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Although relative Lie algebra cohomology was introduced as
early as 1956 (see [9]), the theory played only a minor role in the
basic representation theory of Lie groups until the work of
Zuckerman [17] in 1978.

In the representation theory of a semisimple Lie group G,
the reasonable algebraic object corresponding to a representation
of G 1is a module for both the complexified Lie algebra g and a
maximal compact subgroup K such that the actions are suitably
compatible and the K action is the direct sum of finite-dimensional
irreducible representations. Accordingly Zuckerman worked with the
category C(g,K) of all such modules. Already Bott [4], in the
case of G compact, and Schmid [10,11], in the case of discrete
series representations of noncompact G, had used sheaf and
Dolbeault cohomology to give explicit realizations of representations.
Zuckerman's idea was to set up an algebraic analog of these
constructions that would be generalizable and would sidestep
formidable analytic problems. He introduced the functor, now called
T:C(g,H) > C(3,K) for HCS K, that roughly speaking extracts the
K-finite subspace of a (g,H) module.

His construction of representations was in two steps. 1In the
first step, he applied an algebraic analog of holomorphic induction

from a representation (often one-dimensional) of a certain kind of
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subgroup. And in the second step, he wanted an algebraic analog
of the extraction of global sections or global Dolbeault cohomology
elements; for this purpose he used T or its derived functors T~.

The combined process is now known as cohomological induction and is

explained in detail in [12, Chapter 6]. Zuckerman introduced his
construction expressly as a device for constructing irreducible
representations that had a good chance of being unitary.

For applications to unitary representations, a critical role
is played by a "Duality Theorem" for Ti : Zuckerman [17] introduced
the Duality Theorem as a conjecture and with P. Trauber gave several
ideas toward proofs. Enright and Wallach found a complete proof,
but their paper [8] suffers from a number of minor errors and one
serious gap that we explain below in §8. (These matters are addressed
also in Wallach's forthcoming book. )

Since a number of extensive investigations in the literature
(e.g., [1], [7], [13], [14], [16]) rely on this Duality Theorem and
since we were initially unaware of Enright's and Wallach's corrections,
we found this situation to be rather unsatisfactory. Thus we began
looking for a complete and correct proof of the Duality Theorem. The
first such proof that we found was not too long and is sketched in
§8 below. Its essential point is that it combines the approaches of
Zuckerman and Trauber [17] and of Enright and Wallach [8], using
both the explicit formulas sought by Zuckerman and Trauber and the
abstract argument attempted by Enright and Wallach. But we
investigated further because we wanted to show at the same time that
the top derived functor of T has an interpretation that is

geometrically dual to T , namely that it gives the closest thing
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possible to a largest K-finite quotient. We call this functor I
because it should be regarded as being related to periods or currents
in the same way that T’ 1is related to sections.

We realized that identifying I would be important for us for
some applications that we have in mind, and the connection among the
algebraic, geometric, and cohomological properties of T is in fact
our main reason for writing this paper. We knew that defining 1II
other than as a derived functor of T presents a problem: A (g,H)
module need not have a largest K-finite quotient. For example, if

complexified
t 1is the/Lie algebra of K, then every finite-dimensional K-invariant
subspace of LQ(K) is a quotient of the universal enveloping algebra
U(1) of t, and every K-finite quotient of U(!) is finite-
dimensional.

Thus we needed also a workable non-cohomological definition
of 1 . We were led to such a definition by a review of the work
of Zuckerman and Trauber and of accompanying suggestions by A. Borel.
Trauber and Borel had both speculated that it might be interesting
to study the ring of all distributions on G that are K-finite and
are supported on K, since members of C(g,K) are modules for this
ring. It turned out that both T and T could be defined in terms
of this ring and that they amounted to change-of-ring functors.
Moreover, the same thing was true of the functors pro and ind in
[12, Chapter 6]. Thus there were really just two master functors in
the theory, having to do with a change of rings by either ® or Hom.
(We call these functors P and I Dbelow.) In addition, many of the
fundamental results in the theory were consequences of standard
associativity formulas for ® and Hom.

By this time it was clear to us that the foundations needed
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reworking in these terms. We carry out this effort in §§1-3 below
and in part of §4. The remainder of §4 proves Poincaré duality for
all of C(g,K); previous written proofs (e.g., [3, p. 15]) used an
additional hypothesis of admissibility. The proof of Zuckerman
duality and the identification of N is in §85-7; we have given a
proof that is longer than necessary because 1t gives a great deal
of additional information.

We are grateful to K. S. Brown for helpful conversations at an

early stage of this work.
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1. The ring R(a,K)

Let g be a finite-dimensional complex Lie algebra, and let
K be a compact Lie group (possibly disconnected). We assume that
g and K satisfy the compatibility conditions of [12, p. 299],
namely that the complexified Lie algebra t of K 1is a Lie subalgebra
of g, that K acts on g by automorphisms (called Ad(k)), and

that the differential at 1 of Ad(K) is adt € ad g . We refer
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to (g,K) simply as a pair. Since K 1is compact, we can choose
p € g stable under Ad(K) and ad(t) such that g =t@p.

We shall associate a ring R(g,K) to the pair (g,K). To
motivate abstract definitions, we shall make a special assumption
about (g,K), introduce the ring concretely, and express everything
with identities involving only g and K. These identities can
then be used as an abstract definition of R(g,K) without our
special assumption. We leave to the reader all verifications that
the abstract definitions make sense in general.

The special assumption is that there is a Lie group G with
complexified Lie algebra g such that K 1is a compact subgroup of
G for which ' and Ad are compatible with the definitions imposed
by G. This assumption is satisfied in applications to representation
theory. But it is not always satisfied. For example, one can take
g to be semisimple and K to be a nontrivial covering of a compact
torus in a simply connected group corresponding to a real form
oF @

In any event, suppose G exists. Following Zuckerman [17],
we take R(g,K) to be the ring of bi-K-finite distributions on G
(t-eey on Czom(G)) that are supported on K, with convolution as
multiplication. Here are some examples. We start from the convolution
algebra CK of K-finite functions on K and from the universal
enveloping algebra U(g) of g . (It may help the reader to regard
members of CK as measures by adjoining normalized Haar
measure dk on K to them; convolution is then convolution of

measures.) We identify U(g) with the left-invariant differential

operators on G. Associate
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c®u € Cp®y U(g) » Df =[] (uf)(k)e(k) dk. b 1)
K

Let 4 and r denote the left and right regular representations of

K on C, and of U(s) on U(g), namely
L (k)e (k) = C(kalk) and  r(k,)c (k) z ¢ (Kk,) o
L(v)u = vu and r(v)u = uv'’

Here v°' refers to the antiautomorphism of U(g) that extends the
map X > -X of g into U(g). Also let L and R be the regular

representations on distributions:

(L(kp)D) (£) = D(£(ky)T2E)  and  (R(ko)D)(£) = D(r(k,) 7 e)
(LEID)(£) = DE(v'F)E)  and  (R(V)D)(£) = D(r(v*)s). 47
In (1.1) we readily check that
t(ky)e®u > L(k,)D for' k€K (1.4a)
c®r(v)u > R(v)D for veU(g) (1.4D)
r(vi¥)e®u - c®L(v)u > 0  for veu(t).  (Ll.khe)

Thus (1.1) gives us a mapping of Cre ®u(1) U(g) into R(g,K) that

respects the left action by K and the right action by U(g) .

Proposition 1.1. The mapping of Cx ®U(T) U(g) into R(g,K)

given in (1.1) is one-one onto. The formula in Cx ®u(1) U(g) for

what corresponds to convolution in R(g,K) is
(cou)(cr®v) = cx c'(-)(ad(-)tw)v.  (1.5)

Remark. The understanding in this convolution formula is that
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we expand Ad(k)_lu in terms of a convenient basis, lump the

coefficient functions with c¢'!' before convolution, and lump the

members of U(g) with v to form the U(g) part.

Proof of "onto." Fix a bounded open subset E of G containing
K, and let a distribution D be given. The support of D being
compact, we have
Iogl < ) alugl , f£ec®(E),
nen
for some finite set n of left-invariant differential operators
u, and constants a, - (The norms are supremum norms.) Consider
the space of vector-valued functions {unf} as a subspace of
scalar-valued continuous functions F on EX h. D 1is a bounded
linear functional on the subspace and extends to all such F without

an increase in norm. Hence there exist signed measures By 2 nen ,

on E such that

e = Y [ u ) (k)
nen E
Por &Il £ 4n Czom(E). The support condition on D then forces
[AP IN
) pr = ) [ w f(k) du(x) .
vsuo nen K
b Rf .
~—  gSince D is left K-finite, there are finitely many translates
Dt = L(k;)D such that Y ¢D- is stable under L(K). We may

assume the D' are linearly independent. Then we can define

scalar-valued functions Lij(k) such that L(k)DJ = Zi Lij(k)Dl,
and k > [Lij(k)] will be a finite-dimensional representation.

Choose a K-finite function X on K such that Lijé*x = Lij for
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all i1 and J, and let crl be the K-finite function c¢_. =¥ x du

Then it is straightforward to check that

Df = Z [ u gx)e, (x) ax.

nen K

Proof of "one-one." TLet Xys5--.,X, be a basis of p, and

suppose 2, c,®u, maps to O:

Y [ uf(k)e (x)ax = 0  for all fech (G). (1.6)
nen K

Using (1.4c) and the Birkhoff-Witt Theorem, we may assume that the

u, 's are distinct monomials XJl-o-XiL. Canonical coordinates of

1
the second kind near the identity in G show that the map

e Xys eees XL) > k exp x,X; °°°exp X, X,
is a local diffeomorphism about (1,0,...,0), and we can thus take
f above to be of the form fl(k)fg(x1,...,xL), where f,; 1is in
C”(K) with support near the identity and f, is in C°(RY) with
j J
support near the origin. Our monomial Xil--- XLL operates just on

f2 and gives

Choosing f, suitably, we can thus arrange that (1.6) reduces to
{{ £1(k)e (k) dk = 0

for whatever n we please. Since f; is arbitrary, cn(l) = 0
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for all n. Using (l.4a) and translating our zero distribution, we
conclude that ¢ (k) = 0 for all n and all k. Thus the map is

one-one.
Proof of convolution formula. In obvious notation

D(ceu) *D(c'®v)(f) = [[ £lkutv)e(k)e () dkat
KX K

= ff £(kt (Ad () " Tu)v)e(k)e! (L) dk dt
KX K

=[] eosaa@)Twyvic (e ter ) at ak,
KX K

and (1.5) follows.

We can express members of R(g,K) also in terms of right-

invariant differential operators. For u in U(g), let u,f = (uf )",

R
where f (x) = f(x_l). This definition makes wup a right-invariant
differential operator, and we have (uv)R = UpVp - Then we can

assoclate

uec € U(g)® > pf = ((u)pf) (K)e(k) dk.  (1.7)

C
€K K

This realization has properties complementary to (1.4):

u e r(ko)c > R(kO)D for k,ekK (1.8a)
L(vI;u®e ¢ > L(v)D for veU(g) (1.8Db)
R(vtr)usc -u®4t(v)e > 0 for wveU(l) . (1.8c)

The map U(g) ®U(T) Cx > R(g,K) is an isomorphism onto, and the

convolution formula is
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(uec)(ve®c') = u(Ad(-)v)e(s) » c'. (1.9)

The two copies of C given in (1.1) as C,®1 and in (1.7)

K’ K
as l@(%{, are the same, namely those distributions involving no

derivatives transverse to K. Gl 1l our multiplication reduces

K}'
to convolution.

More generally we can ask for the relationship between (1.1)
and (1.7). Abusing notation slightly, let us write u® c®v for

the distribution

Df = [ (ufve) (k)e(k) d.
X

Then we find

u®c®v = 1®c® (Ad(-) Tu)v = u(Ad(-)v)®cel, (1.10)

from which it follows that

uu,®c®v = u;®c® (Ad(-) Tuy)v (1.11a)

i ¥ 2

u® c® Vv,V )®c®v (1.11b)

12

u(Ad(-)vl x

The ring R(g,K) does not have an identity unless K is a
finite group, but it does have an approximate identity. Namely for
each irreducible representation T of K, let XT eCK be the
product of the degree of T by the character of T . For a finite
set F of irreducible representations of K, put Xp = ZTGF'XT « A5

F varies through such finite sets, the members = XF® e = 1®XF

F
comprise the approximate identity. The use of the approximate identity
in connection with R(g,K) modules will be discussed in the next
section. TFor now let us notice that for any c®u in R(g,K) ,

eF(c®LU =c¢c®u if PF 1s sufficiently large. Also for any u®c
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in R(g.,XK) » (u@:c)eF =u®c if F 1is sufficiently large. These
facts follow immediately from (1.5) and (1.9), respectively.
The ring R(g,K) has a special antiautomorphism (c@:u)trzzutr®cfﬂ
Thus every left R(gq,K) module can be converted canonically into a
right R(g,K) module, and vice versa. The antiautomorphism stablizes
the approximate identity, sending cofinal sets to cofinal sets.
Traditional homological algebra for rings and modules assumes
that each ring has an identity and that the identity acts as 1 in
any module. This theory applies to R(g,K) if we simply adjoin an
identity. The place where care is needed is where R(g,K) 1is treated
as a module, especially when the ring in question is R(g,K) itself.
Now suppose that (gq,K) and (q,H) are two pairs and that
g3 4g end K3 H. (In this situation we shall always tacitly
assume that the Lie algebra imbeddings and Ad actions are consistent.)
Except in special circumstances, R(q,H) 1is not naturally a subring
of R(g,K). Nevertheless, R(g,K) is a right and left R(q,H)
module, and any element in R(g,K) is fixed by elements far out in
the approximate identity of R(q,H) . The module action informally
is by convolution on G of the associated distributions. If c®u
and u'®c' are in R(g,K) and a®q and qg'®a' are in R(q,H),

the actions work out to be

(cou)(a@q) = cxya(-)(ad(-) Tu)a, (1.12a)
with

(c*g®) (1) = [ c(mn™p(n) an,
and

(a'@ar)(ur@c') = q'(ad(-)ut)a’ () xye',  (1.12b)
with

(bt *.c') (k) = [ b'(h)e' (h k) dh.
- H
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2. The category C(g,K)

For a pair (g,K) we let C(g,K) be the usual category of all
(8,K) modules, as in [12, p. 299]: A member of C(g,K) is a complex

vector space carrying representations of g and of K such that

(i) the K representation splits as the (possibly infinite) direct
sum of finite-dimensional irreducible representations

(ii) the differential of the K action is the restriction to t
of the g action

(111) (Ad(kK)u)x = k(u(k_lx)) for k€K, ueU(g), and x€eV.

The morphisms Hom (V,W) are the linear maps respecting the g

a,K
actions and the K actions.

A left R(g,K) module V will be called unital if, for each
% dn N, eFx = . for all eF sufficiently far out in the
approximate identity. 1In this case CKX is finite-dimensional for

all x in V (since Cp* ep 1is finite-dimensional).

Proposition 2.1. A (g,K) module V in a natural way is a

unital R(g,K) module. Conversely any unital R(g,K) module is a
(g,K) module in a natural way. For any two such V and W,

Homg’K(V,w) coincides with Homp (4 | ) (v, w) .

Remark. The correspondence between the R(g,K) action and the
(3,K) action will be given by (2.1) and (2.2) in the course of the

proof.

Proof. TLet (m,V) be a (g,K) module, and define

(c®u)x = w(c)mw(u)x. (2.1)
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To see that we have an R(g,K) module, we need only check
multiplicative associativity, the other properties being obvious.
Let (+,-) be an Ad(K)-invariant inner product on the subset U™(g)

of members of U(g) of degree < n, for a suitably chosen n, and

let u; be an orthonormal basis of Un(g). We have
((c@u)(c'®v))x = (c(-)xc'(-)(ad(-) tu)v)x by (1.5)
= Zow(e(-)x e (+) (Ad(-) Tuyuy) ) m(wyv)x by (2.1)

= E r(e)m(e! (+) (8d(-) ", u) ) (uy ) r(v)x

=2 w(e) [ c‘(k)(Ad(k)_lu,ui)w(k)w(ui)r(v)xdk

3 K
= 7(c) {{ et (k)7 (k)w(Ad (k) " Tu) T (v)x dk
= 7(c) £ et (k)m(u)m(k)r(v)x dk by (iii)

= w(c)m(u)r(e!)mr(v)x

= (c®u) ((c'® v)x) By (il
To see V is unital, we write e;x = F(XFSIl)X = WCXF)X, and this
is x for F large sinece x 1is K-Tinite.

Parenthetically let us record the formula that expresses how

an element u®c of R(g,K) acts:
(u® e)x = r(u)r(e)x. (2.2)

In fact, (1.10) gives
-1
(u®c)x = (c®Ad(+) "u)x

= T m(e(-) (Ad(-) T, uy) )T (uy)x

= Z [ (k) (ad(x) 1w, u, ) (k) (u, ) x dk
gl 76

)
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(k)7 (k)7 (Ad (k) “Tu)x dk

@]

@]

(k)m(u)w(k)x dk by (iii)
= w{uymiec) X

Conversely let V be a unital R(g,K) module, and let ue€ U(g)

and xe€V be given. Choose F so that e_x = x, and let

F
m(u)x = (ueXy)x. (2.3)
To see this is well defined, let F! 2 F, so that XF”%+XF = XF.
Then
(u@XFJX:z(u@XF,M%x=:(u®XFJ(l®XFbc
= ﬁl@(xF,*XFJ)x = 01®XF)x.

So w(u)x 1is well defined.
Clearly w(1) = 1. Before checking that w(uv) = w(u)w(v),
let us define 7 on K. The action of R(g,K) gives us an action

of the subring C by restriction, and CKX is finite-dimensional

K
for all x since V is unital. Then it follows that we have a

(1,K) action of K defined compatibly with the action of ¢

K"
(c®1l)x = (1®c)x :LIE: c(k)r(k)x dk.
The claim is that epX = X implies
(u® c)x = w(u)w(e)x (2.4)
for u dn Ufg) and ¢ 4in Cy - (In view of (2.2), our definitions

are then inverse to those in the first part of the proof.) 1In fact,

we have
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eFﬂ'(c)x = T(Xp)m(e)x = ’J'T(XF* c)x
= TT(C*XF)X since Xp 1is central in C,
= m(e)r(Xp)x = m(c)egx = m(c)x. (2.5)

Thus (2.3) says

m(u)mr(e)x

Il

(u@XF)'n‘(c)X = (u@XF)(l® c)x = (ue® (XF* e))x

(ue (C*XF))X = (uRiec) (1®XF)x

= (ue® c)eFx = (u®c)x,

and (2.4) follows.

Now we show that w(uv) = w(u)w(v). If eX = x and

e, T(v)x = m(v)x, then

FT
T(uw)mr(v)x = (u@XF,)(v®XF)x
= ((u Ad(-)V)Xp () * X))

- (Lo [ (BA(-27 1) v, v Xy (-2 7P )X (1) 6L 1)x

= & w(uavy)m(l [ (Ad(-{,_l)v,vj)XF,(-L_l)XF(«L) @ })x by (2.4)
3 K
=T w(uv,) fI (ad(t ™) v, v )X, (k% (0) (k) x a4 dk
3 JKXK d
=T w(uv.) S (Aa@ N v, 8d (K1) v )Xg, (X (4) (k) x at dk
j JKXK J
=% w(uv.) [ (Ad(k ) v, ad (k" Y, )Xo (k)7 (k) x dk
3 h g JE
if F' 1is large enough
= TT('LIV)TF(XF)X
= r(uv)x since e x = x.

F

We have to verify (ii) and (iii). For (ii), let Xet be
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given. We are to show w(X)x = é% T(exp tX)xIt:O . Choose

that epX = X . If F'2 F, then

W(XF|)€% T (exp tX)X‘t:O Hir il XF,(k)r(k exp tX)X(ﬂ£|t:O

K

=
=

w

¢]

Xp tX)—l)W(k)X(ﬂ§|t:O

1]
K
- &0 %o 0 om0 0

since XF‘

=] (A (X)%p) (k)7 (k)x dk
K

= (4 (X)XFt ) x

- (184(Xxp)x Dby (2.4)
= (X®XF”)X by (1.4c)
= X% by (2.3).

Since F' can be arbitrarily large, (ii) follows.

For (iii) we are to show that

W(Ad(ko)u)w(k Yot = r(ko)w(u)x

0

F

is central in C

for u in U(g) and k. in K. Choose F with e_x = x.

0 F

T(kg)x = m(k)T(Xg)x = [ Xp(K)T (k) m(k)x dk = (L (k)Xp)x .

K
Applying (2.4), we obtain
W(Ad(ko)u)w(ko)x = W(Ad(ko)u)v(L(kO)XF)x
=(Ad(k0)u ® L(ko)xF)x.

If F' > F 1is large enough so that e_,m(u)x = wm(u)x, then

FI

S0

K

Then

(2.6)

(2.7)
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IT(X = T (kg )T(W)x = (4 (K )Xg, @ 1) (w8 Xp)x

= (L(ky)Xp, @ 1) (xp®Ad(+) Tu)x

¢

= (kg * Xp(-) (Ad(-) Tu))x

-1

v g x
= ({CXF,(kO L)

-1

Xm(2)Ad(2) udlt )x

F

-1

= (XF(kal-)Ad(kal-) u)x if F' 1is increased sufficiently

= (Bd(ky)u® 4 (k )Xp)x by (1.10).

Comparison with (2.7) completes the proof of (iii).

Finally let us show that HomR(g K)(V;W) = Homg K(

T act on V and 7' acton W. If ¢ is in Homy (o K)(v,w) and

V,W) . Let

F 1is chosen with egx = x, then (2.6) applied twice gives

®(7()%) = @ ((£(k)xz® 1)x) = (L (k)Xp® 1)p (x) = 7' (k)T (K)o (x) -

For large F the right side is W‘(ko)¢(x), as required. Also u

in U(g) dimplies

¢ (m(u)x) =@ ((UXL)x) = (uXG)e(x) = 7' (u)e (x)

if F is large enough. So ¢ 1is in Homg K(V,W).
Conversely let ¢ be in Homg K(V,W). Then o (r(u)x) = 7' (u)e (x)
for u in U(g) and w(w(ko)x) = w‘(ko)¢(x) for k, in K. Hence

also @ (m(c)x) = ' (c)p(x) for e in Cy - Consequently (2.1) gives
p((ceu)x) =o(mr(c)m(u)x) = 7' (c)r' (W) (x) = (c®u)p(x) ,
and ¢ is in HomR(q K)(V;W). This completes the proof.

Proposition 2.1 is so fundamental that we shall often use it

without specific reference. As a consequence of the proposition, we
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can exploit the interplay between representation theory and ring
theory in studying (g,K) modules. Of particular importance will be
the standard associativity formulas for ® and Hom that are given
on pp. 27-28 of [6]. In reproducing these formulas, we use subscripts
to denote ring actions, left subscripts for left actions and right
subscripts for right actions. Ieft and right actions on the same

module are assumed to commute. ILet R and S be rings. Then

(A@RB)® C=AB

. R (BegC) for (A

R’RBS’SC) (2.8a)

HomR(A,HomS(B,C)) = Homs(P,@RA,C) for A, @) (2.8b)

(RAs gBrs g

HomR(A,HomS(B,C)) = Hom.(A®_B,C) for (AR,RBS,CS). (2.8c)

S R

We shall use these identities to derive some simple properties
of C(g,K). It is important to remember that not every left R(g,K)
module is in C(g,K) , only those meeting the conditions of Proposition
2.1. The decisive properties of the subcategory C(g,K) of all left

R(g,K) modules are the following:

(i) C(g,K) 1is closed under passage to submodules, quotients, and finit
direct sums

(ii) Every member of C(g,K) 1is the image of a projective in C(g,K)

(iii) Every member of C(g,K) imbeds in an injective in C(g,K)

(iv) All R(g,K) maps between two members of C(g,K) are C(g,K)

morphisms.

Property (i) is clear, (iv) is in Proposition 2.1, and (ii) and (iii)

will be proved in the next section.
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Propogition 2.2. If V¥V 1s in €(g,K) , then

R k] @ Va“ v ; 2'
as a natural isomorphism of left R(g,K) modules.

Remarks. Here R(g,K) is a two-sided module under R(g,K) .

The right action is tensored out, and the left action survives.

Proof. The map r®v - rv is an R(g,K) map of the left side
of (2.9) into the right side. It is onto because of the presence of
approximate identities. TLet us prove it is one-one. If ¥ (riaivi)
maps to 0O, then L r;vs = 0. Choose F so that epr; = r; for
Ll Then

x (ry@vy) =2 (e r;®vy) =L (eFrj_@vi) -2 e ® r;v,

F i

B

=3 (eFri® Vyim Ep® 1,7, )

shows X (r;®v;) = 0 on the left side of (2.9). So the map is

one-one. Clearly the isomorphism is natural in V.

The expected dual situation involves HomR(g,K)(R(g,K),V}. Here
the left action on R(g,K) disappears with the Hom, and the right
action survives to define a left R(g,K) module: (mp)(s) = w(sr).
Although HomR(g’K)(R(g,K),V) is a left R(g,K) module, it is not
necessarily in C(g,K) . As we shall see below, we can obtain a
member of C(g,K) by using the subset HomR(g’K)(R(g,K),V)K of

K-finite members (members ¢ with Cgp finite-dimensional).

Lemma 2.3. Let V and W be in C(1,K) with trivial action
on W. Make Homt(v,w) into an R(!,K) module by defining

trv)

2

(mp) (v) =o(r
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tr

where r refers to the natural antiautomorphism of R(1,K) . Let
HomC(V,W)K be the subset of K-finite members of HomC(V,W). Then
Homﬂ(v,w)K consists of those members of HomC(V,W) that vanish

except on finitely many K-isotyplc subspaces of V.

Proof. TLet ¢ be K-finite, and let V., be an irreducible

0
K-stable subspace of V on which ¢ 1is not identically O. Let
vg be the contragredient representation, and let Wy = m(Vb). Then
¢ v, is in HomC(VO,WO) = V*E)@C W s which is the sum of a finite
number of copies of VB. Hence ¢ Vb transforms under K according
to VE. Since ¢ 1lies in a finite-dimensional K-stable subspace,
VE is one of the finitely many K types occurring in Cﬁp. So

¢ vanishes on the K-isotypic subspaces for all K types whose
contragredients do not occur in CKQ.
In the converse direction it is enough to show that if just

one K type occurs in V, then every ® in Hom,(V,W) is K-finite.

ol

Thus write V =1L @Vd with all N K-isomorphic and irreducible.

Single out some V. , and let ¢ :V e \fe be a K isomorphism.
%y a Qg a i

By irreducibility, choose a basis of End, V,  of the form kg
0

1< J<n- Here {kj] refers to a subset of the actions by K.

V 2
%9

If k is in K, then there exist (k) , 1 j {n, such that

C.
J
-1 -1

k% =L iea(k)k;x® for all xeV_ '

e ay

Now XE€eV implies
H0

(lp) (¥ (%)) = @ (KN (%)) = 9(¥_ (K 'x))

Il

Oo( T sk X)) =T cy(k) (k) (¥ (x) -

Hence ko = 2 cj(k)(kjm), and ¢ 1is K-finite.



=27 —

Let (g,K) and (q,H) be pairs with g 2 q and KD H

compatibly. If V is in C(q,H) , we define

K
P(V) = P’ 5(V) = R(g,K) ® 2,10
as a left R(g,K) module under r(s®x) = rs® x ; the convention for
®R(q,H) is that rq®x = r® gx. Also we make
Hom Rila s K) ;s V 210

into a left R(g,K) module by letting mp(s) = @ (sr); the convention

for Hom is that ¢ (qr) = q(@(r)) . We define a subset I(V)

R(QsH)
to be the subset of K-finite members:

_ 8,K &
I(V) = T2 x(V) = Homp o 5y (R(8,K), V) - (2.12)
There is a second way of defining P(V), namely

P' (V) = V®R( R(g,K)

q’H)

as a left R(g,K) module under r(x®s) = x® sr?T; the convention

for ® is that qttx® T = 0 G These definitions give

R(QsH)
naturally isomorphic R(g,K) modules under the map r®x > x® r

tr
Thus we are free to use either definition. Normally we shall use
the first definition, but it will be more convenient in §6 to use
the second definition.

Similarly there is a second way of defining TI(V), namely with

w(s) = m(rtrs); the convention for HomR(q 7) is that

a® (@ (r)) . The two definitions give naturally isomorphic

@ (rq)

R(@,K) modules, and we are free to use either definition. However,

we shall invariably use the first definition.
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Proposition 2.4. For V in C(q,H) and notation as above,

P(V) and I(V) are in C(g,K). Both P and I are covariant

functors, P 1is right exact, and I 1is left exact.

Remark. The choice of notation P and I 1is to be a reminder
of facts proved in the next section about preservation of projectives

and injectives.

Proof. We know that the left R(g,K) module R(g,K) is unital
and that every member is K-finite. Hence the same is true of P(V),
and . .P(V) . is in C(8,K) by Proposition 2.1, If @:V->W is a
morphism, then P(p) is the map 1®® . Hence P is a covariant
right exact functor.

For I(V), we regard R(g,K) as a right R(g,K) module and
V as a trivial R(g,K) module, and we apply Lemma 2.3 to
HomC(R(g,K),V)K. Members of this set are characterized by vanishing
except on finitely many K types of R(g,K), and hence members of the
subset I(V) of (2.11) are characterized by this same property. This
property is preserved under the left R(g,K) action on (2.11), and
thus I(V) 1is a left R(g,K) module. Using an element ep that
fixes finitely many K types of R(g,K), we see that I(V) is a
unital left R(§,K) module. The members of I(V) are K-finite by
definition, and Proposition 2.1 thus shows that I(V) is in C(g,K) .

To see that I is a functor, let ¢ : V> W be a morphism in
C(q,H) . Then I(p) =@e(-) carries I(V) into HomR(q’H)(R(g,K),W),
and the problem is to show that the image is in the subset I(W). If
¢ is in I(V), then ¥ vanishes on all but finitely many K types

of R(g,K), by Lemma 2.3. Hence so does ey . Then @o.y is in
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I(W) by Lemma 2.3. So I 1is a functor. Clearly I is covariant,

and it is easy to see it is left exact.

Proposition 2.5. If W is in €(g,X) , then

as a natural isomorphism of left R(g,K) modules.

Proof. Let F(W) be the left side of (2.13), and let V be

in C(g,K) . Then we have natural isomorphisms

Homp (g, x) (V2 F(W)) = Homp o sy (Vs Homg 1y (R(a,K),W)))
= HomR(g’K) (R(g,K) ®r(a,K) ¥ W) by (2.8b)
= HomR(g’K)(V;W) by Proposition 2.2,

and it follows by a standard argument in homological algebra that F

is naturally equivalent with the identity functor.

Let S(g) be the symmetric algebra of g. This is a (g,K)
module under (ad,Ad), and the symmetrization map 8 : S(g) = U(g)
commutes with ad and Ad. With g =1®p as usual, let S(p) € S(g)
be the symmetric algebra of p. This is a (1,K) module under
(ad,Ad) .

We denote left and right regular representations on R(g,K) by

E and R .

Proposition 2.6. Let (g,K) and (g,H) be two pairs with

K> H compatibly, and write g = t@®p as usual. Then

R(1,H) ®¢ S(p) = R(g,H) (2. 14)
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under (c®u)®p > c®us(p) . The isomorphism carries the left R(1,H)
module structure L® 1 on the left side to L on the right side, and
it carries the left R(1,H) structure R® Ad on the left side to

R on the right side.
Proof. The chain of vector space isomorphisms
R(1,H) ®¢S(p) = (Cy @y p)U(1)) ®¢ S(p) = Cy @y (U(1) ®¢ S(p))
= Cq ®U(I;) U(g) = R(g,H)

shows that our map is one-one onto. Clearly our map respects the

action of H under L® 1 and the action of 1 under R® ad. It
respects the action of t wunder L®1 because Y in 1 implies
-1
(Le1)(Y)((c®u)®p) = (c® (Ad(-) "Y)u)®p

> c® (Ad(-) 1Y) (p) = (L®1)(Y)(c®us(p)) .

It respects the action of H wunder R® Ad because hO in H implies

(R@Adﬂhoﬂfcau)ap)= Rwo)mdp)uac)®mﬂh&p
= (R(ho)c ® Ad(ho)u) ® Ad(ho)p
> R(ho)c ® (Ad(ho)u)S(Ad(ho)p)

= R(hy)c @ (Ad(h,)u)Ad(h,)s (p)

o)

= (R® Ad) (ho) (cous(p)) .

Proposition 2.7. Let (g,K) and (g,H) be two pairs with

K> H compatibly. Then

under convolution: c;® (c,®u) ~> (cq %

1 02) ®u. The isomorphism

H
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carries the left K action to the left regular representation of K
on R(g,K), and it carries the R(g,H) module structure 1® R to

the right regular representation on R(g,K) .

Proof. Proposition 2.6 gives

Cx ®g(1,n) R(8:H) = Cp 8y oy (R(1,H) @ S(p))

with the left 1t action on R(g,H) going into L® 1. The right

side here by (2.8a) is

== (CK ®R(f,H) R(T,H)) ®C S(p)

=i le, S(y) by Proposition 2.2

1

R(1,K) @ S(p)

= R, K) by Proposition 2.6.

We readily check that the actions correspond as indicated.

3. Projectives and injectives

Let (g,K) and (q,H) denote two pairs with g 2 q¢ and K2 H
compatibly. If V is a (g,K) module, then we can regard V as a
(q,H) module by restricting the action. We denote the resulting

forgetful functor & by
3q.H | C(g,K) > C(q,H)
Qs l ? 2 :

Clearly & 1is covariant and exact.
In the context of R(g,K) and R(q,H), the definition of ¥
is less transparent, since R(q,H) need not be a subring of R(g,K) .

But we can define the action this way: ILet ge€q and heH. I
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x €V 1is given, choose e, in R(g,K) with e x = x. Then gx

F F
and hx are given as (qu)x and (heF)x, where qep and heg
are computed with R(g,K) considered as a left R(q,H) module.
(See the end of §1.)

Let W be a (g,K) module. We define a pseudo-forgetful

functor F° with

: C(Q,K) _}c(q;H)
by
IV(W) = Hompg (o x) (R(8,K), W)y -

The fact that FY(W) is a (q,H) module and 3FY is a functor is

proved by the same arguments as in the second half of Proposition 2.4

q,H

is exact.
g,K

Lemma 3.1. The covariant functor (&V)

Proof. Let

] ®
0O — W' —W—W' —> 0

be an exact sequence in C(g,K) . If n is in 3IY(wW') and Yen = 0,
then ¥(n(r)) =0 forall r, and n(r) =0 for all r. Hence
n =0. Thus FY(¢§) is one-one.

If n is in FY(W) and ®@en = 0, then ¢(n(r)) = 0 for all
r, n(r) is in ker ¢ = image ¥ , and n(r) = ¥ (w') . Define
E(r) = this w', necessarily unique. Then § is in
HomR(g’K)(R(g,K),w‘). Since 1 vanishes off finitely many H
types of R(g,K), so does & . Thus § is in 3FY(W') . Then
¥(8(r)) = ¥(w') =n(r) shows ker I%(p) = image 3 7(¥) .

Finally let m be in FY(W"). We seek & in FY(W) with

peE =1n. For each irreducible representation T of K, the element
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n(e[T}) is in W" and is thus of the form m(w{T}) g W{T](;W'

Now R(g,K) is a direct sum of left ideals R(g,K) = ZT R(Q,K)G{T} :
as is apparent from (1.9). Thus we can define Bg € HomR(g,K)(R(g,K),W)
consistently by

€ o % I, € L r.w

{¢}) xS

Then
¢(§O( L o 9{7})) =o(ZL r [T}) z I}¢(W{T])
=2 I}ﬂ(e{T]) =n(Z I}e{¢])

says mogo = i . Now m = O except on finitely many H types of
R(g,K) under the right regular representation. Thus let us define

E to be § on the finitely many H types and to be 0 on the

0
remaining H types. Then €& respects the left action of R(g,K),
is in ¥Y(W), and has ¢ =n . Hence £ has the required

properties.

Recall the functors P and I from C(q,H) to C(g,K) given

in (2.10) and (2.12).

Proposition 3.2. Let (g,K) and (q,H) be two pairs with

g ©2q and K> H compatibly. Then there are natural isomorphisms
Homg (o | ) (B82 V), W) = Homg oy (V, GNTH(W)  (3.1)
HOmR(g,K)(W’Ifig(V)) = Homg (. (33’ 2(W), V) (3.2)

for V in C(q,H) and W in C(g,X) .

Remark. When H = K, &Y(W) = W by Proposition 2.5. The
resulting identities are called "Frobenius reciprocity." It follows

from these identities and (6.1.7) and (6.1.23) of [12] that
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P8 E(V) = ina}’E(V)

e g,K
18:5(v) = pro®’X(v) ,

in the notation of [12]. These formulas show how pro and ind
can be defined without a several-step process. Also they confirm
that the problem of a good notation, satisfactory for everyone, is

completely hopeless.

Proof of (3.1).

Homp (g, ) (P, 0(V) W) = Hompg g (R(8,K) @g(q ) Vs W)

I®

Homp () (V5 Homp (o 4y (R(g,K),W)) by (2.8b)

= HOmR(q,H HomR K)(R g,K),W) )
= Homg (o gp) (Vs (B¥)§ () -

Proof of (3.2).

Hom

R(g, K)(w;Ig’g(V)) = HomR(g,K)(W, HomR(q,H)(R(g’K)’V)K)

= HOITIR(Q,K) (W, HomR(q,H) (R(Q,K),V))

IR

HomR(q,H)(R(g,Kj ®R(Q,K) W, V) by (2.8D)

1§

q,H e
Homy, (4 | H)(E K(w),v) by Proposition 2.2.

It is worth tracking down the explicit formulas for (3.1) and

(3.2). If we write (3.1) as & «<— %', then the relationship 1is
3(rov) =3'(v)(r). (3.3)
If we write (3.2) as % «—> %', then the relationship 1is

3 (w)(r) = &' (xw) . (3.4)
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Corollary 3.3. If (g,K) and (q,H) are pairs with g 2 ¢

and K> H compatibly, then Pg’g carries projectives to projectives
3
and 13’% carries injectives to injectives.

q,H

Remark. These results are analogous to those on pp. 30-31 of
[6]. But here the rings R(q,H) and R(g,K) are not necessarily

related by a homomorphism.
Proof. If P is projective in C(q,H) , then (3.1) says that

— ’K
W Beg(y ) (% (E) - W)
is equivalent with

(P, EFNY 2 (W),

W - Hom
g,k

R(q,H)

which is exact, being the composition of the exact functors (Ev)g’%
and HomR(q,H)(P")' (See Lemma 3.1.) Hence Pgig(P) is projective.

If I is injective in C(q,H) , then (3.2) says that
- g,K
is equivalent with

W HomR(q’H)(3gi§(w), 1),

which is exact, being the composition of the exact functors 3;’%
]
K i aa :
and . 2 ence 8, is injective.
n HomR(q,H)( 5L H Iq,H(I) J

In C(1,K) every module is both projective and injective, and
thus Corollary 3.3 yields the known results that every P%’E(V) is
projective (Corollary 6.1.8 of [12]) and every I%’%(V) is injective

(Corellary 6.1.24 of [12]). In addition, if Vv i1s'in C(s,K)
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then V is a quotient of PS’K(Si’KXF), as in Corollary 6.1.10 of

1,KV'g,K
[12], and V maps in one-one fashion into I?’%(&é’%ﬁf), as in
b 1
Corollary 6.1.24 of [12]. One consequence is that axioms (ii) and

(iii) before Proposition 2.2 are now seen to be verified for C(g,XK) .
Another consequence is that the projectives in C(g,K) are the
direct summands of all P?j%(v) for Vv in C(1,K), and the
injectives in C(g,K) are the direct summands of all I%:E(V) for
¥ fant C LK) Y

Fix a pair (g,K) and write g =19p as usual. Let P be
the projection of g on p along !, and let m = dim p . For
0{n{m, we can regard N as a (1,K) module under the adjoint

representation. Corollary 3.3 shows that the (g,K) module

X, = R(g,K) ®R(1,K) A (3.5a)

is a projective in C(g,K) . Since

(2.8a) and Proposition 2.2 give

R(8,K) 8y, x) AP = (U(8) @y R(LK)) @y py A%p = U(3)‘5‘;’11(1)'\nb :

and thus Xn can be written in the more familiar form

Xy = U(s) 8y A% (3.5b)

with K acting by Ad® Ad. The sequence of C(g,K) modules and maps

v °0 Sl Op-1
0 4= Sgre=miy Fe—Inl e el =0 (3.6)

with



S =

4 L+1 )
an_l(ut&YlA...A Yn) = f (-1) (uYL®YlA...AYLA... AYn)
4=1
r+s ~ ~
+) (F1) TP (ue Py, Y AT A AT AL AT AL LAY )
r{s
(3.7)

and e given by projection to the constant term is exact and is

called the Koszul resolution in C(g,K) of ¢ with trivial action.

(see [9] for the exactness.)

The axioms listed before Proposition 2.2, now known to be
satisfied for C(g,K), allow us to use derived functors in the usual
way. BEach module V in C(g,K) has a standard projective resolution
and a standard injective resolution that are sometimes helpful. We
shall write them down after some preparation.

For V and W in C(g,K), we make V®_ W into a member of

C
C(g,K) 1in the usual way by defining

X(v®w) = Xv®w + v® Xw for Xegq

Il

k(v®w) = kv® kw for keK.
We attempt to make HomC(V,W) into a member of C(g,K) by defining

X(p(v)) - 9o(Xv) for Xeg

1l

(Xp) (V)

k(o (k" 1v)) for keK.

ll

(kap) (v)

However, not every member of Homc(v,w) need be K-finite. Thus we
extract the K-finite part HomC(V,W)K, and the result is in C(g,K) .
(see [12, p. 311].)

We shall use the identity

HomR(g’K) (U®CV, W) = HomR(g’K) (10 Hom“:(v,w)K) (3.8)
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valid for U, V, and W in C(g,K) with actions as above. (See
[12, p. 314].) To prove this identity, one begins with the vector

space identity

Hom (U®( V , W) = HomC(U, Hom, (V, W) )

C( C(

given in (2.8c), then checks that the g and K actions correspond,
then restricts to R(g,K) maps, and finally puts the subscript K

in place for free.

Proposition 3.4. Let W be in C(g,K). Then

(a) the functor V - Ve W on C(g,K) 1is covariant and exact,

and it sends projectives into projectives; if W is finite-dimensional,
it sends injectives into injectives.l

(b) the functor V > HomC(V}W) on C(g,K) is contravariant

K
and exact, and it sends projectives into injectives.
(¢) the functor V - HomC(W’V)K on C(g,K) 1is covariant and

exact, and it sends injectives into injectives.

Proof. The results about covariance/contravariance are obvious,
and the exactness follows from the corresponding fact in the category
of vector spaces. For (a) let P be projective. We use (3.8). The

functor
v > HomR(g,K)(P®cW, W)= HomR(g’K)(P, HOmC(W,V)K)

is the composition of V » HomC(W,V)K and U ~»> HomR(g’K)(P,U), both

of which are exact. Hence P®(:W is projective. ILet I be injective,

i This last statement is a corrected version of a sentence in the

proof of Lemma 3.3 of [8].
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and suppose W is finite-dimensional. With W = Homm(W,C) denoting
the dual of W, we can check that I®;W = Hom,(W,I), as (g,K)

modules. The functor

V> Homp o 1y (V, I8 W) = Homp (o ) (V 5 Homc(w*,I)K)

=1 X%
= HDmR(g,K) (V@CW 5 1)

is the composition of V » V® W and U - Home (0 1) (U,I) , both of

C

which are exact. Hence I®_, W is injective.

C
For (b) let P be projective. The functor

V > HomR(g,K)(V, HomC(P,W)K) = HomR(g,K)CV®®:P, W)

£ HomR(g,K) (p, HomC(V,W)K)

is the composition of V - HDmC(V,W)K and U > HomR(g,K)(P’U)’
both of which are exact. Hence Homc(P,W)K is injective.

For (c¢) let I be injective. The functor

V > HomR(B,K) (v, HomC(W,I)K) = HomR(g,K) (v%w, I)

is the composition of V -» V@, W and U~ HomR(g’K)(U,I), both of

which are exact. Hence HomC(W,I) is injective. This completes

K
the proof.

We write V* for the dual of a vector space V. A special case

of Proposition 3.4b is that the functor V > (V ), on C(g,K) is

K
contravariant and exact, and it sends projectives into injectives.
We denote (V*)K by V©.

Let V be in C(g,K) . Applying (a) and (b) of the proposition

to the Koszul resolution, we obtain a projective resolution
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06— Ve Xy®Vé— X8 Vé— ... «— X 8. Ve— 0 (3.9)

and an injective resolution

0 —> V — Homg (X, V) — Hog (X1,V) e —> ..  Hom (X, V), —> O .
(3.10)

These are called the standard resolutions of V.

We conclude this section with some auxiliary results. The

first generalizes the induction-by-stages formula.

Proposition 3.5. Let (g,K), (q,H) , and (ql,B) be three pairs

with ¢ 2 q2¢q; and K2 H2 B compatibly. For V in C(aq5B) »

there are natural isomorphisms

3, K, 9,H ~ p3sK
Fo,H Pgl,B(v) qu,B(V)

and

g,K, +q,H = 19:K
T 1T l,B(V) Iql,B(v) .

Proof. Formula (2.8a) and Proposition 2.2 give

Pgiﬁ"ngB(V) = B(8,K) ®g(q,u) Rla,H) ®R(ay,B) "

¥ = 2K ),

== ®
R(g’K) R(quB) ql’B

while (2.8c) and Proposition 2.2 give

Igjgﬁig;?B(V) = HomR(q’H)(R(g,K), Hm%ﬁhjflﬂ(R(q’H)’v)H)K



Proposition 3.6. Let (g,K) and (q,H) be two pairs with

g 2 ¢ and K> H compatibly, and suppose H has finite index in
K. Then the functors Pg’K and I&’K are exact.

Proof. Proposition 3.5 gives PQ’K = PS’K PB’
,

the two factors separately. Propositions 2.7 and 2.2 give

, and we consider

g, K = ® = ==
Pg H(v) R(g,K) R (g, H) Vel ®R(1,H) R(g,H) ®R(3,H) Ve C @R“ ) Y
Since H has finite index in K, t =% . Thus R(1,H) = Cy- Hence
3, K - -
Pq’H( V) = CK@CH V=Cp®y V.
Now V = CKI®C V 1is exact, and CK C V is fully reducible as an
H module under the tensor product action. Thus CK q V may be

identified with the H-isotypic subspace for the trivial representation
of H, and the passage to this subspace is exact. Hence PS:H
is exact.

Let pq be a vector space complement to q 1in g . Then
U(g) = S(P')®{:U(q) as a right ¢ module (with trivial action on
S(p')) , and we have vector space isomorphisms

q H(v) = R(g,H) ®R(Q’H) V= U(g) ®U(b) Cy @R( JH) v

= Blpl) @y Vi) By Co Bpfe ) ¥

1

S(pi) ®|B R(q’H) ®R(C{,H) V= S(p') ®C V,

the last step holding by Proposition 2.2. Thus Pg g is exact.
’

We argue similarly for Ig’g. We have
3

132 (V) = Homp (o ) (R(s,K), V)g
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== HomR(g,H)(CK ®R(1,H) R(g,H) , V)K by Proposition 2.7

= HomR(T,H)(CK, HomR(g,H)(R(g,H),V))K by (2.8¢c)

= Homp (4 4y (Ce > Homp (o 1y (R(8,H), V)

— HomR(t,H)(CK’V)K by Proposition 2.5.

Since H has finite index in K, we can replace R(1,H) by CH and
then by H. Then V > HomC(CK’V)K is exact, and so is the passage
to the H invariants. Hence Igjg is exact.

Finally the same isomorphism R(g,H) = S(p')®,R(q,H) as above

gives a vector space isomorphism

a,H

I, (V) = Homp o 4y (R(g,H),V)yy = Homp o 4y (S(v') ®¢ R(q,H) » V)y

o Homc(s(p'), HomR(q,H)(R(q’H)’V)H)H by (2.8c)
e HomC(S(p‘),V)H by Proposition 2.5.

Thus Ig’H is exact.
q,H
Proposition 3.7. Let (g,K) and (g,H) be pairs with K2 H

T H
g,H

injectives to injectives.

compatibly. Then & carries projectives to projectives and

Proof. It is enough to handle standard projectives and injectives

P=R{g,H) ®, W and 'I's Hom,, (R(g,H),w)H ;

CH H
where W is an (y,H) module. Write g = t1@®p as usual. Then
we have

35,m(F) = () ®¢ (R(1,H) @ 1)
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by Proposition 2.6. The factor in parentheses is projective by
Corollary 3.3, and 3;’%(P) is thus projective by Proposition 3.4a.

Also we have

t’H = =
by Proposition 2.6 and (2.8c). The inner Hom on the right is
injective by Corollary 3.3, and HT’H(I) is thus injective by

g,H
Proposition 3.lc.

4. poincaré duality

Fix a pair (g,K). The functor V - V‘@R( ¢ is covariant

"K)
and right exact from C(g,K) into the category BC(O,[l]) of all
vector spaces. Its left derived functors, defined by a projective
resolution of V, are defined to be the relative homology functors
V> H(38,K5V) .

Similarly, for V in C(g,K) , let VR(Q’K) be the subspace
of R(g,K) invariants; these are the ¢ invariants that are fixed
by K. The functor V - VR(Q’K) is covariant and left exact from
C(g,K) into C(0,{1}). TIts right derived functors, defined by an
injective resolution of V, are defined to be the relative
cohomology functors V - Hn(g,K;V).

Let us make matters explicit, using the standard resolutions
(3.9) and (3.10). We need the following vector space identity, which
is a companion result to (3.8). It is valid for U, V, and W in

C(g,K) :

(Ve W) . (4.1)

(Bee ) SRy YT R ® (¥

C R(g,K)

Here the tensor products over € carry the tensor product (g,K)
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action. For the tensor products over R(g,K) ,

the factor on the

left is converted from a left R(g,K) module into a right R(g,K)

module in the usual way by the standard antiautomorphism of R(g,K).

Let us prove (4.1). The map is simply
(ue@v)®w > ue® (vew) .

We start with (2.8a) in the form

(U® V)@CWa Ue®

C C(

V@CW).

(4. 2)

(4.3)

We compose the map in (4.3) from left to right with the passage to

the quotient on the right side of (4.1). Then we check that the

composition descends to the quotient on the left side of (4.1). Thus

(4.2) defines a map of the left side of (4.1) onto the right side of

(4.1). The inverse of (4.2) defines the inverse map in (4.1).

Let us make homology more explicit. We consider the standard

projective resolution (3.9) of V. A term is

n

3 = V‘@R

(X ®,V) ® v

n2¢ ¢ = Xn ®

R(B:K) R(Q,K)

Xn®CTI, and we write
X. = R{a,%X) ®2(1,K) A% as in (3.5a). Applying the functor

(5. 5) ¢ to the resolution and using (4.1), we have

= (8 Supy g RiRE) N Gp gy

1R

1}

A% op(y,g)

= A% @ V.

Thus the complex from which we obtain homology is

A"p ®r(1,x) (R(3>X) ®R (g, ) V) by (2.8a)

by Proposition 2.2
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O<—Aop®KV<—a—-Alp®KV<—a——...4B—Amb®Kv4—--O, (4.4)

and we readily check that the operator 3 is given on App@ﬁcv by

”~
I oee N

LN  AX B X, V)

n
3(X;A... AX 8V) = ) (-1)¥(x 5

r+s = s
+;(—1) (P[xr,xsj;\xln...Axrn...xsh...Axn®v).
ra s

(4.5)

Next let us make cohomology more explicit. We consider the
standard injective resolution (3.10) of V. A term is HomC(Xn,V)K,
and we again write X  as in (3.5a). Applying the functor V - VR(Q’K)

to the resolution, we have

)R(QJK)

(Hom Xn,V)

o K = Homp (o 1) (X, V)

= Homp (1) (R(8,K) ®p(y 1) A%, V)

= Homp 4 ry (A% , Homg (4 | k) (R(g,K),V)) by (2.8
= HOmp (4 1) (A% , Homp (o ¢y (R(8,K), V) g)

= Homp (; ) (A%, V) by Proposition 2.5

= HomK(Anp V) .

Thus the complex from which we obtain cohomology 1is

0 — HomK(AOp,V) — HomK(Alp,v) —-3'1——> R HomK(Amp,V) —> 0, (4.6)
and we readily check that the operator d is given on HomK(Ak_lp,V)

by



g
k

= L+1
WD ) s U SO M AN R )
L=

Ca)

r+s G
I = A
| Z (-1) }\(P[Yr,YS]nYl ...AYrA...AYS/\...AYk) :
s

(&.7)

Since V »> V ® € is right exact, we have a natural

R(g,X)
isomorphism

Ho(g,K;V) =V ® C.

R(Q:K)

Since V > VR(Q’K) is left exact, we have a natural isomorphism
10(g, 15 v) = vR(8:K)

Recall that gq is unimodular if the adjoint action of g on

AL 8 g

unimodular. Consequently t acts by the same character on Adim g

is the zero action. As a reductive Lie algebra, t is

We can therefore regard Adlm pp as a member of

and on Adim pp :

C(a,K) Dby insisting that g act by the same character by which it

acts on Aﬁlm 8g and that K act by the adjoint action; these

actions are consistent.

Theorem 4.1 (Poincaré duality). For any g, for O {idm=4dimyp,

and for V in C(g,K) , there are vector space isomorphisms

H (3, K5 V") = H, (3,K7)" (4.8)
and
H (3,KV) = H_;(s,K; V8g (A)") (4. 9)
natural in V. Consequently
B (3,K V%) = " (g, , Vo A)" (4.10)

naturally in V.



=0 iy

Remarks. The isomorphism (4.10) comes by substituting (4.9)
into (4.8). If K acts trivially on A"y (as is the case if K
is connected) and if g is unimodular, then (A"p)" can pull out

of the homology in (4.9) and A™p can pull out of the cohomology

in (.10).
Proof. Let F(W) = WR(B’K) and G(W) = w-®R(g X) €. Then
F(V®) = HomR(g,K)(C,VC) = HomR(g,K)(C,Homm(V,C)K)

= Hom (V © c,c) = (V)

R(g,K)

by (2.8b) if we regard V as a left € module and a right R(g,K)
module. TLetting "dual" refer to (-)¢ in C(q,K) and to (-) in

C(0,{1}) , we can rewrite this relation as a natural isomorphism
Fedual(V) = dualsG(V) . (4.11)
If (-)T refers to a right derived functor and (-)i refers to a

left derived functor, we thus have

(Fl-dual)(v) 2= (F-dual)i(v) since dual is exact and carries
projectives to injectives
= (dualeG) (V) by (4.11)

o (dual-Gi)(V) since dual is exact and

contravariant.
This isomorphism is just (4.8).

Proof of (4.9). We break the argument into several steps.
(1) Preliminaries. We calculate homology and cohomology from the
explicit complexes (4.4) and (4.6). In this setting we shall exhibit

a natural isomorphism on the chain/cochain level and show that it
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passes to the homology/cohomology. First we define 3 on all of
N'p ®CV®C (Amp)* by (4.5) and d on all of Homc(!\k_lp,v) byl LT ) «
It is trivial that o commutes with the action of X on

Ap e Vg (A"p)* and thus descends to the K dinvariants

A ®, (V8 (A%)*) . And, of course, our new d is an extension
of the original one on HomK(Ak_lp,V) . We give the isomorphism on

the level of a map

Ay ®¢ V 8¢ (A% )* — Hom (A" p, V) . (4.12)

¢l

Namely for € € A%, y e A" p, and e ¢ (A™)*, we define

E®VRe - }‘§®v®e by

hegvee (Y) =€(@Bay)v. (4.13)

owge ©Xtends to give the linear isomorphism (4.12).

This map respects the K actions

Then E®@ vee - ?\g

k(E®Vvee)

kE ® kv ® ke

k(M (K Ty))

Il

(k) (v)

because

Me(govee ) (V) = Mggkvoke (V) = () (KEAay)kv = e (5 Ak Yy )kv

k(e EAKY)V) = K(hggype (K ¥)) = (Khgg o ) (¥) -

Restricted to the K invariants, our map thus gives a linear
isomorphism

A% @, (Ve (A"p)") —s Hom (A" "p,V) .

Equation (4.9) will thus follow if we show that, under our mapping

E®V®E > A d corresponds to (—l)lgld, where |g| is the

E@vee
degree of E§ . That is, we are to show that



L

L el (4. 1)

d?‘§®v®e A (Eowe ) *

(2) More explicit formula for action of p on A'p. Put

t =dim t . Until (4.17) below, fix nonzero elements

n o= Xy Aeca A X in Amp

T:TlA"'AT‘t in f\ti.

If Z belongs to g, then Z acts on Amp by multiplication by

the scalar c¢(Z) defined by
c(Z)(naT) = Z-(MAT) .

More explicitly,

m

e(z)(nat) = Y (DX IAX A AR A A XyAT)
i=1

(4.15)

t
jd ~
4 Z (-1)9 (nA[Z,Tj]ATlA...thA... ATt)
=1

Suppose now that Z Dbelongs to p. Then [Z,Tj] belongs to p ,
and its exterior product with nn is 0. Thus the second sum on
the right side of (4.15) is 0. For the same reason we can replace
[Z,Xi] by its projection on p in the first sum. Finally we can

drop T on both sides, obtaining

m -
e(z)n = ) (FL)MHPIZE AR A AR AL AX) (4.16)
Tl

dor&glr Z in 9.

For the action on the element e of (A"p)*, (4.16) gives
m

(zee)(n) = 3 (D @PIZX 1A% Ao afin o aX) (4.17)

i=1

Forsanlils U7 =3nl Pl
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(3) Verification of (4.14). TIet E = XA ... AX and

Y = Ygar...nY be in A%p and /\m_n+lp , respectively. To

prove (4.14), we want to prove that

D 1)+ (I e i) = 0. (4.18)

Actually we shall prove that

(—l)nd?\g®V®e (Y) & 7\6 (p;@we)('f) = d(e® V) (8 AY) . (L!‘.l9)

On the right side, e®v is to be regarded as a member of Hom(Amp,Y) :
Since Eay belongs to Am+lp, which is zero, the right side of
(4.19) is 0. Thus (4.18) follows from (4.19).

To prove (4.19), we introduce

& A : n-1
gi_XIA 'AXJ.A AXn in A p
_ = o . n-2
N i, (4.20)
Y:L = YOA ~ AYlA AYm_n in A n‘g
K ~ A . m“n"‘l
YIJ_YOA...AY:.L»...AYJ.A...AYm-_n ingA B =

We compute the left side of (4.19), using (4.5) and (4.7) to obtain

DR T e @ Ay )y s F0® Tt (8~ PIYy, Vsl ayyq)Y
i=0 il

n n
= Y (D Te (B Ay - ) (-1)(Xe) (B LAYV
="l r=1

= ) (-1) "% (P[X X I AB gAYV
ris

We use (4.17) to compute Xre , rearrange terms a little, and find

that this expression is
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= m-n
=) (-1)"He (B AY)X. Y + z (i) B ftawy. <

) 125
Z (-1) 5 (PIX X JAB  AY)V + X (-1 (P[Yi,Yj]AgAYiJ.)V
B i3

. 'Z z (-1)""% (P[X,, X ] AT, )V+Z Z(_l)ﬁse (PIX_, X ]nE

r’ gl 2 rsAY)V

r=1 {r r=1 s)r
n m-n
E 2 (_l)r+i+n—le (P[Xr:Yi]Agrth)V.
r=1. =06

(Here the last three terms represent the contribution from the sum
involving X .) The fifth and sixth terms are each the negative

of the third. Thus the expression simplifies to

I Hl=T}
= ) (DAY + ) (D) Eay)Y
=il A= 0)
+ Z(_l)l”fs (PIXp X JAE  AY)V + Y(l)”J (PLY3Y;1aBAY )Y
<s l<J

E el b e (P[X, Y] AE  AY,)V,

which is precisely the right side of (4.19), by (4.7). Thus (4.19)

is proved, and Theorem 4.1 follows.

5. Mackey isomorphisms

We shall need two associativity formulas that lie deeper than
the ones in (2.8), (3.8), and (4.1). These formulas generalize the

well known fact about induced representations that induction commutes
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with tensor product under certain circumstances. Accordingly we

call these formulas Mackey isomorphisms.

Theorem 5.1. Let (g,K) and (q,H) be pairs with g 2 q and

K> H compatibly, let U be in C(g,K) with action =, and let

V be in C(q,H) . Then there exists a unique isomorphism of C(g,K)

modules
. ’K = )K
3 .Iﬁ,HUJ®C V) tr®®]§’H(v) (5.1a)
such that
3(c® (fov)) = E f.® (tw(-)f,fi)c(-)®'v) (5.1b)
i

for,. e, dn CKTE-R(Q’K)’ fardin, W, apdis¥vedn s here P lles dn
some finite-dimensional K-invariant subspace of U, (-,+) is a
K-invariant inner product for this space, and {fi} is an orthonormal

basis of this space. The isomorphism is natural with respect to

o and V.

Remark. For intuition, one can regard the right side of (5.1b)
as the image of f® (8 ®v) acted on by c¢; here 8 1is a point mass

at 1 i1 K.

Proof. Uniqueness is clear since U(g) carries Cr within
R(g,K) onto R(g,K) and since % is a g map. To prove existence
with (5.1a), we first reduce matters to the case of Pgig. Let
U and V be as in the theorem, let X be in C(g,K); and let Y

be in C(g,H) . Then we have natural isomorphisms
HomR(g,H) (Y ’ Hom‘R(g,K) (R(QIK)sHomC(U:!X)K)H)

= HOITLR(Q,K) (R(Q,K) ®R(B;H) iy HOHIC(U,X)K) by (2.8)
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= HomR(g,K)(U% (R(3,K) ®p (g ) V) 5 X) by (3.8)
= HomR(g,K)(R(g’K)®R(g,H) UJ@EJY), X) by (5.1la) for PE:H
— HomR(g’H)UJ®CY',HomR(g,K)(R(g,K),X)H) by (2.8)

o~ HomR(g’H)(Y, Homc(U,HomR(g’K)(R(Q,K),X)H)H) by (3.8).
By a standard argument in homological algebra, we conclude
HomR(g’K) (R(g,K) » HomC(U,X)K)H = Hom (U, HomR(g,K) (R(g,K),X)H)H (5.2)

naturally. The map from left to right is the member of the last Hom
above that corresponds to 1 1in the first Hom when
o= HomR(g,K)(R(g,K),HomC(U,X)K)H. Therefore we have natural

isomorphisms
HomR( 5 B )(U® (R(g:K)®R(q,H) V),X)
= HomR(g,K)(R(g,K) ®2(a, H) v, Homg, (U, X) ) by (3.8)

— HomR(q,H) (V,HomR(B’K)(R(g,K),HomC(U,X)K)H) by (2.8)
= Homp (. H)( , Hom (U,HomR(g K)(R(g +K), X )H)H) by (5.2)
e HomR(q’H) (U®c V,HomR(g’K) (R(g,K),X)H) by (3.8)
o= Hom.R(g,K) (R(g,X) @R(Q,H) (U@CV),X) by (2.8),

and the isomorphism (5.la) follows, again by standard homological
algebra.
Next let us show that (5.1b) follows in general for the map

constructed above if (5.1b) holds for the map involved for Pg’H Let
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§1 BT i @6 be corresponding members of the Hom's that precede
B5.2).. Feor ¥ im ¥, » IAn Rlg,¥) , ¢ in Cp» and f in U,
we have
3, (y)(r) =3,(rey) by (3.3)
@2(r®y)(f) = §3(f® rey)

’K

3) (ce® fey) = @B( E £, (ﬂ'(')f,fi)c(-)t@y) by (5.1b) for Pg,H

3, (refey)

Il

3 (f@y)(r) by (3.3)
35 (foy) = #5(y) () -

Put Y = Hom.R(g,K) (R(g,K),Hom U,X)K)H and 3%, = 1. Then we obtain

o

86(v) (£) () = 85(£@y) (c) = §(c@tay)

Il

L £, ® (1 e fe, .
5T 158 (n()1,8))e(-) oY)

Il

D ap((r() 8, 8,)e(-) 8 ) (1)

=% 8, (3) ((m(-)£,8.)e(-)) (£,)
i
=L y((w(-)f,fi)c(a))(fi) since &, =1, (5.3)
i
and %, 1is the map that implements (5.2). ILet ¥9,...,¥5 be

corresponding members of the Hom's that follow (5.2). For r in

RgrK) s ¢ 4dn: €., £ 4n U, and ¥ in 'V, we have

K
‘fl(f@: re V) = ?’2(1'@ v) ()
Y, (rev) = YB(V)(I‘) by (3.3)

Il

¥y (v) (£) (r) % Yo (v) ((r(-)f,£5)e(-)) (£5) by (5.3) with y = ¥3(v



Il
]

¥, (v) (£)

Il
)

Yeo(re £ov) 5(f®'v)(r) by (3.3)-

Put X = U®, (R(g,K) ®R(q,H) V) and ¥, =1. Then we obtain

I

¥Yo(c®f®v) Y5(f®'v)(c) = ¥ (v) () (c)

Z ¥g(v) ((m(-)f,f5)e(-))(£;)

= L ¥p((r(-)£,85)e(-) 8 v) (£;)
= E:i Y, (£5@ (m(-)f,£5)c(-) @ V)

= ? ;@ ﬁT(')f:fi)C(')®‘v since ¥, =1,

and Y6 is our required map 3% satisfying (5.1b).
Consequently it is enough to prove the existence part of the
theorem for P%’g. This we shall do directly. Since Proposition
s

2. gives

Ue® V)

B 5(U8e V) = R(8,K) @y 1y (UG

= C.® )R(g,H)® (U®Cv) - CK®R“’H) (U@CV) .

R(1,H R(g,H)

equation (5.1b) defines & globally, although not obviously
consistently. For consistency, let X be in t and h be in H.
In obvious notation we have
3(r(-X)c® (fov)) - 3(c®X(favVv))
=L £;,8 ((v(-)f,£;)r(-X)c(-)® V)
- £;® ((w(-)Tr(X)f,fi)c(-)®v)

=L £, ((m(- )f,fi)c(- ) ® Xv)
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=7 fi® (I‘(-—X){('ﬂ'(')f,fi)(l(’)}®V)
T f;® ((W(-)f,fi)c(-)®}(v) = 0

and

-1

3(r(h) c® (fev)) - g(co®h(fev))

=% £,8 ((r(-)f,£;)c(-h 1))@V

-2 £,8 ((Tr(-h)f,fi)c(-))®hv = 0.

This proves consistency.
Let us verify that & is indeed a (g,K) map. The argument

is not totally transparent, and we include it. If Y 1is in g, then

3(Y(c® (f®Vv))) = 8((Y®c)® (f@V))

_ly)

=3 ((c®Aad(-) ® (F@®V))

=T 8(c(-)(ad(-)"v,v;) @ ¥,) @ (f@ V)
=T g(c(-)(rd(-) ", Y,) @Y, (£B V)

= i%jfj@a (c(-)(Bd(- )_lY’Yi) ( (- )W(Yi)f’fj) ® v)
+ j_?jfj@ (c(-)(ad(-) lY Xy ) (7 )f,fj) ®Yiv) ; (5.4)
while

Y(3(c® (£8v))) =T Y(£;® (c(+)(r(-)f,£;) @ V))
=X m(Y)f; @ (c(-) (r(-)f,£;) ®V)
oy ;@ ((y®c(:)(m(-)f,£,)) ®v)
=Z_§l m(Y)f;® (e(-)(r(-)f,£;) @ V)

+ T £i0 (c(-)(r(-)E,£,) (84(-) 1Y, ¥,) @0 T,v) (5.5)
1,J
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The second term of (5.4) matches the second term of (5.5). We
rewrite the first term of (5.4) by changing from the basis Y; to
the basis Ad(-)“lYi, and the term becomes

= B 1ye (e(- )23, ) (r(AwHal- F o ). ) o)

il

I 552 (O Do) (r(x)n(-)ee5) 0 v)

I

% £5® (c(-) (r(¥)m(-)f,£5) @)

Il

= 55® () (re, 1) (1()2,85) 0 v)

L m(Y)f;® (c(-)(m(-)f,£;5)®V) .

This matches the first term of (5.5) and shows & 1is a g map.
Pinally if k 1s in ¥, then
8 (k(c® (f8V))) = 8(c(k )@ (fov))
=L £,® (c(kt) (r(-)F,£;) @ V)
=L m(k)f;® (c(k"l')(w(-)f,w(k)fi)®‘v) by change of basis

=X TJI‘(1{):?1@ ('L(k)[c(')(ﬂ-(')f:fi)} ® V)

k(3 (c® (foV))) .

Thus & 1is a (g,K) map.

Finally we prove that & 1s one-one onto by constructing a
two-sided inverse. The argument is more general, providing a
two-sided inverse to (5.1b) for Pﬁ:K, and we shall use this
generality in §7. Put

Y (£ (c®v)) =T c(-) (v(+) 71, £,)® (£,8v) . (5.6)
1%
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We check that Y 1is a well defined two-sided inverse for & . As
with %, ¥ 1is well defined if we check consistency of c® v for

! and H. I X dsisdn ot end hy isiiin, B, we thave

Y(f® (r(-X)cev)) - ¥(f® (c® Xv))
=T (r(-X)e(-))(r(-) 71, £;) @ (£ 8 V)
=T c(-)(r(-)7TE,£,) ® (£, ® Xv)
=% r(-x){c(-)(r(-) 7 e, 5,)1 @ (£, 0 V)
- T e()r(-X){(r(-) 71, 5,)1 @ (£, 8 V)

- T e(-)(n(-)71E,£,) ® (£, @ Xv)

Loe(:)(r(-)7te,25) @ (r(X)f; ® V)

1l

- % c(-)r(—X){(v(-)_lf,fi)}® (f;®v) since X moves across ®

)® (f.ev)

= T o) (m(-)7The, £y) (m(X) £, 24) @ (£

2.9
- I e(-) (r(X)m(-) "1, 8,) @ (£,8 V) = O
and
¥(£® (r(h) tc®v)) - ¥(£f® (c®hv))
=T e(-h™ ) (r(-) e, ) @ (£,8v) - c(-)(n(-) 7 E,£,) @ (£, hv)
=T r(n) e () (r(-n)TME, 1) e (£ 0 V)
- T c(-)(w(-)7 e, 2 ) @ (£ ® hv)

L c(-)(w(+) 71, m(h)£;) @ (m(h)f, ® hv)

il

- c(-)(r(-)7'e, 5 ) @ (£,80v) =0,

the last equality holding since [W(h)fi} is another orthonormal

basis. Hence ¥ is well defined. In addition,
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¥(s(ce (£8v))) =T ¥(£;@ ((r(-)f,5;)c(-)®v))

- - —1‘
= i%j(ﬂ-(')f:fi)c( ) (m(-) fi’fj)® (fJ.@V)
=L (f,fj)c(-)® (fjev) =c® (f® v)
J

and

3 (Y (£0 (c®v))) =L 8(c(+)(m(-) 7"t £5) @ (£;8 7))

i (c(-) (r(-)71e, 2.) (m(-) £, 2

j)@v)

=X £.® (c(-)(f,£.)®Vv) = £f® (c®V),
. ¢

and thus ¥ 1is a two-sided inverse to © .

Theorem 5.2.2 Let (g,K) and (q,H) be pairs with g O q

and K2 H compatibly, let U be in C(g,K) with action w, and
let V be in C(q,H) . Then there exists a unique isomorphism of

C(g,K) modules

3 : HomC(U,Igig(v))K+ Ig:g(HomC(U,V)H) (5.7a)
such that
3(¥)(c)(f) =2 @(fi)((w(-)'lf,fi)c(-)) (5.7D)
e
for ¢ in HomC(U,Ig’g(v))K, ¢ in CKS—‘_R(Q,K), and £ 4n U:;

here f 1lies in some finite-dimensional K-invariant subspace of U,

(+,+) is a K-invariant inner product for this space, and [fi] is an

2 . . . .
This theorem is a corrected version of an unproved statement in

the proof of Lemma 3.3 of [8].



=5l

orthonormal basis of this space. The isomorphism is natural with

respect to U and V.

Remark. On the right side of (5.7b), Q(fi) is a member of
-1
) f’fi)c(')

is the member of R(g,K) on which ¢(fi) is to be evaluated.

Ig’g(v), which is a space of maps on R(g,K), and (m(-
1 2

Proof. Again uniqueness is clear since the facts that & is a
g map and C, generates R(g,K) mean that 3 (¥) is determined

by its values on C The existence argument proceeds in the same

X *
style as with Theorem 5.1 but is much easier since no special case

needs attention. For X in C(g,K), we have natural isomorphisms

HomR(g’K)(X,HomC(U,Igig(V))K) (5.8a)
= Homp(, 1) (U® X, qu:g(\f)) by (3.8) (5. 8D)
= HomR(q’H)(U®C)<,v) by (3.2) (5.8¢c)
o HomR(q,H)(X, HomE(U,V)H) by (3.8) (5.84)
= Homp () (X, I3’ p(Homg (U, 7)) by (3.2). (5. 8e)

Then the existence of & as in (5.7a) follows by a standard argument

K

in homological algebra if we take X = Hom (U,IE’H(V))K and take &

C
to be the member of (5.8e) that corresponds to the identity in (5.8a).

Let us verify that this & satisfies (5.7b). Let 3, =1, 38,,

83, 8, , and & be corresponding members of (5.8a) through (5.8e).

For x in X, e and ¢! 9n ¢ and f in U, the relevant

K!
identities are

ot
—_
o
—
—
o
—
i+
—
[

= &, (cx) (£) by (3.4)

WH
I~

o

)
Il

§3(f® %)
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A
k"]
HJ
®
ol
B
I

§3(c'(f® x)) by (3.4)

=]
I_J
i)
H:,
Il

5,(f®x)

. . g,K : :
Fix ¢ in HomC(U’Iq,H(V))K and ¢ in Cp and f in U. If eq

is chosen so that eF(f® cy) = f®ct , then the above identities give

g (¥)(c)(f)

I

8 (ch) (£) = 85(£8 cf)
= s5(ep(foch)) = 3 (o ch) (ep)
= &, (ch) (£) (ep)

= (c4) (£) (ep)

(ke (¥ ( (k) 71E))) (ep) e (k) dk

]
=

= § 4 (1)) (r(x) Trep)e (k) ak
K
=T 4 (g) ([ (r(0 78, 25) ep(-KDe(k) ak )

- ? ¢(fi)(eF*-(W(')_lf,fi)c('))

= E Q(fi)((ﬁ(')—lf,fi)c(°)) ’

the last equality holding if F is sufficiently large. This proves

(5.7b) and completes the proof of Theorem 5.2.

Corollary 5.3. ILet (g,K) and (q,H) be pairs with g 2 gq

and K> H compatibly, let F Dbe a finite-dimensional member of
C(g,K) with action 7, and let V be in C(q,H) . Then there

exists a unique isomorphism of C(q,K) modules



-56-

" g, K g, K
B8 F%Iq;H(v) - Iq:H(th:Cv) (5.9a)
such that
3(f@p)(c) =X £f;@0((m(-)f,£;)e(")) (5.9b)
i
for ¢ in I@’%(V), # 1 P, and ¢ in CKZEvR(g’K)' The

isomorphism is natural with respect to F and V.

¥*

Proof. We put U =F in Theorem 5.2. We have
F®, I(V) = Homg(F ,I(V))

under f®¢ > ¢ with §(f ) = f (f)p and under L fJ.@\y(f:.) ¥

if {f?} is a dual basis to {fj]’ Then this ¥ maps by (5.7b) to

¥

8 () (c)(£7) =T £y (D)o ((r (-)71", £])e(+)) ,

which maps into I(HOmC(F*,V)) as

L 0% fi(e)p((r () e th)e()) .
J i

Sorting out this expression, we arrive at (5.9Db).

6. Zuckerman duality

Throughout this section we fix pairs (g,K) and (g,H) with
K> H compatibly. The Zuckerman functor T = Pg’g- and the "dual"
functor M = Hg’g carry C(g,H) to C(g,K) and are the covariant

functors defined by

T (V) = HomR(g,H)(R(g,K),V)K (6.1)

I(v) = R(s,K) ®R(Q,H) V. (6.2)



_5‘_('_

Since T and I are special cases of I and P, we can read
off a number of properties by specializing the results of §3. The
functor T is left exact, while 1 is right exact. Thus the
derived functors Ti of T° are obtained from an injective resolution,
while the derived functors Hi of T are obtained from a projective

resolution. From (3.1) and (3.2), we have adjoint formulas

HomR(g,K) (m(v)y, w). = HomR(g,H) (V,3~(W)) (6.3)

HomR(g,K)(w,I‘(v)) - HomR(g’H) (F(w),Vv) , (6.4)
where 3V = (Ev)gjg and & = 33:%. By Corollary 3.3,

I carries projectives to projectives (6.5)

I" carries injectives to injectives. (6.6)

By Proposition 3.5,
I and T can be computed in stages. (6.7)
And by Proposition 3.6,

I and T are exact if H has finite index in K. (6.8)

Our objective is to prove the Duality Theorem below. Let
m = dim(1/y) , and write t =}y &4 with & stable under Ad4(H) .
Let ® be the projection of t onto 8. Since K 1is compact,
t is unimodular. Thus A" becomes a member of C(t,H) with

trivial t action and the adjoint H action.



S5B.

Theorem 6.1. For 04 1< m=4din(1/y) end V' in € (3,8,

there are (g,K) isomorphisms

Loty L) C
To(v) = 0, (V) (6.9)
and
1 *
TH(V) = (Ve (%)) (6.10)
naturads (e el & Consequently
TN} = nhSk e AR (6.11)

naturally in V.

Remark. In the special case that K acts trivially on A"S$
and V has finite-dimensional H-isotypic subspaces, (6.11) is the
result conjectured by Zuckerman [17] and proved incompletely by

Enright and Wallach [8].

The proof of Theorem 6.1 will occupy the remainder of this
section. We begin by disposing of the easy parts of the theorem.
The isomorphism (6.11) comes by substituting (6.10) into (6.9).

Let us prove (6.9). We have

n(v)© = Hom (1 (V),¢)

c = Hom(R(g,K) ®

K R(g, 1) V? Cg -

On the right side, we regard V as a left R(g,H) module and a

right ¢ module, and we can then rewrite this Hom, via (2.8c), as
S HomR(g,H)(R(g,K),HomC(V,C)H)K
= Ho (Blgs8) AVC) o= TUN ) 5
OR (g, 1) (B8 BV g

In short, we have
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Tedual(V) = dual-ll (V) . (6.12)

Formula (6.12) is completely analogous to (4.11), and we obtain (6.9)
from (6.12) in the same way that (4.8) is obtained from (4.11).

Now we turn to (6.10), which is the heart of the matter for us.
It was recognized by Zuckerman [17] and Enright and Wallach [8] that
the proof of (6.11), which comes down to (6.10) for us, should be
divided into two steps. The first step is to prove the isomorphism
in C(1,K), and the second step is to see that the isomorphism
actually occurs in C(g,K) . In [17] and [8], the first step was
seen as the easier one and was readily handled by Poincaré duality
in C(1,H) . The difficult step was the passage to g . Zuckerman [17]
looked for formulas that would make the isomorphism clear, while
Enright and Wallach [8] wanted to prove a few simple properties of the
1t isomorphism and to deduce the g 1i1somorphism from general
principles. Our approach combines these ideas. An argument along
these lines to get (6.11) directly is not too difficult and is
indicated in §8. But (6.10), which involves a direct relationship
between T and 1, requires a more careful analysis. We choose to
do this analysis at the first stage——that of the t 1isomorphisms.

As our analysis proceeds, we shall see why we cannot carry along the
g action explicitly in our computations, and we shall therefore see
the role of the Enright-Wallach idea more clearly.

Both [17] and [8] use the relationship between I' computed in
C(g,H) and T computed in C(i,H) . Our approach will not use this
relationship explicitly, but the relationship does lie behind some
of our thinking. To make this relationship precise, let us temporarily

write Tg for T as in (6.1), and let us write P! for the version
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) O
on, Y FT = IT,H'

relevant natural isomorphisms are

We write Hg and H! similarly. Then the

L il R el
7 el == oF B
30 T (V) = T3 0(V) (6.13a)
and
1,K, b owioH
oMy ) g (V) = (W )geFy " (V) (6.13b)
for O é_i { m. These formulas for T and 1T themselves are

immediate consequences of (2.8); passage to derived functors is
accomplished by using Proposition 3.7 and the same argument that
obtains (4.8) from (4.11).

Now let us describe our approach. It follows from (6.13) that
il

I and Ui are 0 for i > m. Thus we look for a resolution in

C(g,H) that terminates at the mth step and allows us to compute
rl or n, . For ri(v), we are dealing with HomR(g’H)(R(g,K),V)K,
and the normal thing is to replace V by the members of an injective
resolution and compute the cohomology of the resulting complex. But
if we disregard the surviving (g,K) action, the situation is
analogous to that for the functor Exti(U;V). This functor may be
computed by replacing in HomR(U,V) either U by a projective
resolution or V by an injective resolution, and the cohomology
will be the same.

Our approach to Fi in similar fashion involves considering
what happens when we replace R(g,K) in HomR(g,H)(R(g,K),V)K by
a projective resolution in C(g,H) . This we can take to have

length m. The difficulty is that we must keep track of the

surviving (g,K) action.



267~

Let us be more precise. Let X be the Koszul resolution (of ¢)
in the category C(i,H) :
- n
X, = R(!,H) ®R(b,H)A (t/y) , (6.14a)

and let X denote the action of R(1,H) on X, by left multiplication

in the first factor. By (3.5) we can write Xn also as

n
= U(1)® 1 : 6.140b
X, = U(1) @y AR (1/8) (6. 14D)
Proposition 3.4a shows that Cp®p X, Wwith action L1@X gives a
projective resolution of CK in. C{1,H) s
1®e 1®93 1®93
06— Cp&— Cp@yX ¢~ ... & C @, X «— 0. (6.15)

The members of (6.15) have a (1,H)-commuting action by K given as
r® 1, and this action commutes with the boundary operators 183
since r®1 and 1®3d act in different coordinates. We call this

the external K action on (6.15). Next we apply the functor P?’g

to (6.15), obtaining by Proposition 2.7

0¢—R(g,K)¢-RO¢-...< R, < 0 ; (6.16a)

where

R, = R(g,H) 8y py (Cx®¢Xy) - (6.16b)

This is a projective resolution of (the representation L on) R(g,K)
in the category C(g,H), by Corollary 3.3 and Proposition 3.6. The

external K action on (6.15) yields an external K action 1®rel

on (6.16), and this commutes with the (g,H) action and the boundary

operators 1®1®39.
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Lemma 6.2. With X, written as in (6.14b), the map
£ (t®c@ (uen)) = (Re181)(u"")(tecen)
is an R(g,H) isomorphism of R, onto

respecting the external K actions 1®r®1 on Rn and RI'_l Under
this identification the boundary operators of (6.16) may be

reinterpreted in Ré as follows:

0 =
€ : R(g,H)® Cx®cN%) > R(g,H)® ) Cx = R(g,K)

R(y,H) R(p,H

d : R(g,H)® ) (CK®CAHS) -+ R(g,H) @CAn“ls)

R(h,H 8 (y,1) (Ck

e(t® (c®@l)) = t®c = t(c) (action in R(g,K))

®
I

3(t®c®Y A~...AY ) =Y (-l)l(R(Yi)t®c®YlA... AN ool e A )
]

(6.17)

Proof. TFirst we write down the isomorphisms, and then we

explain them:

® X

Ry = R(8,H) 8y gy (Cx®¢Xy)

n

= (R(g,H) & Cp) () X by (4.1)

1R

(R(8,H) @ Cp) ®p (y gy (R(1,H) @ 5y AV(1/9)) Dy (6. 14a)
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1

((R(,H) 8¢ Cy) gy gy R(1,H)) Oy oy A*(1/y) by (2.8a)
= (R(B’H)®m(%i)®R(b;H)An(T/b) by Proposition 2.2

== R(Q:H) QR({;,H) (CK®®AH(T/T9)) by (&'l)'

All of these isomorphisms are simple regroupings; no Mackey
isomorphisms are involved. The action that is tensored out over
R(i,H) is R®4L®X 1in the first two lines, R®L @ L® 1 1in the
third line, and R®4® 1L in the fourth line. The (g,H) action by
L on R(g,H) is respected at each step, and the external K action

by r onn C is respected at each step. Reinterpretation of the

K
boundary operator from (3.7) is straightforward and is omitted.

In (6.16a), the R(g,K) term has two obvious g actions, but
the terms Rn have only one. The action L on R(g,K) is the one
that extends compatibly to the Rn's. Although we shall not need
to do so, it is possible to carry information about the action R on
R(g,K) to the R 's. There is no difficulty with the K action;
it already appears as the external action by K in the CK factor
of Rn. In place of a g action on Rn’ one can settle for an
"action up to homotopy." Namely we invoke [6, p. 76] for each X
in g¢ (or each X in a basis) to produce a chain map Rn(X): B, = Rn
over R(X) : R(g,K) = R(g,K) , and the Rn(-) have the properties of
a representation, but with equalities replaced by homotopies. The
fact that Rn(x) is not given by explicit formulas (and is not even
given uniquely) is what makes the passage from t to g in the
Duality Theorem difficult.

We turn to the computation of the derived functors. Our opening

description was in terms of T, but we prefer to begin with I,
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which is a little easler in technical terms. To keep the notation
manageable, we shall work with Hn(V) for a while, rather than

Hn(vea(Ame)*). In order to take advantage of the same resolution
of R(8,K) to handle both T and @I, we shall use the naturally

equivalent definition of I as

n(v) =‘V®R(B’H)R(Q:K).

Here the action on V is tensored out with the action I on R(g,K)
and (V) gets its action from R on R(g,K) . (Recall the
discussion following the definitions of P and I in §2.)

Let V be in C(g,H) , and let V, be a projective resolution
of V in C(s,H) with action v . By Proposition 3.4, 7V ®.R(g,K)

n ¢

with action vn®jL and 'V@Cfﬁl with its tensor product action are

both projective resolutions of 'V@CPMQ,K) in C(g,H) , and we place

them in the diagram below. By [6, p. 76], there exist chain maps

! 1 . . s o
fn,v and gn’v over the identity as indicated
0 ¢—— V& R(s,K) {ilvof&CR(g,K) S S
1 1 1
A fo,v| | Bo,v tivl 18y
()6———'V®®R(5JQ e%%L- Ves R, (_E%L_ V@ Ry 1@5.__ (6.18)
1 L@fo
1®e 1@8

0 &—— VO R(g,E) €—— V%RO <23 ve Rl

Moreover, any two versions of are homotopic, and any two

1
{fn,V}
versions of {gﬁ V} are homotopic. In addition, gﬁ Vf' is homotopic

b 4

1 1

to the identity, and so is fn,vgn,v‘
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The top row of (6.18) has an external (g,K) action Wé given
by 1® R, and Wé commutes with the boundary operators, which act
in the second coordinate. The middle row has an external K action
T, » which comes from the Rn coordinate, and we know that this
action commutes with the boundary operators. Both actions reduce to

1® R on V@%jR(g,K). Because of this, we have homotopy relations

fn v (K) = Trn(k)fn’v and gn i () & (k)g,n ¥ (6.19)

for each k in K.

The maps f  in (6.18) are those in Lemma 6.2. The bottom
row has an external K action, and it commutes with the boundary
operators, by the lemma. Moreover, the maps fn are compatible with

the K actions on the middle and bottom rows.

Lemma 6.3. For V in C(g,H) , the map

nV(V®t®c®n) n@ttr ®c

is a vector space isomorphism of V®R(Q,H)R£ onto
n
(AN (1/9) @, V) @, Cpe (6.20)

that respects the external action by K given by r on the CK

factor. Under this identification the boundary operators 1®3 on

Ve R' may be reinterpreted on (6.20) as follows:

R(g,H)

: n n-1
d : (A Q%V)@HCK* (N s%v)@HCK
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n
& i
3 (Y ~.. AT, @V8C) =) (-1)1 (YA ... A

-~

Y‘AOOC

1

NY EY,; Ve c)

+ (-l)r+S(P[Yr,YS] AYA . AT A AYSA...!\YntSV@C).
r{s
(6.21)
Proof. The relevant isomorphisms are
V83, 1) Fn = VOR(g,n) (R(8:H) Ogy gy (Cx@cA™(1/5))
= (V®R(g,H) R(Q’H))®R(I;,H) (CK‘&CAn(T/b)) by (2.8a)

= V®x (4 1) (Ce®e A" (1/8))

14

(N (1/9) @4 V) ®, Cp

and the right side is (6.20).
Mackey isomorphisms are involved.
straightforward and is omitted.

We now apply the functor (-)@R(

g,H

The composite map is f

and to the associated maps and homotopies.

by Proposition 2.c
by (4.1),

! and no
Ny 7

The rest of the argument is

) ¢ to the diagram (6.18)

Retaining the same names

for the maps as in (6.18), dropping the first column, invoking (4.1),

and adjoining a row to take Lemma 6.3 into account, we obtain the

commutative diagram



D W R — Ve m By ak g Lo
18f,, o1, (6.22)
0 = Ve (g, H) Ré VO, m) Ry et oo
£o,v £1,v

2 (A (1/9) 8 V) 8y C 6— .

0
0 &—— (A (t/!;)%v)@Hc 1 Cx

K

of vector spaces. Because of the external K actions in (6.18) and
Lemma 6.3, the rows are complexes in C(1,K). The vertical maps

18=fn and f; v are (1,K) maps, but the first row of vertical maps

need not be (1,K) maps. The homologies of the top and bottom
complexes are, respectively, 1 (V) and something to which we give
a separate name HA(V). The diagram (6.22) induces vector space

isomorphisms on homology

n ' '
SRR S SIS P B 6 (6.23)

. 1 -1 29 1
W (fn.v V, * ) i gn; V, %

(6.23) are (1,K) maps.

Relations (6.19) say that the isomorphisms

What we have just done for the functor 1 we now repeat for the
functor T'. We begin with the analog of (6.18). There is one

additional complication that comes from having to take the H-finite
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or K-finite vectors of each Hom space. We must distinguish two
kinds of finiteness conditions——those relative to H that refer to
actions in the original category C(g,H) and those relative to K

that refer to the imposed "external" action. The analog of (6.18) is

1 1
() ==y Homm(R(t:.;,K),V)HHom(l’e HOIHC(R(Q:K):VO)H MHOI%(R(Q’K)’VZL)H i

'S
1 1 1 1
= 20,v| | Po,v Byl P,
v
Hom (¢, Hom (3, 1.
N
Al Hom(fo,l) Hom(fl,l)
v
0 —> Homg (R(g,K), V) 22N pom (r!,v),  HOm@:1)  pop (r!,v) —
€ H c' 0 H i H
(6.24)
We construct the chain maps ag v and b; y initially by [6..p- T61,

but then we have to modify them. Namely each Hom is a direct
product of K types relative to the external action (which is by
right translation in the first variable). On each K type, we
redefine our map by following it by projection to the same K type,
so that the composition takes each K type in its domain to the
corresponding K type in the range. The diagram (6.24) still commutes.
In addition, when homotopies are constructed, we project them in the
same way, so that they too carry K type to K type.

As in (6.18), the K actions in the middle and bottom rows are
compatible, but those in the top and middle rows are compatible only
up to homotopy. All the K actions commute with the relevant

coboundary operators.
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Lemma 6.4. For V in C(g,H) , the map

"

an,v(®) = ', ¢'(t®cen) = t(@(c)(n))
is a vector space isomorphism of
Hom (Cpe Homg (A (1/9),V) ) (6.25)

' . X
onto Hom'R(g,H)(Rn’V)K that respects the external action by K given
by r on the CK factor. Under this identification the coboundary
operators Hom(d,1l) on HomR(g H)(RQ’V)K may be reinterpreted on

(6.25) as follows:

a : HOIHH(CK,Homc(Anﬁ,V))K > HomH(CK,Homaj(/\nJrlﬁ,V))K

n+1
i+1 S
di:p(c)(YlA...nYn+l) =X (-1) Yi(fp(C) (YlA... AT A e Yn+l))

=l
n+1l
ST AT TSRS L
4, ALy B e MEg g an N By
H=tl

~ o

+) (1) () (PIY Y IAY Ao a¥ Aeea¥ au Ay, 1),

S

A

Proof. The relevant isomorphisms are
Homp, (o ) (Rys V) = Homp (o 1y (R(g,H) ®p 1y (Cp® A% (1/5)), V)
3 HOI“‘R(I),H) (CK®CAn(t/b)’H0mR(Q,H) (R(E,H)’V)H)K by (2'8b)
= Homp p ) (CK®C/\n(t/9),V)K by Proposition 2.5
= Homp g py (CK,HomC(An(t/Ig),V))K by (3,8).

We omit the details.
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The next step is to apply the invariants functor (-)R(Q’H) to
the diagram (6.24), taking the K-finite part and adjoining another

row to the diagram from Lemma 6.4. We obtain the commutative diagram

0 —> HOHLR(Q’H)(R(Q,K),VO)K —y HomR(g,H)(R(g,K),Vl)K — e e

1 1 1
20,v| | Po, v Byl B w
0 — HomR(g,H)(RO’V)K S HomR(g,H)(Rl’v)K —
Hom(fo 1) Hom(fl,l)
1 1
0 — HomR(g’H)(RO,V)K — HomR(g,H) (Rl,V)K iy iy
" "
B0, ¥ B

0 —> HomH(CK, HomS(AO(t/fa),V))K el HomH(CK,HomC(Al(T/Ig),V))K — sas
(6.27)

of vector spaces. Each row is a complex in C(1,K), and the maps

Hom(f ,1) and a; v are (1,K) maps; but the first row of vertical
»

maps need not be (1,K) maps. The cohomologies of the top and bottom
complexes are, respectively, Tn(v) and something to which we give a
separate name T'?(V). The diagram (6.27) induces vector space

isomorphisms on cohomology

1%

e : TR W) s (V) (6.28)

1%
0 Hom(fn,l)a &,V

. 1*¥ =1 1 . .
with (ah,V) = bn,V , and we see that these isomorphisms are

(t1,K) maps.
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Lemma 6.5. Define 3 on (A"s8® Ve, (N'8)*)e,c, by (6.21),

€

and define d on HomC(CK,Homm(Ans,v))K by (6.26). Then the map
S(E®v®e®c) = 7\§®V®E®C (6.29a)
with
)\€®V®E}®C(C|)(Y) = e(gAY)( JI’{ el dk)v (6291))

passes to the chain/cochain level and then to the homology/cohomology

level, yielding a (1,K) isomorphism
8, : I (Ve (AEe) ) = 7 T Ry (6.29¢)

Proof. It is easy to see that o commutes with the H action
and hence descends to the chain level of (6.20). Also it is trivial
that 9 and d commute with the external K action coming from the
action of r on CK.

Also the map (6.29b) gives a linear isomorphism of
(A", v))

(A8 @y VO (Am‘?:)*)tib c, onto HomC(CK,Hom to see that

¢ K ¢ K
this map is onto, it is helpful to use Lemma 2.3 to see first that

Cx = Cp. The linear isomorphism (6.29b) respects the H actions
h(E®@ve®e®c) = hE®hv®he ®4(h)c
1 = =k 1 = el 1 =1
(hA) (e') (y) = h(A(h "e'))(y) = h(A(h "c')(h 7¥))
because

Mgeweesc) (¢ (Y) = Negnvenest (n)e(c') (v)

= (he) (h5ay) ( [ (2(h)c)c’ dk )hv

=e(8anly)( [, c-(¢(h)Ter) dk)hv

Il

h(e(Eah™y)( [, e (t(h) Ter) dk)v)

= BB gmene D e N )Y = Rege .o et )iy) -
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Restricted to the H Iinvariants, our map then gives a linear
isomorphism of (6.20) (with V® (A"8)* in place) onto (6.25). oOur

map respects the external K actions

k(E®v®e®c) =E@ve®e®r(k)c
KA (e') (y) = A(r(k)er) (y)

by a similar computation, and hence the end product is going to be a

(1,K) map. Thus the lemma will follow if we show that

= (_l)lgl)\

dh§®v®e®c 3 (E®@we®c) ’ (6.30)

where |§| is the degree n of §.

Equation (6.30) has the initial appearance of (4.14) with V
replaced by Cp® V. But actually (6.30) is obtained from such an
identity only after an integration. TLet us write out the details. To

prove (6.30), we are to show that

Negvpesc(c') (¥) = (1050, (zoweeac) (¢') (Y) (6.31)

] ! m-n
for all c¢' in Cp and y in A" "8 . 1Introduce Es gij’ Ys o

and Yij @S is (4.20). From (6.26) and (6.29b), we find

Megygesc(C') (Y)

m-n ) m‘_:n )
= 3 0 Orpmeatet vl + F M e o (T, Yo )
i=0 =0

= ; (_l) j—+j7\€®v®e®c(c ') (P[Yi! YJ'] A Yij)
I
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= Z (—l)ie (f;,\yi)[( j}’{ ce! dk)Yiv - ({{ c-L(Yi)c' dk)v]

i=0

+ ) (1M g ARy, Y TAY, ) (] cet ak)v
i(j 5

m-n .

Z (-1)te Eavy) i v;(c®v)-c' dk

i=0 -

Il

& Z (-1)**e (EAP[Y;,Y31AYs5) [ (c@v)-ct dk
13 <

-/ Neg (cpv)ee (Y) ' dk (6.32)
K

while from (6.21) and (6.29b) we find

S (§®v®e®c) (e')(y)

- Z (-1)%e (8 Ay)(f ce' dk )X,v + Z (-1) e(§ ay)( {{L(X Jeec! dk ) v
r=1

+ ) (-1)" % (P[x X 1 A8, aY) (] ccdk)v
s -

n
= Z (-l)re(gr/\'\{ IX c®v)-c' dk
r=1
* Z (-1)""% (P[X,,X ]AE AY) [ (c®V)-c' dk
rs %
= f“a (g® (cav)ee ) (Y) et dk . (6.33)
K

The equality of (6.32) with (-1)" times (6.33) follows from (4.14) by
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multiplying by c¢' and integrating over K. Thus (6.31) holds,

and so does (6.30). This proves Lemma 6.5.

Now we have the ingredients to define the isomorphism in Theorem

6.1; it is the composition TV of the maps

I (Vey (A"8)") > I (Ve  (A"8)*) > T'" ™ (v) » 1%R(v)  (6.3M)

n(V®g

given in (6.23), (6.29), and (6.28). 8o far, these are (1,K)
isomorphisms, and we have not verified any naturality for them. We

want to conclude that the composition T

v is a (g,K) isomorphism.

7. Passage from i to g

We retain the notation of §6. The abstract device for concluding

that the composition T, in (6.34) is a (g,K) 3isomorphism is

v
Proposition 7.1 below, which gives the idea of Enright and Wallach [8].

Proposition 7.1.3 Let G and H be two covariant functors from

C(s,H) to C(g,K) such that & ’Keg=3'"Beg, i.e., such that there
g,K g, K

exists a natural family T.: G(V) » H(V) of (1,K) isomorphisms for

v

V in C(g,H) . Then the maps T, are (3,K) isomorphisms if the

following conditions are satisfied:

(a) For each V in C(g,H), there exists a (1,K) map

¥y 0 89 G(v) > G(g %v) such that

Yy

8@ G(V) > G(3® V)

m /(m)
G(V)

3

This is a corrected version of Proposition 3.7 of [8].
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is commutative. Here m denotes multiplication, which is a

(3,K) map and a (g,H) map in the respective places it occurs

in the diagram.

(b) For each V in C(g,H) , there exists a (1,K) map

Py ¢ 8@ H(V) > H(3®,V) such that
g ® H(V) 'z > H(g ® V)
N ﬁ(m)
H(V)

is commutative.

(c) For each V in C(g,H), the maps ¥y and @, of (a) and (b)

make the diagram

¥y
g ® G(V) > G(g ® V)
l®Tvl LTQ@V
P
g ® H(V) > H(g ® V)

commutative.

Proof. We set up a 3-dimensional diagram in C(1,K) that takes

the form of a triangular prism

G(g® V) ‘gev > H(g ® V)
‘yv /f CP/
2
g ® G(V) > g ® H(V)
£ 18 T
ml o ‘“l (m)
G(V) y H(V)
T
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The triangles at the ends are commutative by (a) and (b), and the
rectangle on top is commutative by (c). The rectangle in the back
is commutative by naturality of TV with respeef Tto V. A little
diagram chase shows therefore that the front rectangle is
commutative, i.e., that TV is a g map.

We shall apply Proposition 7.1 with @ = Hn((-)®c(hmﬁ)*),
HE=T"" and T (88 in (6.34). The first step is to prove that
T, is natural. Thus let @:V > W be a (g,H) map. We treat the

v

factors of (6.34) separately. In treating N, let us drop the
tensoring with (A™)* to simplify the notation. We construct two
copies of (6.18), one for V in one layer and one for W in a

second layer. Then we put in place maps between the layers in obvious
fashion for the second and third rows. To get maps between the layers
for the first rows, we use [6, p. 76]. Next we pass to the
corresponding version of (6.22). We can consistently adjoin the
bottom row to each layer with the obvious maps between layers. Then
we discard the middle two rows from each layer, using composite maps

th

between rows. The result is four parallel complexes, the n section

of which is the commutative diagram

Vo ®p(g,m) R(8:K) ————> W @ 1y R(g,K)

l !

(N*(1/9) @ V) 8, Cp ———> (A (1/5) ® W) @, Cp

The commutativity of this dilagram says that two compositions of chain
maps are equal. Thus these compositions give the same maps on

homology. In other words,



m(v) —— 1) (W)

is commutative. This proves that (6.23) is natural. Similarly (6.28)
is natural. Finally it is clear from the definitions that (6.29) is
natural. Hence Ty is natural.

Next let us verify hypothesis (a). Again let us work with V in

place of 'V@C(Amﬁ)*. We have

Q®H(Vn) = ®C Ufﬂ@R(g,H) R(g,K)) (7.1a)
and

D(g®V,) = (38 V,) ®R(q,n) R(8:K) - (7.1Db)

Recall that we are using the alternate definition in §2 of the P
functor to obtain these equations. If we were to reverse the factors

in the tensor products over R(g,H) and map t to £ in R(8,K) ,

K

then the two members of (7.1) would be respectively g® E%’H(Vﬁ) and

C
Pg’g(g ®C Vn) . Theorem 5.1 gives us a Mackey isomorphism K from the
2
second of these to the first, and we unwind to the setting of (7.1) as
pé. Then we set up the diagram
1

91
(Q ®CVI'1) ®R(Q,H) R(Q’K) ""'"""Il"") a ®C (vn®R(g,H) R(Q’K))

(m)gx ﬁ (7.2)

VH®R(Q,H) R(Q’K)

To see that this diagram commutes, it is enough to check the effect on
(X®v)®c in the top left, where X is in g, v 1is in Vn’ and

¢ is in Cp. From (5.1b) we have
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h,(ce (x® v)) =Zi X; ® ((Ad(-)X,X;)c(-)® V).

Thus

Il

up((xev)ec) =L x,@ (ve {(Ad(-)X,X;)c (-)17)

i

&2 X; ® (ve (Ad(-) lX X;
il

Remembering that g acts through R on R(g,K) in the tensor

products over R(g,H) , we have

pp((x@v)ec) =vel R(Xi)[(ﬂd(°)_lX,Xi)C('H

Il

ve I (-(ad(-)7'x,X;)c(-)®X;)

= ve® (-X®c)

Il

Xvec through ®R(g,H)

Il

((m)®1l)((x®@v)®C) .

Thus (7.2) commutes.
To pass to homology, we need to verify that ué, (m)® 1, and m
in (7.2) are chain maps. For ué_ the relevant diagram is

(88¢ V) @ (g, ) R(8K) e B 0B e ®¢ Vn-1) ®q (g, 1) B(8:K)

1 1
Hn Mn-1

3@ (V,®p ;1) R(8,K)) — o5 98¢ (Vy, 185, 1y R(g,K))

and the argument is

pn 1(1®3@1)(Xx8vec) = p.r'l_l(X® dV® c)

=02, X;®3ve® (Ad(-)'lx,xi)c(-) (1@23@1) (X®v® o) 1
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For (m)® 1 the relevant diagram is

(8 8¢ V) @y, 1) R(8-K) —2%8 5 (38, ¥, ) ®x (g, 1) R(8:K)

(m)®1 (m)®1

1
Vn®R(g,H) R(Q,K) ? Vn-l®R(g,H) R(Q,K)

and the argument is

(m)el)(1®3®l)(X@evec) = ((m)® 1) (X®3ve c)

= X(dv)®c =3 (Xv)®c since 3 is a g map

Il

(3®1)(xvec) = 31)((m)el)(Xevec).
For m the relevant diagram is

(Vi ®g (g, 1) R(8:K)) —2222s g0 (V,, 1@ 1 R(z,K))

B .

o® 1
. 4
Yn®n(a.m PE B == W, B ) R{gE)

8 @q

and the argument is

m(l®3® 1) (X®evec) = m(X®a3vec)

Il

-3v® (c®X) = -(3®1)(v® (c® X))

Il

d®1)(1eR(X))(vec) = (3®1l)m(X®@®vec).

Thus (7.2) passes to homology, and (a) in Proposition 7.1 is verified
< -1

With Yy me = (Hy)s

The verification of (b) is similar except that Theorem 5.2 is

involved. We have
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Il

g®T (V) = 3®CH0mR(g,H)(R(g’K)’Vn)K g ®, IgiK(Vn)

and

r(g®vn)

g8,K

Since g 1is finite-dimensional, we can apply Corollary 5.3 to
obtain a Mackey isomorphism = from the first line to the second

line. Then we set up the diagram

a
q ®C HOmR(g,H) (R(Q,K),Vn)K —n) HOIﬂR(g,H) (R(EsK),g ®CVH)K

N ﬁ)m(l,m) (7.3)

HOITLR(B ,H) (R(Q ’ K) ’VH)K

To see that this diagram commutes, we use (5.9) to write
o, (X®9)(c) =L X;®¢((Ad(-)X,X;)e(-))
for X in g, ¢ 4n HomR(g’H)(R(g,K),Vn)K, and ¢ in Cp. Then

(Hom(1,m)o ) (X®9)(c) = m(o,(X®%)(c))
=m( Z X;®¢((8d(-)X,X;)c(+)))
=X X, (@ ((ad(-)X,X;)e(+)))
=Z 9(X;® (Ad(-)X,X;)c(+)) since @ is a g map

=g(c®X) = (Xp)(c) =m(Xee)(c) .

Thus (7.3) commutes. To pass to cohomology, we need to verify that

o Hom(l,m) , and m are chain maps. We omit these details, which

n 2
are similar to the ones in the proof of (a). The conclusion is that
(b) holds in Proposition 7.1 with Py = (cn)* .

We turn to the verification of (¢). First let us notice that the

construction of q;v and @ above would have made sense with any
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finite-dimensional (g§,K) module F wused in place of g ; the
Mackey isomorphisms would still apply. Let the action on F be
called 7. We set up the diagram

m, % m m-1n m-n
FOuI (Vo (A8)") —F8 I (Ve, (N 8" —EQLT ' (V) —Fe I (V)

l l l !

Ve, (AM)") — I (F@, Ve, (N )™ — T (Fe, V) — T (Fe, V)

l'In(F® ¢

C
(7.4)

The maps of the bottom row are those of (6.34), the maps of the top
row are 1 tensored with the maps of (6.34), and the vertical maps
are obtained from Mackey isomorphisms or their inverses. To prove (c),
it is enough to prove that each constituent square of (7.4) commutes.
The easy square is the middle one, and we handle that first. We

set up the diagram

1®9
n m, \* v m-n
Fo, ((A78 ®. V8, (N78) )®H CK) ———a e, HomH(CK,HomC(A é,v))K
Mackey'_l \LMackey (7.5)
n m, \* 8 pev m-n
(N 88, FO,V®, (A78) )@H Ot ey HOmH(CK,HomC(A G,F@CV))K

The top and bottom maps come from (6.29). The map on the left is the

inverse of the Mackey isomorphism associated to P;’g s
]

has to be reinterpreted to take into account the reversal of the order

except that it

of tensor products over H (cf. H, Vs. ! din (7.2)). The map

n
1,K
h,H °

Let us see that (7.5) commutes. On the one hand, (5.9) gives

on the right is the Mackey isomorphism (5.9) for I
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{Mackeyo(1l® Sv) (feg®v®e®c)}(c') = Mackey(f® }\§®v®e®c) (et)

=0y B R e o L ME T e (V)Y o  (756)

On the other hand, the operator on the left is to be computed from the
inverse formula (5.6), except that the 11'(')_1 gets replaced by w(-)

because of the reversal of order of tensor products. So

{ﬁmv"Mackey‘_l(f@é@v@e@c)}(c')
=Bey( L E®F, ®@vee® (m(-)f,f;)e(-))(c")
=2 Mepr @wwes (r(-)r,£,)e(-) (") - (7.7)

Evaluation of (7.6) and (7.7) on ¥ by means of (6.29) gives the same
result in the two cases. Thus (7.5) commutes.

Now let us check that the four maps in (7.5) are chain maps. For
the horizontal maps, this is the main content of Lemma 6.5. TFor the

left map, we use (6.21). We have
Mackey'"lou@a)(f@g®v®a®c)

= Mackey'_l {Z (—1)l(Y1A S e RN S 5 AY ® feyY,v®e®c)
i=1
i A~
+z (-1) (Yyn.e AY;A...AY B@FO®V®eE ®L(Yi)c)
i=1
+Z (-—l)r+s(P[Yr,YS]AY1A...A? a...A?g»...«Ynébf@v@e@c)}

2 Z ?.A...AYn®fj®Yiv®e®(W(.)f,fj)c(.))
i=

n
+Z (-:L)i (Yl.\ A, AX @ fj®v®e® (Tr(‘)f,fj)-b(Yi)c(-))
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+Z (-1)”52 (s il doce A A'\}ra... A?SA...AYH
<s J

@ f @ vece (r(-)f,f,)e(-)) (7.8)

and

3. Mackey' “L(f@E®V®E® C)

—3(LE®F.®@V®e® (w(')f,fj)c('))

J
(-1)iZ (YA ceenByne aY, @Y, (£,8v) @0 (1(-)F,2,)c())
J

(D) (A A% A AT 0 (F,0V) @60 L(){(1(-)E,T5)c()])
j

=

A‘O.A A..-A
15 YS Yn

"‘ZI ("1)T+SZ (P[YI.:YS]AY]_A SR
rs J
®fj®v®e® (w(-)f,fj)c(-)) . (7.9)

The difference (7.9) less (7.8) comes from TF(Yi)fJ.@'V in the first
term and L(Yi)(w(*)f,fj)-c(o) in the second term. For fixed 1i,

if §i =Yy A AaYia oA Y this difference is (—l)l times the

quantity
g (8;@7(¥;)f @ vee® (r(-)f,f5)e(-))

+L (55@ f,8vee® (—W(Yi)w(-)f,fj)c(' )
]

= j%k(g:.L@ £, ®8vee® (m(- )f,fj) (w(Yi)fj,fk)C('))

+L (8,8 5,8v8e 0 (r(-)0,8,) (-7 (%) o £5)e()) = 0.

Thus the left map in (7.5) is a chain map, and similarly the right map

is a chain map. Therefore the commutativity of (7.5) passes to

homology/cohomology, and the center square of (7.4) commutes.
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Now we consider the left square. This is the hard step. Again

let us work with V in place of VG&(Ams)*. We set up the diagram
190y, v n
F®g (vn®R(g,H) R(g,K)) ——2">5 P (A8 ® V) ®HCK)
‘[“;1 My (7.10)
(F®¢Vy) ®g (g, 1) R(8-K) - (K8 @ Fog )8, Cy

in which ug is the Mackey isomorphism of (7.2) (involving Theorem 5.1

8, K
and Pg,H) AR

n

n 1s the isomorphism "Mackey'" in (7.5) (involving

1,K
h,H

(6.22). We know from above that p; is a chain map, from the

Theorem 5.1 and P ), and Pn, v is the composite vertical map in
verification of (a) that pr'l is a chain map, and from (6.22) that the
horizontal maps are chain maps. We are to prove that (7.10) becomes
commutative upon passage to homology.

The difficulty is that (7.10) need not be commutative as it stands.
We therefore subdivide the problem into two parts——one where a
homotopy argument works and one where an exact computation works—by

interpolating a middle vertical corresponding to the second row of

(6.22). The new diagram is
1o Iof _(1ef, )
n,V n,v n n
F@®g (Vn®R(q,H) Rg,K)) —=2» Fe, (V@R(B’H)Rn) : F@C((A e%v)@HcK)
' m i
Hn Hn Mn
£ 2 (1of_)

n, BV n, BV ol n
(F®¢ Vy) ®p (g, 1) R(8:K) == (FOLV) @0 1y Ry 3 (A" ® (PO V) ®, Cy

(7.11)
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Note that three of the four maps in the right square are (1,K)
isomorphisms and chain maps, and thus we can define ;_L;_’ by them.
m

Then p = 1is a (t,K) isomorphism and a chain map, and the right

C..® _ X the domain

square commutes. Since R_ = R(Q’H)®R(I,H)( ©®¢ o)l s

n

"

of My is
(F®g V) ®R(9,H) (R(g,H) ®x(1, H) (Cx®cXy)) -

In principle we could drop the R(g,H) in two places here, but it
is convenient not to do so. But it is enough to use domain elements
whose R(g,H) coordinate is in CH ’ Then direct calculation shows
that the following formula gives a well defined linear mapping for
which the right square commutes (so that it must be the correct

formula):

m
pn(f® V®c,®c,® x)

-1 -1

= X f ®ve (m(-

- £,85)cy(-) @ (m(-p) TE L f e (- )ex.  (7.12)

1)

With this formula for |4$, we are to prove that the left square of
(7.11) commutes on the homology level.

We shall construct a corresponding square on the resolution level.
We use superscripts @ and K on the appropriate sides to indicate
which modules are contributing to the (g,H) and K actions,

respectively:

19F!
a g K n,v 8 g K
“roy OV, 8 %R, 1)) — 2T Koo Bvey (BR(a,1) @p(y 1y (Cx®c X))
1 m
UI’l g'n
1
8 a q K n,mvy g q g K
(*F@¢ °V,) ®¢ "R(8,K) " —=—— (°F® °V) ®¢ (°R(g,H) Oy ) (Cp®¢ X))

(7.13)



Here fé ey 2nd fé y are our original mappings from (6.18). We
2 »
shall construct the maps c; and o

n 28 isomorphisms that respect

the indicated (g,H) and K actions. For 05 we write

(SF% an) ®CQR(Q:K)K3 (QF®C an) ®¢ (°R(g, H) (1, H) c%) by (2.15)

K a,H
1, H) (F@CCK)) by (5.1) £or P
in inverse direction

~ 8 g
= "V, ®¢ (°R(g,H) ®p(

= gvn% ((F@ch(Q,H)):&R(hH) C%) by (4.1)
= Kpe (37,0, (BR(3,H) @, 1 CF)) by (5.1 dor BloE

in reverse order
K

1

F®g (gvn®CgR(g,K)K) by (2.15).

In detail, cﬁ is given by

feve (CH*HCK) > fevec,®cy
+§ ve (W(-H)_lf,fi)cH(~)®fi®cK
i)
—>T'l v@fj_@(w(-H) f,fi)cH(-)®cK
T Ak o
Sl o @ ("('H) fsfi)CH(' ) ® (W(‘K) f.,fm)CK(-)
i,m
o -1 -1
> L £ 0ve (7(-y) T ) e () ¥y (m(- g) £o,f ) ce(s)

i,m
Let us compute this last convolution:

A

L (m(g) T e e () xy (T ) T e E)eg ()

) Er{ (r(n)7re, £ ) ey () (r(07h) They, £ e

={IZ; (£,7(h) £, )P E,, T(A) Ey ey (h) e, (h™T+) dn
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=J (£,m(-)E ) ey (h)e (nt

) dh since {v(h)fi} is orthonorma:
H

Il

-1
(m(-) f’fm)CH*}ICK(') :
Thus cg is a globally defined isomorphism such that

L

Ué(f@V@CK):=§fh®v®(ﬁb)_f)ﬂJch). (7 18)
m Lt
For U‘n we wWrite
3 g 8 K
( F&, V) %( R(g,H) ®R“’H) (CK®CXH))
=~ 8 g K a,H
Ve, (“R(s,H) (1, 1) (Foge e %)) by (5.1) for Py
in inverse direction
~ 8 8 K
Ve, ((Fog, X, 8 R(g:H))®R“’H) G by (4.1)
8 8 g K 1, K
2e F@C( Vg ((Xn®qj R(q,H))@R(t,H) CK)) by (5.1) for PI;H
in reverse order
. g g K
= re, (3ve, (3R(s,H) ®(1,1) (Ck®e X)) by (L4.1).
In detail, c;' is given by
f®v®cH®cK®x
-1
+'§ ve (r(- ) T f)ey(-) @ ®c, ®x
-1
-2 vor.®x® (m(-) f,f.)e. (-)®c
3 1 H 14 TH: K
> L f evex® (r(-.) 2 e (-)e (m(-,) T, £ Ve (-)
i,m m H i £ K £ md TR
> L f ove (m(-) ", £ )e(-) ® (m(-.) " Lf, £ Je (- ) ®x
4 H - T K 12 m’/~K :

Thus c;' is a globally defined isomorphism such that
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" - -1
o (feve Cy® Cp® X) :iszm® ve ('n'(H) f,fi)cH(- ) ® (ﬂ-(K) fi,fm)cK(. ) ® x

(7.15)

Next we observe that the four mappings in (7.13) are chain maps.
In fact, the horizontal maps are chain maps by construction. TIn the

case of Ué, the boundary operator operates just in the Vh factor,
m

- the

and (7.14) shows this is unaffected by 0111 . In the case of o
boundary operator operates just in the Xn factor, and (7.15) shows

this 1s unaffected by c;. These chain maps lie over a diagram

“Foy (3vegir(e, 0 (2BL, Kre (Cvey CR(s,H) ep(y 4 o))

]\O_'I' Tcrtl (7.16)

(*roy 8v) &, SR (g, K) K (2.35) (*reg 8v) @, (*R(g,H) ®x (1, 1) o)

in which o' is determined by (7.14)and o' is determined by (7.15)
with the x eliminated. The map (2.15) is achieved by convolving

H and CK coordinates. Under this identification, " agrees
with o', by the computation of convolution that precedes (7.14). 1In

the C

other words (7.16) commutes. Since (7.13) involves terms in projective
resolutions, (7.13) commutes up to homotopy.

Now we apply the functor g(-) > («)@R(g ¢ to the diagram

, H)
(7.13). Using (4.1) to eliminate the terms €, we obtain

®f!

KF®C (vn®R(g,H) R(g,K)K) Lo KF% (vsR(g,H) RE)
I (r.07)
fl’
(Fog V) 8 (4, m) R(s,K) ¢ 2BV, (re, V) ®r (4. 1) RE
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The vertical maps here are still given notationally by (7.14) and
(7.15). Theorem 5.1 shows that the left map is ué, and (7.12) shows
that the right map is ug. Thus (7.17) coincides with the left
square of (7.11l). As the image of (7.13), which commutes up to
homotopy, the left square of (7.11) commutes up to homotopy.

Therefore (7.11) passes to homology as a commutative diagram,
and so does (7.10). This proves that the left square of (7.4) commutes,
and a completely parallel argument (making repeated use of
Corollary 5.3) proves that the right square of (7.4) commutes. Thus

(c) holds in Proposition 7.1, and the proof of Theorem 6.1 is complete.

8. Concluding remarks

a. Work of Enright and Wallach

As we mentioned in the introduction, [8] contains a number of
minor errors and one serious gap.

The minor errors are the systematic equating of HomC(UGIV,W)
with HomC(U,V*be) for infinite-dimensional vector spaces, improper
formulation of Proposition 3.7, and improper operations on resolutions
at the beginning of §4. The relation for Hom should in each case be
replaced by a valid associativity formula, such as the ones we give
in (2.8), (3.8), and (4.1). Compare, for example, the proof of their
Lemma 3.1 with our proof of our Proposition 3.7. And compare their
proof of TLemma 3.3 with our Proposition 3.4. wWallach has pointed
out [15] that U(g) in their Lemma 3.4 is to be regarded as a
representation under the adjoint representation, not the regular

representation, and then the proof of Lemma 3.4 relies only on cases

where the proof of Lemma 3.3 is wvalid.
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Proposition 3.7 iof [8] is misstated, since the commutativity
of the triangular diagrams is not included as a hypothesis. We give
the correct statement here as Proposition 7.1, with hypotheses about
the triangular diagrams included as (a) and (b). When Enright and
Wallach apply their Proposition 3.7, the commutativity of the
triangular diagrams has already been verified (Lemma 3.4).

The first paragraph of §4 of [8] contains several cancelling
errors concerning resolutions. We have included an account of
standard resolutions and operations on them between formulas (3.5)
and (3.9).

The serious gap appears in the proof of Theorem 4.3 of [8].

In our notation the authors are attempting to verify (c) of
Proposition 7.1 when G(V) = ri(v), H(V) =-Fm'i(vc)c, and some
admissibility conditions are satisfied. As we did in (7.4), they
split into three squares the rectangle whose commutativity is to

be proved. One of the intermediate functors is (in our notation)

T Hi(t,H;V eV)® V"
yek Y Y

with K action on the V; alone, and the isomorphism of ri(v) with
this associates the tuple of cohomology elements to a member of V,
K type by K type. Commutativity of each of the three component

squares 1s to be proved. One of these, for example, amounts to

F@I‘i(v) y FOL (Hi(t,H;vY®V)®V$)

I"i(F®V) > Y, (Hi(T,H;VY®F®V)®V$)

with the map on the left given in Lemma 3.4 of [8] and with the
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horizontal maps given as above. The gap is that the map on the right
side of the diagram is not specified in the paper. (There is a
similar gap in the proof of commutativity of the other two component
squares.) The correct map is a Mackey isomorphism, as we shall see

in the next subsection.

b. Sketch of alternate proof of duality

In the context of [8], one considers (g,!) modules. The
closest thing to that context in the present paper is (g,K) modules
with K connected. Thus let us assume that K and H are connected
and that T' (V) is just the subspace of K-finite vectors in V.

Since H 1is connected, it acts trivially on Ns . Thus let us
discard A™s from (6.11). In order to prove the Duality Theorem

W)

in the form of (6.11), it suffices to prove that (Pm)i(V) & T
and (™), (V)¢ =1%(v®) naturally for V in C(g,H). The first
of these identities follows by dimension-shifting (cf. [5, p. 221])
once one shows that Fi(P) = 0 for P projective and i { m;

the latter fact follows from (4.4) of [8] and Poincaré duality in
the category C(1,H) . TFor the second of these identities, the
argument that derives our (4.8) from (4.11) shows that it is enough
to prove that

(V)¢ = r (v°) (8.1)

naturally for V in C(g,H) .
To prove (8.1) we introduce T'(V) = (QK®[{V), as a K module
under r®l, the 1t invariants being computed for the tensor product

of 4 on CK and the given representation on V. Evaluation e at

1 of the Cp factor gives a map of T'(V) into V and exhibits a

natural K isomorphism T'(V) =T(V). It follows readily that
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T(V) = B (1,H;C®, V), 0<£ilm,

on the K level, the external action on the right side coming from
r®l. (Since Cp = 2 V#vaﬁ , the reader will notice a parallel
between this formula and formulas in §2 of [8].)

Then it is not too hard to use Poincaré duality to set up a
sequence of K isomorphisms that exhibit (8.1) on the K 1level.
To pass to (gq,K) isomorphisms, one needs to verify (c) in
Proposition 7.1l. There are several steps to this verification, but
the key one is to identify the right-hand mapping in the diagram
below and to prove the commutativity of the diagram:

I®e

t
F®CT(V) e P (CK% V)

Tl (8.2)

T(F®u V) ¢——— (C; 8 (Fo V))'

imply that €.° = ¢, and that

Now Lemma 2.3 and admissibility of C K K

K
7 o
(CK®CV) = Hom, (CK,V)K— IT,H(V) :
Hence the isomorphism on the right side of (8.2) is to implement

1,K
1,H

1,K

(V) = 1,0y

FO.I (F@CV) .

Corollary 5.3 says that there is a Mackey isomorphism of this kind,

and one checks readily that (8.2) then commutes.

c. Alternating tensors in the Duality Theorem

The presence of A" in Theorem 6.1 is annoying but necessary.

Nevertheless A"S disappears in applications. 1In the context of
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applications (see [12, p. 344]), there are the following additional

ingredients: a global group G, a closed subgroup L of a particular

kind, and a 6-stable parabolic subalgebra q =1®u . It is assumed
that 1 1is the Levi factor of ¢q , that u is the nilpotent part,
and that I has complexified Lie algebra 1. TLet u be the algebra

opposite to u, so that g = q®u as vector spaces.

In the present paper we take K maximal compact in G and put
H=LNK. As a vector space, 8 is then (uNt)® (unt). The
actions of H on the two terms are complex conjugates of one another,

and thus H acts trivially on A's .
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