes values in {0, 1} a.e. Analysis of commutativity of
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E with P
≥

r 0
0 r−1

¥
, together with an application of Fubini’s Theorem, shows m is

constant a.e. on each half line. Thus the only nontrivial closed invariant subspaces
are the two spaces of all members of L2(R) whose Fourier transforms are 0 on one
of the two half lines.

Actually it turns out that all of P+,iv and P−,iv are irreducible except for P−,0,
which is reducible. This fact is quite a bit harder to prove.

Let us consider another realization of the principal series, the induced picture.
Historically it was not so easy to realize that the noncompact picture could be
transformed to the induced picture. But once this transformation has been carried
out, we obtain a framework that readily generalizes to groups other than SL(2, R).
Before defining the induced picture, we give names to some subgroups of G =
SL(2, R):

K =
Ωµ

cos θ − sin θ
sin θ cos θ

∂æ
,

M = {±1},

A =
Ωµ

r 0
0 r−1

∂ ØØØ r > 0
æ

,

N =
Ωµ

1 x
0 1

∂æ
,

N =
Ωµ

1 0
y 1

∂æ
.

Starting from the data (+, iv) or (−, iv), define

σ

µ
ε 0
0 ε

∂
=

Ω
ε if −
1 if +,

where ε = ±1, and

∫

µ
t 0
0 −t

∂
= ivt and ρ

µ
t 0
0 −t

∂
= t.

Then man 7→ e∫ log aσ(m) is a representation of MAN . It is one-dimensional and
unitary.

Consider the space of functions

{F ∈ C(G) | F (xman) = e−(∫+ρ) log aσ(m)−1F (x)},

where C(G) denotes the space of continuous functions from G to C, and put

P±,iv(g)F (x) = F (g−1x).

The fact that left translation by g−1 commutes with right translation by man (the
associative law for G) is what makes it so that P±,iv(g)F is still in the above space.
Given F , define LF to be essentially the restriction to N . Specifically

(LF )(y) = F

µ
1 0
y 1

∂
for y ∈ R.

We check that
LP±,iv(g) = P±,iv(g)L.
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In fact, the computation is based on the identity

µ
α β
∞ δ

∂
=

µ
1 0

∞/α 1

∂µ
α 0
0 α−1

∂µ
1 β/α
0 1

∂
,

valid for matrices of determinant one, and is as follows:

LP±,iv

µ
a b
c d

∂
F (y) = P±,iv

µ
a b
c d

∂
F

µ
1 0
y 1

∂

= F

µµ
d −b
−c a

∂µ
1 0
y 1

∂∂

= F

µ
−by + d −b
ay − c a

∂

= F

µµ
1 0

ay−c
−by+d 1

∂µ
−by + d 0

0 (−by + d)−1

∂µ
1 —
0 1

∂∂

= (sgn or 1)|− by + d|−1−ivF

µ
1 0

ay−c
−by+d 1

∂

= P±,iv

µ
a b
c d

∂
LF (y).

Here L is onto a dense subset of L2(R), namely onto at least the space Ccom(R)
of continuous functions of compact support on R. In fact, if f ∈ Ccom(R) is given,
put

F

µ
a b
c d

∂
=

Ω |a|−1−ivσ
°

sgn a 0
0 sgn a

¢
f(c/a) if a 6= 0,

0 if a = 0.

Then we check easily that LF = f .
We can compute the value of the norm in the induced picture that makes L

preserve norms, and then L will exhibit the equivalence. The answer by a change
of variables is

kFk2 = c

Z π

−π

ØØØF
µ

cos θ − sin θ
sin θ cos θ

∂ ØØØ
2
dθ.

The functions on the rotation subgroup K =
n≥

cos θ − sin θ
sin θ cos θ

¥o
that are involved are

those that transform under M by

F

µ
k

µ
ε 0
0 ε

∂∂
= σ

µ
ε 0
0 ε

∂−1

F (k).

If we identify the rotation subgroup with the circle group {eiθ}, then these functions
are identified with those having only even-numbered Fourier coefficients in the case
of P+,iv, odd-numbered Fourier coefficients in the case of P−,iv.

Actually restriction to K is onto the space of L2 functions of this kind. This fact
is a consequence of a fundamental structural property that will turn out later to be
a special case of the “Iwasawa decomposition” of G, namely that the multiplication
mapping K × A × N → G is an analytic diffeomorphism onto. The proof is by
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inspection from the identity
µ

a b
c d

∂
=

µ
a/(a2 + c2)1/2 − c/(a2 + c2)1/2

c/(a2 + c2)1/2 a/(a2 + c2)1/2

∂µ
(a2+c2)1/2 0

0 (a2+c2)−1/2

∂µ
1 ab+cd

a2+c2

0 1

∂

We write G = KAN for this decomposition.
To see that restriction to K is onto the space of L2 functions of the appropriate

kind above, we can start with a function on K satisfying the appropriate transfor-
mation law under M and extend it to SL(2, R) so as to satisfy the transformation
law under MAN . Then we get unitary representations of SL(2, R) on L2(K,σ);
each is the compact picture of the corresponding induced representation.

In summary we have three equivalent ways of viewing the principal series:
• noncompact picture
• induced picture
• compact picture.

Each has its advantages, as we shall see.

Lie Algebra Representations for the Case n = 2

To define “representation” for a Lie algebra, let us return to the setting that
G is any Lie group. Let g be its Lie algebra, identified as a real vector space with
the tangent space to G at the identity 1 and having bracket structure given by
bracketing the corresponding left-invariant vector fields.

We motivate the definition by the finite-dimensional case. Recall that a (finite-
dimensional) group representation is a continuous homomorphism Φ : G → GL(V )
with V finite-dimensional over C. Since a continuous homomorphism between Lie
groups is necessarily smooth and since the Lie algebra of GL(V ) may be identified
with the Lie algebra gl(V ) of linear maps of V to itself, we can differentiate and
get a homomorphism of g into gl(V ). The homomorphism property yields

ϕ[X,Y ] = [ϕ(X),ϕ(Y )] = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X),

the second equality following from the definition of bracket in gl(V ). The formula
for ϕ is

ϕ(X)v =
d

dt
Φ(c(t))v |t=0,

where c(t) is any smooth curve in the group with c(0) = 1 such that the differential
of c(t) at t = 0 satisfies dc0

°
d
dt

¢
= X. An example of such a curve c(t) is c(t) =

exp tX.
The above considerations motivate the definition in general. If g is a real Lie

algebra and V is a complex vector space, a representation of g on V is a real linear
map ϕ : g → gl(V ) such that

ϕ[X,Y ] = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X)

for all X and Y in g.
We know in the finite-dimensional case that group representations lead to Lie

algebra representations on the same vector space. Let us see what to expect in the
infinite-dimensional case.
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We use as an example the group G = SL(2, R), and we consider the principal
series of G in the compact picture. The representation space consists of certain
functions on the rotation subgroup K =

n≥
cos θ − sin θ
sin θ cos θ

¥o
, K acts on these functions

by translations, and the Lie algebra element
≥

0 −1
1 0

¥
wants to differentiate the

function in θ. Some smoothness condition is needed. To apply
≥

0 −1
1 0

¥
repeatedly

requires the function to be in C1(K). Then the extension from K to G = KAN
via the formula

F (kan) = e−(∫+ρ) log aF (k)

is in C1(G) since multiplication K ×A×N → G is a diffeomorphism, and we can
differentiate by any X ∈ g. The space

(

F ∈ C1(K)

ØØØØØF
µ

k

µ
ε 0
0 ε

∂∂
= σ

µ
ε 0
0 ε

∂−1

F (k)

)

is the space of C1 vectors for the representation, and we have a representation of
g on this vector space (no topology). The bracket property has to be checked, but
we omit this computation.

As we shall see, a space C1(V ) of C1 vectors can always be defined for a
representation on a Hilbert space V . We return to this matter in Lecture 5.

To understand what to expect from the Lie algebra representation obtained
from an infinite-dimensional group representation, let us consider the correspon-
dence of invariant subspaces. Let Φ be a representation of G on V , and let U be a
closed invariant subspace under G. Then U ∩ C1(V ) is invariant under g. But if
U ⊆ C1(V ) is g invariant, U need not be G invariant. Here is an example.

Example. Let the group be the 2-by-2 rotation group K as above, acting on
L2(K). Take

U = {C1 functions supported for − π
2 ≤ θ ≤ π

2 }.

The subspace U is invariant under differentiation in θ, hence under the action of
the Lie algbera of K. But its closure is not invariant under translation in θ, hence
under the group K.

The difficulty in this example can arise only with infinite-dimensional represen-
tations. In the finite-dimensional case, a subspace invariant under the Lie algebra
is automatically invariant under the Lie group.

To remedy this difficulty that arises in the infinite-dimensional case, one intro-
duces the notion of “analytic vectors” for a group representation. In the case of
the principal series of SL(2, R), the analytic vectors are exactly the real analytic
functions on K. We defer the definition in the general case to Lecture 5. In any
event, for a general representation on a Hilbert space V , the space of analytic
vectors is denoted Cω(V ). It will be the case that if U ⊆ Cω(V ) is invariant under
g, then U is invariant under G. What is not so obvious is that the space of analytic
vectors is nonzero. Once it is known that the space of analytic vectors is nonzero,
however, we see that the action of the Lie algebra does give some information about
the action of the Lie group.
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Representations for the Case of General n

Now quickly let us mention how some of the above considerations generalize
from SL(2, R) to G = SL(n, R) for general n. Taking our cue from the case n = 2,
we define the following subgroups of G:

K = SO(n) = rotation subgroup
A = positive diagonal subgroup
M = diagonal subgroup, entries |ε| = 1
N = upper-triangular group, 1’s on diagonal
N = lower-triangular group, 1’s on diagonal.

Before coming to the principal series, let us consider certain decompositions of
G that will allow us to relate different pictures for the principal series.

The decomposition theorem G = KAN , which we saw by a direct computation
for n = 2, continues to be valid for G = SL(n, R). The hard step in the proof is that
every member of G decomposes as a product from KAN . This follows from the
Gram-Schmidt orthogonalization process in linear algebra. In fact, let u1, . . . , un

be the standard orthonormal basis of Rn. Given g, form gu1, . . . , gun. The Gram-
Schmidt process yields an orthonormal basis v1, . . . , vn such that gu1, . . . , guj al-
ways has the same span as v1, . . . , vj and vj is in

R+(guj) + span{v1, . . . , vj−1}.

If k−1 is the matrix that carries the column vector vj to uj for each j, one can
check that k is in SO(n) and that k−1g is upper-triangular with positive diagonal
entries.

The more precise statement of the result is that the multiplication map
K × A × N → G is a diffeomorphism onto G. Another relevant decomposition
theorem is that the multiplication mapping NMAN ↪→ G is a diffeomorphism onto
an open dense subset of G whose complement has lower dimension.

Now we define the principal series. The straightforward setting to generalize
is the induced picture. Let

σ = one-dimensional representation of M

∫ = imaginary linear functional on diagonal subalgebra
ρ = a certain real linear functional that we specify in Lecture 3.

The members of the induced space have

F (xman) = e−(∫+ρ) log aσ(m)−1F (x),

and the group action by G is

Pσ,∫(g)F (x) = F (g−1x).

Initially we take the functions in question to be continuous. Then a norm has
to be imposed, and the whole space for the induced representation is obtained by
completion. The presence of ρ makes the resulting representation unitary.

As with SL(2, R), there are two other pictures for principal series represen-
tations: Restriction to K gives the compact picture, while restriction to N gives
the noncompact picture. For these two pictures, the Hilbert space norm is easy
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to specify. Both K and N have two-sided invariant measures (“Haar measures”),
given in the case of N simply by Lebesgue measure in the natural matrix-entry
coordinates, and the Hilbert space norms are the L2 norms with respect to these
measures. Not all members F of L2(K) are involved in the compact picture of
Pσ,∫ , only those satisfying F (km) = σ(m)−1F (k) for each m ∈ M and almost
every k ∈ K.

Notes

As is pointed out in the Introduction, these lectures are a distillation of material
in [K1] and [K2]. The section of Notes at the end of each lecture largely gives
references to expository sources for further reading, quite often to [K1] or [K2].
Historical information and an extensive bibliography may be found in those two
books.

Elementary Lie theory is the topic of Chevalley [C], particularly the first four
chapters. A summary of some of this material appears in [K2], pp. 43–55.

Three standard books on the representation theory of semisimple groups are
[K1], Wallach [Wal], and Warner [War]. All of these have material on abstract
representation theory; in [K1], this material is very brief and is on pp. 10–14. For
some further material in this direction, see [Bal].

Constructions of some finite-dimensional representations of concrete groups
may be found in [K2], pp. 181–186. The finite-dimensional irreducible complex-
linear representations of sl(2, C) are classified in [K2], pp. 37–43. See also [K1],
pp. 28–32.

Infinite-dimensional representations of SL(2, R) and SL(2, C) are discussed in
more detail in [K1], pp. 33–42. For additional information about representations
of SL(2, R), see [Do].

Exercises

1. Check that the action in Example 2 of representations gives rise to a
homomorphism, and not an antihomomorphism.

2. Prove that the continuity condition for a representation Φ of G on a Hilbert
space V , in the presence of the homomorphism property, is equivalent with the
condition that kΦ(x)k be bounded in a neighborhood of the identity and that
Φ(x)v → v as x → 1 for each v in a dense subset of V . Conclude that a
homomorphism of G into unitary operators on a Hilbert space V is continuous
(and hence is a representation) if g 7→ Φ(g)v is continuous for a dense set of vectors
v ∈ V .

3. Use the result of Exercise 2 to fill in the details that the left regular
representation of G on L2(G) is continuous.

4. If (Φ, V ) and (™,W ) are representations of G, make V ⊗ W into the
representation space of a representation Φ⊗™ of G.

5. If (Φ, V ) is a representation of G and V 0 denotes the linear dual of V ,
define Φt(g)(v0)(v) = v0(Φ(g−1)v) for v ∈ V and v0 ∈ V 0. Show that (Φt, V 0) is a
representation of G. For the situation that V is topological and Φ is continuous,
construct a representation Φc as the subrepresentation of Φt on the subspace of
continuous members of V 0. [Φc is called the contragredient of Φ.]
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6. Check the group representation property and unitarity of the unitary prin-
cipal series representations of SL(2, R).

7. Verify that the norm for the induced and noncompact pictures of the
unitary principal series of SL(2, R) match, up to a scalar factor.



LECTURE 2
Semisimple Groups and Structure Theory

Semisimple Groups and Examples

A linear connected reductive group is a closed connected group of real or complex
matrices that is stable under conjugate transpose. A linear connected semisimple
group is a linear connected reductive group with finite center.

For a Lie group of matrices, we know that the Lie algebra can be identified
with all matrices c0(0), where c(t) is a smooth curve in the group with c(0) = 1.
The bracket is [A,B] = AB − BA. Here are some examples of various kinds of
linear connected reductive groups.

Example 1. Complex groups G with Lie algebra g:
a) General linear group:

G = GL(n, C) = {nonsingular n-by-n matrices over C}
g = gl(n, C) = {all n-by-n matrices over C}

b) Special linear group:

G = SL(n, C) = {g ∈ GL(n, C) | det g = 1}
g = sl(n, C) = {X ∈ gl(n, C) | TrX = 0}

c) Complex orthogonal group:

G = SO(n, C) = {g ∈ SL(n, C) | ggt = 1}
g = so(n, C) = {X ∈ sl(n, C) | X + Xt = 0}

d) Complex symplectic group:

G = Sp(n, C) = {g ∈ SL(2n, C) | gtJg = J} with J =
µ

0 1n

−1n 0

∂

g = sp(n, C) = {X ∈ sl(2n, C) | XtJ + JX = 0}.

Some people write Sp(2n, C) for the name of (d). Among the above complex
reductive groups, (a) has a one-dimensional (infinite) center, while the others have
finite center and are hence semisimple.

25
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Example 2. Compact groups G with Lie algebra g:
a) Rotation group:

G = SO(n) = {g ∈ SL(n, C) | gtg = 1, real entries}
g = so(n) = {X ∈ sl(n, C) | Xt + X = 0, real entries}

b) Unitary group:

G = U(n) = {g ∈ GL(n, C) | ḡtg = 1}

g = u(n) = {X ∈ gl(n, C) | Xt + X = 0}

c) Special unitary group:

G = SU(n) = {g ∈ U(n) | det g = 1}
g = su(n) = {X ∈ u(n) | TrX = 0}

d) “Unitary group” over quaternions H (up to isomorphism):

G = Sp(n) = {g ∈ U(2n) | gtJg = J}
g = sp(n) = {X ∈ u(2n) | XtJ + JX = 0}.

Example 3. More groups G with Lie algebra g:
a) Groups of real matrices in above complex groups. The group GL(n, R) is

disconnected and therefore is not reductive in the above definition. However, its
identity component is a reductive group in the above definition.

G = GL0(n, R) = {nonsingular n-by-n matrices over R, positive determinant}
g = gl(n, R) = {all n-by-n matrices over R}

G = SL(n, R) = {g ∈ GL(n, R) | det g = 1}
g = sl(n, R) = {X ∈ gl(n, R) | TrX = 0}

G = SO(n, R) = SO(n) = {g ∈ SL(n, R) | ggt = 1}
g = so(n, R) = so(n) = {X ∈ sl(n, R) | X + Xt = 0}

G = Sp(n, R) = {g ∈ SL(2n, R) | gtJg = J}
g = sp(n, R) = {X ∈ sl(2n, R) | XtJ + JX = 0}.

b) Isometry groups for indefinite Hermitian forms. The group O(m,n), the
linear isometry group for the real quadratic form x2

1 + · · ·+x2
m−x2

m+1− · · ·−x2
m+n

in Rm+n, has four components if m > 0 and n > 0. Restricting to determinant
one cuts the number of components down to two. We obtain a reductive (actually
semisimple) group by passing to the identity component.

SO0(m,n) =
Ω

identity component of linear isometry group for real quadratic form
x2

1 + · · ·+ x2
m − x2

m+1 − · · ·− x2
m+n in Rm+n

U(m,n) =
Ω

linear isometry group for Hermitian quadratic form
|z1|2 + · · ·+ |zm|2 − |zm+1|2 − · · ·− |zm+n|2 in Cm+n

SU(m,n) = {g ∈ U(m,n) | det g = 1}.
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We discuss the corresponding Lie algebras so(m,n), u(m,n), and su(m,n) later in
this lecture.

A linear connected reductive group G is mapped to itself by conjugate trans-
pose, and thus inverse conjugate transpose is an automorphism Θ of G with Θ2 = 1.
It is called the (global) Cartan involution of G.

Let K = {g ∈ G | Θg = g} be the subgroup of elements in G left fixed by Θ.
If G is realized in n-by-n matrices, K is a closed subgroup of G ∩ U(n), hence is
compact.

Let θ be the differential of Θ at 1, namely negative conjugate transpose. This
is an automorphism of g with θ2 = 1. It is called the Cartan involution of g.

Any linear transformation whose square is 1 has +1 and −1 eigenspaces whose
direct sum is the whole space. We write

g = k⊕ p

for the corresponding eigenspace decomposition for θ. This decomposition is called
the Cartan decomposition of g. It has the following properties:

(a) k ⊆ {skew-Hermitian matrices}
(b) p ⊆ {Hermitian matrices}
(c) [k, k] ⊆ k, [k, p] ⊆ p, and [p, p] ⊆ k
(d) k = Lie algebra of K.

These properties are all elementary. For example, to see that the middle inclusion
holds in (c), let X ∈ k and Y ∈ p. Then

θ[X,Y ] = [θX, θY ] = [+X,−Y ] = −[X,Y ],

and hence [X,Y ] is in p.

Examples of k and p.
1) Let G = GL(n, C). Then K = U(n) and

k = {skew-Hermitian matrices}
p = {Hermitian matrices}.

2) Let G = SL(n, R). Then K = SO(n) and

k = {real skew-symmetric matrices}
p = {real symmetric matrices}.

3) Let G = SO(n) or U(n) or SU(n) or Sp(n), i.e., any of our compact
examples. Then Θ = 1, θ = 1, K = G, k = g, and p = 0.

4) Let G = SO0(m,n). If we group the m + n indices into a set of m indices
and a set of n indices, then

k =
Ωµ

X 0
0 Y

∂
, real skew

æ

p =
Ωµ

0 Z
Zt 0

∂
, real

æ
.

The sum g = k⊕ p is the Lie algebra so(m,n) of SO0(m,n).
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5) Let G = U(m,n). Then

k =
Ωµ

X 0
0 Y

∂
, skew-Hermitian

æ

p =
Ωµ

0 Z
Z

t 0

∂æ
.

The sum g = k⊕ p is the Lie algebra u(m,n) of U(m,n).
6) Let G = SU(m,n). Then

k =
Ωµ

X 0
0 Y

∂
, skew-Hermitian of trace 0

æ

p =
Ωµ

0 Z
Z

t 0

∂æ
.

The sum g = k⊕ p is the Lie algebra su(m,n) of SU(m,n).

Structure Theory

All Lie algebras in this section are defined over R and are finite-dimensional
unless stated otherwise.

A simple Lie algebra is a Lie algebra with dimension greater than one and with
no nontrivial ideals. A semisimple Lie algebra is a Lie algebra with no nonzero
abelian ideals.

Simple clearly implies semisimple. The full relationship between “simple” and
“semisimple” will be discussed shortly.

The Killing form on g is defined by

B(X,Y ) = Tr(adX adY ) for X and Y in g.

This is a symmetric bilinear form on g that is invariant in the sense that

B((adZ)X,Y ) = −B(X, (adZ)Y ).

Example. Let g = sl(2, R), and let {h, e, f} be the basis

h =
≥

1 0
0 −1

¥
, e =

≥
0 1
0 0

¥
, f =

≥
0 0
1 0

¥
.

The bracket relations among the basis vectors are given by

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

We readily compute that the matrix of B is
µ

8 0 0
0 0 4
0 4 0

∂
. For example, the entry in the

second row and third column is B(e, f) = Tr(ad e ad f). The linear transformation
ad e ad f carries h to 2h, e to 2e, and f to 0. Thus B(e, f) = 2 + 2 + 0 = 4.

The theorem that gets the subject started is as follows.

Theorem (Cartan’s Criterion for Semisimplicity). A Lie algebra is semisimple if
and only if its Killing form is nondegenerate.

The word “nondegenerate” means that B(X, g) = 0 implies X = 0. Equiva-
lently the matrix of B is to be nonsingular.

It is fairly easy to derive from this theorem the full relationship between
“simple” and “semisimple”.
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Corollary. A Lie algebra is semisimple if and only if it is the direct sum of simple
Lie algebras that are each ideals.

A reductive Lie algebra is a Lie algebra that is the direct sum of two ideals, one
equal to a semisimple Lie algebra and the other equal to an abelian Lie algebra.

Proposition. A Lie algebra is reductive if and only if each ideal a in g has a
complementary ideal, i.e., an ideal b with g = a⊕ b.

Proposition. If G is linear connected semisimple, then g is semisimple. More
generally if G is linear connected reductive, then g is reductive with g = Zg ⊕ [g, g]
as a direct sum of ideals. Here Zg denotes the center of g, and the commutator
ideal [g, g] is semisimple.

Example. gl(n, R) = {scalars}⊕ sl(n, R).

Let us pause to comment on other definitions of “semisimple” and “reductive”
for Lie groups.

Most authors define a semisimple Lie group to be a connected Lie group whose
Lie algebra is semisimple. Such a group G is a finite or infinite cover of the group
Ad(G), which, relative to any basis of g, is a group of real matrices with a semisimple
Lie algebra. A hard theorem shows that in a suitable basis Ad(G) is linear connected
semisimple. Thus the most general semisimple Lie group is the finite or infinite cover
of a linear connected semisimple group.

For example, it turns out that SL(2, R) has a double cover and that this double
cover is not isomorphic to a linear connected semisimple group.

The need for reductive Lie groups will be clearer when we consider induced
representations. One wants to construct as many representations as possible by
induction on the dimension of the group. The prototype is the principal series of
SL(n, R), which is constructed from representations of the diagonal group. Even
when the given group is semisimple, the natural candidate subgroups to use have
reductive Lie algebras (not necessarily semisimple) and may even be disconnected.
This is the case with the diagonal subgroup of SL(n, R). The exact conditions
in the definition of “reductive Lie group” vary from author to author, but in any
definition one wants certain important subgroups of a reductive Lie group to be
reductive.

Now let us return to structure theory. Every complex matrix decomposes as
the product of a unitary matrix and a positive semidefinite Hermitian matrix.
The positive semidefinite matrix is unique. If the given matrix is nonsingular, the
positive semidefinite matrix is positive definite, and the unitary matrix is unique.
In other words, the group G = GL(n, C) has G = K exp p, where K = U(n)
and p is the vector space of Hermitian matrices. This decomposition is called the
polar decomposition of matrices. The generalization is called the (global) Cartan
decomposition, and the precise statement is as follows.

Theorem. If G is linear connected reductive, then K is compact connected and is
a maximal compact subgroup of G. Its Lie algebra is k. Moreover, the map of K×p
into G given by (k,X) → k expX is a diffeomorphism onto.

Note in particular that the interesting part of the topology of G is carried by
K.
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Corollary. If G is linear connected reductive, then the center ZG of G satisfies

ZG = (ZG ∩K) exp(p ∩ Zg).

In Lecture 1 we saw that G = SL(n, R) has a decomposition G = KAN , the
multiplication map being a diffeomorphism onto, as a consequence of the Gram-
Schmidt orthogonalization process. The generalization to all linear connected
reductive G is known as the “Iwasawa decomposition”. In order even to state
the theorem, we need definitions of A and N . These are obtained by working with
the Lie algebra.

Fix a linear connected reductive group G, and let a be any maximal abelian
subspace of p. The trace form on g is the complex-valued real-bilinear form given
by B0(X,Y ) = Tr(XY ). This is invariant in the same sense as the Killing form,
namely

B0((adZ)X,Y ) = −B0(X, (adZ)Y ).
Also hX,Y i = −B0(X, θY ) = Tr(XY ∗) is a real-valued inner product on the real
vector space g.

Proposition. Relative to the inner product h · , · i on g,

(adX)∗ = adX∗ for all X ∈ g.

Proof. For X, Y , and Z in g, we have hY, (adX)∗Zi = h(adX)Y,Z) =
B0((adX)Y,Z∗i = −B0(Y, (adX)Z∗) = −hY, [X,Z∗]∗i = hY, (adX∗)Zi.

Consequently adX is Hermitian for X ∈ a. We seek a simultaneous eigenspace
decomposition relative to ad a. If X and Y are in a, then [adX, adY ] = ad [X,Y ] =
ad 0 = 0 shows that adX and adY commute. Thus if H1, . . . ,Hl is a basis of a, then
{adHj} is a commuting family of Hermitian operators on g and is simultaneously
diagonalizable by the finite-dimensional Spectral Theorem. Let V1, . . . , Vr be the
eigenspaces in g for the different systems of eigenvalue tuples. If adHi acts as ∏ij

on Vj , define a linear functional ∏j on a by ∏j(Hi) = ∏ij . If H =
P

ciHi, then
adH acts on Vj by X

i

ci∏ij =
X

i

ci∏j(Hi) = ∏j(H).

In other words, ad a acts in simultaneously diagonal fashion on g, and the simulta-
neous eigenvalues are members of the dual vector space a0. There are finitely many
such simultaneous eigenvalues, and we write g∏ for the eigenspace corresponding to
∏ ∈ a0. The nonzero such ∏ are called restricted roots.

Let us summarize. For ∏ ∈ a0, let g∏ be the corresponding simultaneous
eigenspace, namely

g∏ = {X ∈ g | (adH)X = ∏(H)X for all H ∈ a}.

If ∏ 6= 0 and g∏ 6= 0, then ∏ is a restricted root, and any X ∈ g∏ is called a
restricted-root vector. Let Σ be the set of all restricted roots. The result of the
previous paragraph is that we obtain a direct sum decomposition

g = g0 ⊕
M

∏∈Σ

g∏.

This is called the restricted-root space decomposition of g.
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Examples.
1) Let g = sl(n, R). Then Σ = {ei − ej | i 6= j}. Here gei−ej = REij and

g0 = {real diagonal, trace 0}.
2) Let g = sl(n, C). Then Σ = {ei − ej | i 6= j}. Here gei−ej = CEij and

g0 = {complex diagonal, trace 0}.
3) Let g = su(p, q) with p > q. Recall that g consists of all

≥
a b
b∗ d

¥
with the

indices grouped into groups of sizes p and q and with a and d skew-Hermitian of
total trace 0. It can be shown that

Σ = {±fi ± fj} ∪ {±fi} ∪ {±2fi}

with fi defined as follows. One choice of a that we can use is to take a = 0,
d = 0, and b equal to 0 except in the bottom q × q block, where it consists of

all real antidiagonal matrices
µ

0 ··· aq

···
a1 ··· 0

∂
. Then fi ∈ a0 has value ai on this. The

formulas for the restricted-root vectors and the verifications of our formulas for
all the restricted roots are too complicated to give here, and we omit them. The
exercises ask for a computation in a relatively easy case and in the general case.

Proposition.
1) [g∏, gµ] ⊆ g∏+µ.
2) θg∏ = g−∏. Hence ∏ ∈ Σ implies −∏ ∈ Σ.
3) g∏ and gµ are orthogonal with respect to h · , · i if ∏ 6= µ.
4) g0 = a⊕m, where m = Zk(a) is the centralizer of a in k. Moreover the sum

is an orthogonal sum.

To define n, we introduce a “lexicographic ordering” in a0. Namely fix an
ordered basis ∏1, . . . ,∏l of a0. Define ∏ =

P
ci∏i to be positive if the first nonzero

ci is > 0. The ordering comes from saying ∏ > µ if ∏− µ is positive.
Let Σ+ be the set of positive members of Σ.

Examples. In the examples above, we can arrange that
• Σ+ = {ei − ej | i < j}.
• Σ+ = {ei − ej | i < j}.
• Σ+ = {fi ± fj | i < j} ∪ {fi} ∪ {2fi}.

Now define
n =

M

∏∈Σ+

g∏.

This is a Lie subalgebra of g as a consequence of conclusion (1) of the proposition.
Let A and N be the analytic subgroups of G with Lie algebras a and n. We can
now state the Iwasawa decomposition, first on the level of Lie algebras and then on
the level of Lie groups.

Proposition. For G linear connected reductive, g is a direct sum g = k ⊕ a ⊕ n.
Here a is abelian, n is nilpotent, a⊕ n is solvable, and [a⊕ n, a⊕ n] equals n.

Theorem. For G linear connected reductive, let A and N be the analytic subgroups
with Lie algebras a and n. Then A, N , and AN are simply connected closed
subgroups of G, and the multiplication map K×A×N → G given by (k, a, n) 7→ kan
is a diffeomorphism onto.
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We conclude this lecture by discussing “minimal parabolic subgroups”. We
define M = ZK(a) to be the centralizer of a in K, i.e., the set of all k ∈ K such
that Ad(k) = 1 on a. In SL(n, R) or SL(n, C) with A chosen as in the examples
above, M is the diagonal subgroup. In SU(m,n), M is nonabelian if m > n + 1.

Proposition.
1) M is a closed subgroup of K, hence compact.
2) M centralizes a and normalizes each g∏.
3) M centralizes A and normalizes N . In fact, Ad(m)g∏ ⊆ g∏ for all ∏.
4) MAN is a closed subgroup of G.

Proof of (2). Take H ∈ a, m ∈ M , and X∏ ∈ g∏. Then [H,Ad(m)X∏] =
Ad(m)[Ad(m)−1H,X∏] = Ad(m)[H,X∏] = ∏(H)Ad(m)X∏.

The subgroup MAN is called a minimal parabolic subgroup of G.

Theorem. The natural inclusion NK(a) ↪→ NG(a) induces an isomorphism
NK(a)/ZK(a) ∼= NG(a)/ZG(a), and these quotients are finite groups.

The left side, for example, is the set of distinct linear transformations by which
members of K act on the vector space a.

Example. For G = GL(n, C), NK(a) consists of all matrices with one nonzero
entry in each row and column.

Theorem (Bruhat decomposition). The double coset space MAN\G/MAN is
parametrized in one-one onto fashion by NG(a)/ZG(a), the double coset correspond-
ing to w in this quotient being MAN ewMAN , where ew is any representative of w
in NG(a).

We do not make much use of this theorem in these lectures, but the theorem
can be used in proving that generic principal series representations are irreducible.

Notes

Examples of semisimple Lie algebras and groups are given in [K2], pp. 33–36
and pp. 66–73. Some of this material may be found also in [K1], pp. 4–6. Structure
theory of the kind in this lecture is discussed for linear groups in [K1], pp. 3–4,
pp. 7–10, and Chapter V. A more thorough treatment, not limited to linear groups,
is in [K2], pp. 24–32, pp. 291–318, pp. 379–384, and pp. 397–401. Structure theory
may be found also in [He].

Exercises

1. Verify that the polar decomposition for any g ∈ GL(n, C) is unique.

2. For su(2, 1) with a0 =









0 0 0
0 0 a
0 a 0




ØØØ a ∈ R




, find the restricted root

space spaces, and verify that the restricted roots are as given in the lecture.
3. Redo Exercise 2 for the general case of su(p, q).



LECTURE 3
Introduction to Representation Theory

Abstract Representation Theory of Compact Groups

A multiplicative character of a topological group is a continuous homomorphism
of G into C×. It may be canonically identified with a one-dimensional representation
by identifying C× with GL(1, C). The condition Image ⊆ {|z| = 1} is equivalent
with the condition that this one-dimensional representation be unitary.

Some authors use the word “quasicharacter” when the image is allowed to be
in C×, reserving the word “character” for the case that the image is in {|z| = 1}.
Later in this section we shall discuss characters associated to representations of
dimension greater than 1; the adjective “multiplicative” is used to stress that the
associated representation is one-dimensional.

The setting for this section is that G is compact. Our interest is in the
irreducible finite-dimensional representations of G. Only near the very end do
we consider any infinite-dimensional representations.

The prototype is the case that G is the circle group, namely R/2πZ. In this
case the measure 1

2π dx is invariant under translation (i.e., is a “Haar measure”),
and its total mass is 1. The multiplicative characters for the circle group are the
functions x 7→ einx, and there are no others, as is shown in the exercises. These
functions have the properties that they are orthogonal and and have norm one in
L2( 1

2π dx). If f is any integrable function on G, its Fourier coefficients are given by

cn =
1
2π

Z π

−π
f(x)e−inx dx.

Parseval’s formula expresses the completeness of the orthonormal set of multiplica-
tive characters of the circle group in L2(G):

1
2π

Z π

−π
|f(x)|2 dx =

1X

n=−1
|cn|2.

The left side here is nothing more than the L2 norm of f with respect to our choice
of invariant measure.

For a general compact group G, the multiplicative characters are insufficient
for an analysis of L2(G). To see this, let [G,G] be the subgroup of G generated by
all elements xyx−1y−1. Every multiplicative character is trivial on these elements.

33
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Hence if G = [G,G], as is the case with G = SU(2), then G has no nontrivial
multiplicative character.

We shall need to develop a general theory as a substitute.
We begin by generalizing 1

2π dx from the circle group to a general compact
group G. A left or right Haar measure on G is a nonzero regular Borel measure on
G invariant under left or right translations.

Theorem. A compact group G has a left Haar measure unique up to a constant,
and it is also a right Haar measure.

Normalize Haar measure to have total mass 1, and write it as dx.

Proposition. If Φ is a representation of G on a finite-dimensional vector space
V , then V admits a Hermitian inner product such that Φ is unitary.

Sketch of proof. From any given Hermitian inner product h · , · i on V , define
( · , · ) by

(u, v) =
Z

G
hΦ(x)u,Φ(x)vi dx.

One checks readily that ( · , · ) is an inner product and that Φ is unitary relative to
it.

This proposition is fundamental, and it is often applied without specific men-
tion. When we write ( · , · ) for a Hermitian inner product on the space of a finite-
dimensional representation, we assume that it exhibits the representation as unitary,
i.e., that ( · , · ) is invariant under the group action.

Corollary. If Φ is a representation of G on a finite-dimensional vector space
V , then Φ is the direct sum of irreducible representations. In other words, V =
V1 ⊕ · · ·⊕ Vk, with each Vj an invariant subspace on which Φ acts irreducibly.

Sketch of proof. As we saw in Lecture 1, the orthogonal complement of an
invariant subspace for a unitary representation is an invariant subspace. Decompose
the representation, and keep on decomposing the resulting pieces. The finite-
dimensionality forces the process to stop with all pieces irreducible.

The corollary has an interesting interpretation in terms of matrices. It says
that the space V admits a basis in which all Φ(g) are simultaneously block diagonal
matrices, and each block is an irreducible representation.

Theorem (Schur’s Lemma). Suppose Φ and ™ are irreducible representations of G
on finite-dimensional vector spaces U and V , respectively. If L : U → V is a linear
map such that ™(g)L = LΦ(g) for all g ∈ G, then L is one-one onto or L = 0.

Sketch of proof. kerL and imageL are invariant subspaces. Sort out the possi-
bilities.

Remark. Note that the alternative in Schur’s Lemma that L is one-one onto means
that Φ and ™ are equivalent. Thus the conclusion of the result is that either L = 0
or L exhibits Φ and ™ as equivalent.

Corollary. Suppose Φ is an irreducible representation of G on a finite-dimensional
vector space V . If L : V → V is a linear map such that Φ(g)L = LΦ(g) for all
g ∈ G, then L is scalar.
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Proof. Consider L−∏I for an eigenvalue ∏ of L, and apply Schur’s Lemma to see
that L− ∏I = 0.

Corollary. For a compact abelian group, every irreducible finite-dimensional
representation is one-dimensional and hence is given by a multiplicative character.

Proof. Take L = Φ(g0). Since Φ(g)L = LΦ(g) for all g ∈ G, the previous corollary
shows that Φ(g0) is scalar for each g0 ∈ G. Any one-dimensional subspace is then
invariant, and irreducibility forces the whole space to be one-dimensional.

Theorem (Schur orthogonality relations).
1) Let Φ and ™ be inequivalent irreducible unitary representations of G on finite-

dimensional vector spaces U and V , respectively, and let the understood invariant
Hermitian inner products be denoted ( · , · ). Then

Z

G
(Φ(x)u, v)(™(x)u0, v0) dx = 0

for all u, v in U and u0, v0 in V .
2) Let Φ be an irreducible unitary representation on a finite-dimensional vector

space V , and let the understood invariant Hermitian inner product be denoted ( · , · ).
Then Z

G
(Φ(x)u1, v1)(Φ(x)u2, v2) dx =

(u1, u2)(v1, v2)
dimV

for u1, v1, u2, v2 ∈ V .

The functions (Φ(x)u, v) in the above theorem are called matrix coefficients.
According to the first conclusion of the theorem, matrix coefficients of inequivalent
irreducible finite-dimensional representations are orthogonal. The prototype for
this conclusion is the orthogonality of eimx and einx for the circle when m 6= n.

The second conclusion of the theorem generalizes the fact for the circle group
that each einx has L2 norm 1. It says that

√
dimV (Φ(x)u, v) has L2 norm 1

provided the representation on V is irreducible.
At the beginning of the lecture we promised that we would introduce a notion

of character for a finite-dimensional representation of dimension greater than 1, and
we now come to that. The degree d = dΦ of a finite-dimensional representation Φ
is the dimension of the underlying vector space. The global character of Φ is the
function

χΦ(x) = TrΦ(x) =
X

i

(Φ(x)ui, ui),

provided the ui form an orthonormal basis of the vector space.

Proposition. Global characters of finite-dimensional representations of G satisfy
the following properties:

(a) χΦ depends only on the equivalence class of Φ
(b) χΦ(gxg−1) = χΦ(x)
(c) χΦ = χΦ1 + · · ·+ χΦn if Φ = Φ1 ⊕ · · ·⊕ Φn

(d) For contragredients Φc(x) = Φ(x−1)t and tensor products (Φ ⊗ ™)(x) =
Φ(x)⊗™(x), the characters satisfy χΦc = χΦ and χΦ⊗™ = χΦχ™.
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Proposition. The global character χ of an irreducible finite-dimensional repre-
sentation has kχk2 = 1. If χ and χ0 are characters of inequivalent irreducible
finite-dimensional representations, then χ and χ0 are orthogonal in L2(G).

Sketch of proof. This follows from Schur orthogonality.

Let Φ be given, and let τ be irreducible. Decompose Φ into a direct sum of
irreducible representations, and let mτ be the number of summands equivalent with
τ . From the second proposition and (c) in the first proposition,

mτ =
Z

G
χΦ(x)χτ (x) dx.

Therefore the multiplicity mτ of τ in Φ is well defined independently of the decom-
position of Φ into irreducible representations.

Theorem (Peter-Weyl Theorem). The linear span of all matrix coefficients for all
finite-dimensional irreducible unitary representations of a compact group G is dense
in L2(G).

This is the generalization of the statement about the circle group that linear
combinations of all the einx are dense in L2(G).

Corollary (Plancherel formula). If {Φ(α)} is a maximal set of inequivalent finite-
dimensional irreducible unitary representations of G and if {(d(α))1/2Φ(α)

ij }i,j,α is
a corresponding orthonormal set of matrix coefficients, then {(d(α))1/2Φ(α)

ij }i,j,α is
an orthonormal basis of L2(G).

In the statement, d(α) is understood to be the degree of Φ(α). This corollary
specializes to Parseval’s formula in the case of the circle group G = R/2πZ.

Corollary. Any compact Lie group G has a one-one finite-dimensional represen-
tation and hence is isomorphic to a closed linear group.

This follows by starting with a nontrivial finite-dimensional representation
Φ (available from the Peter-Weyl Theorem), passing to G/

T
x∈G kerΦ(x), and

iterating the process. The hypothesis “Lie” is used to ensure that the process
terminates, and then a direct sum of the various representations of G that appear
in the process is the required one-one representation.

The Peter-Weyl Theorem has important consequences for infinite-dimensional
unitary representations of a compact group G. If f is integrable on G and Φ is a
unitary representation, we can define a bounded operator Φ(f) on L2(G) to be a
smear of the actions by the various Φ(x). The formal definition is

Φ(f) =
Z

G
f(x)Φ(x) dx.

We can make this precise by setting A(u, v) =
R

G f(x)(Φ(x)u, v) dx. It is clear from
the Schwarz inequality that |A(u, v)| ≤ kfk1kukkvk. Since A(u, v) is linear in u
and conjugate linear in v, it follows from general Hilbert space theory that A comes
from a bounded linear operator whose norm is ≤ kfk1. This operator is what we
take as Φ(f). Thus the precise definition of Φ(f) is

(Φ(f)u, v) =
Z

G
f(x)(Φ(x)u, v) dx,
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and we see that kΦ(f)k ≤ kfk1. A handy way of using the operator Φ(f) is set up
by the following lemma.

Lemma. If Φ is a unitary representation of G and f ≥ 0 is a function of integral
1 on G vanishing off the set N , then

kΦ(f)v − vk ≤ kfk1 sup
x∈N

kΦ(x)v − vk

for all v ∈ V .

Proof. For kuk ≤ 1, we observe that

kΦ(f)v − v, u)k ≤
ØØ
Z

G
f(x)[(Φ(x)v, u)− (v, u)] dx

ØØ

≤
Z

N
|f(x)|kΦ(x)v − vkkuk dx

≤ kfk1 sup
x∈N

kΦ(x)v − vk,

and we take the supremum over all such u.

The closed neighborhoods of 1 are ordered downward by inclusion, and, for
each v ∈ V , kΦ(x)v − vk tends to 0 as N shrinks to 1 as a consequence of the
continuity of Φ. The lemma allows us to adapt this statement so that it applies to
the operators Φ(f). We say that a system a functions fN ≥ 0 on G, indexed by
the closed neighborhoods of 1, is an approximate identity if

R
G fN (x) dx = 1 for all

N and if fN vanishes outside N . An example is fN = |N |−1IN , where |N | is the
measure of N and IN is the characteristic function of N . The lemma shows that
Φ(fN )v → v for all v ∈ V if {fN} is an approximate identity.

Let us combine this circle of ideas with the Peter-Weyl Theorem.

Corollary. Let Φ be a unitary representation of G on a Hilbert space V . Then V
is the orthogonal sum of finite-dimensional irreducible invariant subspaces.

Proof. By Zorn’s Lemma choose a maximal orthogonal set of finite-dimensional
irreducible invariant subspaces. Let U be the closure of the sum of these. Arguing
by contradiction, we suppose that U is not all of V . Then U⊥ is a nonzero closed
invariant subspace. We make use of any approximate identity {fN} all of whose
members are actually L2 functions. Fix v 6= 0 in U⊥, and form Φ(fN )v. Direct
computation shows that Φ(fN )v is in U⊥ for every N . As N shrinks to {1}, Φ(fN )v
tends to v by the lemma; hence some Φ(fN )v is not 0. Fix such an N .

If h is a linear combination of matrix coefficients of irreducible representations,
then h lies in a finite-dimensional subspace S of L2(G) that is invariant under
left translation. Let h1, . . . , hn be a basis of this space S. Understanding that
the following equalities are to be interpreted as the first entries of equalities of
expressions ( · , w), we can write

Φ(g)Φ(hi)v = Φ(g)
Z

G
hi(x)Φ(x)v dx =

Z

G
hi(x)Φ(gx)v dx

=
Z

G
hi(g−1x)Φ(x)v dx =

nX

j=1

cij

Z

G
hj(x)Φ(x)v dx
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for constants cij depending on g. Hence the finite-dimensional subspaceP
j C Φ(hj)v is an invariant subspace for Φ. Consequently we will obtain a con-

tradiction if we show that Φ(h)v 6= 0 for some linear combination h of matrix
coefficients.

To do this, choose h by the Peter-Weyl Theorem so that

kfN − hk1 ≤ kfN − hk2 ≤ 1
2kΦ(fN )vk/kvk.

Then

kΦ(fN )v − Φ(h)vk = kΦ(fN − h)vk ≤ kfN − hk1kvk ≤ 1
2kΦ(fN )vk,

and hence

kΦ(h)vk ≥ kΦ(fN )vk − kΦ(fN )v − Φ(h)vk ≥ 1
2kΦ(fN )vk > 0.

Thus h has the required property.

Corollary. Every irreducible unitary representation of a compact group G is finite-
dimensional.

Induced Representations

For the group G = SL(2, R) we were able to reformulate the principal series,
given in the noncompact picture as P±,iv, in an “induced picture”. The reformu-
lated representations P±,iv act initially in

{F ∈ C(G) | F (xman) = e−(∫+ρ) log aσ(m)−1F (x)}

with
P±,iv(g)F (x) = F (g−1x).

It will simplify the notation if we absorb the correspondence (±, iv) ↔ (σ, ∫) into
the notation by writing Pσ,∫ for the representation in the induced picture.

Let us generalize. The general setting for “unnormalized” induction will be
that G is a Lie group, H is a closed subgroup, and (σ, V ) is a representation of H
on a Hilbert space V . Let C(G,V ) denote the space of continuous functions from
G into V . Initially the space and action of the unnormalized induced representation
are given by

{F ∈ C(G,V ) | F (xh) = σ(h)−1F (x)}

Uσ(g)F (x) = F (g−1x).

We notice that if F is in C(G,V ), then Uσ(g)F is again in C(G,V ).
This definition may be regarded also as a generalization of the case that (σ, V )

is the one-dimensional trivial representation. Then C(G,V ) reduces to the lifts
to G of the continuous functions on G/H, and unnormalized induction reduces
essentially to the instance of Example 2 in Lecture 1 with X = G/H.
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Example.
Let G = O(2) and H = SO(2). The subgroup H of G is actually normal in G,

of index 2. For hθ =
≥

cos θ − sin θ
sin θ cos θ

¥
∈ H, define σ(hθ) = einθ on the vector space

V = C.
Our interest is in the representation Uσ obtained by inducing σ from H to

G. Any F in the induced space is determined by its values on coset representatives≥
1 0
0 1

¥
and

≥
−1 0

0 1

¥
. So dim(induced space) = 2, and a basis consists of two functions

F+ and F− satisfying

F+

µ
1 0
0 1

∂
= 1 and F+

µ
−1 0

0 1

∂
= 0,

F−

µ
1 0
0 1

∂
= 0 and F−

µ
−1 0

0 1

∂
= 1.

Using that H is normal, we easily compute that the restriction of the action of Uσ

to H is given by

Uσ(hθ)F (x) = F (h−1
θ x) = F (x(x−1h−1

θ x))
= σ(x−1h−1

θ x)−1F (x) = σ(x−1hθx)F (x).

Therefore

Uσ(hθ)F+ = einθF+ and Uσ(hθ)F− = e−inθF−.

Consequently Uσ|H = C einθ ⊕ C e−inθ.
If n 6= 0, Uσ is irreducible. In fact, the only nontrivial invariant subspaces

under H are C F+ and C F−, and these are not invariant under
≥
−1 0

0 1

¥
, which

interchanges F+ and F−.
If n = 0, Uσ is reducible. In fact, Uσ is trivial on H and therefore descends to

a representation of G/H. Since G/H is abelian, a two-dimensional representation
cannot be irreducible.

Let us mention that unnormalized induction has a geometric interpretation
in terms of vector bundles. Historically, induced representations of Lie groups
predate vector bundles, and the interpretation by means of vector bundles provided
an additional perspective to the subject of induction. It is a little easier to go
backwards from the historical direction, and thus let us first construct the relevant
vector bundle.

In the product space G× V , let us define an equivalence relation by (gh, v) ∼
(g,σ(h)v) for h ∈ H. Then set G×HV = {(g, v)/∼}. Projection of the G coordinate
to G/H makes G×H V → G/H into a vector bundle, possibly infinite-dimensional.
The group G acts on sections ∞ of this bundle by

(g0∞)(gH) = g0(∞(g−1
0 gH)).

For instance, when (σ, V ) is the trivial representation of H on C, then G×H C
may be identified with the trivial line bundle (G/H)× C over G/H. The sections
in the latter case are all numerical-valued functions on G/H.
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In the general case let us identify the sections of G×H V → G/H with elements
of the space of an induced representation. Let [(g, v)] be the class of (g, v) in G×HV .
To any section ∞ we can associate ϕ∞ : G → V by

∞(gH) = [(g,ϕ∞(g)] ∈ G×H V.

Apart from continuity conditions, the space of ϕ∞ ’s is the space of the unnormalized
induced representation, and the action of G on the ∞’s yields the action on the
induced representation.

Let us return to a direct discussion of induced representations. An important
consideration is that we would like σ unitary to imply Uσ unitary. If G/H has an
invariant measure d(xH), restrict F to have compact support modulo H and define

kFk2 =
Z

G/H
|F (x)|2V d(xH),

where | · |V denotes the norm in V . This is well defined since |F (x)|V is well defined
on G/H:

|F (xh)|2V = |σ(h)−1F (x)|2V = |F (x)|2V .

The invariant measure exists for passing from SO(2) to O(2), and in this case unnor-
malized induction (followed by a step of completion) is what we take as induction.
But it does not exist for passing from MAN to SL(2, R), and a normalization is
needed.

Let G be a Lie group, and let g be its Lie algebra. A left Haar measure on G
is a nonzero left-invariant Borel measure on G.

Theorem. Any Lie group G has a left Haar measure, and any two left Haar
measures are proportional.

A similar definition and theorem apply to right Haar measures. When a left
Haar measure is also a right Haar measure, we say G is unimodular. Not every G
is unimodular, as is noted in the exercises. The theorem allows us to define the
modular function ∆G : G → R of G by the formula

dl( · t) = ∆G(t)−1dl( · ).

In particular, G is unimodular if and only if ∆G ≡ 1.

Proposition. ∆G(t) = |det Ad(t)|.

The proof uses top-degree differential forms on G. An important property of
∆G is that it is a smooth homomorphism. Thus the proposition has the following
corollary:

Corollary.
1) Any compact G is unimodular.
2) Any semisimple G is unimodular.

Proof of (2). Otherwise the kernel in g of the differential of ∆G would be an ideal
of codimension 1 and would have a complementary ideal of dimension 1.

With more effort, one sees that any reductive or nilpotent Lie group is uni-
modular. In the exercises it is noted that the subgroup AN of SL(2, R) is not
unimodular. Similarly MAN is not unimodular.



LECTURE 3. INTRODUCTION TO REPRESENTATION THEORY 41

Proposition. Let H be a closed subgroup of the Lie group G. Then G/H has
a nonzero left invariant Borel measure if and only if the restriction of ∆G to H
coincides with ∆H .

We shall note a more general result below.

Example. SL(2, R) is unimodular, while MAN is not. Thus SL(2, R)/MAN has
no nonzero left invariant Borel measure.

When the condition of the proposition is not satisfied, the appropriate objects
to integrate on G/H are not functions but instead objects called “densities” whose
transformation properties incorporate a substitute for an invariant measure on
G/H. The notation is as above: G is a Lie group, H is a closed subgroup, dlg
is a left Haar measure on G, and dlh is a left Haar measure on H. Fix a continuous
homomorphism ω : H → R+, and consider continuous functions F : G → C having

(∗) F (gh) = ω(h)−1F (g)

Examples of such functions may be obtained by taking f ∈ Ccom(G) and putting

(∗∗) F (g) =
Z

H
f(gh)ω(h) dlh.

Then F satisfies (∗) and is compactly supported modulo H.
Define Ccom(G/H,ω) as the space of continuous F on G satisfying (∗) and

having compact support modulo H.

Proposition. The above map f → F carries Ccom(G) onto Ccom(G/H,ω).

We omit the proof, which uses a partition of unity.
A natural attempt at defining invariant integration on Ccom(G/H,ω) is to define

Z

G/H
F =

Z

G
f(g) dlg if f maps to F as above.

If invariant integration is well defined for given ω, it is linear and left-invariant, and
nonnegative F leads to

R
G/H F ≥ 0.

Theorem. Invariant integration on Ccom(G/H,ω), given as above, is well defined
if and only if ω(h) = ∆G(h)−1∆H(h).

In particular, invariant integration on Ccom(G/H) = Ccom(G/H, 1) exists if
and only if ∆G|H = ∆H . Thus the theorem generalizes an earlier proposition.

A density is a function F : G → C satisfying (∗) for ω = ∆−1
G ∆H .

Armed with the notion of a density, we can now define normalized induction in
such a way that unitary representations induce to unitary representations. Let G be
a Lie group, let H be a closed subgroup, and let (σ, V ) be a unitary representation
of H.

Let F ∈ C(G,V ) have compact support modulo H and satisfy F (xh) =
ω(h)−1/2σ(h)−1F (x) with ω(h) = ∆G(h)−1∆H(h). Then |F |2 is a density. SoR

G/H |Uω1/2σ(g)F |2 =
R

G/H |F |2, and Uω1/2σ is unitary (after completion of the
space and extension of the operators to the completion). We thus define IndG

H(σ) =
Uω1/2σ, and the operation of normalized induction, given by Ind, carries unitary
representations of H to unitary representations of G.
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Normalized induction is what we use to define the principal series for gen-
eral linear connected reductive groups. Thus let G be linear connected reduc-
tive, and let Q = MAN be a minimal parabolic subgroup. We have ∆G(x) =
1 since G is reductive, and the general formula for the modular function gives
∆Q(man) = detAd(a)|n. Let 2ρ =

P
∏∈Σ+ m∏∏ be the sum of the positive

restricted roots, counting multiplicities. An easy computation of the determinant
shows that ∆Q(man) = e2ρ log a. Then we have

ω(man) = ∆G(man)−1∆Q(man) = e2ρ log a.

The data for a member of the principal series are an irreducible unitary repre-
sentation (σ, V ) of M , necessarily finite-dimensional, and a member ∫ of ia0. Then
e∫ is a unitary multiplicative character of A. We define a representation σ⊗ e∫ ⊗ 1
of Q by

(σ ⊗ e∫ ⊗ 1)(man) = e∫σ(m).

The representation obtained by normalized induction from Q to G is the corre-
sponding member of the principal series.

Specifically the induced space initially consists of all F ∈ C(G,V ) with

F (xman) = e−(ρ+∫) log aσ(m)−1F (x).

The norm squared is defined by

kFk2 =
Z

G/Q
|F |2V .

The integral here refers to integration of a density and is well defined. The action
is

Uσ,∫(g)F (x) = F (g−1x).

These operators carry the initial induced space boundedly into itself, and hence
they extend to the completion. The completed space, together with the extended
operators, is the normalized induced representation, and it is unitary.

We write it as Uσ,∫ = IndG
MAN (σ⊗ e∫ ⊗ 1) or sometimes, by abuse of notation,

as Uσ,∫ = IndG
MAN (σ ⊗ ∫ ⊗ 1).

The formula for the norm of the principal series representation can be rewritten
in terms of ordinary measures, but then it is less apparent why the representation
is unitary. To do the rewriting, we make use of a general identity from measure
theory: If G = KQ with G unimodular and K ∩Q compact, then

Z

G
f(x) dx =

Z

K×Q
f(kq) dlk drq

in obvious notation. Let b ∈ Ccom(G) map onto the density B. Using the above
measure-theoretic identity gives

Z

G/Q
B =

Z

G
b(x) dx =

Z

K×Q
b(kq) dk drq

=
Z

K

h Z

Q
b(kq)∆Q(q) dlq

i
dk =

Z

K
B(k) dk,
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the last equality following from (∗∗). Thus

kFk2 =
Z

K
|F (k)|2V dk.

For the compact picture of the principal series representation, restrict to K and
use as initial space

{F : C(K,V ) | F (km) = σ(m)−1F (k)},

The norm squared is kFk2 =
R

K |F (k)|2V dk, but the action by G is complicated.
In fact, it is already complicated for G = SL(2, R), where the components of the
Iwasawa decomposition play a role in the formula.

For the noncompact picture of the principal series representation, restrict to
N = ΘN . The space is L2(N,V ), and again the action is complicated. The
verification that L2(N,V ) gives the correct norm uses a variant of the above
measure-theoretic identity appropriate for a decomposition G

·= NMAN . This
decomposition follows from the Bruhat decomposition.

We shall now introduce “parabolic subgroups” of G, which can be used to form
induced representations that generalize those in the principal series. Let us change
notation and write Qp = MpApNp for the constructed minimal parabolic subgroup.
A standard parabolic subgroup is any closed subgroup Q containing MpApNp.

Example. For G = SL(n, R), the standard parabolic subgroups Q are all the
block upper triangular subgroups, with the diagonal blocks of arbitrary sizes. The
number of Q’s is 2n−1.

If G is semisimple, the number of standard parabolic subgroups is 2dim Ap .
Any standard parabolic subgroup has a Langlands decomposition Q = MAN

obtained as follows. In considering these formulas it is helpful to bear in mind
the natural decomposition of block upper triangular matrices within SL(n, R). We
define

MA = Q ∩ΘQ

A = ZMA

a = Lie algebra of A

m = orthocomplement of a in m⊕ a relative to h · , · i
M0 = analytic subgroup corresponding to m

M = ZK(A)M0 (noncompact if Q 6= Qp).

Next we repeat the construction for restricted roots, but we use this a instead of
ap. Let n be the sum of the eigenspaces in q for eigenvalues 6= 0. (No n̄ is present,
so that we may think of all eigenvalues as ≥ 0.) Let

ρ = half the sum of eigenvalues with multiplicities
N = analytic subgroup corresponding to n.

The Langlands decomposition of a parabolic subgroup allows us to define a
continuous series of representations relative to that parabolic subgroup: We start
from an irreducible unitary representation (σ, V ) of M and a member ∫ of ia0. The
continuous series representation is the normalized induced representation Uσ,∫ =
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IndG
MAN (σ ⊗ e∫ ⊗ 1), which we write also as IndG

MAN (σ ⊗ ∫ ⊗ 1). Specifically we
consider all F ∈ C(G,V ) with

F (xman) = e−(∫+ρ) log aσ(m)−1F (x),

and we define
Uσ,∫(g)F (x) = F (g−1x).

Going through the step of completion, we obtain a unitary representation of G.

Notes

The abstract representation theory of compact groups is discussed in [K2],
pp. 186–195, and in [K1], pp. 14–21. The two corollaries at the end of the first
section of the lecture appear only in [K1]. One may see also [Wal] and [War] for
this abstract theory.

Induced representations are discussed concretely in the context of the principal
series in [K1], pp. 167–172. For a broader discussion, see [War]. The material on
densities is taken from [KV], pp. 660–664. See also [K2], pp. 470–471. For Haar
measure, see [K2], pp. 463–471. For parabolic subgroups, see [K2], pp. 411–421.

Exercises

1. Let χ be a multiplicative character of the circle group R/2πZ, and suppose
χ is differentiable somewhere. Prove that χ is differentiable everywhere and that
χ0(θ) = χ0(0)χ(θ). Conclude that χ(θ) = eiθχ0(0).

2. Let χ be a multiplicative character of the circle group R/2πZ. Put X(θ) =R θ
0 χ(t) dt and show that X(θ0)−X(θ) = χ(θ)X(θ0−θ). Conclude from this formula

that χ is differentiable somewhere.
3. Find all multiplicative characters of the cyclic group Z/m. Using the

ordinary theory of Fourier series on L2(S1) as a template, develop a Fourier theory
for functions on Z/m.

4. Find left and right Haar measures fl(a, b) da db and fr(a, b) da db for the

group of all
µ

a b
0 a−1

∂
with real entries by using the change-of-variables formula

for double integrals.



LECTURE 4
Cartan Subalgebras and Highest Weights

Roots for Compact Connected Lie Groups

Let G be a compact connected Lie group. Such a group, as we saw after the
Peter-Weyl Theorem, is linear connected reductive. We may therefore regard it as
a closed subgroup of some unitary group U(n).

Let g0 be its algebra, and let g = g0 ⊗R C be its complexification. The sets
of matrices g0 and ig0 are contained in the sets of skew-Hermitian matrices and
Hermitian matrices, respectively, and therefore meet in 0. Consequently we can
identify g canonically with the set of matrices g0 + ig0 within gl(n, C).

Using this identification, we can define the trace form hX,Y i = Tr(XY ∗) as a
Hermitian inner product on g. This form is invariant under G in the sense that

hAd(g)X,Ad(g)Y i = hX,Y i

because g ∈ U(n) forces (gXg−1)(gY g−1)∗ = gXg−1gY ∗g−1 = gXY ∗g−1.
Let t0 be a maximal abelian subspace of g0. A little later this will be our first

example of a “Cartan subalgebra”. Let T be the corresponding analytic subgroup;
this is a maximal torus (subgroup) in G.

We shall now repeat a construction similar to that of restricted roots. The
set Ad(T ) consists of commuting unitary transformations on g. Therefore ad(t0)
consists of commuting skew-Hermitian transformations on g. Let tR = it0, and let
t be the complexification. Then ad(tR) consists of commuting Hermitian transfor-
mations on g. For α ∈ t0R, let

gα = {X ∈ g | [H,X] = α(H)X for all H ∈ tR}.

A root is a nonzero α for which gα 6= 0. We write ∆ for the set of roots. The result
of our construction is that g has a root-space decomposition given by

g = t⊕
M

α∈∆

gα.

Example. Let G = U(n), g0 = u(n), t0 = {imaginary diagonal}, t = {diagonal},
tR = {real diagonal}. Define ei to be evaluation of the ith diagonal entry on tR.
Then ∆ = {ei − ej | i 6= j} and gei−ej = C Eij .

45
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We can transfer h · , · i from tR to t0R, and we use the same notation for the inner
product on t0R. In particular, hα,βi is defined if α and β are in ∆.

Proposition. Roots have the following properties:
1) [gα, gβ ] ⊆ gα+β.
2) If α is in ∆, then so is −α.
3) If α is in ∆, then dim gα = 1.
4) If α is in ∆, then nα is not in ∆ for any integer ≥ 2.
5) Let α be in ∆, and let β be in ∆∪{0}. Then the α string containing β (i.e.,

the subset of all β +nα in ∆∪{0}) has the form β +nα for −p ≤ n ≤ q with p ≥ 0
and q ≥ 0. There are no gaps. Also p− q = 2hβ,αi

|α|2 .

Example, continued. We continue with G = U(n). Then hei, eji = δij . The last
four assertions of the proposition are as follows: Conclusion (2) says that ei−ej ∈ ∆
implies ej − ei ∈ ∆, (3) says that dim C Eij = 1, and (4) says that n(ei− ej) is not
in ∆ for n ≥ 2. To illustrate (5), let us take α = ei − ej and β = ej − ek. The α
string containing β is {β, β + α}, so that p = 0 and q = 1. Then p− q = −1, and
indeed

2hej − ek, ei − eji
|ei − ej |2

= −1.

Let us define the notion of root reflection in t0R. Let α be in ∆, and define

sα(ϕ) = ϕ− 2hϕ,αi
|α|2 α

for ϕ ∈ t0R. This is an orthogonal transformation, and it follows from the above
proposition that sα carries ∆ into itself. The Weyl group W (∆) is the group of linear
transformations of t0R generated by the sα. This group is finite since the permutation
of ∆ induced by a member of W (∆) completely determines the member of W (∆).

In analogy with what we did with restricted roots, we introduce a “lexicographic
ordering” in t0R. Fix an ordered basis ϕ1, . . . ,ϕl of t0R, and say that ϕ =

P
ciϕi is

positive if the first nonzero ci is > 0. Then define √ > ϕ if √−ϕ is positive. Let ∆+

be the set of positive members of ∆. This is sometimes called the positive system
for this ordering. For suitable definitions, we can arrange that

• in SU(n), ∆+ = {ei − ej | i < j},
• in SO(2n + 1), ∆+ = {ei ± ej | i < j} ∪ {ei},
• in Sp(n), ∆+ = {ei ± ej | i < j} ∪ {2ei},
• in SO(2n), ∆+ = {ei ± ej | i < j}.

Weights for Finite-Dimensional Representations

We continue with the situation that G is a compact connected Lie group, and
the notation g0, g, t0, tR, t, and ∆ remains as above. Fix a lexicographic ordering,
and let ∆+ be the associated positive system.

Let Φ be a finite-dimensional representation of G on V . From Lecture 3 we
know that we may assume that Φ is unitary without loss of generality. Let ϕ be
the corresponding representation of g0 on V . Since V is complex, we may extend
ϕ to a complex-linear representation of g on V by the definition ϕ(X + iY )v =
ϕ(X)v + iϕ(Y )v.
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By the same argument as in the case of roots, Φ(T ) unitary yields ϕ(t0) skew-
Hermitian and ϕ(tR) Hermitian. For ∏ ∈ t0R, let

V∏ = {v ∈ V | ϕ(H)v = ∏(H)v for all H ∈ tR}.

A weight is an element ∏ ∈ t0R (possibly 0) for which V∏ 6= 0. The highest weight is
the largest weight in the lexicographic ordering. The result of our analysis is the
weight space decomposition

V =
M

∏

V∏.

An important elementary property of roots, weights, and weight spaces is that
ϕ(gα)V∏ ⊆ V∏+α, which follows from the Jacobi identity and the definitions.

Example 1. Let V be the complex vector space of polynomial functions in z1 and
z2 homogeneous of degree N . This has {zN−k

1 zk
2}N

k=0 as basis. The group SL(2, C)
acts by

µ
Φ

µ
a b
c d

∂
P

∂µ
z1

z2

∂
= P

√µ
a b
c d

∂−1 µ
z1

z2

∂!

.

Restrict this action to G = SU(2), and consider the corresponding Lie algebra
action of t0 = R i

≥
1 0
0 −1

¥
= R ih. We can see that the basis vectors zN−k

1 zk
2 are in

fact weight vectors, as follows. Write T = {tθ} =
n≥

eiθ 0
0 e−iθ

¥o
. Then

Φ(tθ)(zN−k
1 zk

2 )
µ

z1

z2

∂
= zN−k

1 zk
2

µ
e−iθz1

eiθz2

∂

= e−i(N−k)θ+ikθzN−k
1 zk

2 = e−i(N−2k)θzN−k
1 zk

2 .

Differentiation gives

ϕ

µ
i 0
0 −i

∂
(zN−k

1 zk
2 ) = −i(N − 2k)(zN−k

1 zk
2 ).

Thus zN−k
1 zk

2 is a weight vector with weight h 7→ 2k−N . If we take ∆+ = {e1−e2},
the highest weight is h 7→ N .

Let us examine the structure of this representation further. For e =
≥

0 1
0 0

¥
, the

identity [h, e] = 2e implies that ϕ(e) sends a weight vector of one weight 2k−N to
the next higher weight 2(k + 1)−N ; in fact, if v has weight 2k −N , then

ϕ(h)(ϕ(e)v) = ϕ(e)ϕ(h)v + [ϕ(h),ϕ(e)]v
= (2k −N)ϕ(e)v + ϕ[h, e]v = (2(k + 1)−N)ϕ(e)v.

Similarly ϕ(f) sends the weight vector to a weight vector of the next lower weight
since [h, f ] = −2f . It is easy to see from this that ϕ is irreducible. Hence so is Φ.

One can prove that there are no other irreducible finite-dimensional complex-
linear representations of sl(2, C). Consequently the irreducible finite-dimensional
complex-linear representations of sl(2, C) are determined by their highest weights,
which are of the form h 7→ N with N ≥ 0 integral.
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Example 2. Let V be the complex vector space of polynomial functions in
z1, . . . , zn homogeneous of degree N . This has the vectors zk1

1 · · · zkn
n with

P
j kj =

N as basis. The group GL(n, C) acts in a fashion similar to that in Example 1.
Restrict this action to U(n), and consider the corresponding Lie algebra action by
t0 = {imaginary diagonal}. The basis vectors zk1

1 · · · zkn
n with

P
j kj = N can be

seen to be weight vectors, with respective weights −
P

j kjej . With ∆+ taken as
{ei − ej | i < j}, the highest weight is −Nen. For each N , this representation can
be shown to be irreducible.

These examples are special cases of the following general result, whose proof
will be sketched below.

Theorem (Theorem of the Highest Weight). An irreducible finite-dimensional
representation of G is characterized up to equivalence by its highest weight, say
∏, which is dominant (i.e., h∏,αi ≥ 0 for all α ∈ ∆+) and analytically integral
(i.e., ∏ is the differential of a multiplicative character of T ). The weight space
for the highest weight has dimension 1, and all other weights are obtained from
the highest weight by subtracting nonnegative integer combinations of positive roots
from it. Conversely any dominant, analytically integral member of it0R is the highest
weight of some irreducible finite-dimensional representation of G.

Universal Enveloping Algebra

The universal enveloping algebra is a tool we can use to understand the mecha-
nism for the Theorem of the Highest Weight. To construct it, we proceed as follows.
Let g be a finite-dimensional complex Lie algebra The tensor algebra of g is

T (g) = C⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · · .

This is an associative algebra with identity, the product being simply tensor prod-
uct. The universal enveloping algebra is defined as the quotient U(g) = T (g)/I,
where I is the two-sided ideal generated by all X⊗Y −Y ⊗X− [X,Y ] with X and
Y in g. The universal enveloping algebra is an associative algebra with identity;
the tensor sign is dropped in the multiplication. We let ∂ be the canonical map
∂ : g → U(g) obtained by inclusion into first-order tensors and then passage to the
quotient modulo I. It is not really clear at first that U(g) contains anything other
than the constants and in particular that ∂ is one-one.

Proposition (universal property of U(g) and ∂). Whenever A is a complex as-
sociative algebra with identity and π : g → A is a linear mapping such that
π(X)π(Y )− π(Y )π(X) = π[X,Y ] for all X and Y in g, then there exists a unique
algebra homomorphism eπ : U(g) → A such that eπ(1) = 1 and eπ ◦ ∂ = π.

This is fairly easy to prove, starting from the corresponding universal property
of the tensor algebra.

Corollary. Complex-linear representations of g on complex vector spaces stand in
one-one correspondence with unital left U(g) modules. Here unital means that 1
acts as 1.

Sketch of proof. If π is a representation of g on V , apply the universal property
to π : g → EndCV and define uv = eπ(u)v.
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Proposition. There exists a unique antiautomorphism u 7→ ut of U(g) such that
∂(X)t = −∂(X) for all X ∈ g.

This antiautomorphism is called transpose. It enables one to convert any left
U(g) module into a right U(g) module by vu = utv for u ∈ U(g) and v ∈ V . In a
later lecture we shall see that it plays a role in the subject of differential equations.

Theorem (Poincaré-Birkhoff-Witt Theorem). Let {X1, . . . ,Xn} be an ordered ba-
sis of g. Then the set of all monomials (∂X1)j1 · · · (∂Xn)jn with all jk ≥ 0 is a basis
of U(g). In particular the canonical map ∂ is one-one (and can be dropped from the
notation).

This is the serious result, the linear independence being the hard part. It
follows that if h is a complex Lie subalgebra of g, then U(h) can be regarded as an
associative subalgebra of U(g). This identification is very important for being able
to work effectively with U(g).

Mechanism for Theorem of the Highest Weight

Now let us consider the idea behind the Theorem of the Highest Weight. We
continue with the notation G, g0, g, t, ∆, ∆+, Φ on V , and ϕ on V .

We make the following construction: Let β1, . . . ,βk be an enumeration of ∆+,
and let H1, . . . ,Hl be a basis of t. The Poincaré-Birkhoff-Witt Theorem implies
that all elements of the form

(∗) Eq1
−β1

· · ·Eqk

−βk
Hm1

1 · · ·Hml
l Ep1

β1
· · ·Epk

βk

form a basis of U(g). Using ϕ, we make V into a unital left U(g) module.
Now let ∏ be the highest weight of ϕ, and let v be a nonzero highest weight

vector. Let us see the main ideas behind the proof of the Theorem of the Highest
Weight.

We begin with the easy parts. Assume that ϕ irreducible, and apply (∗) to
v. Any E

pj

βj
gives 0 if pj > 0. If all pj = 0, Hj gives a factor ∏(Hj). Then the

E−βj push weights down. So the only vectors of weight ∏ in U(g)v are C v, and
the only weights are ∏ minus combinations of positive roots. But U(g)v = V by
irreducibility. So our conclusions about U(g)v are valid for V .

Next we consider the dominance of ∏. If α is in ∆+, then Eα, E−α, and
[Eα, E−α] generate a copy of sl(2, C), and 2h∏,αi

|α|2 is the weight of v under the element
h of sl(2, C). One uses that the weights of any finite-dimensional representation of
sl(2, C) are closed under negatives. Then h∏,αi ≥ 0.

Now let us consider uniqueness. Suppose (ϕ1, V1) and (ϕ2, V2) are given irre-
ducible representations, ∏ is the common highest weight, and v1 and v2 are nonzero
highest weight vectors. Form S = (ϕ1⊕ϕ2)(U(g))(v1⊕v2). One uses U(g) to check
that this is irreducible. Apply Schur’s Lemma to the projection of S to V1 to see
that S is equivalent with V1. In similar fashion S is equivalent with V2. Therefore
V1 and V2 are equivalent with each other.

The main step in the proof of the Theorem of the Highest Weight is to prove
existence. We give the idea of the proof when G is simply connected, omitting the
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general case. Define

n+ =
M

α∈∆+

gα

n− =
M

α∈∆+

g−α

b = t⊕ n+

δ = 1
2

X

α∈∆+

α.

Here n+, n−, and b are Lie subalgebras of g, and b is called a Borel subalgebra of
g. Form the Verma module

V (∏ + δ) = U(g)⊗U(b) C∏.

Under the action on the left of the first factor, this is an infinite-dimensional U(g)
module with a basis of weight vectors (namely all Eq1

−β1
· · ·Eqk

−βk
⊗ 1), and 1 ⊗ 1

is a weight vector for the highest weight ∏. The sum of all U(g) submodules not
meeting C(1⊗ 1) is a maximal proper U(g) submodule M(∏ + δ), and L(∏ + δ) =
V (∏ + δ)/M(∏ + δ) is thus irreducible. For ∏ dominant integral, one proves that
L(∏+ δ) is finite-dimensional. Restricting the action from g to g0 and using simple
connectivity of G, we obtain the required representation of G.

Role of Complex Semisimple Lie Algebras

The above theory really concerns irreducible finite-dimensional representations
of arbitrary complex semisimple Lie algebras g. We saw how to pass from a compact
G to its complexified Lie algebra, and this passage is valid in particular when G is
semisimple. To see the reverse direction, we have only to apply the following two
theorems.

Theorem (Cartan). If g is complex semisimple, then there exists a compact Lie
group G whose complexified Lie algebra is isomorphic to g.

Theorem (Weyl’s Theorem). The universal covering group of a compact semisim-
ple Lie group is compact.

Thus the group in Cartan’s theorem may, without loss of generality, be taken
to be simply connected.

There is, however, a direct approach. One can start with a complex semisimple
Lie algebra g and define a Cartan subalgebra to be a nilpotent subalgebra that is
equal to its own normalizer. With some effort one shows that Cartan subalge-
bras exist, are all conjugate, are abelian, and act diagonalizably in every finite-
dimensional representation. The theory proceeds by exploiting copies of sl(2, C)
lying in g. We omit the details.

Cartan Subalgebras in the Noncompact Case

We conclude this lecture by discussing Cartan subalgebras within the Lie
algebra of a general linear connected reductive group.

Let G be a linear connected reductive, let g0 = k0 ⊕ p0 be a Cartan decompo-
sition of its Lie algebra, and let g be the complexification of g0.
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For orientation we first consider the case that G is compact. In this case a
Cartan subalgebra is nothing more than a maximal abelian subspace of g0. Any two
are conjugate via Ad(G). The complexification t of t0 is then a Cartan subalgebra
of g.

Now we consider the case of a general G. A Cartan subalgebra h0 is a subalgebra
of g0 whose complexification in g is a Cartan subalgebra of g. We are interested
at the moment only in those that are stable under the Cartan involution. Then
h0 = t0 ⊕ a0 with t0 = h0 ∩ k0 and a0 = h0 ∩ p0.

In view of what happens with compact groups, it may be an unpleasant surprise
to realize that in a noncompact reductive group, the Cartan subalgebras are not
necessarily all conjugate via Ad(G). For example, in the case of SL(2, R), R

≥
0 −1
1 0

¥

and R
≥

1 0
0 −1

¥
are nonconjugate Cartan subalgebras.

On the other hand, the Cartan subalgebras stable under the Cartan involution
have the following helpful properties:

• Any two have the same dimension (since their complexifications are conju-
gate within g).

• There are only finitely many, up to conjugacy by Ad(K) (or equivalently
Ad(G)).

• There is a unique conjugacy class for which dim t0 is maximal. Namely let
t0 be a maximal abelian subspace of k0, and put h0 = Zg0(t0). We say h0 is
maximally compact. If a0 = 0, we say h0 is compact.

• There is a unique class for which dim a0 is maximal. Namely let a0 be a
maximal abelian subspace of p0, and let t0 be maximal abelian in m0 =
Zk0(a0). We say h0 is maximally noncompact.

Notes

The theory of Cartan subalgebras, roots, and weights, done directly in the
context of compact connected Lie groups, may be found in [K1], Chapter IV. Many
books develop roots and weights in the way described in the section of the lecture
called “Role of Complex Semisimple Lie Algebras”—namely by starting from a
complex semisimple Lie algebra with no compact group in sight. This approach
may be found in [K2], Chapters II and V, as well as in [J] and [V]. A variation of
this approach to roots and weights may be found in [Hu], and a different variation,
used to develop roots but not weights, appears in [He].

The book [K2] obtains the theory of roots and weights for compact connected
Lie groups as a consequence of the abstract theory for complex semisimple Lie
algebras. See Chapter IV and pp. 277–283.

The theory of universal enveloping algebras is developed in detail in Chapter
III of [K2], as well as in [He], [Hu], [J], and [V].

For Cartan subalgebras in the noncompact real case, see [K2], pp. 326–330 and
p. 396. See also [K1], pp. 128–132.

Exercises

1. Let Φ be a finite-dimensional representation of a compact group G with
highest weight ∏. Show that the contragredient Φc of Φ, defined by Φc(g) =
Φ(g−1)t, has lowest weight −∏.
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2. For G = U(3), show that every irreducible finite-dimensional representation
is of the form (det)n⊗ΦN or (det)n⊗Φc

N for some integer n and natural number N ,
where ΦN is the change-of-coordinates representation on homogeneous polynomials
of degree N in 3 variables.

3. For G = SL(n, R) and g0 = sl(n, R), find a maximally compact θ stable
Cartan subalgebra, and a maximally noncompact one.

4. Repeat Exercise 3 for SL(n, C).
5. Suppose that g is an abelian complex Lie algebra, and suppose A is a

commutative associative algebra with identity. Prove that any linear map ∏ : g →
A extends uniquely to an algebra homomorphism of U(g) into A carrying 1 into
1. In particular, any linear map ∏ : g → U(g) extends uniquely to an algebra
homomorphism of U(g) into itself carrying 1 into 1.
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Action by the Lie Algebra

Harish-Chandra Isomorphism

In an irreducible finite-dimensional representation, Schur’s Lemma implies that
operators commuting with the representation will act by scalars. An infinite-
dimensional generalization of Schur’s Lemma due to Dixmier will be given later in
this lecture. That generalization leads us to expect that suitable kinds of operators
commuting with an infinite-dimensional representation will act by scalars as well.
Accordingly we seek an understanding of the center Z(g) of U(g).

We are going to take advantage of the fact noted in Lecture 4 that the theory of
roots can be developed for complex semisimple Lie algebras without the use of an
underlying Lie group. Our notation for this section is as follows: Let g be a complex
semisimple (or even reductive) Lie algebra, and let h be a Cartan subalgebra. Let
hR be a real form of h such that roots lie in h0R; this is uniquely determined if g is
semisimple. We assume that hR and h0R are identified by an inner product h · , · i
built from g; if g is semisimple, this can be obtained from the Killing form, for
example. Let H = U(h). This coincides with the symmetric algebra S(h) of h,
and we may identify U(h) with a subalgebra of U(g) by the Poincaré-Birkhoff-Witt
Theorem, as we noted in Lecture 4. We continue with the notation ∆, W = W (∆),
∆+, n+, n−, b, and δ as in Lecture 4.

The group W acts on h0, hence on h via the definition w∏(H) = ∏(w−1H).
The action of any member of W , regarded as carrying h to H, extends to carry H
to H because the universal property of the commutative U(h) says that any linear
w : h → H extends to an algebra homomorphism. The result is a group action of
W on H by algebra automorphisms carrying 1 to 1. Let HW be the subalgebra of
W invariants in H.

Let us consider the effect of z ∈ Z(g) on representations. Let (ϕ, V ) be an
irreducible (complex-linear) finite-dimensional representation of g. Extend the
action to U(g). Then z acts as a scalar, by Schur’s Lemma. We compute the
scalar by examining how z acts on a nonzero highest weight vector, say v of weight
∏. Apply the Poincaré-Birkhoff-Witt Theorem, and expand z in terms of the basis

Eq1
−β1

· · ·Eqk

−βk
Hm1

1 · · ·Hml
l Ep1

β1
· · ·Epk

βk
.

53
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For a term T as above that occurs in the expansion of z with nonzero coefficient,

HT − TH =
°X

(pj − qj)βj(H)
¢
T

for all H ∈ h. Since the T ’s are independent and since z central forces Hz−zH = 0,
we must have

(∗)
X

(pj − qj)βj(H) = 0 for all H.

Now apply z and each of its monomials T to the highest weight vector v. If some
pj is 6= 0, we get 0 since Eβiv = 0 for all i. If all pj are 0, then (∗) says that all qj

are 0. So the monomial reduces to Hm1
1 · · ·Hml

l , which acts on v by

∏(H1)m1 · · ·∏(Hl)ml .

Thus to understand the action of z ∈ Z(g) on a highest weight vector, we want to
pick out the terms with just H’s present.

To have notation for doing so, we introduce

P =
X

α∈∆+

U(g)Eα,

N =
X

α∈∆+

E−αU(g)

Proposition.
1) U(g) = H⊕ (P +N )
2) Any member of Z(g) has its P +N component in P.

Sketch of proof. (1) is basically the Poincaré-Birkhoff-Witt Theorem, and (2)
was shown above.

We define ∞0n+ to be the projection of Z(g) into the H term in (1).

Interpretation 1. ∏(∞0n+(z)) is the scalar by which z acts in an irreducible finite-
dimensional representation with highest weight ∏.

Interpretation 2. ∏(∞0n+(z)) is the scalar by which z acts in the Verma module

V (∏ + δ) = U(g)⊗U(b) C∏.

Proofs. In fact, the computation above shows that z acts on a highest weight
vector of weight ∏ by the scalar ∏(∞0n+(z)). Since z acts by a scalar in any irre-
ducible representation, we arrive at Interpretation 1. A similar argument leads to
Interpretation 2.

Example. For g = sl(2, C), the element z = 1
2h2 + ef + fe is seen by direct

calculation to be in Z(g). Apart from a scalar factor, this element is called the
Casimir element of U(sl(2, C)). Let us take ∆+ = {e1−e2}. Then ef = fe+[e, f ] =
fe + h. So

z = (1
2h2 + h) + 2fe ∈ H⊕ P

and
∞0n+(z) = 1

2h2 + h.
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A slight adjustment to ∞0n+ results in an object with better symmetry properties.
Define a linear map τn+ : h → H by

τn+(H) = H − δ(H)1,

and extend it to an algebra automorphism of H by the universal property of H.
Then define

∞ = τn+ ◦ ∞0n+

as a map of Z(g) into H.

Example. For g = sl(2, C), let z = 1
2h2 + ef + fe as above, so that ∞0n+(z) =

1
2h2 + h. Then δ(h) = 1

2α
≥

1 0
0 −1

¥
= 1, and so

τn+(h) = h− 1.

Thus
∞(z) = 1

2 (h− 1)2 + (h− 1) = 1
2h2 − 1

2 .

The improved symmetry property is that this is symmetric under the Weyl group
action h 7→ −h.

Theorem (Harish-Chandra). The mapping ∞ is an algebra isomorphism of Z(g)
onto the algebra HW of Weyl-group invariants, and it does not depend on the choice
of the positive system ∆+.

The map ∞ : Z(g) → HW is called the Harish-Chandra isomorphism. The hard
part of the proof is to show that ∞ is onto HW . This requires, one way or another,
the production of many elements of Z(g). After the theorem has been proved, one
can regard the statement that ∞ : Z(g) → HW is onto as encoding the fact that
Z(g) is large.

Infinitesimal Character

Here is the result mentioned at the beginning of the lecture.

Proposition (Dixmier, generalizing Schur). If V is an irreducible U(g) module
(possibly infinite-dimensional), then the only linear maps of V to itself commuting
with U(g) are the scalars.

Corollary. If V is an irreducible U(g) module, then Z(g) acts by scalars in V .
Say the element z of Z(g) acts by χ(z). Then χ is an algebra homomorphism of
Z(g) into C sending 1 into 1.

We can construct a concrete family of homomorphisms of Z(g) into C as follows.
Fix ∏ ∈ h0, and let χ∏(z) = ∏(∞(z)), where ∞ is the Harish-Chandra isomorphism.
On the right side it is understood that ∏ has been extended, via the universal
property, to an algebra homomorphism of H into C. Then χ∏ is the composition
of homomorphisms and hence is a homomorphism.

Example. In sl(2, C) with z = 1
2h2 +ef +fe, we know that ∞(z) = 1

2h2− 1
2 . Then

χ∏(z) = 1
2∏(h)2 − 1

2 . A special case is that χδ(z) = 0.

Proposition. If ∏1 and ∏2 are in h0, then χ∏1 = χ∏2 if and only if ∏1 and ∏2 are
in the same orbit under the Weyl group W .
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Theorem. Every homomorphism χ of Z(g) into C sending 1 into 1 is of the form
χ = χ∏ for some ∏ ∈ h0.

If Z(g) acts by scalars χ in a U(g) module V , the infinitesimal character of V is
defined to be the parameter ∏ ∈ h0 such that χ = χ∏. This parameter is determined
up to the action of W .

The significance is that the infinitesimal character is a nontrivial invariant for
an irreducible U(g) module. It provides a small step toward classification.

Smooth and Analytic Vectors

In Lecture 1 we touched on smooth and analytic vectors for the principal series
of SL(2, R). In these sections we generalize these notions. Let G be any Lie group,
let g0 be its Lie algebra, and let g be the complefication of g0.

Let Φ be a representation of G on a Hilbert space V. We say that v ∈ V is
a C1 vector if x 7→ Φ(x)v is a C1 function. More precisely, the assumption is
that in local coordinates, vector-valued partial derivatives exist for all orders. It is
known that it is sufficient to assume that x 7→ (Φ(x)v, w) is a C1 function for all
w ∈ V.

We say that v ∈ V is an analytic vector if x 7→ Φ(x)v is a real analytic function.
More precisely, the assumption is that x 7→ Φ(x)v has, for each x ∈ G, a locally
convergent vector-valued power series expansion in some coordinate neighborhood
of x. It is known that it is sufficient to assume that x 7→ (Φ(x)v, w) is a real analytic
function for all w ∈ V.

Examples.
1) In a finite-dimensional representation, every vector is C1 and actually

analytic.
2) We know that the principal series representation IndG

MAN (σ⊗∫⊗1) is unitary
if (σ, V ) is unitary and if ∫ is imaginary-valued on a. More generally the definition
of the induced space makes sense for any complex-valued ∫ on a, and we get a
(continuous) representation in the Hilbert space

{F ∈ L2(K,V ) | F (km) = σ(m)−1F (k)}.

This is called a nonunitary principal series representation. For this representation
the C1 vectors are the C1 functions on K within the space, and the analytic
vectors are the real analytic functions.

We denote the vector spaces of C1 and analytic vectors in V by C1(V) and
Cω(V), respectively. For general representations it is not immediately clear whether
these are 0. It will turn out that they are actually dense.

Let us define corresponding representations of g0 on C1(V) and Cω(V). If v
is in C1(V) and X is in g0, set

ϕ(X)v =
d

dt
Φ(exp tX)v|t=0.

Then ϕ(X)v is in C1(V) and ϕ is a representation of g0 on C1(V). No topology
is needed on C1(V). The subspace Cω(V) is an invariant subspace. Thus C1(V)
and Cω(V) become U(g) modules.

Let us discuss elementary properties of these representations. If U is a closed
G invariant subspace, then C1(U) = U ∩ C1(V) and Cω(U) = U ∩ Cω(V).
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These identities tell how to pass from Lie group representations to Lie algebra
representations.

We will be interested in knowing how much information is lost in this process.
For example, if it could happen that C1(V) or Cω(V) is 0, then everything is lost.
In any event we do know that if S is a U(g) invariant subspace of C1(V), then S
need not be G invariant. A counterexample was given in Lecture 1.

By contrast, a relatively simple argument shows that if S is a U(g) invariant
subspace of Cω(V), then S is G invariant. This is the special feature, for our
purposes, of analyticity.

Theorem (G̊arding). C1(V) is dense in V.

This is a relatively easy theorem with the tools we have. First let us assume
that the group representation is unitary. For arbitrary v ∈ V and f ∈ C1

com(G),
define

Φ(f)v =
Z

G
f(x)Φ(x)v dx

as in Lecture 3. An easy computation shows that Φ(f)v is in C1(V). As f runs
through an approximate identity, Φ(f)v tends to v. Hence C1(V) is dense. If the
group representation is not unitary, one reviews this argument to see that it is still
valid.

Theorem (Harish-Chandra, Nelson). Cω(V) is dense in V.

This theorem is much harder. The tool in the unitary case is invariant elliptic
differential operators on G.

Before applying these theorems to reductive groups, we make some preliminary
remarks about a compact group K. Let Φ be a unitary representation of K on a
Hilbert space V . We saw as a corollary of the Peter-Weyl Theorem that V is an
orthogonal Hilbert space direct sum of finite-dimensional K invariant subspaces.
Denote

bK =

(equivalence classes of irreducible
finite-dimensional representations
of K

)

.

For each τ ∈ bK, let Vτ be the sum of all irreducible invariant subspaces of type
τ . Then V =

P
Vτ orthogonally as a Hilbert space sum, and a relatively easy

computation shows that the orthogonal projection on Vτ is given by

Eτv = dτ

Z

K
χτ (k)Φ(k)v dk.

Therefore the multiplicity of τ in V is well defined as dimVτ/dim τ .

Theorem (Frobenius reciprocity). Let K be a compact group, let L be a closed
subgroup, let σ be an irreducible unitary representation of L, and let τ be an
irreducible unitary representation of K. Then the multiplicity of τ in IndK

L (σ)
equals the multiplicity of σ in the restriction of τ to L.

Sketch of proof. The first multiplicity equals the dimension of the space of K
commuting linear maps from the space for τ into the induced space, and the second
multiplicity equals the dimension of the space of L commuting linear maps from
the space of σ into the space of τ . Composition of maps of the first kind with
evaluation at the identity yields maps of the second kind, and this correspondence
can be shown to be one-one onto.
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Application to Reductive Groups

Now let us specialize the above setting. We return to the situation that G
is linear connected reductive, and we let g0, g, K, k0, etc., be as earlier. All
representations of G will be assumed to be in Hilbert spaces with K acting unitarily.

Theorem. If (Φ, V ) is an irreducible unitary representation of G, then every
τ ∈ bK has finite multiplicity in V .

A representation (Φ, V ) is said to be admissible if every τ ∈ bK has finite
multiplicity in V . In this terminology the above theorem says that irreducible
unitary representations are admissible.

There is a second class of representations that we can identify right away as
admissible:

Proposition. If MAN is parabolic in G and σ is an admissible representation
of M (with K ∩ M acting unitarily), then IndG

MAN (σ ⊗ ∫ ⊗ 1) is an admissible
representation of G.

This is an easy consequence of Frobenius reciprocity as stated above. We
work with the compact picture, so that the restriction to K of the given induced
representation can be identified with an induced representation from K ∩M to K.
Then we put L = K ∩M , apply the theorem to each irreducible summand of the
restriction of σ to K ∩M , and add the results.

Proposition.

1) For each τ ∈ bK, C1(V )∩Vτ is dense in Vτ and Cω(V )∩Vτ is dense in Vτ .
2) Write VK =

L
τ∈K̂ Vτ for the algebraic direct sum of the Vτ . Then the

spaces C1(V )∩VK and Cω(V )∩VK are invariant under g0 and hence under U(g).

This proposition follows readily from the theorems of Garding and Harish-
Chandra–Nelson about denseness of C1(V ) and Cω(V ). The members of VK =L

τ∈ bK Vτ are called K finite vectors.

Corollary 1. If (Φ, V ) is admissible, then every K finite vector is analytic.

This is immediate from (1) in the proposition.

Corollary 2. If (Φ, V ) is admissible, then the closed G invariant subspaces W of
V stand in one-one correspondence with the U(g) invariant subspaces of VK , the
correspondence W ↔ S being

S = WK and W = S.

This is a powerful result, saying that the Lie algebra representation captures
the full information of the group representation in the admissible case.

For an admissible representation (Φ, V ), one often works with only the space
VK of K finite vectors. This carries a U(g) module action and a K action, which
satisfy

(a) every member of VK lies in a finite-dimensional space on which K acts by
a (continuous) representation,

(b) the differentiated version of the K action is the restriction to k0 of the g
action,

(c) (Ad(k)u)v = k(u(k−1x)) for k ∈ K, u ∈ U(g), v ∈ V .
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A complex vector space with a left U(g) module structure and a K action such
that (a), (b), and (c) hold is called a (g,K) module. (Condition (c) is automatic
for G connected and is included so that the definition will be applicable in the
disconnected case.)

Infinitesimal equivalence of two representations of G means algebraic equiv-
alence of their underlying (g,K) modules. This notion is of interest only in the
admissible case.

We conclude this lecture with results special to the case of unitary representa-
tions. Suppose that (Φ, V ) is an admissible unitary representation of G with inner
product h · , · i. Then the underlying (g,K) module has

(a) hXv1, v2i = −hv1,Xv2i for X ∈ g0,
(b) hkv1, kv2i = hv1, v2i for k ∈ K.

A Hermitian form h · , · i on a (g,K) module is said to be invariant if (a) and (b)
hold. A (g,K) module is infinitesimally unitary if it admits a positive definite
invariant Hermitian form. The next theorem in principle reduces the study of
irreducible unitary representations to the study of infinitesimally unitary irreducible
(g,K) modules.

Theorem.
1) Any irreducible admissible infinitesimally unitary (g,K) module is the un-

derlying (g,K) module of an irreducible unitary representation of G on a Hilbert
space.

2) Two irreducible unitary representations of G on Hilbert spaces are unitarily
equivalent if and only if they are infinitesimally equivalent.

Part (2) breaks down if it is assumed only that the two irreducible repre-
sentations of G are infinitesimally unitary. For example, a principal series for
SL(2, R) in the induced picture can be initially constructed in a space of smooth
functions. Then it can be completed in the L2 norm or the L2 norm of the function
and the derivative. The resulting representations are infinitesimally unitary and
infinitesimally equivalent, but they are not equivalent by a bounded linear operator
with a bounded inverse.

Notes

Full details for the material concerning the Harish-Chandra isomorphism and
infinitesimal characters may be found in [K2], pp. 246–258. A different approach,
not pursued completely, is in [K1], pp. 218–226. This material appears also in
a number of other places, including [Wal] and [War]. A proof of Dixmier’s
generalization of Schur’s Lemma appears on page 236 of [K2].

Much of the material on smooth and analytic vectors, together with the appli-
cation to reductive groups, may be found in [K1], pp. 51–57 and pp. 205–213. For
more precise statements of results and detailed references, see [Bal]. A summary
of this material that puts (g,K) modules into context appears in the introduction
of [KV], pp. 3–7.

For Frobenius reciprocity, see [K1], pp. 22–23.





LECTURE 6
Cartan Subgroups and Global Characters

Cartan Subgroups in the Compact Case

Before discussing Cartan subgroups for general reductive groups, we discuss
the compact case for orientation. Let G ⊆ U(n) be a compact connected Lie group,
and let g0 be its Lie algebra.

We introduced global characters for finite-dimensional representations of G in
Lecture 3. Recall that the character of Φ is defined to be χΦ(x) = TrΦ(x). This
satisfies χΦ(1) = dimΦ and in particular is not the zero function.

Characters are invariant under group conjugation, and the character of Φ
depends only on the equivalence class of Φ. Moreover, characters of inequivalent
irreducible representations are orthogonal, hence linearly independent.

Since characters are invariant under conjugation, finding formulas for characters
may be expected to involve information about the conjugacy classes in G. This is
where the idea of a “Cartan subgroup” comes in. Thus let t0 be a maximal abelian
subspace of g0, and let T be the corresponding analytic subgroup; this is a maximal
torus. First we consider an analog in g0 of what we seek. This is an easy theorem.

Theorem 1. Any two maximal abelian subspaces of g0 are conjugate.

Since any member of g0 is contained in a maximal abelian subspace, Theorem
1 implies that any member of g0 is conjugate to one in a fixed maximal abelian
subspace.

Corollary. Any two maximal tori of G are conjugate.

The next theorem is a little harder.

Theorem 2. Let S be a torus in G. If g ∈ G centralizes S, then there is a torus
S0 in G containing both S and g.

Corollary 1. The centralizer in G of a torus is connected.

Corollary 2. The centralizer ZG(t0) of t0 in G, i.e.,

{g ∈ G | Ad(g)H = H for all H ∈ t0},

is connected. In other words, T = ZG(t0).

The significance of Corollary 2 is not immediately apparent. We shall observe
in a moment that T meets every conjugacy class. But, by means of Corollary 2, we
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should think of the group ZG(t0) as the one that is meeting every conjugacy class;
this is the result that will generalize better, though not perfectly, to noncompact
reductive groups.

The group ZG(t0), which here equals T , is called a Cartan subgroup of G. Here
is the hard theorem.

Theorem 3. Each element of G is conjugate to a member of T .

Corollary 1. Each element of G lies in some maximal torus.

Corollary 2. The center ZG lies in every maximal torus.

Corollary 3. The exponential map is onto G.

The theorem says that every conjugacy class meets T . This fact accounts on the
group level for the relatively simple description of the irreducible representations
of a compact connected Lie group. For a finite group, no such conjugacy theorem
is available, and indeed the representation theory of finite groups is much more
complicated.

Another way of writing the conclusion of Theorem 3 is that G =
S

g∈G gTg−1.
Characters for our compact connected G are therefore determined by their values on
T . For SU(2), T is all

≥
eiθ 0
0 e−iθ

¥
, and this particular matrix acts in the irreducible

representation of highest weight n with eigenvalues einθ, ei(n−2)θ, . . . , e−inθ, each
eigenvalue having multiplicity one. Thus the character is

einθ + ei(n−2)θ + · · ·+ e−inθ =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
.

The generalization to arbitrary compact connected Lie groups G is known as
the Weyl character formula. Formally it says that

χ∏(t) =
P

w∈W (sgnw)ew(∏+δ) log t

Q
α∈∆+ (e 1

2 α log t − e−
1
2 α log t)

.

However, δ might not be integral, and this formula is therefore not necessarily rigor-
ous. To get a rigorous formula, we factor eδ log t from numerator and denominator.
Then w(∏ + δ)− δ is integral, and the result is

χ∏(t) =
P

w∈W (sgnw)e(w(∏+δ)−δ) log t

Q
α∈∆+ (1− e−α log t)

.

For many purposes, the expression for χ∏(t) is just as useful for working with a
representation with highest weight ∏ as a concrete version of the representation
itself.

Cartan Subgroups in the Noncompact Case

Now let us turn to the noncompact case. Let G be linear connected reductive,
let θ be the Cartan involution, let g0 = k0 ⊕ p0 be the corresponding Cartan
decomposition of g0, and let g be the complexification of g0. We begin with some
material that is partly a review from the end of Lecture 4 and partly generalizes
those results a little.

A Cartan subalgebra h0 of g0 is a subalgebra of g0 whose complexification in g
is a Cartan subalgebra of g.
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Theorem. Any Cartan subalgebra of g0 is Ad(G) conjugate to one that is stable
under the Cartan involution (i.e., is a θ stable Cartan subalgebra).

Here are some facts about θ stable Cartan subalgebras, some of which we noted
in Lecture 4:

• They are not necessarily all conjugate. (For example, in sl(2, R), they are
not.)

• There are only finitely many, up to conjugacy.
• Any two have the same dimension (because the Cartan subalgebras of g are

all conjugate).
• Ad(K) conjugacy is equivalent with Ad(G) conjugacy. (For this statement,

the hypothesis “θ stable” is essential.)
Let h0 be a Cartan subalgebra of g0. The corresponding Cartan subgroup is

H = ZG(h0). Recall from Theorem 2 in the previous section that Cartan subgroups
are necessarily connected when G is compact connected. But for noncompact G,
Cartan subgroups need not be connected, as the following example shows.

Example. Let G = SL(2, R). For h0 equal to R
≥

0 −1
1 0

¥
or R

≥
1 0
0 −1

¥
, H is

n≥
cos θ − sin θ
sin θ cos θ

¥o
or

n≥
r 0
0 r−1

¥
, r ∈ R×

o
in the respective cases. The second of

these is not connected.

Proposition. Let h0 be a θ stable Cartan subalgebra of g0, and decompose h0

according to θ as h0 = t0 ⊕ a0.
1) If h0 is maximally compact, then H is connected.
2) H = TA, where T = ZK(h0) and A = exp a0. Here T has Lie algebra t0.

Conclusion (1) generalizes Theorem 2 in the previous section. For an example
of the decomposition in Conclusion (2), let G = SL(2, R), and take the second
of the two Cartan subgroups listed in the example above. Then T = {±1} and
A =

n≥
r 0
0 r−1

¥
, r > 0

o
.

Good examples to study for a further understanding of Cartan subgroups are
the cases that G = SL(n, R) and G = Sp(2, R).

Problem. Choose a complete set of representatives of conjugacy classes of θ sta-
ble Cartan subalgebras in g0, and let H1, . . . ,Hr be the corresponding Cartan
subgroups. What can be said about

(∗)
r[

i=1

[

g∈G

gHig
−1 ?

It is not quite true that this union is all of G. For example, in SL(2, R),
≥

1 x
0 0

¥

for x 6= 0 is not conjugate to any
≥

cos θ − sin θ
sin θ cos θ

¥
or to any

≥
r 0
0 r−1

¥
. The role of the

union (∗) is more subtle.
To understand (∗), we introduce the notion of “regular elements” in G. For mo-

tivation, we begin on the level of Lie algebras. It turns out that Cartan subalgebras
may be produced by considering the generalized eigenvalue 0 of adX for X ∈ g0

(i.e., the multiplicity of 0 as a root of the characteristic polynomial). Elements
X for which the dimension of the 0 generalized eigenspace is as small as possible
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are said to be regular elements of the Lie algebra. For a regular element, the 0
generalized eigenspace is a Cartan subalgebra.

On the level of Lie groups, we consider the generalized eigenvalue 1 for Ad(x)
for x ∈ G. This is an analog of the generalized eigenvalue 0 for adX for X ∈ g0

since Ad(expX) = ead X . Consider

det((∏ + 1)1−Ad(x)) = ∏n +
n−1X

j=0

Dj(x)∏j .

For a single element x, the minimum index r with Dr(x) 6= 0 is the multiplicity of
1 as a generalized eigenvalue for Ad(x). We let x vary and let l be the minimum
index with Dl(x) ≡/ 0 on G. One can show that l is the common dimension of all
Cartan subalgebras. A regular element of G is an x ∈ G for which Dl(x) 6= 0. Let
G0 be the set of regular elements. This is open and dense in G, and its complement
is of lower dimension.

Example. For G = SL(n, R), G0 is the set of elements with n distinct eigenvalues
in C.

Theorem.
1) G0 ⊆

Sr
i=1

S
g∈G gHig−1.

2) Each member of G0 lies in just one Cartan subgroup of G.

In SL(n, R), the particular conjugacy class of the Cartan subgroup in (2) is
determined by the number of complex-conjugate pairs of eigenvalues.

The theorem is suggestive that if irreducible global characters can be made
meaningful for infinite-dimensional representations, their behavior on each Hi

should practically determine them completely. This idea turns out to be correct,
but making it rigorous is much more difficult than it would seem at first.

Global Characters

In this section let G be linear connected reductive with Cartan decomposition
g0 = k0 ⊕ p0 for the Lie algebra, with corresponding Cartan involution θ, and with
complexified Lie algebra g. Let K be the analytic subgroup corresponding to k0.
We work with representations (π, V ) such that V is a Hilbert space and π|K is
unitary.

Here is the first basic difficulty in defining global characters for infinite-
dimensional representations. Think of a unitary π in an orthonormal basis {vi}.
The diagonal matrix entries of π(x) are (π(x)vi, vi). We cannot expectP

i (π(x)vi, vi) to converge and give a good analog of a trace. Even if it does
converge occasionally, there will be a question of what order to use for computing
the sum.

This difficulty is resolved as follows. First average π(x) by a function f in the
usual way, obtaining π(f) with π(f)v =

R
G f(x)π(x)v dx. Then compute the trace

of π(f). The result is a map f 7→ π(f).
First we must make sense of the notion of “trace”. A trace class operator L on

a Hilbert space V is a bounded linear operator for which
P

|(B−1LBvi, vi)| < 1
for every orthonormal basis {vi} and every bounded invertible linear B. In this
case

P
(B−1LBvi, vi) is independent of B and is called the trace of L.
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An admissible representation π of G has a global character if π(f) is of trace
class for all f ∈ C1

com(G) and if f 7→ Trπ(f) = Θ(f) is a distribution (i.e., a
continuous linear functional on C1

com(G)).
In this case the distribution Θ is invariant in the sense of agreeing on f(x) and

any conjugate f(gxg−1).

Theorem. Every admissible representation π of G whose decomposition π|K =P
τ∈K̂ nττ has nτ ≤ C dim τ has a global character.

Example. For G = SL(2, R), consider any nonunitary principal series representa-
tion. The K multiplicities are 1 or 0. Therefore it makes sense to speak of the global
character Θσ,∫ of IndG

MAN (σ⊗∫⊗1). One can compute that Θσ,∫ = θσ,∫(x) dx for a
locally integrable function on G. Let us describe this function. The function θσ,∫(x)
is determined a.e. by its values on kθ =

≥
cos θ − sin θ
sin θ cos θ

¥
and ±at with at =

≥
et 0
0 e−t

¥
.

The formula is

θσ,∫(kθ) = 0

θσ,∫(±at) = σ(±1)
e∫ log at + e−∫ log at

|et − e−t|

as a result of a computation with integrals. The idea is that the operator obtained
by applying the representation to a function f ∈ C1

com(G) in the manner of Lecture 3
can be realized as an integral operator over K. The kernel in the integrand is a
function on K × K, and the trace of the operator is given by the integral of the
kernel over the diagonal of K ×K.

Let us apply the theorem to nonunitary principal series for general reductive
groups. Let π = IndG

MAN (σ ⊗ ∫ ⊗ 1), with σ acting in V σ and MAN minimal
parabolic. Then π|K = IndK

M (σ). If τ is in bK, then Frobenius reciprocity shows that
the multiplicity of τ in π|K equals the multiplicity of σ in τ |M . The latter is≤ dim τ .
Hence any τ ∈ bK occurs with multiplicity ≤ dim τ in any nonunitary principal
series, and the theorem says that the nonunitary principal series representation has
a global character.

It is only a little harder to prove the following theorem.

Theorem. For any irreducible unitary representation π, each τ ∈ bK occurs in π
with multiplicity ≤ dim τ . Hence π has a global character.

We shall see that this result is still valid with “irreducible unitary” replaced by
“irreducible admissible”. The improved theorem is considerably harder to prove.

Recall that infinitesimal equivalence for admissible representations refers to
algebraic equivalence on the underlying space of K finite vectors. The tool for
improving the above theorem is the Subrepresentation Theorem.

Theorem (Subrepresentation Theorem, to be discussed in Lecture 8). Any
irreducible admissible representation of G is infinitesimally equivalent with a sub-
representation of a member of the nonunitary principal series.

Since infinitesimal equivalence respects dimensions of K types, this gives

Corollary 1. If π is an irreducible admissible representation of G, then π|K =P
τ∈K̂ nττ has nτ ≤ dim τ for all τ ∈ bK.
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In other words, the estimate in the theorem about irreducible unitary repre-
sentations extends by means of the Subrepresentation Theorem to all irreducible
admissible representations. Applying the existence theorem for global characters
gives the following corollary.

Corollary 2. Every irreducible admissible representation of G has a global char-
acter.

To complete our initial discussion of global characters, we state two further
results. They are the reason global characters are useful in our setting.

Proposition. If π and π0 are infinitesimally equivalent admissible representations
of G and both have global characters, then the characters of π and π0 are equal.

Theorem. Let π1, . . . ,πn be mutually infinitesimally inequivalent, irreducible ad-
missible representations of G with global characters Θ1, . . . ,Θn. Then Θ1, . . . ,Θn

are linearly independent.

Differential Equations Satisfied by Characters

We turn now to an investigation of the main analytic tool in the subject—the
differential equations that come from Z(g). These equations will repeatedly play a
role from now on.

We begin with some remarks about differential operators on manifolds, starting
with Euclidean space. Let D be a linear partial differential operator on a connected
open set U ⊂ Rn. We define a “transposed” operator Dt as follows: The map
D 7→ Dt is C linear, it reverses order in composition, it sends a(x)I into itself, and
it sends @/@xj into −@/@xj . From integration by parts it follows that

Z

U
(Df1)(x)f2(x) dx =

Z

U
f1(x)Dtf2(x) dx

whenever f1 and f2 are smooth and at least one has compact support. The validity
of the integration-by-parts formula determines this map D 7→ Dt completely, and
this is the fact that we rely on for the passage to Lie groups.

To begin with, let us extend this construction to a smooth manifold. Fix
a measure that is a smooth invertible function times Lebesgue measure in any
chart. In any chart we can form a map D 7→ Dt for which the integration-by-parts
formula holds. By the uniqueness in local coordinates, these maps are consistent
on intersections of coordinate neighborhoods, and thus we can piece these together
by a partition of unity.

If D is given as a partial differential operator on our smooth manifold and if
Θ = f dx is a distribution given by a function, we want to have DΘ be Df(x) dx.
Then the integration-by-parts formula suggests defining DΘ in general by

(DΘ)(f) = Θ(Dtf) for f ∈ C1
com(G).

Now let us relate these matters to our group G.

Proposition. Let X ∈ g0 act by left-invariant differentiation, and let f1 and f2

be smooth functions on G with at least one of them of compact support. Then
Z

G
(Xf1)(x)f2(x) dx = −

Z

G
f1(x)Xf2(x) dx
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Hence Xt = −X for X ∈ g0.

The left-invariant (linear) differential operators on G with complex coefficients
may be identified with U(g). Hence we may restrict the map D → Dt to U(g).

Corollary. The restriction of the map D 7→ Dt to U(g) is an associative algebra
antiautomorphism of U(g) that extends the Lie algebra antiautomorphism X 7→ −X
of g. The map D 7→ Dt carries Z(g) to itself.

In Lecture 4 we constructed an abstract transpose map of U(g) that was deter-
mined by the conditions in the corollary. Thus we find that transpose of differential
operators, when specialized to left-invariant differential operators, coincides with
our earlier notion of transpose on U(g).

Application to Global Characters

Let π be an irreducible admissible representation of G. By the theorem on the
correspondence of closed G invariant subspaces with U(g) invariant subspaces of
K finite vectors, the underlying (g,K) module is irreducible. Therefore π has an
infinitesimal character.

Proposition. Let π be an admissible representation of G having an infinitesimal
character, say π(z) = χ(z)I for z ∈ Z(g). If π has a global character Θ and if
z ∈ Z(g) is considered as a left-invariant differential operator, then zΘ = χ(z)Θ.

Sketch of proof. One calculates that (π(ztf)vi, vi) = χ(z)(π(f)vi, vi), where
f ∈ C1

com(G) and {vi} is an orthonormal basis of K finite vectors for the space
on which π acts. Summing on i gives Θ(ztf) = χ(z)Θ(f), and the result follows.

When zΘ = χ(z)Θ, we say that the global character is an eigendistribution (of
Z(g)). We now know that global characters of irreducible admissible representations
are invariant eigendistributions.

Now let us make use of the differential equations obtained from Z(g) as in the
above proposition.

Theorem 1. Suppose that Θ is an invariant eigendistribution on G with zΘ =
χ(z)Θ for z ∈ Z(g). The restriction of Θ to smooth functions compactly supported
in the regular set G0 is a real analytic function invariant under conjugation. That
is, Θ is of the form Θ(x) dx on G0 with dx equal to Haar measure and with Θ real
analytic and invariant under conjugation.

To have a formula for this function Θ(x), it is enough to have a formula on each
of the standard Cartan subgroups H = TA. On the conjugates of the regular set H 0

in H, let us write Θ(h) = τH(h)/DH(h), where DH(h) is a standard denominator
as in the Weyl character formula.

We want to define DH(h), modulo technicalities. For this we use the linearity of
G: We think of G as embedded in a complex group GC and let HC be the subgroup
corresponding to h. For any root α, let ξα be the multiplicative character of HC

with differential α, and restrict ξα back to H. We do the same thing for δ, the half
sum of the positive roots in some order (ignoring that δ may not be integral). Then
DH(h) is given by DH(h) = ξδ(h)

Q
α∈∆+(1− ξ−α(h)).
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Theorem 2. Suppose that χ(z) = χ∏(z) relative to H. Then the numerator τH of
Θ on H satisfies ∞(z)τH = χ∏(z)τH for z ∈ Z(g), where ∞ is the Harish-Chandra
isomorphism.

The system ∞(z)τH = χ∏(z)τH is a system of partial differential equations with
constant coefficients on H. Here H, apart from disconnectedness, is the product of
a torus and a Euclidean space. The system can be solved, and here is the result.

Corollary. Under the assumptions of Theorem 2, let W∏ = {w ∈ W | w∏ = ∏}.
Fix h ∈ H and let h1 be a connected component of the set of all X in h0 such that
DH(expX) 6= 0. Then there exist uniquely determined polynomial functions pw on
h0 for w ∈ W such that pws = pw for s ∈ W∏ and such that the numerator τH

satisfies

τH(expX) =
X

w∈W

pw(X)ew∏(X)

for all X ∈ h1. Moreover, the degrees of the polynomials pw are all less than |W∏|.

Qualitatively we can think of the polynomials as constant. Then the numerator
is a linear combination of exponentials, with the allowable exponents being the Weyl
group transforms of ∏. It turns out that the assumption that the polynomials are
constants is indeed valid if Θ is a global character.

Theorem 3 (Harish-Chandra, 1963). An invariant eigendistribution Θ on G is
given on all of G by a locally integrable function (whose restriction to G0 is a real
analytic function).

That is, Θ = Θ(x) dx on all of G. This theorem is much harder than Theorem 1.

Notes

The structure-theoretic results about compact connected groups may be found
with full proofs in [K2], pp. 196–206, and also in [V]. For an alternative treatment
with some additional results but with some proofs discussed only in examples, see
[K1], 86–89.

The Weyl character may be found in one form in [K2], pp. 259–269, and in
another form in [K2], pp. 280–283. See also [K1], [Hu], [J], and [V].

The conjugacy of any Cartan subalgebra to a θ stable one is proved on p. 328
of [K2]. The results about Cartan subgroups in the noncompact case are all proved
in [K2], pp. 424–435.

Global characters are defined and shown to exist under certain conditions in
[K1], pp. 333–336. One of the proofs in those pages has a small gap, and a full
proof appears in [De]. A proof of the theorem about admissibility of irreducible
unitary representations for linear connected reductive groups may be found in
[K1], pp. 205–207. The other basic results about global characters that do not
use differential equations are proved in [K1], pp. 336–338. Calculations of some
characters are in the pages afterward in [K1].

Theorems 1 and 2 in the section “Application to Global Characters”, as well as
the corollary, are proved in Chapter X of [K1]. Theorem 3 is too difficult to prove
in that book, and some discussion of the theorem appears in pp. 371–374 of [K1].
Detailed references appear in the chapter “Notes” at the end of the book.
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Exercises

1. Write down three nonconjugate Cartan subalgebras in SL(4, R).
2. Write down four nonconjugate Cartan subalgebras in Sp(2, R).
3. Prove that

Z

G
(Xf1)(x)f2(x) dx = −

Z

G
f1(x)(Xf2)(x) dx

for any Lie group G, any X ∈ g0, and any two smooth functions f1 and f2 on G,
at least one of which has compact support.

4. Let H be a θ stable Cartan subgroup of G. Define the Weyl group of H to
be W (H) = NG(H)/H. Show that W (H) ∼= NK(H)/(H ∩K). (Hint: First show
that NG(H) = NK(H) exp(a0).)





LECTURE 7
Discrete Series and Asymptotics

Discrete Series for SL(2, R)

The principal series gave us our first infinite-dimensional irreducible unitary
representations of SL(2, R), and now we introduce some others. It will be more
convenient to work with the group

G = SU(1, 1) =
Ωµ

α β
β̄ ᾱ

∂ ØØØ |α|2 − |β|2 = 1
æ

,

which is isomorphic to SL(2, R).
We write

K = T =
Ωµ

eiθ 0
0 e−iθ

∂æ
.

The group G acts on ≠ = {|z| < 1} by g(z) = αz+β
β̄z+ᾱ

.
For f analytic on ≠ and n ≥ 2, put

Dn

µ
α β
β̄ ᾱ

∂
f(z) = (−β̄z + α)−nf

µ
ᾱz − β

−β̄z + α

∂

kfk2 =
Z

≠
|f(z)|2(1− |z|2)n−2 dx dy.

As with the principal series, we have constructed this representation from a transi-
tive action of G and a “multiplier” (−β̄z + α)−n. The new feature is that we use
only analytic functions.

The action by Dn respects multiplication of elements in G, the space of analytic
f ’s of finite norm can be shown to be complete, and the action can be shown to
be continuous. To see that the action is unitary, one makes a simple change of
variables and uses that (1− |z|2)−2 dx dy is invariant under G in the action of G on
≠. Thus Dn is a unitary representation.

The functions zN are orthogonal in the Hilbert space, and the fact that an ana-
lytic function has a power series expansion readily implies that only 0 is orthogonal
to all zN . Direct computation gives

Dn

µ
eiθ 0
0 e−iθ

∂
zN = e−(n+2N)iθzN ,

71
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and it follows that the only K types that appear are of the form e−(n+2N)iθ with
N ≥ 0 and that these have multiplicity one.

Now let us prove irreducibility. The K finite elements are the linear combina-
tions of the functions zN , and we are interested in U(g) invariant subspaces in the
space of K finite elements. Computing Dn

≥
cosh t sinh t
sinh t cosh t

¥
and differentiating yields

the action of the Lie algebra element
≥

0 1
1 0

¥
. The result is that

≥
0 1
1 0

¥
zN = (n + N)zN+1 −NzN−1.

An invariant subspace must be generated by its K types. Say zN is in an invariant
subspace. Then the presence of the right side in the invariant subspace forces zN+1

and zN−1 to be present unless N = 0. Consequently all zN are present in any
nonzero U(g) invariant subspace. This proves irreducibility.

The representation Dn has a new property that is not shared by the principal
series reprsentations. This is known as “square integrability”, and we say that Dn is
in the discrete series of G. The easiest aspect of square integrability to see directly
is given in the following proposition. We shall see in the first theorem below that
the finiteness of the integral in the proposition implies the finiteness of other related
integrals.

Proposition.
R

G |(Dn(g)1, 1)|2 dg < 1.

Proof. In fact, Dn(g)1(z) = (−β̄z + α)−n, where 1 denotes the constant function.
Thus

(Dn(g)1, 1) =
Z

≠
(β̄z + α)−n(1− |z|2)n−2 dx dy

= α−n

Z

≠
(1− |z|2)n−2 dx dy

= cnα−n, say,

the second equality following by expanding (β̄z + α)−n in binomial series with
constant term α−n. Thus we obtain

|(Dn(g)1, 1)|2 = c2
n|α|−2n.

Now g(0) = β
ᾱ implies

1− |g(0)|2 = 1− |β|2
|α|2 = |α|2−|β|2

|α|2 = |α|−2.

So |(Dn(g)1, 1)|2 = c2
n(1 − |g(0)|2)n. For a suitable normalization of dg, whenever

a function h on G is of the form h(g) = h0(g(0)), then
Z

G
h(g) dg =

Z

≠
h0(z)(1− |z|2)−2 dx dy.

We apply this fact with h0(z) = c2
n(1− |z|2)n and get

Z

G
|(Dn(g)1, 1)|2 dg = c2

n

Z

≠
(1− |z|2)n−2 dx dy = c3

n < 1,

as asserted.
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A function g 7→ (π(g)v1, v2) is called a matrix coefficient of π, just as was the
case for compact groups. For Dn, we have just seen that one of the nonzero matrix
coefficients is in L2(G).

Theorem (Godement). For an irreducible unitary representation π of a unimodu-
lar Lie group G, the following three conditions are equivalent:

(a) Some nonzero matrix coefficient is in L2(G).
(b) All matrix coefficients are in L2(G).
(c) π is equivalent with a direct summand of the right regular representation

of G on L2(G).

A representation satisfying these three equivalent conditions is said to be in
the discrete series of G.

Problem. Find all discrete series representations when G is linear connected re-
ductive.

Here is the complete answer for G = SU(1, 1):

All Dn, as well as all Dn ◦
≥

complex
conjugation

¥
for n ≥ 2.

In fact, the classification of all irreducible unitary representations of SU(1, 1) ∼=
SL(2, R) is due to Bargmann (1947). This assertion about discrete series is one of
the things that Bargmann shows.

To generalize, we give a group-theoretic formulation of the construction of Dn

for G = SU(1, 1). Let GC = SL(2, C), and let B be the subgroup
n≥

a 0
c a−1

¥o
of

SL(2, C). It is not hard to verify the following facts:
• Elements of GB are in one-one correspondence with all products

µ
1 z
0 1

∂µ
∞−1 0
0 ∞

∂µ
1 0
≥ 1

∂
with ≥ ∈ C, ∞ ∈ C×, |z| < 1.

• GB is open in GC, and its product complex structure from the above formula
is the same as its complex structure as an open subset of GC.

Now we can construct the representation. Put ξn

≥
a 0
c a−1

¥
= a−n. Let Vn

consist of all F : GB → C such that
(a) F is holomorphic,
(b) F (xb) = ξn(b)−1F (x) for x ∈ GB, b ∈ B,
(c) kFk2 =

R
G |F (g)|2 dg < 1,

and let L(g)F (x) = F (g−1x) for F ∈ Vn, g ∈ G, x ∈ GB. Then L is a unitary
representation, the only nontrivial part of the verification being that the underlying
space is complete.

We can directly exhibit a unitary equivalence of this representation with Dn.
In fact, the correspondence is that F ↔ f , where

f(z) = F (z, 1, 0)
F (z, ∞, ≥) = ∞−nf(z).

This realization of Dn has a vector-bundle interpretation. We have a holo-
morphic bundle GC → GC/B and an open subbundle GB → GB/B. We can
identify the base with G/T , where T = K is a compact Cartan subgroup. Form
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the associated holomorphic line bundle relative to ξn : B → C× and restrict to the
part of the bundle over G/T , obtaining

G×T C× → G/T.

Then Vn consists of the square-integrable holomorphic sections.

General Discrete Series for Reductive Groups

The group-theoretic construction of Dn generalizes to yield the “holomorphic
discrete series”. The setting is as follows. Let G be linear connected reductive,
and let other notation be as usual. Assume that G/K has a G invariant complex
structure. If c0 is the center of k0, this condition can be shown to be equivalent
with the assumption Zg0(c0) = k0. Under this hypothesis, g0 always has a compact
Cartan subalgebra t0 ⊆ k0. Let T = exp t0.

The roots relative to the complexification t of t0 are of two kinds, called
“compact” and “noncompact”. To define these terms, form ∆ = ∆(g, t). For
H ∈ t0, α ∈ ∆, and X ∈ gα, we have [H, θX] = θ[θH,X] = θ[H,X] = θ(α(H)X) =
α(H)θX. Thus θX is in gα, and θ is a linear transformation of gα to itself with
θ2 = 1. Since dim gα = 1, gα ⊆ k or gα ⊆ p. Call α compact or noncompact
accordingly. Let ∆K = ∆(k, t) be the subset of compact roots.

Proposition. The compact roots are exactly those vanishing on c0.

We use this proposition to introduce a “good ordering”. We have it0 =
ic0⊕ i(t0∩ [k0, k0]). Introduce an ordering that takes ic0 before the rest. Observe by
the proposition that every noncompact positive root is greater than every compact
root. Hence [gα, gβ ] is 0 if α and β are positive noncompact.

We can now define the subgroup B of GC. Let b = t⊕
L

α<0 gα. This is a Borel
subalgebra built from the negative roots. Let B ⊆ GC be the analytic subgroup
corresponding to b. Then GB may be shown to be open in GC.

To construct a representation, let ∏ ∈ t0 be integral and satisfy h∏,αi ≥ 0 for
all α ∈ ∆+

K . Define V∏ to consist of all F : GB → C such that
(a) F is holomorphic,
(b) F (xb) = ξ∏(b)−1F (x) for x ∈ GB and b ∈ B,
(c) kFk2 =

R
G |F (g)|2 dg < 1,

and let L(g)F (x) = F (g−1x) for F ∈ V∏, g ∈ G, and x ∈ GB.

Theorem (Harish-Chandra, 1956). If h∏ + δ,αi < 0 for all positive noncompact
roots α, then (L, V∏) is a (nonzero) irreducible unitary representation in the discrete
series of G.

Since these representations and their twists by complex conjugation exhaust
the discrete series for SL(2, R), one might hope that a similar thing happens for all
linear connected reductive groups. The following example indicates that this is not
the case.

Example (Dixmier). The group G = SO0(4, 1), in which G/K does not have an
invariant complex structure, has discrete series.
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Theorem (Harish-Chandra, 1966). The linear connected reductive group G has no
discrete series unless G has a compact Cartan subgroup. If G has a compact Cartan
subgroup T ⊆ K and if ∏ ∈ t0 has the property that ∏ + δ is integral and h∏,αi 6= 0
for all α ∈ ∆(g, t), then there exists a unique invariant eigendistribution Θ∏ on G
such that

(a) zΘ∏ = χ∏(z)Θ∏,
(b) the numerator τT,∏ of Θ∏ on T is given by

τT,∏(expX) =
X

w∈W (∆K)

(sgnw)ew∏(X)

for X ∈ t0,
(c) the numerator τH,∏ of Θ∏ on each Cartan subgroup H is bounded.

Up to a sign, Θ∏ is the global character of a discrete series representation π∏ of G.
The representations π∏ exhaust the discrete series, and two such π∏ and π∏0 are
equivalent if and only if ∏0 is in W (∆K)∏.

The representation π∏ is called the discrete series with Harish-Chandra
parameter ∏. The infinitesimal character of π∏ is ∏. The theorem in a sense solves
the problem in the previous section of finding all the discrete series of G. But we
can ask for more.

Problem. Find a global realization of π∏.

The four solutions to this problem that have continued to be useful are the
following, in chronological order of completion.

1) (Langlands, Schmid) By L2 cohomology. This realization was conjectured
by Langlands and proved by Schmid.

2) (Zuckerman, Vogan) By cohomological induction. Zuckerman gave a con-
struction and an outline of a proof, and Vogan gave a full proof.

3) (Flensted-Jensen) By techniques of analysis on semisimple symmetric spaces.
4) (Kostant, Schmid, Aguilar-Rodriguez) By sheaf cohomology. This realiza-

tion was roughly conjectured by Kostant and partly proved by Schmid. Aguilar-
Rodriguez completed Schmid’s proof.

Let us make some remarks about the Langlands-Schmid solution and its relation
to other lecture series at this conference. The construction intersects most directly
with Roger Zierau’s course. One clue to a global realization comes from specializing
the holomorphic discrete series to G = K compact. Note for compact G that every
irreducible representation is in the discrete series. For a compact group Harish-
Chandra’s construction of holomorphic discrete series specializes to the Borel-Weil
Theorem, which was discovered independently of Harish-Chandra’s construction at
about the same time. (Tits also discovered the Borel-Weil Theorem at that time.)

Borel-Weil Theorem. Let G be compact, and let T be a maximal torus. Introduce
a positive system in ∆(g, t), and build a Borel subgroup B from the negative roots.
If ∏ is dominant integral, then the space of holomorphic functions F on GB (which
equals GC) such that

F (xb) = ξ∏(b)−1F (x) for x ∈ GB, b ∈ B,

relative to the left regular representation of G, is an irreducible representation of G
with highest weight ∏.
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A better clue to the Langlands-Schmid construction comes from a generaliza-
tion of the Borel-Weil Theorem by Bott. Let us put this is the context of the
bundle interpretation. The quotient G/T = GC/B is a complex manifold. Let
C∏ denote C with an action of T by ξ∏. Then we have a holomorphic line bundle
G ×T C∏ → G/T , and the representation space in question is the space of all
holomorphic sections. Bott asked what happens if ∏ is integral but not dominant.
The space of holomorphic sections is then zero. He reinterpreted the space of
holomorphic sections as sheaf cohomology in degree 0 and asked what the sheaf
cohomology is in other degrees. The sheaf cohomology turns out to be nonzero in
at most one degree, and there it is irreducible. He identified the highest weight in
the nonzero case.

Hodge theory over a compact base allows one to reformulate sheaf cohomology
in terms of harmonic differential forms. Langlands, making a formal calculation
with characters, conjectured specifically how to obtain discrete series by using L2

harmonic forms over G/T in the noncompact case. One of Schmid’s accomplish-
ments was to prove this conjecture of Langlands.

Asymptotic Expansions

Let G be a linear connected reductive group, and let other notation be as usual.
The matrix coefficients of a representation of G having an infinitesimal character
satisfy a system of differential equations that gives some control over the possibilities
for the representation.

First let π be an admissible representation of G with no assumption about an
infinitesimal character. If v1 and v2 are K finite vectors in the representation space
and if X is in g0, then the action of X as a left-invariant differential operator gives

X(π(g)v1, v2) = (π(g)π(X)v1, v2)

because the left side is

=
d

dt
(π(g exp tX)v1, v2) |t=0 =

≥ d

dt
π(exp tX)v1,π(g)∗v2

¥ ØØØ
t=0

,

and this equals the right side. Iterating, we obtain

u(π(g)v1, v2) = (π(g)π(u)v1, v2)

for every u ∈ U(g), with u regarded on the left side as a left-invariant differential
operator on G.

If π has infinitesimal character χ, then π(z)v1 = χ(z)v1 for z ∈ Z(g). Thus the
above equation yields

z(π(g)v1, v2) = χ(z)(π(g)v1, v2)

for z ∈ Z(g).
We seek to use this boxed equation to get information about (π(g)v1, v2) as

g → 1. We illustrate matters by taking G = SL(2, R) for the remainder of this
section.

We begin by introducing the KAK decomposition of G = SL(2, R). In this
G, we have G = K exp p0, and every member of exp p0 is K conjugate to a0, by
the Spectral Theorem. Thus G = KAK. Let at =

≥
et/2 0
0 e−t/2

¥
. In the KAK

decomposition, the A component can be taken to be some at with t ≥ 0. The idea
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will be to reduce the boxed differential equation on G to one on A, i.e., one on the
real line R.

Let π be an admissible representation of SL(2, R) with infinitesimal character
χ, and let kθ =

≥
cos θ − sin θ
sin θ cos θ

¥
. We work at first with a matrix coefficient of π of

the form F (x) = (π(x)v1, v2), where π(kθ0)v1 = eimθ0v1 = τ2(kθ0)v1 and π(kθ)v2 =
einθv2 = τ1(kθ)v2. Then

F (kθxkθ0) = ei(nθ+mθ0)F (x) = τ1(kθ)F (x)τ2(kθ0).

Actually we shall work with any F ∈ C1(G) satisfying this transformation law and
the formula zF = χ(z)F for z ∈ Z(g).

We introduce the “radial part” of a differential operator on SL(2, R). For any
fixed a 6= 1, we can check that

g0 = (Ad(a−1)k0 ⊕ a0 ⊕ k0

for g0 = sl(2, R). By the Poincaré-Birkhoff-Witt Theorem, every member of U(g) is
a linear combination of terms (Ad(a−1)X)HY with X ∈ U(k), Y ∈ U(k), H ∈ U(a).
The particular linear combination typically depends on a. For F as above, we can
compute that

(Ad(a−1)X)HY F (a) = τ1(X)(HF )(a)τ2(Y ).
We consider H, followed by left by τ1(X) and right by τ2(Y ), to be a differential
operator on functions on A+ = {at | t > 0}. Then to each u ∈ U(g) we can
associate a differential operator Dτ1,τ2(u) on A+ such that

(uF )|A+ = Dτ1,τ2(u)(F |A+).

The operator Dτ1,τ2(u) is the radial part of u.
Let us compute the radial part of the Casimir operator u = ≠ = 1

2h2 +ef +fe.
The Casimir operator is a member of Z(g). Let α = e1−e2 be the positive restricted
root, let ξ = ξα(a) = eα log a, and let Y = 1

2 (e + θe) = 1
2 (e− f). Then

Dτ1,τ2(≠)F (a) =
1
2
h2F (a) +

ξ2 + 1
ξ2 − 1

hF (a)

+
8ξ2

(ξ2 − 1)2
(F (a)τ2(Y )2 + τ1(Y )2F (a))

− 8ξ(ξ2 + 1)
(ξ2 − 1)2

τ1(Y )F (a)τ2(Y ).

With at =
≥

et/2 0
0 e−t/2

¥
, we have ξ = ξα(at) = et, and the differential operator h

becomes 2 d
dt . Substitution gives

1
2Dτ1,τ2(≠)F (at) =

d2F

dt2
+ (coth t)

dF

dt

+
1

(sinh t)2
(F (at)τ2(Y )2 + τ1(Y )2F (at))

− 2 cosh t

sinh2 t
τ1(Y )F (at)τ2(Y ).
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This formula is a differential equation satisfied by our function F , and a change
of variables will enable us to obtain an asymptotic expansion for F (at) as t →
1. The left side of the above equation, under our assumption, is 1

2χ(≠)F (at).
Substitute z = e−t and d

dt = −z d
dz , and the result is

1
2χ(≠)F =

≥
z

d

dz

¥2
F − 1 + z2

1− z2

≥
z

d

dz

¥
F

+
4z2

(1− z)2
(Rτ2(Y ))2 + Lτ1(Y )2)F

− 4(z + z3)
(1− z2)2

(Rτ2(Y )Lτ1(Y ))F.

Expansion in series about z = 0 gives

z2 d2F

dz2
+ O(z)z

dF

dz
+ (−1

2χ(≠) + O(z))F = 0

with each instance of O(z) representing an analytic function for |z| < 1 with no
constant term. This is an ordinary differential equation with a regular singular
point at z = 0, and one looks for solutions zs(power series). The power s must
satisfy the “indicial equation” s(s−1)− 1

2χ(≠) = 0. For χ = χ∏, we have seen that
χ(≠) = 1

2∏(h)2 − 1
2 . Then s = 1

2 (1 ± ∏(h)). The leading terms of the asymptotic
expansion are thus e−

1
2 (1±∏(h))t, possibly with a factor of t.

The possible factor of t comes about as follows. When the two solutions s of
the indicial equation do not differ by an integer, there exist respective solutions of
the form zs times a power series. When the two solutions do differ by an integer,
one solution can involve a factor log z, and this becomes essentially a factor of t
when we restore the variable t.

From this analysis we can see a connection between the infinitesimal character
and the possible square integrability of the matrix coefficient on G. In the KAK
decomposition, one can check that Haar measure is given by (sinh t) dθ0 dt dθ. The
product of the leading terms, namely of e−

1
2 (1+∏(h))t and e−

1
2 (1−∏(h))t is e−t, and so

one of these leading terms fails to be square integrable. Thus one leading term must
have coefficient 0 for a discrete series representation. For the unitary principal series
IndG

MAN (σ ⊗ ∫ ⊗ 1), the infinitesimal character is ∫. Then ∫(h) is imaginary, and
the magnitude of both leading terms is e−t/2, which just misses square integrability.

Notes

The material in the lecture concerning the discrete series of SL(2, R) may be
found in [K1], pp. 39–41, p. 142, and pp. 150–152. The Godement theorem, with
a small amount of restriction, is proved in [K1], pp. 284–286. For holomorphic
discrete series in general, see [K1], pp. 153–164. The relevant structure theory is
carried out in more detail in [K2], pp. 435–449.

Harish-Chandra’s 1966 theorem parametrizing the discrete series in general has
four approaches that yield global realizations, as is noted in the lecture. Approaches
(1) and (4) are discussed in some detail in [SB], approach (2) is in [KV] and also
[Wal], and approach (3) is in [K1], Chapter IX.
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The material on asymptotic expansions is taken largely from [K1], pp. 215–218.
Chapter VIII of that book discusses the generalization to other groups. See also
[Wal].

Exercises

1. Prove that the correspondence F 7→ f between the group theoretic formu-
lation of Dn and the original formulation preserves norms, up to a global constant.

2. Verify the calculation of Dτ1,τ2(≠) for SL(2, R).





LECTURE 8
Langlands Classification

Subrepresentation Theorem

In this section we shall give an idea of where the Subrepresentation Theorem
comes from, and we shall state the result precisely. The device for obtaining the
theorem is n̄0 invariant linear functionals on a representation space. In order to
isolate the ideas clearly, we shall work just with G = SL(2, R), but the theory
works for any linear connected reductive G. Write N = ΘN , and let n̄0 be its Lie
algebra. Let π be an irreducible admissible representation of G on a Hilbert space
V , and let VK be the space of K finite vectors in V .

A leading exponential of π is an exponential e(∫−ρ) log a occurring with nonzero
coefficient in some (π(a)v1, v2) such that no e(∫−ρ+nα) log a occurs as an exponential
in any matrix coefficient for n > 0. Leading exponentials exist because of the
analysis of asymptotic expansions of matrix coefficients given in Lecture 7.

Fix a leading exponential, say e(∫−ρ) log a, of π. (If we write a = at, a factor
t may occur in front of the exponential, but we ignore this small complication.)
We define a linear function l : VK → C depending on certain choices. Say the
leading exponential e(∫−ρ) log a occurs in the asymptotic expansion of the matrix
coefficient (π(a)v1, v2). We take l(v) to be the numerical coefficient of e(∫−ρ) log a

in (π(a)v, v2). Then l(v1) 6= 0, so that l is not the 0 linear functional.

Lemma. l(Xv) = 0 for all X ∈ n̄0 and v ∈ VK .

Proof. Let f =
≥

0 0
1 0

¥
and Y =

≥
0 1

−1 0

¥
. We can check that

f =
−2ξ−1

ξ−2 − 1
(ξ−1Y −Ad(at)−1Y )

with ξ = ξα(at) = et. Then

(π(at)fv, v2) = − 2ξ−2

ξ−2 − 1
(π(at)Y v, v2) by substitution

+
2ξ−1

ξ−2 − 1
(π(at)(Ad(at)−1Y )v, v2)

= − 2ξ−2

ξ−2 − 1
(π(at)v, v2)τ2(Y ) +

2ξ−1

ξ−2 − 1
τ1(Y )(π(at)v, v2),

81
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the last equality holding because of the way that the matrix coefficient transforms
with τ1 and τ2. The first term on the right side begins with e(∫−2α−ρ) log at , and
the second begins with e(∫−α−ρ) log at . For both terms the coefficient of e(∫−ρ) log at

is 0 since our exponent was a leading one. Thus l(fv) = 0.

Let us now see how we can make use of n̄0 invariant linear functionals. The
linear functional l above satisfies

l(Xv) = 0 for X ∈ n̄0

l(Hv) = (∫ − ρ)(H)l(v) for H ∈ a0.

Define L : VK → {complex-valued functions on K} by

L(v)(k) = l(π(k)−1v).

Regard the range space as the compact picture of IndG
AN

(e∫ ⊗ 1) by extending
functions to G according to f(kan̄) = e(−∫+ρ) log af(k). A little calculation shows
that L(Xv) = X(L(v)) for all X ∈ g0. Thus L is an infinitesimal equivalence of
VK into a subrepresentation of

IndG
AN

(e∫ ⊗ 1) ∼= IndG
MAN

(+⊗ e∫ ⊗ 1)⊕ IndG
MAN

(−⊗ e∫ ⊗ 1).

One of the two projections thus may be used to embed π infinitesimally into a
nonunitary principal series representation (but built from N instead of N).

If we had considered at with t → −1, N would get replaced by N . Anyway,
the general result is as follows.

Theorem. Each irreducible admissible representation of a linear connected reduc-
tive G is infinitesimally equivalent with a subrepresentation of some nonunitary
principal series.

Irreducible Tempered Representations

We return to the situation that G is a linear connected reductive group. We
shall assume that G has compact center. This assumption implies that Σ+, the
system of positive restricted roots lying in a00,p, actually spans a00,p. Let MpApNp

be a minimal parabolic subgroup of G.
We introduce the notion of “simple restricted roots”. Call α ∈ Σ+ simple if α

is not the sum of two members of Σ+.

Proposition. The simple restricted roots form a vector-space basis of a00,p. In the
expansion of any member of Σ+ in terms of the simple restricted roots, all the
coefficients are integers ≥ 0.

Example. For G = SL(n, R), take Σ+ to consist of all ei − ej with i < j. Then
the simple restricted roots are e1 − e2, e2 − e3, . . . , en−1 − en.

Let α1, . . . ,αl be the simple restricted roots in a00,p. Define ω1, . . . ,ωl by
hαi,ωji = δij . The elements ω1, . . . ,ωl form a basis of a00,p.

The theory of asymptotic expansions of matrix coefficients, which we discussed
only for SL(2, R), is still valid. One works with a block of matrix coefficients
F (x) = {(π(x)v(i)

1 , v(j)
2 )}ij with i running over all indices corresponding to one

or more full K types and j doing the same, possibly for different K types. In
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order words, F is to be matrix-valued instead of scalar-valued. In any event,
F (k1xk2) = τ1(k1)F (x)τ2(k2) for suitable representations (τ1, V1) and (τ2, V2) of
K. This function F has an asymptotic expansion. The exponentials are of the
form e(∫−ρ) log a with ∫ and ρ in a00,p, and the coefficients are linear transformations
from V2 to V1. Polynomial terms in log a may also be involved, but we ignore them.
Leading exponentials of π may then be defined.

Theorem (Langlands). For an irreducible admissible representation π of G, the
following are equivalent:

1) All K finite matrix coefficients are in L2+ε(G) for every ε > 0.
2) Every leading exponential e(∫−ρ) log a of π satisfies Reh∫,ωji ≤ 0

for 1 ≤ j ≤ l.
3) π is infinitesimally equivalent with a subrepresentation of a standard

induced representation IndG
MAN (σ0 ⊗ ∫0 ⊗ 1) for some parabolic subgroup

MAN ⊇ MpApNp, some discrete series representation σ0 of M , and some
imaginary parameter ∫0.

If the equivalent conditions in the theorem are satisfied, π is said to be an
irreducible tempered representation of G.

Example. G = SL(2, R). We examine which representations are already known
to satisfy the respective conditions (1) to (3) above.

1) We initially have no idea what all these representations are. However,
we know some examples: any discrete series, or any irreducible constituent of a
unitary principal series. Also we have some clues about examples of nontempered
representations. The trivial representation has matrix coefficient identically 1. This
is not in L2+ε(G). For an irreducible nonunitary principal series IndG

MpApNp
(σ ⊗

∫ ⊗ 1) with ∫ nonimaginary, the candidates for leading exponentials are e(∫−ρ) log a

and e(−∫−ρ) log a.
One of these is not in every L2+ε(G). So if both have nonzero coefficient (which

they always do for irreducible nonunitary principal series), the representation is not
tempered.

2) We know that this condition is necessary for discrete series. It is also satisfied
for irreducible constituents of unitary principal series. For the trivial representation,
the value of ∫ is ρ, and the condition is not satisfied. We initially have no idea
whether other irreducible representations might satisfy this condition.

3) Here MAN is G or MpApNp. So the representations in question are exactly
the discrete series and the irreducible constituents of unitary principal series.

What is hard in the theorem? The example suggests that (1) ⇐⇒ (2) and
(3) =⇒ (1) are fairly easy. Actually there are some technical problems that need
attention when dim a00,p > 1, but we ignore these. We examine further the hard
step (2) =⇒ (3).

Take a leading exponential e(∫−ρ) log a. There may be more than one leading
exponential, and we specify which one to use in a moment. Let

F = {j | 1 ≤ j ≤ l and Re h∫,ωji < 0}.

The set F corresponds to indices where e(∫−ρ) log a decreases at an L2 rate. Write
Re ∫ =

Pl
i=1 ciαi. Take the inner product with ωj to see that cj < 0 for j ∈ F and
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cj = 0 (by (2)) for j /∈ F . Now

{αj | j ∈ F} ∪ {ωj | j /∈ F}

is a basis of a00,p. The reason is that each set is independent, the two sets are
orthogonal to each other, and the total number of elements in the set is l.

Expand ∫ in terms of this basis to get

∫ =
X

j /∈F

bjωj −
X

j∈F
ajαj

with Re bj = 0 for j /∈ F and Re aj > 0 for j ∈ F . To do so, first expand Re ∫,
using only the second term. Then expand Im ∫, and combine the two expansions.

We define a0 =
P

j /∈F RHωj , and we use the indices j ∈ F to generate the roots
defining M . The proof of the Subrepresentation Theorem gives an infinitesimal
embedding

π ⊆ IndG
MpApNp

(σ ⊗ e∫ ⊗ 1)

for some σ ∈ cMp. We rewrite the right side by double induction, the inside term
being induced up to M and the character ∫0 induced from A being e

P
j /∈F bjωj .

Denote by eσ0 the representation of M that is obtained. The desired discrete
series σ0 is a certain subrepresentation of eσ0. Making the proof go through uses a
restriction on ∫ − ρ, namely that the set F of indices is minimal under inclusion,
as a function of ∫. This is the extra condition that we impose at the start on the
leading exponential with which we work.

The result is that irreducible tempered representations are characterized as in
(3)—they are the irreducible constituents of standard induced representations with
discrete series on M and imaginary parameters on A. Also the reducibility of these
induced representations is completely understood, though we omit discussion of it.
Therefore the irreducible tempered representations are completely understood.

Langlands Classification

We continue with the setting of the previous section: G is linear connected
reductive and has compact center. The system Σ+ of positive restricted roots then
spans a00,p. Let MpApNp be a minimal parabolic subgroup of G.

Theorem (Langlands). The equivalence classes (under infinitesimal equivalence)
of irreducible admissible representations of G stand in one-one correspondence with
all triples (MAN, [σ0], ∫0) such that

MAN is a parabolic subgroup of G containing MpApNp

σ0 is an irreducible tempered (unitary) representation of M and
[σ0] is its equivalence class

∫0 is a member of a0 such that Re h∫0,αi > 0 for every positive
restricted root that does not vanish on a0.

The correspondence is that (MAN, [σ0], ∫0) corresponds to the class of the unique
irreducible quotient of IndG

MAN (σ0 ⊗ ∫0 ⊗ 1).

The parameters (MAN, [σ0], ∫0) are called the Langlands parameters of the
given irreducible admissible representation.
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Example. G = SL(2, R). Here MAN is G or is MpApNp. When MAN =
G, we get the irreducible tempered representations of G, which we know from
the previous section are the discrete series and the irreducible constituents of
the unitary principal series. When MAN = MpApNp, we get the “Langlands
quotients” of the members of the nonunitary principal series of G having Re ∫ > 0.

It is instructive to note some things that the theorem does not do in the
example. It does not tell us which parameters of the nonunitary principal series
correspond to irreducibility, and it does not tell us much about what irreducible
admissible representations are infinitesimally unitary.

There is a supplementary statement to the theorem: The irreducible quotient
is explicitly obtained as the image of a specific integral operator sending

IndG
MAN (σ0 ⊗ ∫0 ⊗ 1) equivariantly to IndG

MAN
(σ0 ⊗ ∫0 ⊗ 1).

We omit the details.
We conclude by making some comments about the proof. The hard part is to

show that every irreducible admissible representation π is realized as a Langlands
quotient. A duality argument shows that it is enough to show that π admits an
infinitesimal embedding into some IndG

MAN
(σ0 ⊗ ∫0 ⊗ 1) with MAN , σ0, and ∫0

as in the statement of the theorem. The formalism for exhibiting the infinitesimal
embedding is rather similar to the argument identifying irreducible tempered rep-
resentations. We start with a suitable leading exponential e(∫−ρ) log a of π. A subtle
geometric argument shows that it is possible to find a set F of indices so that if we
write

∫ =
X

j /∈F

bjωj −
X

j∈F
ajαj ,

then Re bj > 0 for j /∈ F and Re aj ≥ 0 for j ∈ F . We form a0 =
P

j /∈F RHωj and
build M from the αj with j ∈ F . The same double induction as before, combined
with passing to a subrepresentation of M , yields the desired parameters.

Notes

For further motivation and a proof of the Subrepresentation Theorem, see [K1],
pp. 203–204 and pp. 238–239.

Simple restricted roots form an elementary topic, and their properties follow
from Corollary 6.53 and Proposition 2.49 of [K2].

Irreducible tempered representations are the subject of pp. 258–266 of [K1].
These representations have been classified. See [K1], Chapter XIV, for the state-
ment and the idea of classification. The Langlands classification is the subject
of pp. 266–276 of [K1]. The Langlands classification and the classification of
irreducible tempered representations may be combined to give a tidy statement.
See Chapter XIV of [K1] for details.

A more streeamlined proof of the Langlands classification may be found in
[Wal]. The exposition [Ban] sketches this argument in some detail.
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