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New irreducible unitary representations of the (semisimple) automorphism 
groups of Cartan domains are constructed. These representations are used 
to exhibit the reducibility of some of the continuous series representations 
occurring in the Plancherel formula. The imbedding that exhibits the re- 
ducibility is similar to the imbedding of the Hardy class Hz of analytic func- 
tions in the disc into the space of all L2 functions on the circle, given by passing 
from an analytic function to its boundary values. 

I. INTRODUCTION 

The irreducible unitary representations of the group G = SU( 1, 1) 
of all two-by-two complex matrices of the form 

with 1 01 I2 - 1 b I2 = 1 were classified by Bargmann [l]. The ones 
that occur as direct summands of La( G) comprise the “discrete series” 
and are of two types, holomorphic and antiholomorphic, each para- 
metrized by the integers n > 2. For the n-th representation of the 
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holomorphic discrete series (n 3 2), the Hilbert space is the space 
of holomorphic functions F(x) in the unit disc Sz with norm 

lliql; = j IF(.q(l - Ix I”)“-“dxdy (1.1) 
D 

and with group action 

if g = (01, /I; 8, ~5). 
It is possible to associate to the integer n = 1 a representation of G 

that is similar in appearance to those above but is not in the discrete 
series. To do so, one does not use the norm (1 .l) with n = 1, which 
would result in a null Hilbert space, but instead uses the norm 

II~II; = ‘;t$” - 1) ll~ll2, Y (1.3) 

which apart from a constant factor is equal to 

This Hilbert space is the space H2 of Hardy and is nonvanishing. 
The group action is given by (1.2) with n = 1. In the sense given by 
Eq. (1.3), we can then regard @r(g) as a limit of holomorphic discrete 
series. 

The representation @r(g) is of special interest, partly because of 
the well-known imbedding of Hz in L2(iX2), given by associating a 
boundary function on the circle to each H2 function on Q. In fact, 
the representation V(g) in L2(X2) given by 

V(g)F(eie) = (a + &“B)-lF(&$$) 

is a member of what Bargmann called the “principal continuous 
series”; i.e., it is unitarily equivalent with a representation induced 
from an irreducible finite-dimensional representation of the subgroup 

MA+N = + 
( 
cash t - ixet sinh t - ixet 
sinh t + ixet cash t + ixet 1 ’ 

teR, XER. 

The boundary-value imbedding of H2 in L2(XJ) clearly commutes 
with the action of G, and therefore the existence of @r(g) exhibits 
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the representation V(g) of the principal series as reducible. That 
this is an exceptional situation is indicated by the fact that all other 
members of the principal series of G are irreducible. 

In this paper we propose to investigate this boundary-value 
imbedding and reducibility more generally; we shall allow G to be 
any simple Lie group that has a faithful matrix representation and 
whose associated symmetric space has an invariant complex structure. 
There is one previous result in this direction, other than for SU( 1, 1). 
Harish-Chandra in [5, p. 7701, by an argument involving positive 
definite functions, obtained the existence of exceptional representa- 
tions having “extreme vectors” in the sense of Lemma 6.2 below, 
and the representations that we shall here construct have this property. 
(The proof of this theorem of Harish-Chandra is omitted in [S] and 
later papers, but his result will not be used in our work.) In any case, 
Harish-Chandra’s realization of exceptional representations is not 
constructive and therefore does not help in describing the imbedding 
of the exceptional representations in continuous series geometrically 
as a passage to boundary values. 

The paper is arranged as follows. Starting from appropriate 
singular characters of a compact Cartan subgroup of G, we define 
a subgroup MA+N in Section 2 and a representation U(g) in Section 4. 
In Section 4, we prove that U(g) is unitary and that its Hilbert space 
is nonvanishing. In Section 5 we imbed U(g) in a continuous series 
representation V(g) obtained from MA+N, and in Section 7 we prove 
that U(g) is irreducible and that the image in the representation 
space of V(g) is proper. 

The problems that are dealt with in this paper arose naturally 
from the work [lo] of the first author with E. M. Stein, and the 
authors are grateful for Professor Stein’s help at an early stage of the 
present work. The interplak of our results and those in [lo] will be 
discussed in Section 8, where we consider in a special case the extent 
to which we have accounted for all reducible representations of the 
principal series. 

2. NOTATION AND CONSTRUCTION OF MA+N 

This is the first of two sections in which we introduce notation. 
Let G be a connected semisimple Lie group with a faithful matrix 
representation, let K be a maximal compact subgroup, and suppose 
that G/K is hermitian symmetric. If g and f are the Lie algebras of 
G and K, there is a corresponding Cartan decomposition g = f + p; 
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let 0 be the associated involution of g. For any subspace of g, we use 
a superscript ’ in referring to its complexification. Thus we have 
defined gc, fC, and pc. S ince G has a faithful matrix representation, 
we can regard G as a subgroup of a connected group GC with Lie 
algebra gc. Let KC C GC be the analytic subgroup with Lie algebra fC. 

Let h be a maximal abelian subalgebra of I, let T be the corre- 
sponding analytic subgroup of G, and let TC C GC be the analytic 
subgroup with Lie algebra Jj’. It is known [9, p. 3121 that lj is a Cartan 
subalgebra of f and of g and that T is a Cartan subgroup of K and 
of G. Let Z be the set of nonzero roots of (gc, bC). If a: E Z has E, 
as root vector, then E, E fC or Ea E pc, and we call 01 compact or 
noncompact accordingly. Let Z;, and Z, be the sets of compact and 
noncompact roots, respectively. 

An ordering yielding a system of positive roots in Z will be said 
to be compatible with the complex structure of G/K if each positive 
noncompact root is larger than all compact roots. Let P be such a 
system of positive roots, and let Pk = P n Z;, and P, = P n ZT,, . 
One way of obtaining such an ordering is to order the center of f 
before the rest of lj; the resulting ordering has the required properties 
because the compact roots are exactly the roots that vanish on the 
center of f (Corollary 7.3, p. 314 of [9]). With such an ordering, the 
sum of coefficients of the noncompact simple roots in the expansion 
of any positive root in terms of simple roots is either 0 or 1 [5, p. 7611; 
also if G is noncompact and simple, there is only one noncompact 
simple root. 

Let pf and p- be the sum of all the root spaces for positive and, 
respectively, negative noncompact roots. Then pf and p- are abelian 
subalgebras of gc with sum pc, and each is stable under f; f acts 
irreducibly on pf and p- if g is simple. Let Pf and P- be the corre- 
sponding analytic subgroups of GC. 

We recall the Harish-Chandra decomposition of G [6, p. 4; 7, p. 5901. 
Let b be the Bore1 subalgebra 

b = b” + C g--a 9 
DiEP 

and let B be the corresponding analytic subgroup of GC. Then we have 
the inclusions 

BG L P-KCP+ C GC. 

Moreover, BG and P-KCP+ are open in GC, the complex structure 
that P-KcP+ inherits from GC is the same as the product structure, 
and BG = P-I?%2 for a bounded open subset Q C P+. 
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Let A be an integral linear form on lj’, dominant with respect to f. 
That is, we suppose that there is a character &‘,(A) defined on TC 
such that &(exp H) = entH) for HE lj’, and we suppose that 
(A, a) > 0 for all (y. E Pk . Then 2(/l, ol)/(c~, a) is an integer for all 
cfEZ;C. Let p be half the sum of the positive roots (compact and 
noncompact). Then 2(p, ol)/(~(, a) = 1 for 01 simple, and it follows 
that an integral form A is dominant with respect to f if and only if 
(A + p, a> > 0 for all 01 E P,, . (This equivalence uses the fact that 
the compact roots that are simple in P generate Pk , which is a conse- 
quence of the 0 - 1 property of coefficients of the noncompact 
simple roots.) 

Thus (A + p, a) > 0 for 01 E Pk . We define q* to be the number of 
01 E P, such that (A + p, a) > 0. The condition qA = 0 is a condition 
of holomorphicity. In fact, Harish-Chandra showed in [7], under 
the assumption that q4 = 0 and A + p is nonsingular (i.e., 
(A + p, a) # 0 for all a: E Z), that one could associate to A an irre- 
ducible unitary representation in a space of holomorphic functions. 
In this paper, we shall be concerned partly with a similar problem 
for the case that qA = 0 and A + p is singular. 

If G is compact, then A + p is automatically nonsingular, and our 
theory will be empty for this case. Thus let G be noncompact. Let 01~ 
be the largest root. 

LEMMA 2.1. a0 is in P,. If G is simple, if q* = 0, and if A + p 
is singular, then (A + p, mO) = 0 and (A + p, a) < 0 for all other 
olEP,. 

Proof. 01~ is noncompact by the compatibility of the ordering. Let 
01 E P, . If g is simple, then fC acts irreducibly on pf, and OL and 01s are 
weights of this representation, with 01,, the highest weight. Then 
a = a() - ,&lpi ) with ni > 0 and with the !zi simple for P. By the 
0 - 1 property of the coefficients of noncompact roots, each of the 3~~ 
must be compact. Then 

with equality if and only if all ni = 0 (and OL = as). Since qd = 0, 
(A + p, aO) < 0, and since A + p is singular, we conclude 
(A + p, a,,) = 0 and (A + p, a) < 0 for all other 01 E P, . The 
lemma is proved. 

In the semisimple case with q* = 0, A + p is nonsingular in some 
simple components, and Lemma 2.1 applies in the other components. 
We could attempt to take these matters into account, but we prefer 
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not to complicate the notation by doing so. As a result, we shall 
assume in all our theorems that G is simple. (However, to prove our 
theorems, we shall have to use some results for G not simple that 
were proved by Harish-Chandra.) We shall not emphasize this 
point in this section and the next, because the results of these two 
sections have obvious versions in the semisimple case. 

For each 01 E Z, let H, be the member of bC such that 
a(H) = B(H, , H) for all HE I)‘, where B is the Killing form. Let 
$+ = iRHmo 2 b, and let b- be the orthogonal complement of h+ in 6. 
Let T+ and T- be the analytic subgroups of G with Lie algebras b+ 
and b-, so that T = T+T-. 

LEMMA 2.2. T+ and T- are closed, hence compact. 

Proof. Each root is an integral form on hc, being a weight of the 
adjoint representation. Then T- is closed, because it is the identity 
component of ker(eaO 1 r). T+ will be closed if we can show that 
Ad(T+) is closed, which will be the case if we can show that 
Ad(exp(icH,O)) is the identity for a suitable positive c. For any C, 

this transformation is the identity on bc, and on gU it is the scalar 
eic(-o+>. This scalar is 1 if c is chosen as 47~/(a, , q,). Hence T+ is 
closed. 

For 01 E 2, define 

H,’ = 2(cu, LX)-‘H, . 

Choose by Lemma 3.1 of p. 219 of [9], for each 01 E P, vectors E, 
and G, in gc such that 

(i) B(Eti, E-J = 2(01, CX-l, and 
(ii) Em - E-, and i(E, + E-,) are in I + ip. 

Then we have the bracket relations 

FL’, RI = 2-G , [He’, E-J = -2G, , [Em , E-,] = H,‘. 

Now ilEN + -Go) is in pc since CZ,, is noncompact, and i(EoiO + G,J 
is in f + ip by (ii); thus Ea, + EeMO is in p. Define 

a+ = R(Eao + E-J C p 

a-=@Cl)Lf 

a = a+ + a- 

u1 = exp 2 (E,,, - Ed,,) E GC. 

The following lemma is a well-known simple computation. 
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LEMMA 2.3. Ad(q) is the identity on a- and Ad(q) a+ = iIj+. 
Consequently, Ad(q) a’ = Ij” and a is a O-stable Cartan subalgebra 

Of% 
Once we have a &stable Cartan subalgebra, the construction of 

a group MAfN becomes a standard one, due originally to Harish- 
Chandra. We omit the well-known proofs in the construction, which 
occupies most of the rest of this section. (See, for example, [3] and 
[8, p. 2121.) For th e rest of the section, we assume that G C GC, that 
g = 5 + p is a Cartan decomposition of g with involution 8, that K 
is the analytic subgroup with algebra f, that a is a d-stable Cartan 
subalgebra of g, and that a+ = a n p and a- = a n f. 

Let ,Y be the set of nonzero roots of (g’, aC), and let P’ be the 
positive roots in some ordering. Let p’ be half the sum of the positive 
roots. Let z-’ be the set of roots that vanish on a+, and put 
P-’ = Z’ n P’. Let 

Z,(s) = centralizer of s in r, for given r and s, 

m = orthocomplement of a+ in Z&a+), 

M, = analytic subgroup of G with Lie algebra m, 

Mot = analytic subgroup of GC with Lie algebra mc, 

A = -G(a), 

AC = analytic subgroup of GC with Lie algebra ac. 

LEMMA 2.4. a- is a compact Cartan subalgebra of m, and 

ntc = (a-)C + C go:. 
CiG.27~’ 

Also Z,(a+) normalizes m. 

The lemma shows that we obtain a group by defining 

M = .Z,(a+) M, . 

Also let 

A+ = analytic subgroup of G with Lie algebra a+, 

A- = Z&a-), 

n = ( c g-a) n 97 
LXPP’ 

N = analytic subgroup of G with Lie algebra tt. 
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LEMMA 2.5. (a) M = (M n K)(M n exp p), and the latterfactor 
is connected and is the exponential of the orthocomplement of a+ in 
Z&a+). M is closed, 

(b) MA+ = &(a+), and MA+ is a direct product, 

(c) A=ACnG=A+A-andA-=AnK=AnM, 

(d) MA+ normalizes N and MA+N is a closed subgroup, 

(e) G = NA+MK with the N, A+, and MK components unique, 

(f) For m E M, det Ad(m)I, = &l. For a+ E A+, 

det Ad(a+) I,, = e-zp+‘loga+, 

where p’ = p+’ + p-’ is the decomposition of p’ according to 
a’ = (a+)” + (a-)“. 

3. FURTHER PROPERTIES OF THE SUBGROUP M 

We assume in Sections 3-7 that G is of the form described in 
Section 2. The purpose of this section is to develop further properties 
of the subgroup M. More specifically, first, we give the connection 
between the systems P and P’ of positive roots; second, we prove in 
Proposition 3.1 the main structure theorem for M; third, we define 
IJ+- and some subgroups and subalgebras bearing the subscript s; 
and last of all we prove an important simple identity for our linear 
form A. 

First, we connect P and P’. We have chosen an ordering for (tic)‘, 
and P is therefore fixed. By Lemma 2.3, the mapping Ad(u,) E Ad(GC) 
sends a’ into Ij c. Defining tAd(u,) X(H’) = X(Ad(u,) H’) for h E (ljC)’ 
and H’ E a’, we see that tAd(u,) 01 is a root of (gc, a”) whenever 01 
is a root of (g’, 4’). If we use lAd(u,) to transform the ordering from 
(hC)’ to an ordering of (aC)‘, the result is that P’ = tAd(u,) P. Let 
Z = tAd(u,)-l Z-’ and P- = “Ad(u,)-l P-‘. 

If a! E Z, we write CY.’ for the corresponding member of 2’ given by 

a’ = tAd(u (3.1) 

It is easy to see that Ad(q)-’ E, is a root vector for the root 01’, and 
we therefore define 

E,, = Ad(q)-lE, . (3.2) 
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Since Ad(q) preserves the Killing form, we have the expected bracket 
relations 

[Hi, , Ea,] = 2E,, , [H;, , G,,] = -2E-m,f , [ELyl , E-m,] = H;, , 

where 

ff;, zz 2(a’, a’)-lHa, = 2(,x, o~)-~H,, . 

LEMMA 3.1. If X E gc and exp X E G, then exp X = exp X, where 
bar denotes the conjugation of gc with respect to g. 

LEMMA 3.2. G n zqlBu, = AN. 

Proof. The left side contains the right side. In fact, by Lemma 2.5(c), 

A = G n AC = G n u;%%, C G n u;~Bu, . 

Since N is connected, the inclusion will follow if we show 
goI C Ad(u,r) b if ---a’ E P’. But this follows from (3.2), since b is 
constructed from the negative roots for (g’, lj”). 

For the reverse inclusion, we have 

G n qlT%, = G n AC = A C AN. 

If we let N- be the nilpotent part of B, the result will follow if we 
show that G n u,‘N-ur C AN. This inclusion follows from the 
inclusion of the Lie algebras if we show that G n Ui’N-ul is con- 
nected. Now uylN-u, is simply connected, nilpotent, and complex. 
If g E G n ui’N-t+ , then g = exp X for some X in the Lie algebra 
of u,‘N-ur . By Lemma 3.1, g = exp X also. But X is in the Lie 
algebra also, since the algebra is complex. Since the exponential 
map is one-one on this algebra, X = X. That is, X is in g. Then 
exp tX, 0 < t < 1, is a curve in G n UilN-ui connecting the identity 
and g. Hence G n UilN-ui is connected. 

LEMMA 3.3. B = P-(B n KC) and B n KC = TC(N- n KC), 
where N- is the nilpotent part of B. 

Proof. B C KCP- since B is connected and b C fC + p-. Hence 
B C P-(B n KC). Since P- G B, P-(B n KC) C B also. 

Next, TC C B n KC and N- n KC C B n KC. So TC(N- n KC) C 
B n KC. Also B = TcN-. If b = tn E KC, then n E KC since t E KC. 
Hence B n KC C TC(N- n KC). 
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LEMMA 3.4. (a) Ea, and E-a0 commute with all E, for a E C ; 

(b) u1 commutes with all E, for 01 E C ; 

(c) Em,= Emifa!~.2-; 

(4 ,= = Of)” + Corez- ga ; 

(e> T+, -&,, , Lo , and ui commute with mC. 

Proof. For (a), it is enough by symmetry to show [EeO , E-,] = 0 
for (1 E Z- . Since 01 E Z- , (a0 , a) = OI(H~~) = 0. Hence the a-string 
containing 01~ is ~~ - pa,..., 01~ + 401 with p - q = 0. If iy < 0, then 
p = 0 since 01~ is the largest root, and 01,, - 01 is not a root. If 01 > 0, 
then q = 0 since 01~ is the largest root, and so p = q = 0. Again 
01~ - 01 is not a root. Hence [EWO, E-J = 0. Conclusion (b) follows 
from (a) and the definition of ur , and (c) follows from(b) and Eq. (3.2). 
For (d), we have 

lltc = (c)C + c go11 . 
Ci’EZ-’ 

But a- = h-, and gm, = go1 for 01 E Z- , by (c). Thus (d) follows. 
For (e), Tf commutes with ntc by (d), since ad(HJ operates as 0 on 
each factor of ntc, and Em, , E-,0, and u1 commute with ntc by (a), 
(b), and (4. 

LEMMA 3.5. If 01’ E P’, then (II’(I&~,) > 0. 

Proof. The root cyO is the highest weight of the adjoint representa- 
tion, is therefore dominant. Thus (01~ , a) > 0. Since Ad(u,) preserves 
the Killing form, Eq. (3.1) shows that ~l’(H,~r) = (aa’, 0~‘) >, 0. 

We turn to the main structure theorem for h!l, which is given as 
Proposition 3.1 below. The proof given here is due to the referee 
and is shorter than our own. Let 2, be the center of ik?, and let 

7j = q4 = exp 9~(&, - E+J. (3.3) 

The main content of the result is that 7 is in the center of M and 
M = M, u TM, . Consequently, M = Z,M, . Although the latter 
formulation of this result makes sense for the M constructed from 
any Cartan subalgebra A (in the manner described in Section 2), 
the result is not true in such generality. For example, with SL(3, R) 
and with Sp(2, R), it is possible to choose A so that A+ is one- 
dimensional and M is the group of real 2-by-2 matrices of determinant 
f 1. This group is not generated by its center and its identity com- 
ponent. 
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PROPOSITION 3. I. (a) M= &rOY$VO, andqEZMA T+; 
(b) Ad(M) is the identity on Em, , ON0 , E,,r , and E-,0> ; 

(c) M commutes with u1 . 

The proof will be preceded by two lemmas. By [9, Proposition 7.4, 
pp. 314-3151, there exists a subset yr ,..., ys of P, such that the 
subspace a, = C;=l R(Eyj + E-,J is maximal abelian in p. According 
to Moore [14, p. 3641, the roots yj can be chosen in such a way that 

(i) yr is the smallest noncompact positive root, 
(ii) the yi have the same length, 

(iii) the yj are strongly orthogonal in the sense that sums and 
differences of pairs of them are not roots, 

(iv) the only restricted roots relative to a so are dkt Brj f 4~~) 
and possibly d(+$yj), where d = Ad(exp 7r/4 &r (KYj - EYj)). 

The construction at the end of Section 2 produced M from the 
largest noncompact positive root a0 , and we repeat this construction 
with the smallest noncompact positive root yr , writing Ml ,..., ql in 
place of M,..., 17. Lemma 3.6 is contained in Lemmas 1 and 3 of 
Moore [13]. 

LEMMA 3.6. Ml = (M&(exp(ia,) n K). 

LEMMA 3.7. If GC is simply-connected, then the lattice 

{HEia,I expHEK) 

is generated by the vectors 2ni@, p)-’ H, , where /3 ranges over the 
restricted roots. 

Proof. The vectors in question are in the lattice, by a computation 
in SL(2, R). C onversely, if H is in the lattice, then it is well known 
that exp 2H = 1. By Theorems 3.4(a) and 3.6 of [II, pp. 75-771, 
2H is in the lattice generated by the vectors 4~i(p, /3-l H, . 

Proof of Proposition 3.1. We may assume that GC is simply- 
connected. We consider first the group Ml . Since the roots yj have 
the same length and are orthogonal, we have 

riHGjlz+,,k12 = rriHGj f AH;, and rriH:+ = 2(riHGJ. 

The element d carries Hi, = 2(yj , yi)-l H,,, into 

X4nh 4~,)>-’ &(vj) = Eyj + EL9 > 
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and Lemma 3.7 therefore shows that exp(ia,) n K is generated by 
the elements 

17j = exp ni(Evj + -K,,), 1 <j<S. 

A computation in X(2, R) with the explicit form of d shows that 

qj = exp m(E,,! - E+,J = exp rriHG$ 

and qj2 = 1. Now a,+ is spanned by Ey, + E& . Since yi is 
orthogonal to yi for j # 1, iHc, is in nt, for j # 1. Thus qi is in 
(Ml& for j # 1. By L emma 3.6, Mi is then generated by (Mi),, and vi . 
Since ri is in exp ia,+, vi is in the center of Ml . Since 7i2 = 1, 

Ml = (n/r,), ” n(Mdo . 
Next we pass from Ml to M. It is easy to see that part (a) of the 

proposition follows if we can show that 01s and yi are conjugate under 
the Weyl group of (I”, b”). T o see this conjugacy, let w be the element 
of the Weyl group of K that carries all the positive roots into negative 
roots. Regarded as an element of the Weyl group of (g’, I$‘), w carries 
all the positive compact roots into negative compact roots and it 
permutes the positive noncompact roots (since f normalizes p+). 
Since 01~ is the unique positive noncompact root whose sum with each 
positive compact root fails to be a root, w maps 01~ into the unique 
positive noncompact root whose sum with each negative compact 
root fails to be a root. Thus w maps 01~ into yi . This completes the 
proof of (a). 

For (c), ui commutes with MO by Lemma 3.4(e) and with v because 
?j = 2414. For (b), Ad(%) is the identity on EEo and Epao by 
Lemma 3.4(e), and Ad(q) is the identity on EN0 , E-,, , E,,, , and 
E -%I ’ because it is the identity on the entire span of Ha,, Eap, and 

This result, together with the commutativity of U, wtth ntc 
$%rna 3.4(e)), h s ows that Ad(M,) is the identity on E,,, and Ewao* . 
Thus (b) is proved, and the proof of Proposition 3.1 is complete. 

The third part of Section 3 is a discussion of the semisimple part 
of M. The Lie algebra m is stable under the Cartan involution and 
so is reductive, and we can therefore write 

m = b+- + 1% , 

where h+- and m, are, by definition, the center and commutator 
subalgebra of m, respectively. Here m, = 0 or m, is semisimple. 
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Clearly, lj+- C lj-, and we let lj, be the orthogonal complement of 
lj+- in lj-. Then 

in c = bsC + 1 guy s (3.4) 
as.z- 

by Lemma 3.4(d). The roots 01 E E- vanish on lj+- and thus cannot 
vanish identically on h, . It follows from (3.4) that lj, is a Cartan 
subalgebra of m, and that the roots of (msc, IjsC) are the restrictions 
to bsC of the members of Z- . Since m, is stable under 0, 
m, = (f n m,) + (p n m,) is a Cartan decomposition of m, and 
f n m, is a maximal compactly imbedded subalgebra. Let T+-, MS, 
T and K, be the analytic subgroups with Lie algebras h+-, nt, , h, , 
arZ f n m, , respectively. 

LEMMA 3.8. M, is closed, and T+-, T, , and K, are compact. 
K, is a maximal compact subgroup of MS , and T, C K, is a compact 
Cartan subgroup of MS . The groups K, , T+-, and T+ mutually commute. 

Proof. M, is a semisimple group of matrices and is therefore 
closed. (See p. 128 of [9].) T+- is closed because it is the identity 
component of the center of M, which is closed by Lemma 2.2. Since 
T+- C K, T+- is compact. K, is maximal compact since f n m is 
maximal compactly imbedded and MS has finite center. Since h, is 
a compact Cartan subalgebra of m, , its centralizer is compact and 
connected and is therefore T, . Finally, the only nontrivial relation 
of commutativity is between K, and T+, and this is given in 
Lemma 3.4(e). The lemma is proved. 

Before passing to the next proposition, we remark that 

G = NAfM,K (3.5) 

because, by Lemma 2.5(e), G = NAfMK = NA+M,Z,(a+) K = 
NA+M,K = NA+MJ-K = NA+M,K. 

Now we must emphasize that G is assumed to be simple. 

PROPOSITION 3.2. If m, is noncompact, then m, is the direct sum of 
a compact semisimple subalgebra and a noncompact simple subalgebra. 
In any case, MS/K, is hermitian symmetric, and the restriction of the 
ordering on Z to the roots of (msc, Q,“) is compatible with the complex 
structure. 

Proof. The simple roots (in P-) for tn, are the simple roots of P 
that are in P- . In fact, let cy E P- be simple for m, , and suppose 
01= p + y with /3 and y in P but not P- . Then Lemma 3.5 and the 
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nonvanishing of /3(&J and r(Hmp) imply that /3(Ha,) > 0 and 
r(HJ > 0. Hence OI(H,J > 0, and 01 cannot be in P- , contradiction. 

Divide the simple roots for m, into systems corresponding to 
each simple component of m, . Since P has exactly one noncompact 
simple root, the result of the preceding paragraph shows that at 
most one of the components has a noncompact simple root. Thus at 
the most one component is noncompact. 

It follows that MS/K, is hermitian if f, has a nonzero center. Let 
Ef, E+-, and E, be the projections of h corresponding to the decom- 
position h = h+ + h+- + h, , and let X be a nonzero vector in the 
center of f. If 01 E 2Y- , we have 

et(X) = ol(E+X) + ol(E+-X) + c@,X) = ol(E,X). 

If also 01 E Ek , then n(X) = 0 and so ol(E,X) = 0. That is, E,X is in 
the center of f, . If m, is noncompact, then there is a noncompact 
root 01 in E-. For such an 01, a(X) # 0 since no noncompact root 
vanishes on the center. Then a(E,X) # 0, and E,X # 0. Hence f, 
has a nonzero center. 

The restricted ordering on C is compatible with the complex 
structure because every positive noncompact root is still larger than 
every compact root. This completes the proof. 

The proposition shows that we can define groups P-, P+, and B 
for M, . We denote these by P,-, Ps+, and B, . We have a corre- 
sponding Harish-Chandra decomposition 

B,M, C P,-B,P,+ C MSC, 

and P,- C P-, B, c B, and P,+ c P+. Let us remark that ui commutes 
with MO’, by Lemma 3.4(e), and therefore ui commutes with the 
subgroups M, , B, , P,-, and P,+. 

PROPOSITION 3.3. Z, = (T+-2,) v q( T+-ZMI), where ZMs is the 
center of M, . Also 2, C T, Z, commutes with MO’, and M = Z,M, . 

Proof. By Proposition 3.1(a), Z, = ZMO u vZMO. Since M0 = T+-MS 
and T+- C ZMO, ZyO = T+-ZM, . To see that Z, C T, we use that 
Z,. C T, since T, is a Cartan subgroup of M, (Lemma 3.8). By 
Proposition 3.1(a), 71 E T+, and therefore Z, L T. Z, commutes 
with m, and thus Z, commutes with MO”. Also, by Proposition 3.1(a), 
M = Z,M,, = Z,T+-MS = Z,MS . 

Finally, we return to a consideration of the integral form fl on hc, 
dominant with respect to f, such that (A + p, as> = 0. We shall 
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exhibit the simple key identity that will allow us in the next section 
to associate a unitary representation of G to (1. We have a direct 
sum decomposition ac = (a+)” + (a-)C, and corresponding to this we 
decompose each X E (aC)’ as X = X, + h- . Let us put fl’ = tAd(u,) (1. 
As particular cases of our notation, we have p’ = p+’ + p-’ and 
(1’ = A+’ + A-‘. The key identity is the identification of /l+’ (or 
of A-‘), which we can write in the equivalent forms 

A-’ = A’ + p’ - p-’ or fl,’ = -p+‘. (3.6) 

To prove these identities, all we need do is verify that /l’ + p’ - p-’ 
vanishes on a+. But p-’ vanishes on a+ by definition, and 

(A’ + p’)(fLo,) = W + P’, q,‘> = (tAd(4(fl + P), tAd(u,) ao> 

= (A + p, CiJ = 0. 

This proves (3.6). The particular form in which we shall use (3.6) 
is given in the proposition below, which is an immediate consequence 
of the definition of A’. 

PROPOSITION 3.4. If a+ E A+, then ( lAd(u,)fl) log a+ = -p+’ log u+. 

4. CONSTRUCTIONOFLIMITSOFHOLOMORPHIC DISCRETESERIES 

Let fl be an integral form on bc dominant with respect to f. We 
have seen that (/l + p, a) > 0 for every compact positive root ~1, 
and we have defined qn to be the number of noncompact positive 
roots 01 such that (fl + p, a) > 0. We shall always assume that 
q/j = 0. 

To each such fl, it is possible to associate in a natural way an 
irreducible unitary representation Uh(g) of G in a space of holo- 
morphic functions. For the case that fl + p is nonsingular (i.e., 
<A + p, a> # 0 for all positive roots 01), U, was constructed by 
Harish-Chandra in [6, 71. We shall be concerned here with the case 
that II + p is singular, Our argument will require a precise statement 
of Harish-Chandra’s theorem, which we give below, and we therefore 
begin without the assumption that fl + p is singular. 

We know that BG and P-KCPf are open subsets of GC and that 
BG 2 P-KCP+ c GC. Then BG inherits a complex structure from GC. 
Since fl is integral, there exists a character tA of T such that 
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&(exp H) = exp A(H) f or all HE h. Then tn extends uniquely to 
a holomorphic character of B. Define 

r(n) = {f : BG ---f C j (1) f is holomorphic 

(2) f (bx) = &(b) f (x) for b E B, x E BG}, 

and let U,(g)f(x) =f(xg) for f E r(A), x E BG, and g E G. 
Harish-Chandra proved in Lemma 6 of [6] that r(A) # 0, and 

he gave in Lemma 14 a formula for a distinguished member of r(d). 
We shall give a slightly different formula for this member of r(A). 
The equivalence of these formulas will be verified in Section 6 after 
Lemma 6.1. 

Let 7n be an irreducible unitary representation of K with highest 
weight rl and a highest weight vector 4n of norm one. Extend rA to 
a holomorphic representation of KC on the same vector space. If 
x E P-KCP+, we let p(x) be its KC component. Define, for x E P-KCP+, 

#A(4 = (~AMXN +n 3 CA). 

The inner product is assumed linear in the first variable and conjugate- 
linear in the second. As a straightforward consequence of Lemma 3.3, 
one can prove 

LEMMA 4.1. qbn is in r(A). 

Suppose now for the moment that A + p is nonsingular. For 
f E I’(A), define Ilfl/” = J-c If(x dx. Let H(A) Z +l) be the sub- 
space of functions of finite norm. H(A) can be shown to be a (com- 
plete) Hilbert space. It is clear that UA(g) is a unitary representation 
on this space. Remembering that G in this paper is assumed to have 
a faithful matrix representation, we can state Theorem 4 of [7] as 
follows. (See also p. 612 of [7].) 

THEOREM (Harish-Chandra). If qA = 0 and if A + p is non- 
singular, then I/ $J, II < CO. The representation U,(g) of G on H(d) 
is nonzero, irreducible, and unitary, and its matrix coefficients are 
square-integrable. 

Now suppose that A + p is singular (and qn = 0). In case G is 
simple, we shall define a norm on the members of r(d) by means of 
an integral of their boundary values. First we need to know that 
Bu,G is contained in the closure of BG. Define 

for 0 < t < 1, so that u1 = liml,, uf . 
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LEMMA 4.2. For 0 < t < 1, ut is in BG. The decomposition of ut 
accordiflg to BG = P-K%’ is ut = [,k,z, , for 0 < t < 1, where 

& = exp( -(tan rrt/4) E-,J, 

k, = exp(log(cos i~t/4) H&), 

xt = exp((tan ntj4) E,J. 

Consequently, Bu,G is contained in the closure of BG. 

Proof. The identity zq = ctk,x, is a straightforward computation 
in SL(2, C). T o p rove the lemma, we must show that zf is in Q. To 
do this, we observe that ZJ~ = exp s(E,, + E-,,) is in G. Therefore, 
in the decomposition vu, = ~Q’kg’xs’, we must have x,’ E Q. By 
Lemma 9 of [7], z,I = exp((tanh s) Q. If 0 < t < 1, we can choose s 
so that tan &/4 = tanh s. For such a choice of s, xs’ = xt . Therefore 
zt is in Q. 

Let J’,(A) C r(A) be the subspace of functions having a holo- 
morphic extension to a neighborhood of the closure of BG in GC. 
Suppose G is simple. Since A + p is singular, we can define M and MS 
as in Sections 2-3. For f in r,,(fl), let 

(4.1) 

and let r,(A) be the subspace of r,(A) of functions of finite norm. 
In Section 7, we shall see that each nonzero member of r,(A) has 
nonzero norm, but we ignore this fact for the present. Factor r,(A) 
by the subspace of functions of zero norm, and let H(A) be the com- 
pletion. Then H(A) is a Hilbert space. We recall the action of G on 

FJ) by Uz&)fC4 =f(d 

THEOREM 4.1. If G is simple, if qA = 0, and if A + p is singular, 
then I’,(A) is stable under UA(g), and UA(g) acts by unitary transforma- 
tions on it. UA(g) extends to a continuous unitary representation of G 
on II(A). 

It is worth noticing that the proof of Theorem 4.1 uses the full 
strength of the holomorphicity condition q,, = 0, whereas the proof 
of the nonvanishing of H(A), g iven as Theorem 4.2, depends upon 
only a weaker condition. This fact suggests generalizations to non- 
unitary representations that we have not pursued. 

Before proving the theorem, we make two remarks. The first is 

580/9/4-2 



392 KNAPP AND OKAMOTO 

a transformation law for r&/l). Let .f~ r&/l). Define a function F 
on G by F(x) =~(u~x). Then F satisfies 

F(m) = SA(wq’) F(x) (4.2) 

for all a E AN. In fact, Lemma 3.2 shows that G n u~‘Bu, = AN. 
Therefore u,az$ E B and 

F(m) = f(ulax) = f(ulau;‘ulx) = ~~(u,au;‘)f(ulX) = &&lau;l) F(x). 

The second observation is a simple integration formula, which is a 
special case of a result on p. 66 of [2]. We state the formula as a lemma. 

LEMMA 4.3. Let W be a unimodular Lie group, and suppose X 
and Y are closed subgroups such that W = XY and X A Y is compact. 
Then the Haar measures of W, X, and Y may be normalized in such 
a way that, for any nonnegative or integrable Bore1 function f on W, 

Here d,x is a left Haar measure on X, and d, y is a right Haar measure 
on Y. 

Proof of Theorem 4.1. For a E AN, let u(a) = 1 ~~(Ulaui1)1-2. 
Letting d,(na+) and d,(na+) stand for left and right Haar measures 
on NA+, we claim that 

d,(na+) = a(na+) d&a+). (4.3) 

In fact, by Lemma 1.2 on p. 365 of [9], 

d,(na+) = det Ad(na+) la++” d,(na+) 

= det Ad(a+) I,, d,(na+) 

= exp(-2p+’ log a+) d,(na+), 

by Lemma 2.5(f). Also 

(4.4) 

and 

a(na+) = u(a’) = / &&4,a+u;1)l-* (4.5) 

[A(u,a+u;l) = &(exp Ad(u,) log a+) = exp(n(Ad(u,) log a+)) 

= exp((tAd(u,)fl) log a+) = exp(--p+’ log a+) 
(4.6) 

by Proposition 3.4. Equations (4.446) together prove (4.3). 
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Next, we observe that left Haar measure d,(na+m) on NA+M, 
satisfies 

d,(na+m) = d,(na+) dm (4.7) 

because M, normalizes NA+ and det Ad(m)/.++, = 1 for m E MS . 
The rest of the proof is not very different from a standard argu- 

ment that certain induced representations are unitary. Choose by 
Lemma 2.5(e) a continuous function y > 0 on G such that 

&za+x) d&z+) = 1 
NA+ 

(4.8) 

for all x in G. Let .f be a member of I’,(d) and define F(x) = f(z+v) 
for x in G. Then 

M,XS 
1 F(mk)l” dm dk = i, 1 F(x)12 v(x) dx (4.9) 

by successive application of the formulas (4.Q (4.2), (4.3), (4.7) and 
then application of Lemma 4.3 with G = (NA+M)K. To prove that 
U,(g) preserves r,(A) and acts by unitary transformations, we are 
to prove that the integral jG / F(xg)l” F(X) dx is independent of G. 
When we replace xg by x in the integral and unwind the proof of (4.9), 
using the identity of Lemma 4.3 and formulas (4.3) and (4.8), we 
obtain JMsXK 1 F(mk)12 dm dk as the value of the integral. This is 
independent of g, and so U,(g) is unitary. 

This completes the proof of Theorem 4.1, except for the proof 
that UA(g) is strongly continuous. This fact will follow from the 
imbedding of UA(g) as a subrepresentation of an induced representa- 
tion. Since the strong continuity will not be needed until after the 
imbedding is proved, we postpone the proof of the strong continuity 
to Section 5. 

THEOREM 4.2. If G is simple, ;f qA = 0, and if A + p is singular, 
then 0 < /I #n I/ < co. Consequently, H(A) is not 0. 

We shall reduce this theorem to Harish-Chandra’s theorem stated 
earlier in this section. To do so, we require some intermediate steps 
in the proof of his theorem, which we collect as the following lemma, 
valid without the assumption that G is simple. The proof is contained 
in [7, pp. 598-5991. 

Let a, be the maximal abelian subspace of p described in Section 3, 
let A, be the analytic subgroup corresponding to a,, , and let A,,+ be 
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the closed positive Weyl chamber in A,, . Then G = KA,+K, and 
there is a corresponding decomposition of Haar measure as 
dx = D(a) dk’ da dk for a function D(a) on A,+. 

LEMMA 4.4. (Harish-Chandra). Let @ be an integral form on ljc, 
dominant with respect to f. Suppose that q0 = 0 and @ + p is non- 
singular. Let r0 be an irreducible unitary representation of K with 
highest weight @ and with degree dQ . Then 

In Lemma 3.8 we proved that K, is a maximal compact subgroup 
of MS and that the group T, , whose Lie algebra is lj, , is a Cartan 
subgroup of K, and M, . If h is a linear form on ljC, we define X to 
be the restriction of X to ljsc. With this notation we have the following 
lemma. 

LEMMA 4.5. The span of rd(K,) C$~ is irreducible under K, , and 
the highest weight of this representation relative to lj, is A. 

Proof. It follows from Lemma 3.8 that K,T+-Tf is a connected 
compact subgroup of K with T+-T+ contained in the center. We have 
T C K,T+-T+ because lj = h, + lj+- + ljf and because T is con- 
nected. Decompose Vi = span{T,(K,T+-T+) 4d} into irreducible 
components under K,T+-T+, and choose weight vectors & ,..., 4% 
relative to T in the irreducible components. Write +n = &Al and 
apply T. Each +1 with nonzero coefficients belongs to A under T. 
Since the space belonging to A is one-dimensional, #J~ = cdl for 
some 1. That is, $A lies in an irreducible subspace under K,T+-T+, and 
so V, is irreducible under K,T+-T+. Since T+-T+ C center(K,T,.-T+), 
K, acts irreducibly on VI . Since span{T,(K,) +n} _C V, , K, acts 
irreducibly on span{T,(K,) dA}. For the statement about the highest 
weight, we need observe only that EJJ~ = 0 for all 01 E P- CI Pk to 
conclude that d is the highest weight. The lemma follows. 

COROLLARY. d is an integralform on Ij sc, dominant with respect to f, . 

The group M, is semisimple, MJK, is hermitian, and the restric- 
tion of a compatible ordering of the roots for (g’, lj) is compatible 
with the complex structure of MJK, . (See Proposition 3.2.) We 
shall apply Harish-Chandra’s results to M, . Let ps be half the sum 
of the positive roots of (ntsC, lj,‘). 
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LEMMA 4.6. ps = p. 

Proof. Let w be the Weyl group reflection corresponding to 01~ . 
If 01 E P - P- , then (a, a,,) > 0. Since (-E”, a,,) = (01, a,,> and 
since 01~ is the largest root, it follows that -CP E P. Hence 
--aWEP-PP. Moreover, (a + (-@))io- = 0 by definition of w. 
Thus by grouping the summands in pairs, we see that 

and hence that 

Consequently, pS = p. 

LEMMA 4.7. q2 = 0 and LT + ps is nonsingular with respect to MS . 

Proof. We first prove: If cy E P- , then there exists c, > 0 such 
that (X, &), = c,(h, a) f or all linear forms X on lj’. In fact, let H, E EJ,’ 
and H, E h” be defined relative to the Killing forms of ntsc and gc, 
respectively. We have 

for a constant c1 + 0. Since 01 E P- , E is a root of (msC, ljsc) with 
E, E mSc as root vector. Hence 

I& , ELI = cJ& 

with c2 # 0. Then 

(A, c?), = x(H,) = c,‘;\([E, , E-J) 

= c,‘A([E, , E-J) = c,‘c,X(H,) = c;%~(A, a). 

Thus (A, k), = c,(h, a!) with c, = c;‘c, independent of h. Choose 
h = 01, and it follows that c, > 0. 

If 01 E P- , then the above result and Lemma 4.6 give 

with c, > 0. Moreover, 01 is compact if and only if ol is compact, since 
the Cartan decompositions of g and m, are compatible. Hence 
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@ + Ps 3 s>, < 0 for all noncompact ol, and q;1 = 0. Finally, 
(/l + p, a> vanishes only for a: = &q, , by Lemma 2.1 since G is 
simple, and 01~ $ P- by construction. Hence d + ps is nonsingular. 

Proof of Theorem 4.2. Let u1 = ~lk,x, , m E M, , and k E K. By 
Proposition 3.2, we can write m = pp(m) q E P,-K,‘P,+ S P-KCP+. 
Now P,- C MsC C MO’, and so ui commutes with p by Lemma 3.4(e). 
Then 

z 

I’ 
l(TA4 +A F T11(CL(m))*T11(k1)*~n)12 dm dk. M 

s 

XK 

By Lemma 4.2, k, E exp ih. Thus T,(k,)* #J~ = tA(k,) $n with ,&(k,) 
real. Substituting and applying Schur’s Lemma, we obtain 

Construct an Iwasawa decomposition of M, in the manner described 
before Lemma 4.4 and call the abehan factor A, and the corresponding 
D(a) function D,(a). S ince dm = D,(a) dk da dk’ for the decomposi- 
tion M, = K,A,+K, , we have 

II #A II2 = 4%@d2 jK XA +xx /I T&(kak’))*+, lj2 D,(a) dk da dk’. 
a-8 II 

Again K, normalizes P+ and P-, and therefore &kak’) = kp(a) k’. 
Since T,(k’)* is unitary, 

II #A /I2 = Ki15,W2 j-, XA,+ II ~.d&))*~,@)*~~ II2 o,(a) dk da. 
8 

Choose an orthonormal basis +I = $A ,..., +dn of weight vectors for 74 
in such a way that the first d;i vectors are in the KS-irreducible subspace 
span{-r,(KJ 6). (Recall Lemma 4.5.) Write, for k E K, , r,(k) +i = 
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& Tag #j . Then ~,(k)*+~ = &d;i T,#) I#+. . Substituting this ex- 
pression, we obtain 

by the Schur orthogonality relations for K, , which apply by 
Lemma 4.5. As in the proof of Lemma 4.4, a is in exp ih, and therefore 
T&L(U)) is self-adjoint and diagonal relative to the basis 4i . Since 
the sum in the last integral extends only over j < d2, we conclude 

II 4, II2 = d;1d;‘5,@l)2 J‘,, Tr(T;i(tL(a)>2) D,(u) da. (4.10) 

On the other hand, we can apply Lemma 4.4 to the group Ms. 
Lemma 4.7 and the corollary to Lemma 4.5 show that d satisfies 
the hypotheses of Lemma 4.4. Therefore 

II #;i II2 = di2 IA, Tr(~~MaN2) o&) da. 

Combining this expression with (4.10), we find that 

II 4/, II2 = d,-1dj&(42 II & l12. (4.11) 

Again Lemma 4.7 says that ~2 = 0 and if + ps is nonsingular. 
The assumptions of Harish-Chandra’s theorem at the beginning of 
this section are satisfied, and therefore 11 $2 11 < co. By (4.11), we 
conclude that Ij #n 11 < co. 

This completes the proof of the finiteness of norm in Theorem 4.2, 
except for one remark. Our definition of #z differs in form from 
Harish-Chandra’s, and we should not apply his theorem until we 
have checked that the two definitions are equivalent. This equivalence 
will be verified after Lemma 6.1 and will not depend on any results 
of this section or the next, except for Lemma 4.1. 

Finally, we observe that II $n Ij # 0. In fact, define a continuous 
function $ on MS x K by #(m, K) = 1 $~~(u,rnk)l~. Since 4 is con- 
tinuous, it will follow that II #A 11 + 0 if we show that #(l, 1) # 0. 
We have 

1cI(L 1) = I ~&l>l” = I(~&,) $A > +A2 = 5/l(f42 + 0, 

and the proof is complete. 
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5. IMBEDDING IN CONTINUOUS SERIES 

Suppose G is simple. Let /l be an integral form on ljc, dominant 
with respect to f, such that Q~ = 0 and rl + p is singular. In this 
section we construct a discrete series representation wn of M and 
exhibit the representation U,(g), which was defined in Section 4, 
as a direct summand of the induced representation 

v, = ind (con @ 1 @ 1). 
MA+NTG 

In Section 7 we shall see that the image of U,(g) is proper and hence 
that the induced representation VA(g) is reducible. 

We begin by defining w, . By Lemma 4.7 the restriction n of /l 
to lj, has qz = 0, and ii + pS is nonsingular. We have defined r(/r> 
to be the space of holomorphic functions T on B,M, such that 
I = &(b) y(x) for b E B, and x E B,MS . Also H(d) is the sub- 
space of r(n) of functions of finite norm, where 

II Y /I2 = sMs I dx)l” dx < ~0. 

By Proposition 3.3, we have ZM G T C B, and hence t,(z) is defined 
if XEZ,. Moreover, M = Z,M, by Proposition 3.3. We therefore 
define on on r(A) by 

forp,Er(/f),z.EZ,,ntEM,,andxEB,M,. 

LEMMA 5.1. The representation wA of M is unambiguously dejined 
on r(A) and is unitary, strongly continuous, and irreducible on H(A). 

PYOOf. To see that wn is well-defined, we are to show that if 
x E Z, n M, and y E r(a), then p)(xz) = &,(z) v(x) for x E B,M, . 
(Here xz E B,MS since z E MS .) Now x commutes with M, because 
XEZM, and x commutes with B, by Proposition 3.3. Thus x com- 
mutes with x. Since z E ZM c T C B (Proposition 3.3), we have 
I = p)(zx) = &(z) v(x), as required. 

Then w,, is clearly a representation and is unitary and strongly 
continuous. Its restriction to MS is irreducible by Harish-Chandra’s 
theorem, and hence wn is irreducible as a representation of M. The 
lemma is proved. 

We remark that w, has square-integrable matrix coefficients. 
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In fact, by the corollary to Theorem 2 of [6], we have, for 
x=rnz~M,Z,=M, 

(w,(x) $z t 33 = tAn(d(U;I(m) $2 9 +n> = Lc4 II $2 II2 vw4. 

The square-integrability of the left side (and hence of all matrix 
coefficients) follows by applying Lemma 4.3 with W = M, X = MS , 
and Y = Z,%, . 

Form the continuous series representation 

VA = ,;y;,, (WA 0 1 0 1). 

In order to describe this representation explicitly, we need to know 
the modular factor for MA+N. By Eqs. (4.3) and (4.6), the Haar 
measures for A+N satisfy 

d,(a+n) = exp( -2p+’ log a+) d,(a+n). 

Since M normalizes A+N and det Ad(m)I, = $1 for m E M 
(Lemma 2.5(f)), the Haar measures of MA+N satisfy 

d,(ma+n) = exp( -2p+’ log u+) d,(ma+n). 

Therefore we can regard V,+(g) as operating in the space %(A) of 
almost-everywhere-defined functions f : G -+ H(if) such that 

(i) for each 9) E H(d), the function x --t (f(x), p’) is measurable, 

(ii) if m E M, u+ E A+, and n E N, then 

f(ma+nx) = exp( -p+’ log u+) w,(m) f(x) 

for almost every x E G, and 

(iii) SK Ij f (k)ll” dk < 00. 

The norm squared off is given by the expression of (iii), and V,(g) 
operates by right translation: VA(g) f (x) =f(xg). It is well known 
that VA(g) is strongly continuous and unitary. 

THEOREM 5.1. If G is simple, if qli = 0, and if A + p is singular, 
then the mapping L deJined on T,(A) by 

for FE r&l), x E B,M, , and g E G is a linear isometry into X(A), 
equivariunt with respect to G : LU,(g) = VA(g) L. Consequently, UA(g) 
is unitarily equivalent with a subrepresentation of VA(g). 
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Sketch of proof. The proof is completely elementary, and we 
shall list just the main steps. For FE r,,(A), put f(g)(x) = F(u,xg) if 
x E B,Ms and g E G. Then one shows: 

(1) If F E r,,(A), thenf(g) E r(A) for each g E G. 
(2) If F E r,(A), then i\f(g)lI < 60 almost everywhere, and the 

mapping g + (f(g), v), for v E H(A), is measurable. 

(3) If F E rc,(fl), a+nm E A+NM, g E G, and x E B,M, , then 

f(a+nm&> = ed-p+ log a+>(wh>f( .kN+ 

(This is condition (ii) for f to be in X(A). The verification uses 
Lemma 3.2, Propositions 3.3 and 3.1(c), and Eq. (4.6).) 

(4) If F E r,(A), thenfe Z(A) and I/F II = lifil. 

(5) Lull(g) = ~/l(g) L. 

These five steps prove the theorem. 
We now know that U,(g) is unitarily equivalent with a sub- 

representation of VA(g) and that VA(g) is strongly continuous. It 
follows that U,(g) is strongly continuous. This is the conclusion of 
Theorem 4.1 that we had left unproved until now. 

6. Two LEMMAS OF HARISH-CHANDRA 

To proceed further, we need to use two properties of +A proved by 
Harish-Chandra in [6]. In this section, we assume that A is an integral 
form on hc, dominant with respect to f, such that q* = 0. The first 
result that we need is Lemma 6 of [6]. 

LEMMA 6.1. If qA = 0, there exists a unique function zj E T(A) such 
that #( 1) = 1 and such that 

for all y E r(A), g E G, and x E BG. 

Harish-Chandra takes Lemma 6.1 as a definition of tin and then 
derives a formula for $J~ somewhat different from the one in our 
definition. In order to show the equivalence of his definition and ours 
(and thereby complete the proof of Theorem 4.2), we apply Eq. (6.1) 
to the function 9 = $A and to the group element g = 1. Then 
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Recall that PA(x) = (7,&(x)) $n ,4,,). Then 

#I = (TA(~) 4~ , $4 = Ii dn /I’ = 1. 

Since T C K and K normalizes P- and Pf, p(hxkl) 
It follows easily that 

dJ/l(hxh-l) = #/l(h^)> 
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(6.3) 

Substituting in (6.2), we obtain #(x) = $A(x). Thus Harish-Chandra’s 
definition and ours are equivalent. 

Lemma 6.1 applies to all of r(A). In Section 7 we shall see that 
H(A) _C r(A). On the subspace H(A), Lemma 6.1 has the following 
interpretation: The multiplicity of the character fn of T in the restric- 
tion of Uii(g) to T is exactly one, and the space of functions in H(A) 
transforming under T on the right according to tn consists of the 
multiples of PA . 

The second result that we need is Lemma 8 of [6]. The notation 
for the lemma is as follows. Let W be an open set in GC and let 
Z = X + iY be in gc. Let f be a holomorphic function on W, and 
regard X and Y as operating as left-invariant vector fields. Define 
Zf = Xf + iYf. Th en it follows from the fact that f is holomorphic 
that 

Zf(4 = $rcw exP 4 ltzo 

for w E W, where t can be taken to be complex in the differentiation. 

LEMMA 6.2. If qA = 0, then the function $A defked on the open 
subset P-KCP+ of GC satisfies H#, = A(H) +A for H E E, and Em+* = 0 
for every positive root 01. 

7. PROPERTIES OF THE CONSTRUCTION 

We continue to assume that A is an integral form on ljc, dominant 
with respect to f, such that q,, = 0. Once again we assume that G is 
simple and that A + p is singular. In this section we shall use the 
lemmas of Section 6 to obtain some properties of the space H(A) 
and of the representation U,(G). The first of these is a maximum 
principle. 
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LEMMA 7.1. If G is simple, if qA = 0, and if A + p is singular, then 
there exists a constant C < GO such that 

If( G Ciifll (7.1) 

for all f in r,(fl). 

Proof. Forf E r,(A), define .EA f (x) = JTf (xh) f,,(h) dh. Then EAf 
is in r(A), and EA f (1) = f (1). Moreover, 

E,f(xh,) = jTf(XhOh) 5&z) dh = S,f(“h) Ll@,‘h) dh = &l@“) ~LlfW* 
(7.2) 

These equations, together with Lemma 6.1, imply that 

E/l.w = Ed(l) #A(4 =f(l) #A@>. 

Then 

(7.3) 

llfll" = j, XK j, If(vW &@)I2 dfz dm dk since T C K 
8 

> j 
-- 

1 j f(u&h) t%(h) dh I2 dm dk by Schwarz s inequality 
M,XK T 

= I fQ>l” II #A II2 

by (7.3). This p roves (7.1) with C = 11 #n I/-i, which is finite by 
Theorem 4.2. 

COROLLARY 1. IfG is simple, ;f qn = 0, and if A + p is singular, 
then to each compact set E C BG corresponds a constant C, such that 

for all f E r,(A) and x E E. 

Proof. There exists a bounded nonempty set S C B such that SG 
is open in GC. In fact, let S, be an increasing sequence of compact 
sets in B with union B. Then (J S,G = BG, which is open, and each 
S,G is closed. By the Baire Category Theorem, some S,G has non- 
empty interior V. Since G acts on GC by homeomorphisms, V is 
right G-invariant. Thus I’ = (S, n V) G, and we can take 
S = S, n V. 

The translates bSG, for b E B, form an open cover of E. Let 
b,SG,..., b,SG be a finite subcover, and put 

CE = C r<~a;cs I EAW)l, ., 
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where C is the constant of Lemma 6.1. If x E E, then x = b,ug for 
some u E S and g E G and for some j, and we have 

If(x)! = I S&u)f(g)l = I L(W I UA(dfU)l 

< i 5,4WI CII Udg)flI = I CW%u)I Cllfll < Wfl! 

by Lemma 6.1 and Theorem 4.1. This proves the corollary. 

COROLLARY 2. If G is simple, if qA = 0, and ;f A + p is singular, 
then the onZy member f of T,(A) with j/f I] = 0 is f 3 0. 

The second corollary follows from Corollary 1. 
We can regard the normed space r,(A) as a space of holomorphic 

functions on BG and as a space of functions on the closed set ulMSK 
that are square-integrable with respect to a certain measure. Now let 
.f, E r,(A) be a Cauchy sequence with limit f E H(A). Since L2(u,MSK) 
is complete, we can regard f as a square-integrable function on ulM,K. 
On the other hand, fn is a Cauchy sequence in L2(u,MSK), and it 
follows from Corollary 1 to Lemma 6.1 that the restrictions of the 
functions fn to BG are uniformly Cauchy on compact subsets of BG. 
Consequently, f,( ) x converges to a function, which we can denote f (x), 
uniformly on compact subsets of BG. Then f (x) is holomorphic on 
BG and is clearly a member of r(A). The action by UA(g) on f goes 
into right translation off(x). Th us we can regard any member of 
H(A) as the union of a function in L2(u,M,K) and an associated 
function in r(A). For members of r,(A), these two functions are 
related in that one is given as boundary values of the other, but the 
connection for the other members of H(A) is less obvious. 

Using this identification of members of H(d) with functions both 
on ulMSK and on BG, we can pass to the limit in Lemma 7.1 and 
obtain a result valid for all f in H(A). 

LEMMA 7.1’. Jf G is simple, if qA = 0, and if A + p is singular, 
then there exists a constant C < co such that /f (1)i < C ll.fl\ for all f 
in H(fl). 

Similarly we obtain the obvious extension of Corollary 1. 
Now that we have realized all of H(A) as a subspace of r(A), the 

proof of irreducibility of U,(g) becomes a completely standard 
consequence of Lemma 6.1. (See Lemma 12 of [6].) 

THEOREM 7.1. If G is simple, ;f q,, = 0, and if A + p is singular, 
then U,(g), as a representation on H(A), is irreducible. 
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Recall that in Section 5 we constructed a continuous series represen- 
tation V,(g) on a space .%‘(A) and exhibited U,(g) as a subrepresenta- 
tion of V,,(g) under a map L of H(A) into X’(A). 

THEOREM 7.2. If G is simple, if q* = 0, and zf A + p is singular, 
then the image of H(A) in the space S(A) of the associated continuous 
series representation V,(g) is proper. Consequently, VA(g) is reducible. 

The proof will consist of examining the restrictions to T+ of UA(g) 
and VA(g) to see that they are different. The group T+ is isomorphic 
with a circle group, and we can think of its character group as the 
integers. In an obvious sense, the integers extend in two directions 
from 0, and Theorem 7.2 will therefore follow if we prove the two 
lemmas below. 

LEMMA 7.2. The restriction V, IT+ contains injinitely many charac- 
ters of T+ in both directions with positive multiplicity. 

LEMMA 7.3. In one direction, the restriction U, IT+ contains only 
finitely many characters of Tf with positive multiplicity. 

The proof of Lemma 7.2 will make use twice of the following very 
special case of Mackey’s Theorem 12.1 on p. 127 of [I I]. 

LEMMA 7.4 (Mackey). Let H be a separable locally compact group, 
let H1 and H, be closed subgroups with H = H,H, , and let R be a 
continuous unitary representation of H1 . Then, up to unitary equivalence, 

Proof of Lemma 7.2. Let u be the representation w,, @ 1 @ 1 of 
MA+N, so that 

v, = ind 0. 
MAfNTG 

Let K, = M CI K. By Lemmas 2.5(e) and 7.4, 

VA IK = K’“,dK (0 IKJ’ 
M 

Hence 

VA IT+ = p$ (a lK&+J) IT+ . (7.4) 

By Proposition 3.1(a) and Lemma 3.4(e), T+ commutes with M, so 
that K,T+ is a compact group. Let 7 be any irreducible representation 
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of K, that occurs in 0 /+, and let 1 mean “contains as a sub- 
representation.” Then (7.4) gives 

V~l.+~{&dK~)i,+={ ind ( ind ~)}j,+. 
K,uT+TK KMTKMT+ 

We shall prove first that 

contains infinitely many characters of T+ in both directions. In fact, 
by Lemma 7.4, 

( ind 
KMtKMT+ 

The Lie algebra of KM A T+ is 0 because h+ does not commute 
with a+. Thus K, n T+ is a finite cyclic group 2,. Let [ be any 
character of KM n T+ that occurs in T IKMnT+ . Then the right side 
of (7.6) contains 

ind 5, 
Z,?T+ 

which is well known to contain infinitely many characters of T+ in 
both directions. Hence the same thing is true of (7.5). 

Now let x be any character of T+ occurring in (7.5) Choose an 
irreducible representation w of KMT+ that occurs in 

ind 7 
KMTKMT+ 

and is such that the multiplicity (w IT+ : x) is positive. In view of our 
result about (7.5), the proof will be complete if we show that 

((,i$TKw) IT+ : X) > 0. 
M 

(7.7) 

To prove (7.7), we write 

by the Frobenius Reciprocity Theorem. Choose X so that 
(TA II&T+ :w)>O,andwrite~AIKMT+=~@~-LandwIT+=~@~J-. 
Then (7.8) contains 

TA IT+ = Wll+OW~In+=XOX~OW~IT+’ 

This proves (7.7) and the lemma. 
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Proof of Lemma 7.3. If Z = X + iY E gc and if f is a holo- 
morphic function defined on an open subset of GC, we used in Sec- 
tion 6 the definition Zf = Xf + iYf, where X and Y operate as left- 
invariant vector fields. With this definition if f E H(A), then 
-?f = UA(z) f, b ecause U, operates as right translation. 

By Lemma 6.2, $J~ is K-finite under U, , and by Theorem 7.1, 
U,, is irreducible. It therefore follows from the results of [4] that 
the space U,(a) #d , where @ is the complexified universal enveloping 
algebra of g, is dense in H(A). Since Zf = UA(Z)f for 2 E gc and 
f E H(A), we have I&‘#, = UA( W) #d for WE @. Applying Lemma 6.2 
and the Birkhoff-Witt Theorem, we see that a dense subspace of 
H(A) is spanned by all vectors 

v = Ee., ... E+lcrll , 

where Y > 0 and where the ai are negative roots, possibly with 
repetitions. Since H,O$A = cl(HEO) $J~ , it is apparent that such a 
vector v is an eigenvector for U,(III,~) with eigenvalue 

the inequality holding by Lemma 3.5, since all the o~i are negative. 
Thus the eigenvalues of UA(Hwo) are bounded above on a dense sub- 
space. Since T+ = exp(iRHUO), this is enough to guarantee that only 
finitely many characters of T+ in one direction can occur in 7-J, IT+ . 
The proofs of Lemma 7.3 and Theorem 7.2 are complete. 

8. DISCUSSION OF SU(n, 1) 

Let G = SU(n, l), n > 2. This is the group automorphisms of Cn+l 
preserving the hermitian quadratic form 1 .zr j2 + *** + 1 x, j2 - 1 ant1 I2 
and having determinant 1. In g, negative conjugate transpose is a 
Cartan involution, the diagonal elements of t form a Cartan sub- 
algebra h, and I)” is the set of diagonal matrices in gc = eI(n + 1, C). 

Let ei be the linear functional on hc whose value on a diagonal 
matrix is the (n + 2 - j)-th diagonal entry. Then the compact roots 
of (g’, 6’) are the differences ei - ej with i and j greater than 1, and 
the noncompact roots are the differences &(e, - ei). Choose an 
ordering so that the positive roots are ei - ei , i < j. Such an ordering 
is compatible with the complex structure in that every noncompact 
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positive root is larger than every compact root. The largest root is 
a0 = e, - e,,, . 

Form MA+N, etc., as in Section 2. Then lj+ consists of the diagonal 
matrices (ie, 0 ,..., 0, -8), and l)- consists of the diagonal matrices 
(i6 G, ,-*a, iv2 7 i0) of trace 0. M is compact and connected, and h- is 
a Cartan subalgebra for it. Let g be an irreducible unitary representa- 
tion of M, and let p be the highest weight of u. Then p is of the form 

where the only restrictions on the cj are that the cj are integers with 
c2 5’ -, cg > *** 3 c, . Since ZF~ = -20, we can rewrite p as 

(Notice that the parameters k, ca ,..., c, do not lead independently to 
distinct p’s in this formula.) Form the representation of G induced 
from the representation u @ 1 @ 1 of MA+N. It is announced in [lo] 
that this induced representation is reducible if and only if 

(i) k = n mod 2 and 

(~6 CL + P-> f 0 f or every positive root 01 other than 01~) 

p- =$2(t-.i+l)e5. 
Thus suppose k = n mod 2. Changing notation by adding the same 
integer to each cj , we can then write p in the form 

(8.1) 

Condition (ii) is the statement that cj # -(n + 1 - j) for 2 < j < n. 
Because the integers ci are decreasing, this condition divides the space 
of integer tuples {ca , . . . , c,} corresponding to reducibility into n compo- 
nents: {cn > 0}, {c,-, > -1, c, < -2}, {q-a > -2, c,-~ < -3) ,... . 
We shall see that Theorem 7.2 accounts exactly for the first component 
{cm >, O}. 

The fundamental weights on hc are Aj = e, + ea + em* + ej , 
1 < j < n. Thus the most general integral linear form is A = X7=1 &Ii 

sw9/4-3 
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with lr ,..., Z, all integers. The form A is dominant with respect to f 
if and only if lj > 0, 2 < j < n. The condition that (A + p, CQ) = 0 
is readily seen to be the condition that 

4 + *-.+1,$-n =o. (8.2) 

Such a A decomposes as - (n/2)(e, - e,,,) + A-, where - (n/2)(e, - e,,,) 
vanishes on h- and where 

ft. = f (Zj + *.. + 2, + i) e, 
j=z 

vanishes on h+. The restriction of A- to h- is the highest weight of 
the representation un of M constructed in Section 5. Comparing (8.1) 
and (8.3), we see that (i) is satisfied and that cj = Zi + **a + Z, for 
2 <j < n. The inequalities Zi > 0 for 2 < j < n - 1 are equivalent 
with the known inequalities c2 > ca > ... > c, , and (8.2) can be 
regarded simply as the definition of Zr . The additional inequality 
1, > 0 is equivalent with the condition c, 3 0. Thus Theorem 7.2 
accounts exactly for the component {cn > O}. 

This result is to be expected and corresponds to the fact that the 
holomorphic discrete series is only a part of the discrete series. In 
order to account for the other reducible representations induced 
from MA+N, one expects to need a device like the cohomology spaces 
of [15] that were used to describe further discrete series. 
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