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Szego Kernels Associated with Discrete Series

A.W.Knapp* (Ithaca) and N.R. Wallach** (New Brunswick)

1. Introduction

In [7] Harish-Chandra gave a parametrization of the discrete series of a connected
semisimple Lie group G with finite center. For each discrete series representation
we shall give an integral formula that provides an explicit quotient mapping
from a suitable nonunitary principal series representation, realized as a space
of functions on a maximal compact subgroup K, onto a concrete analytic reali-
zation of the discrete series [21, 22]. By duality one can obtain an explicit im-
bedding of the discrete series representation as a subrepresentation in the non-
unitary principal series.

The simplest realization of the discrete series is as the space of square-integrable
smooth functions on G that satisfy a transformation law on one side under K
and are annihilated by an appropriate first-order elliptic differential operator.
We shall use the operator & introduced in [18, 19] as the first-order operator
in question (see § 2). Since the kernel of £ is contained in the kernels of some
more familiar operators, such as the pair  and 8* and the Dirac operator (see § 3),
our quotient mapping can be regarded as an integral formula carrying functions
on K to solutions of a familiar first-order elliptic system.

It is for this reason that we refer to the kernel in the integral formula as a
Szeg6 kernel. In fact, it is possible to arrange our parameters in a limiting case
so that our kernel is indeed the classical Szegé kernel for the unit ball in C",
carrying functions on the boundary to holomorphic functions in the interior.

We shall state our main result more precisely, referring to later sections
for some of the definitions. By [7] G has a discrete series if and only if rank G=
rank K. Thus we may assume that G has a compact Cartan subgroup T<K.
For this section we shall assume also, possibly by passing to a double covering
of G, that G is acceptable in the sense of [7]. To each nonsingular integral form
A on the Lie algebra of T, Harish-Chandra associates in Theorem 2 of [6] an
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invariant eigendistribution @,, and he proves in [7] the existence of a discrete
series representation 7, on a space H4 with character + ©,. These representations
exhaust the discrete series, and two such are equivalent if and only if their param-
eters A are conjugate under the Weyl group of K.

Let g be the Lie algebra of G. Given 4, let the positive roots be those for which
{A,a>>0, and select a fundamental sequence o, ..., &, of positive noncompact
roots (see Definition 4.1). This sequence determines an Iwasawa decomposition
G=ANK, and we let M be the centralizer of 4 in K. Let A=A+48,—§, be the
lowest K-type in n,, and let 7, be an irreducible representation of K with highest
weight A, with representation space V,, and with nonzero highest weight vector ¢,.
Let o, be the representation of M obtained by restricting 7,(M) to the M-cyclic
subspace H, of V, generated by ¢,. Then ¢, is irreducible (Proposition 5.5). Define

C*(K,0,)={feC*(K, H)|f(mk)=0,(m) f (k), me M, ke K},
C*(G,1)={FeC>(G, V)IF(kg)=1,(k) F(g), ke K, ge G}.

The Lie algebra of 4 has basis E, +E_, with normalizations as in § 2, and we
let v=v(4) be the linear functional determined by
_2{A+njup, 0

WEy +E_p) =" L L
2

where n; is the integer defined in (6.5b). (This expression will be interpreted in
Proposition 8.2.) Extend the functions in C*(K, o) to be the smooth functions
in the representation space of the nonunitary principal series representation

W(o,,2p"—v),asin § 6.

(1.1) Theorem. With A=A+6,—0, integral and with A nonsingular and G-
dominant, the operator

S(f) (X)=I£f,1(k)“f(kx) dk=I{e”””’“"TA(K(IX”))“f(l) dl

carries C*(K, ;) into the kernel of the operator 2 on C*(G,,), and, under the
identification of C*(K,o,) with the space of the nonunitary principal series
Wi(e,,2p* —v), it carries the K-finite vectors of W(o,,2p* —Vv) in a g-equivariant
fashion onto the K-finite vectors of the discrete series 1 ,.

The authors came to work on this problem from different directions, starting
with [13] and [22]. The work of the first author grew out of an attempt with
E.M. Stein to obtain explicit solutions to the & and ¢* system in the case that G/K
is Hermitian symmetric.

Often a discrete series representation appears as a quotient of more than one
nonunitary principal series representation. Indeed, Theorem 1.1 can produce
more than one quotient mapping for a given discrete series; a particular mapping
is determined once the fundamental system is fixed. However, the theorem does
not provide all quotient mappings in SU(2, 1), for example, for the class of discrete
series that have three quotient mappings, since there are only two possibilities
for the fundamental system in this case.

We have attempted to minimize the number of deep results about discrete
series that we use in this paper. The proof that & annihilates the image of the
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integral operator is elementary and occupies §§ 4-7. To identify the image with
the discrete series requires the deeper theorems and is done in two stages. First,
in § 9, we assume the parameter A is “far from the walls.” In this case we use three
facts, which will be stated more precisely in §9:

(1) (Schmid [19], Hotta-Parthasarathy [ 10]). Far from the walls the dimension
of the space of C* solutions of 2F =0 of a given K-type is bounded above by
the Blattner multiplicity.

(2) (Hecht-Schmid [8], Enright [3]). Far from the walls the discrete series
satisfies the Blattner conjecture.

(3) (Schmid [19], Hotta-Parthasarathy [10]). Far from the walls the I?
solutions of ZF =0 give a realization of the discrete series .

The second stage is to pass to the remaining parameters by means of tensor
products with finite-dimensional representations and suitable projections. The
idea that problems about discrete series could be handled by this approach is
due to Zuckerman and is based on a key lemma of his [25]. The corresponding
machinery that we need about nonunitary principal series is based on [16] and
is assembled in § 10. The actual proof in the second stage of the argument is
carried out in Proposition 10.7 and Theorem 10.8.

The Szego kernel in Theorem 1.1 is defined under the more general assumption
that ¢, makes sense. Under slightly wider conditions than in Theorem 1.1, con-
ditions that are made precise in Theorem 10.8, the image of the Szegd kernel
is still irreducible. In the limiting cases, one obtains so-called “limits of discrete
series.” These representations will be used in § 12 to exhibit all the reducibility
that occurs in the unitary principal series of a group of real-rank one.

We should mention that Casselman [2] has announced an abstract sub-
representation theorem for a much wider class of representations than discrete
series. His argument is based on asymptotic expansions and does not give values
for the parameters of the imbedding.

We have learned that Schmid has independently obtained explicit imbeddings
of discrete series representations in representations induced from suitable maximal
parabolic subgroups. His work is based on [20]. Schmid has informed us that
iteration of his result leads to our formulas.

2. The Operator &

The following notation will be in force for §§ 2-10. We let G be a connected semi-
simple Lie group with finite center and fix a Cartan decomposition g=I@p of
the Lie algebra. We assume that rank g=rank f. The Cartan involution is denoted
6, and bar denotes conjugation of g€ with respect to g. Then X — 60X is the con-
jugation of g with respect to the compact form I®ip.

Let t <f be a compact Cartan subalgebra. Let 4 be the set of roots of (g%, t%),
and let 4, and 4, be the sets of compact and noncompact roots, respectively.
The Weyl groups of 4 and 4, are W and W.

We shall need to make computations with root vectors, and we fix a normaliza-
tion of them. Namely by [9, pp. 155-156] we can select root vectors E, in such
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a way that

B(E,, E_))=2/{a, a, (2.1)
where B is the Killing form, and

0E,=—E_,. (2.2
Then it follows that H, defined by

H,=[E,E_,] (2.3)

satisfies «(H,)=2 and that
E,+E_,, i(E—E_,) are in g if a is noncompact,
E,—E_,,i(E,+E _)are in g if o is compact.
The Hermitian form
(U, Vy=-B(U,0V) 2.4)

is a positive definite inner product on g°.
For functions on G, we use vector field notation for differentiation, letting

Xf(g)=(%f((exth)‘1g)]t=o if Xising If X and Yareingand Z=X+iY,
let Zf=Xf+iYf. Then
Zf=Zf. 2.5)

After we introduce a notion of positivity on the roots of (g€, t€), we let 4+, 4},
and 4,7 be the obvious sets of positive roots. Define & to be half the sum of the
positive roots, J, to be half the sum of the positive compact roots, and §, to be
0—9,. Let K and T be the analytic subgroups corresponding tof and t. The
integral forms on t€ are those that lift to 7. As mentioned in § 1, the discrete series
of G is parametrized, according to [7], by a set of nonsingular forms A, modulo
the action of Wy. It will be important to note that this parametrization is valid
without reference to positivity of roots; then in considering a particular parameter
we can introduce a positive system 4% to suit our convenience.

Let A be an integral form on t, and fix a choice of the positive system A+
that makes 4 dominant with respect to 4,}. Let 7, be an irreducible representation
of K with highest weight /, and let V, be the representation space.

With such a A fixed, we introduce, following Schmid [19], the differential
operator & with which we shall work. First let C*(G, ;) be the space of all C*
functions F: G — V) such that F(kg)=1,(k) F(g) for all k in K and g in G. Next,
since the K-representation Ad (K) L,c has all weights of multiplicity one, it follows
that we have a decomposition

T, ®Ad |,c= 2 MyThip

pedn
with each m; equal to 0 or 1. Let 7 be the subrepresentation of this tensor product
given by

=Y m_pT . (2.6)

Bedd
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Then 77 acts in a subspace V,~ of V,®p%, and we let

P:V,®pC— ¥ @7
be the orthogonal projection. Note that
73 () P(X)=P((r,(k) @ Ad (k) X) (2.8)

for all X in V,®p€ and that P(X)=0 if X is a weight vector whose weight is
not of the form 4 —Q with @ a nonempty sum of positive roots.
The differential operator & carries C*(G, 7,) into C*(G, t7) and is given by

2n _
2f(g)= .;P(Xif(g)®Xi)a 2.9)

where X, , ..., X,, is an orthonormal basis of p€ with respect to the inner product
(2.4). The operator 2 is independent of the choice of basis and is equivariant with
respect to right translation by G on C*(G, ;) and C*(G, 17).

We shall use both the general formula (2.9) and the specialized version obtained
by using the particular orthonormal basis (5 |81%)!/* E,, Be4,. For this basis the
formula is

2f(@®)= Y 31B*PEf(RI®E_p). (2.10)

BeAn

3. Other Possible Differential Operators

The operator & is particularly adapted to studying discrete series. However,
some other first-order differential operators with geometric interpretations quite
apart from group representations have been used in realizing discrete series.
Since we are going to give an integral formula that produces functions in the
kernel of 2, some discussion of the relationships among these operators is in
order. We shall apply the corollary of this section in § 10.

Other operators that have been used are the complex ¢ and 0%, the de Rham
d and d*, and the Dirac D. Our point is that & is more primitive than all of these
in the sense that the kernel of &, suitably interpreted, is contained in the kernels
of the other operators.

Schmid has pointed out to us that the realizability of discrete series in the
kernels of such operators is not so much a property of differential operators as
it is an algebraic property of discrete series — specifically the lowest K-type result.
Thus the sharpest results with differential operators should be expected to come
from the operator that most closely mirrors lowest K-type properties in its
definition; this operator is 2.

By way of illustration we shall relate 2 to the Dirac operator, used by Par-
thasarathy [17] and Hotta and Parthasarathy [10]. For this discussion we shall
assume that 8, and 6, are integral; this integrality can be achieved by passing to
a covering group. Then the representation Ad (K)|pC§SO(p‘) on p® lifts to a
representation

L(K)< Spin (p©)
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on the Clifford algebra of p€ and then restricts to a representation L, of K on a
spin module s that is invariant and irreducible under Clifford multiplication Cliff
on the left. The representation L, is not irreducible, but its highest weight is J,
and has multiplicity one, and the other weights are of the form §,—Q with Q a
sum of distinct members of 4.

Suppose that 1 is integral and that A—§, (and not merely 1) is dominant
with respect to K. Then we have a canonical inclusion

T,E7,_5,® L,

since Lg has a highest weight vector with weight J,, and we can regard C*(G, 7))
as contained in C*(G, 1;_;, ® L,). The Dirac operator

D: C*(G,1;_5, ®Ly)— C*(G, Ti_5,®Lg)
is given by
2n
Df(g)= Y U®CIff(X) X; f (g),
i=1
where X, ..., X,, is an orthonormal basis of p€. Thus we can regard the domain
of 2 as included in the domain of D.
(3.1) Proposition. If f in C*(G, t,) satisfies D f=0, then Df=0.
Proof. Write 1, ®Ad|,c=1; @}, and let P and P be the orthogonal projections
on the two constituent spaces V;~ and V;*. Define
D fle)=) X f(®®X,,
so that D, f(g) is in V,®p°sV, ; ®L,®p". Let D, be the mapping of
V,_5,®(Ly®p°) into V,_,; ®L, given by IQCIliff. Then 2f(g)=PD, f(g) and
Df{g)=D,D, f(g). We claim D, P*=0. If so, then
D, f(§)=2f(g)+P* D f(g)
and
Df(g)=D,D, f(g)=D,2f(g)+D,P* D, f(8)=D,2f(g),

and the proposition follows. To see that D, P* =0, simply observe that D, and
P*are K-equivariant, that the highest weights of V,* are of the form 14§ with
B in 4., and that all weights of the target space V,_; ® L, are of the form A—Q
with Q a sum of positive roots.

(3.2) Corollary. If Q is the Casimir operator, if f in C*(G,t,) is in the kernel
of @, and if A— 9, is dominant with respect to K, then

Qf =(| 4P =181,

where A=4+6,—6,.

Proof. Under the hypothesis on 4, Parthasarathy [17, p. 16] shows
-D?=0Q—(A1>-|8>)1 (3.1)
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on C*(G,t,_; ®L,). If fisin C*(G, 1,), then (3.1) applies to f. By Proposition 3.1,
2f=0 implies D?f=0. The result follows.

4. Construction of Orthogonal Roots

We work with the roots defined relative to the compact Cartan subalgebra of

§2 and with a fixed notion of positive roots. Let a;,...,a, be a sequence of

strongly orthogonal positive noncompact roots. (That is, no o;+a; is a root.)
m

The space ). R(E,,+E_,) is an abelian subspace of p. If it is maximal abelian,
j=1

then the sequence «,,...,a, is maximal (but not always conversely). In any

case if &y, ..., &, is maximal, then we can define a function y — a(y) carrying 4,

into {ay,...,a,} by this rule: a(y) is the first «; such that y is not strongly

orthogonal to a;.

(4.1) Definition. A sequence o, ...,
Sfundamental sequence if

. Of positive noncompact roots is a

(1) the a; form a strongly orthogonal set,
(2) a= ) R(E, +E_,) is maximal abelian in p,
j=1

(3) a; is a simple root in the subsystem of roots strongly orthogonal to
Oy s Oy,

(4) for each y in 4, either
@) fa(lzlyl, or
(®) la()I<lyl and y—3a(y) is a root.

By (1) and (2) and the remarks above, a(y) is well defined. Thus requirement
(4) is meaningful.

Properties (1) and (2) will allow us in the next section to define an Iwasawa
decomposition with the aid of «,,...,a,, and property (3) should be regarded
as a compatibility condition between the ordering of A4 and the ordering of the
yet-to-be defined restricted roots. For later use we isolate a consequence of

property (3):
y>0 and y#+afy) and y—na(y)ed imply y—na(y)>0. 4.1

Property (4) accomplishes several things. Its main effect is to make the
explicit computation of the Iwasawa decomposition easy on the Lie algebra
level. The next lemma shows how it allows us also to control compact roots
that are orthogonal to a,, ...,a,. The option of (4b) is introduced to ensure the
existence of fundamental sequences, proved below. If we insisted on (4a) always,
then the group split G, with the short simple root noncompact and the long
simple root compact would admit no fundamental sequence. Conversely if y>0
satisfies (4b), then a(y) and y— 3 a(y) are the simple roots of a split G, factor of g,
a(y) is short and noncompact, and y— 3a(y) is long and compact.
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4.2) Lemma. If f is a compact root orthogonal to each root ay,...,o in an
initial segment of a fundamental sequence a,, ..., ,,, then f is strongly orthogonal
to oy, ..., 0.

Proof. Assuming the contrary, let j <k be the least index such that § is not strongly
orthogonal to «;. Then f+a; is a noncompact root. Moreover, a(f+a)=0o;.
[In fact, if f+a;+a; is a root, then {f+a;+a;, B>>0 says a;+a; is a root,

contradicting (1).] Since § is orthogonal to «;,
|B+°‘j'>|aj|=’a(ﬂ+“j)’s
and (4a) fails for f+a;. Then (4b) holds and § and «; are orthogonal roots in a

common simple factor of type G,. Since orthogonality implies strong orthog-
onality in G, and B+a; is a root, we have reached a contradiction.

We turn to the question of existence of fundamental sequences. Let ¢, ..., ¢,
be the simple roots of 4. We begin with a naive attempt at constructing a funda-
mental sequence. Namely fix a lexicographic ordering ¢ yielding ¢, ..., ¢, as

simple roots. Define, relative to 0,

o, =smallest root in 4,
o, =smallest root in 4,7 strongly orthogonal to «,,
o, =smallest root in 4, strongly orthogonal to «,, o,
etc.
Call oy, ..., a,, the sequence associated to 0. Properties (1) and (3) in Definition 4.1

are trivially valid. Since a,, ..., a,, is clearly maximal, the function a(y) is defined.
We shall prove that (4a} implies (2).

4.3) Lemma. If oy, ...,0

m

is the sequence associated to O and if |a(y)|Z|y| for

all yin 4,, then a= ZR(Eaj-i—E_aj) is maximal abelian in p.
j=t

Proof. Suppose
X= 3 afE;+E_p+ Y byi(E;—E_j)  (ag, by real)
Bedi

Bedt

centralizes a. We may assume a, =0 for 1<j<m without loss of generality.
We form

0=[X,E, +E_, 1= (root vectors)+ib, ((E, ., E_,1—-[E_,,, E,])

= ). (root vectors)+2ib, H, .
Thus baj=0, 1 £j<m. Changing notation, we then have
X= ZA cyE;  (cp complex).
plfft';,»

Let j be the least index such that a(f)=«a; and c;#0 for some B. Form
[X,E,+E_, ], suppose B+a; is a root, and consider the term containing
E, ,.Itis

B+aj

cy[Egs E, 1+ cp[Ep, E_,]=0, where B+o,=p —a;.
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If B+a; and B are both roots, then B, f+a;, f+2a;=p is a root string. Since
B+a;+0 and since B or f’ must be the end of the full string, we obtain || <|f]
or |a;|<|B']. Since a(B)=a(f)=u;, the result is a contradiction to the inequality
la(y)l = |yl for all y. We conclude that if f+a; is a root, then ' is not a root. Hence
our equation reads ¢;[E;, E, ] =0, and we conclude c;=0.

Thus we may assume —a; is a root and consider the term containing E;_, ,
which is

cylEg, E_, J+cp[Eg., E,1=0, where f—o;=8"+a,.

If B—a;, and B” both exist, then we argue as above with the root string 8, f—a;,
B—2a;. Thus B” is not a root and we conclude c,=0. This proves the lemma.

(4.4) Lemma. Unless g has a factor whose complexification is F, or G,, every
system of simple roots ¢, ...,¢, for A admits a lexicographic ordering O whose
associated sequence satisfies |oa(y)|=|y| for all y in A,.

Proof. We may assume g is simple, and we investigate the various complex
Dynkin diagrams separately. For the single-line diagrams, any ¢ will work
trivially. For example, use ¢,, ..., ¢, as a basis to define the ordering ¢. In view
of our hypotheses, we are left with B, and C,.

Case C,. List the simple roots in the order
€, —€,,€6,—€3,...,€, 1—€,,2¢€,,

and let O be the resulting lexicographic ordering. We claim |a(y)|=|y| for all
noncompact y. There are two subcases. First, if some 2e; is noncompact, then
2e; differs from 2e; by twice a root and hence is noncompact. The sequence
associated to ¢ is then 2e,, 2¢,_,,...,2¢, and |a(y)|=|y| clearly. Second, if no
2e¢; is noncompact, then all the noncompact roots have the same length, and
(7)1 trivially.

Case B,. List the simple roots in the order

€, €1 —€5,8,—€3,...,€, ;—€

n>

and let O be the resulting lexicographic ordering. We claim |a(y)|=|y| for all
noncompact y. First, e;+e; and ¢;—e; differ by twice a root and hence are both
compact or else both noncompact. In the associated sequence «,, ..., a,,, the
first o’s are of the form e;—e;. Once the roots of this kind stop, there can be no
more such roots. Any root e;+e; after the first s is such that ¢;—e; is already
in the list, since otherwise e; —e; could have been adjoined to the list after the first
o’s. There can be at most one root ¢, in the list since the ¢,’s are not strongly
orthogonal. Also in our ordering any e, is less than any e;+e;. Thus the list
O 5 - e s Oy 18 Of the form

certain (e; —e;), possible e, , corresponding (e; +¢)).

The only problem that can occur is if a(y)=e, with y long. Then we may assume
y=e,+e, is noncompact and a(y)==e,. But ale,—e,)=¢, implies e,—e, is
strongly orthogonal to the e;—e; in our list and can be adjoined before ¢, occurs
in the list. This contradiction shows that |a(y)| = |y} as required.
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(4.5) Proposition. Each system of simple roots ¢, , ..., ¢, for A admits at least one
Jundamental sequence of positive noncompact roots.

Proof. We may assume g is simple. In G, there are only three possibilities up to
isomorphism, obtained by labeling some nonempty subset of simple roots as
noncompact. If the long simple root is noncompact, choose it as o, and let o,
be orthogonal; the result is a fundamental sequence with (4a) always valid.
Otherwise choose a, to be the short simple root, and let o, be orthogonal; the
result is a fundamental sequence that has (4 b) holding for some y. This handles G,.

Since g is simple and g€=G, has been considered, Lemmas 4.3 and 4.2 prove
the proposition except when g€=F,. Thus let g=F,. If all noncompact roots
have the same length, the two lemmas again provide a fundamental sequence.
Thus suppose there are noncompact roots of both lengths. Let the roots be
te, ieiiej,%(iel_-tezie3ie4). Suppose, for definiteness, that e, —e, or
e, +e, is noncompact. Then both are noncompact since

e;te,=(e,—ey)+e,+e,,

and exactly one of 3 (+(e; —e,)+e;+e,) is noncompact, since the difference is
noncompact. But then the sum e;+¢, is noncompact, and e; —e, must also be
noncompact. Adjusting notation, we find as a result that either all the roots
in the set

{es—ey, e5+e . e, —e,, e +e,} 4.2)
must be noncompact, or all the roots in the set

{e,—e4, e,+e,,6,—€y, e, +e5} 4.3)
must be noncompact, or else all the roots in the set

{e;—es, e54+e5,e,—e,,e,+e,} 44)
must be noncompact. Now assume that the simple roots are

Fleg—ey—es—ey) ey, e5—e,, e,—e5.

If all the roots in (4.2) or in (4.4) are noncompact, easy computation shows that
the sequence (4.2) or (4.4), respectively, satisfies (3) of Definition 4.1. Since it
clearly satisfies (1) and (4), Lemma 4.2 shows it is a fundamental sequence. Finally
our computations showed that the only remaining case has ail roots in (4.2)
and (4.4) compact and all roots in (4.3) noncompact. But this is impossible since
then the noncompact ¢, —e, would have to be the sum of the compact roots
e,—e; and e;—e,.

5. Iwasawa Decomposition in the Lie Algebra

Fix a fundamental sequence qa,, ..., a,, of positive noncompact roots, in the sense
of Definition 4.1. Such a sequence exists, according to Proposition 4.5. We
shall associate to this sequence a canonical Iwasawa decomposition of g, and
we shall obtain explicit formulas for the projection operators. At the end of this
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section we shall prove a result about restricting representations of K to a sub-
group M defined in terms of this Iwasawa decomposition.
Let a be the maximal abelian subspace of p given by

a= YR, +E_,).

j=1

Form restricted roots with respect to a, and define an ordering on the restricted
roots by means of the basis E, +E_,,...,E, +E_, . Let n be the sum of the
positive restricted-root spaces. Then g={@a®n is an Iwasawa decomposition
of g, and we have a corresponding decomposition of the complexifications
g€ =@ a®@nC Let B and P, be the projections of g€ on f€ and aF, respectively,
defined by this decomposition.

Later we shall use the notation A and N for the analytic subgroups with
Lie algebras a and n, M for the centralizer of a in K, and p* for half the sum
of the positive restricted roots counted with multiplicities.

(5.1) Lemma. If X in g% has the property that

0 for 155k

E,+E X]=
[Ea 4By, X1 {CX for j=k+1

with ¢>0, then X is in n®.

Proof. Let g, be the complex1ﬁed restricted root spaces. Write X = ZX +X,
with X eg, and X, em €®a®. Then
cX=[E, +E_, .., X1=YoE,, +E )X,

X+ 1 — A+ 1

Hence X (=0 and @(E,, , +E_,  )=c whenever X +0. Similarly for 1<j<k,

o(E, +E _,)=0 whenever X,+0. Thus X is in Zg¢ with the sum taken over
those @ for which o(E, +E ) =0, 1Sj<k, and (p(E }=c. Such
restricted roots ¢ are posmve and thus X is in n®

ak+1 “ak+

(5.2) Proposition. Let the Iwasawa decomposition be defined by means of a
fundamental sequence, and let B be a noncompact root. If f= +o(p), then

Pa(E;x)=Pa(E_p)=% (Ep‘f'EAp)’
P,(EB)=%H

If B+ +a(p), let a=a(f) and let the a-string containing B be f+na, —p<n=q.
There are two possibilities:

(i) Every noncompact root y with a(y)=a has |y|<l|a|. Then p and q are at
most 1 and not both 0, and

Pa(Eﬂ):Pa(E_,s) =0,

1
R(Eg)= To¥a (LE_» E;1+[E,, Egl).

(ii) Some noncompact root y>0 with a(y)=o has |y|>|al, and y—3u is a root.
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Then B is one of +y or +(y—2a), and

Pa(E,g)zo
~3[E,. B+ [E,. [E.. [E,. E,]] if B=—7
pgy=) B B+ [E o [E o [E BN i f=y
nr —% [Ea’EB]—% [E—a’Eﬂ] ifﬂ:-—(y—Za)
—3[E_o, Egl =3 [E, Ef) if B=y—2a.

Proof. Since P, is an orthogonal projection, the expressions for P,(E;) are
immediate in all cases. However, B is not an orthogonal projection. First suppose
B=oa(f)=0,. This case can be handled by imbedding sI(2, R) in g, but we shall

do the computation directly to illustrate the general method. We have
(Es+E_5, E;—3 (Ej+E_p)—3 H1=2(E;— 3 (E,+E_jp)—3 Hp) (5.1)
and, for 1 <jgk—1,

[E,+E_,,E;—%(E;+E_p)—4% H;]=0. (5.2)

By Lemma 5.1, E;~%(E;+E_g)—% H, is in n Hence

E5= {% Hﬂ} + {% (E5+E_{,)} + {Ea‘% (Eﬁ+E_;})_% Hp}
exhibits E, as in @ a®@n® and must be the Iwasawa decomposition. That is,
R(Eﬂ)=% H/r

Similarly if f= —a(f)= —u,, equations (5.1) and (5.2) are still valid, and we
again conclude R(Ez)=3 H,.

Now suppose a(ff)+ + . Write « for a(f), and suppose we are in case (i).
Since |a(f)| =B, we have

=—1or0or 1

Also p+¢ <3 in any case, and thus p and ¢ are both <1 unless p=1 and g=2
or vice-versa. Say p=1 and ¢=2. Then f+2« is a noncompact root and
|B+2a]>|al. If we show that af+2a)=a, then we have a contradiction to the
assumption that we are in case (i). For previous «; in the fundamental sequence,
{B+2a,a>=0. Thus a(f+2a)=«; implies f+2ata; are both roots. Then
a, B+2a, and +2a+a; are roots of three distinct lengths, contradiction. Hence
a(B+20)=0a and we conclude p=1 and g=2 is impossible. Similarly p=2 and
g=1 is impossible. Thus p and g are both <1. They cannot both be 0O since
a(B)=a implies § and « are not strongly orthogonal.
To verify the formula for F(E,), we use the formula

[E_,, [E,, Eg]l=q(p+ 1) E, (5.3a)
on p. 143 of [9] and its companion formula

[E,, [E_,, E]]l=p(g+ 1) E,, (5.3b)
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both combined with the fact that p and g are <1. We simply compute
1
E,+E_,,E,+— ([E_,,E;]+[E,. E ]
[ B p+q ([ p] [ p])
1
=[E_,, Eg]l+[E,, E,;] +m {pl@+1D)+qlp+ 1} E,

1
~(p+9) ( Egt oo (B B+ [E,, E,,])) (5.4)

since p+2pq+q=p>+2pq+4q*=(p+q)* for our values of p and q. Moreover,
if o; precedes « in the fundamental sequence,

1
[EaﬁE-a,-’ Eg +;+—q ((E _., Ej1+[E,, E,;])] =0. (5.5)

To show this, it is enough to show that «; and f+ta are strongly orthogonal
There are two cases. If f+a both are roots, then (B, a»=0. If, say, B+a+a; is
a root, then (f+a+a;, ad=<{a,a)>0 and (B+at+a)—a=p+a; is a root,
contradicting o(f)=0o. We can argue similarly for the other possibilities in this
case. In the second case, only one of f+a is a root and {f+a, ap=—{f, a>+0.
If, say, Btoa+a; is a root, then {fta+a;, a)=—<{B,a>+0 and we find that
B+, is a root, contradicting a(f)=o. We conclude that (5.5) is valid, and Lemma
5.1 then shows that

1
E +—““ EAM,E + EgnE]
B p+q([ 1}] [ g)

is in n. Since B+o are compact roots, the correction term to E, here is in £
and we can argue as in the first half of the proof to complete the proof of the
formula for F(Ej).

By property (4) of a fundamental sequence, the only alternative to case (i)
is case (ii). In this case « and y— 3« are the simple roots of a split G, factor of g,
and thus § has to lie on the a-string through y or through —y. Therefore f is
one of +7y or +(y—2a). To consider the two root strings of length 4 simultaneously,
let & be the smallest root on the string; é is —y or y—3a. The a-string through ¢
is then &, 6 +a, 6 +2a, 6 +3a. Lemma 5.1 shows that

aE;+b[E,, Es]+c[E,, [E,, E;]1+d[E,,[E,,[E,, E;]]]
is in n® if
(a’ b’ c, d)=(3, 3;%,%) or (37 la —'%’ —%)
and hence is in n€ if
0,1,1,3) or
(—=3,0,2,1) or
(1,3,0, =) or
3, 1,%0).
Returning to f§, whose a-string is f+ na with —p<n=<gq, apply (5.6) with d=pf— pa
and use (5.3). Then we get the result of the proposition.

(a,b,c,d)= (5.6)
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(5.3) Lemma. M =M_F, where M, is the identity component of M and F is a
[inite subgroup of both the compact torus T and the center of M.

Proof. If G is a matrix group, this result is well known; F can be taken as G nexp ia.
In the general case G is a finite cover of a matrix group G,, and we obtain M = M F
with F the complete inverse image under the covering homomorphism of the group
F, in G,. Then Ad (F)=Ad (F,)is trivial on the Lie algebra of M; hence F centralizes
M,. Moreover F is contained in T since T is the inverse image of the torus in G, .
Since F is contained in T, F is abelian. Thus F is in the center of M. This proves the
lemma.

If « is a noncompact root, the standard Cayley transform relative to o is
Ad (u,), where

U, =exp ;—I (E,—E_). (5.7)

(5.4) Lemma. Let o and B be orthogonal roots.
(i) If « and B are strongly orthogonal, Ad (u,) Eg=E,.
(i) If o and B are not strongly orthogonal, Ad (u,) E,}=% ([E,, Eg]l —[E _,, Eg]).

Proof. In (i), every term in the exponential series is O but the first. In (ii), we must
have |B|=|«a| since otherwise a, §, and a+ f would be roots of three different
lengths. Then the a-string containing fis f—a, f, f+ o Applying (5.3) withp=g=1,
we have

(@dE_,)(adE)Eg=(ad E)(ad E_,) E;=2E,.
Thus

ad’(E,—E_)E,=—4E,.
Then

Ad (u,) E;=(cos §) E;+1 (sin §) ((E,. ] — [E_,. Ej]),
and the lemma follows.

Let 7, be an irreducible representation of K with highest weight 4, let ¥, be
the representation space, and let ¢, be a nonzero highest weight vector. We denote
by o, the restriction of 7,(M) to the M-cyclic subspace generated by ¢, and we
let H, be the subspace of V, in which ¢, operates.

(5.5) Proposition. If t, is an irreducible representation of K, then the representa-
tion o, of M is irreducible. The highest weight of ¢, on the Cartan subalgebra

h~=t© ) RiH,, (5.8)
it
of m, with the relative ordering, is A, -, and ¢, is a highest weight vector. The value
of 0, on z in the central subgroup F is 0,(z)=¢,(2) I, where &, is the character of
T whose differential is A.
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Proof. The Lie algebra a@®}™ is a Cartan subalgebra of g, and the Cayley transform
Ad(u, ...u, ) cames t€ to (a@bh )" It carries roots vanishing on ) CH,, to roots
vamshmg on af and thus the roots for M with Cartan subalgebra §~ are of the
form y=Ad (u,,...u, ) p with § a root of (%, t€) orthogonal to a; for 1Sj<m.
The root vectors correspond similarly.

The Cayley transform acts trivially on h~ and so preserves the ordering.
However, it does not act trivially on the root vectors. To show that ¢, is a highest
weight vector of g,, we are thus to show that if E =Ad (u,, ... u,,) Eg with >0
and B La; for 1<j<m, then 1 (E ) @.=0.

First suppose f is compact. By Lemma 4.2 with k=m, f is strongly orthogonal
to all o;. Then Lemma 5.4 shows that £, =E, and we conclude that t,(E,) ¢, =
T,(Ep) ¢, =0 since ¢, is a highest weight vector.

Next let § be noncompact. By maximality of {«,, ..., a,}, f fails to be strongly
orthogonal to some «;. By Lemma 5.4,

Ad (uaj) EB =C1Eﬂ+aj+02Eﬂ—aj'

For i=j, a;+ (B +«;) cannot be roots since we would have roots of three different
lengths. By Lemma 54 all the other Ad(u,) fix Ad (u,,) Eg, and we obtain

EyzAd Uy . uy JEg=cEg,, +C,Eq_, .

In particular, this equation shows that j is unique and hence that «;=a(f). Since
the sequence is fundamental, (4.1) says that f—a(f) is >0. That is, B+« are both
positive roots. Hence t,(E,) ¢, =0

We have now proved that ¢, is a highest weight vector for ¢,. The proposition
follows directly from Lemma 5.3.

6. Szego Kernels

Fix an integral form 4 on the compact Cartdan subalgebra t, and introduce a
system of positive roots such that 1 is dominant with respect to the positive
compact roots. With respect to this ordering, fix a fundamental sequence «, , ..., a,,
of positive noncompact roots (see Proposition 4.4), and form the corresponding
Iwasawa decomposition of g as in § 5. We shall write G=ANK for the corre-
sponding global decomposition of G and write g=e"® ni(g) for an individual
element of G.

Let 7, be an irreducible representation of K with highest weight A, let V;
be the representation space for 7,, and let ¢, be a nonzero highest weight vector.
Let v be a real-valued linear functional on a. Then we define S(x, /) to be the func-
tion on G x K given by

S(x, h=e" "D (k(Ix 1)t 6.1
S(x, I) is the Szegd kernel with parameters A and v. It is clear that

Stkx, )=1,(k) S(x, 1) 6.2)
for all k in K.
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Asin § 5 let H, be the M-cyclic subspace of V, generated by ¢,, and let o, be
the representation of M given by t, operating in H,. By Proposition 5.5, ¢, is
irreducible. Let C*(K, ;) be the space of smooth functions f: K — H, satisfying

fmk)=0,(m) f(k) for meM, keK. (6.3)
Then we define the Szegdé mapping with parameters A and v by

S(f)x)= g eI dl=£6“””"‘l’ T(x=1) T f (D dl (6.4)

for fin C*(K,0;). The definition makes sense since f takes values in H, < V.
Equation (6.2) shows that the Szegé mapping carries C*(K, ¢,) into C*(G, 1,).
We can now state the main theorem of this section in its first form.

(6.1) Theorem. The image of the Szegd mapping with parameters A and v is con-
tained in the kernel of the operator 9, provided A and v are related by the formula

2{A+n;o, 0,

I
J

(6.5a)

where 1 £ j<m and
n;=|{yedS |a(y)=0a; and a(y)+ye4}|. (6.5b)
Remark. We use the notation v=v(4) later.

We shall give a second form of this theorem, cast in terms of the nonunitary
principal series. The nonunitary principal series representation W (s ,, V'), where
v is a linear functional on q, operates in the space of those smooth functions f
from G to H, such that

[ (manx)=e"""***a,(m) f (x) (6.6)
with G-action given by
Wio,,V,8) f(x)=f(xg) (6.7)

The parameters are arranged so that W(a,, v') is unitary when v'=p* +iu with
real.

If we fix v and use (6.6) to extend members of C*(K, ;) to be defined on all
of G, then we can regard C*(K, g,) as exactly the representation space for W(c,, v').

(6.2) Lemma. If f is in C*(K,0,) and is extended to G by means of V' and if §
is the Szegd mapping with parameters 1 and v, then

S(f)(x)= ,{ T, (k)7 f(kx) dk, (6.8)

provided v and v' are related by v =2p* —v.
Proof. The change-of-variables formula

[ h(k) dk = [ h(x(Ix~1)) 20" HEx"Dq]

K k
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is a consequence of the fact that W(1, p*, x 1) is unitary in I?(K). Applying this
formula with

hk)=tk) ™! f(kx)=e " HEI (k)L £ (sc(k x)),
we see that the right side of (6.8) equals

[ e HOUxD0 g2p " HUX"D 3 (Ix 1)) =1 f (s (Ix ) x)) d.
K

It is easy to see that k(x(Ix"')x)=1 and H(x(Ix 1)x)= —H(Ix~'). Substituting
and using the identity v'=2p* —v, we obtain the lemma.

The lemma shows that the Szegd mapping with parameters A and v is a G-
equivariant mapping from the nonunitary principal series W(s,,2p* —v) to
C*(G, 1,). Thus we can restate Theorem 6.1 in the following form.

(6.1) Theorem. The Szegé mapping with parameters A and v is a G-equivariant
map that carries the nonunitary principal series representation W(o,,2p* —v) into
the kernel of the operator & on C*(G, t,), provided A and v are related by (6.5).

We shall prove the equivalent Theorems 6.1 and 6.1’ in § 7. Later we shall
see that if the chosen system A" of positive roots makes 1+, — 4, dominant
and nonsingular with respect to all positive roots, then the image of the Szegb
mapping in the theorem is substantially the discrete series representation with
Harish-Chandra parameter A+ 6, —3,. The lowest K-type in the sense of Schmid
[19] is A. If A+J,— 0, is dominant with respect to all positive roots and non-
singular with respect to all compact roots, the image is a discrete series or “limit
of discrete series.”

In any event each discrete series representation is exhibited explicitly as a
quotient of a nonunitary principal series representation. We can obtain an
explicit subrepresentation theorem for discrete series by duality.

It is often true that the fundamental sequence is not unique. Generally, distinct
choices for the fundamental sequence exhibit a discrete series representation
as quotients of distinct nonunitary principal series representations. However,
it is not necessarily true that all quotient maps are obtained by suitable choices
of the fundamental sequence.

Before turning to the proof of Theorems 6.1 and 6.1, it is appropriate to note
that S is not the zero operator. To see this, let P, be the orthogonal projection
of V, on H, and define f(k)=F, 7,(k) ¢,. Then f is in C*(K, ), and it is easy
to see that

(Sf(1), ¢1):I_£ | f (k) dk.

The right side is not 0 since f(1)=¢,.

7. Proof of Theorem 6.1

Let f be in C*(K, g,) and let F=S8(f). Since by Lemma 6.2 the Szegd mapping
is equivariant with respect to the actions of G on the right and since 2 is built
from right-invariant derivatives, it is enough to prove that ZF(1)=0.
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By an argument similar to Proposition 4.1 of [1], we can choose a scalar-
valued function f in C*(K) such that

f(k)=1£ o, (m)~! f(mk) ¢ dm.
Then

Fix)= [ e g, lkx )" 1,(m)~* ¢, f(mk) dm dk

= [ D g (klkx =) ¢, f (k) dk

and
DF(1)= [ D{S(x,k) ¢}, f (k) dk
K
Hence it is enough to show that

D{S(x, k) ¢;}x=1 =0.

Next, let X, ..., X,, be an orthonormal basis of p. Then

DS, k) B}y = Z P{d S{exp (—tX}), k)¢l®Xi}

t=0

i

{3; [erf et Xir, ((k exp tX;) ! ¢A]t=0®Xi}

{ C®Ad (k™ )d [e"H(expt A () X)

M? lM? L

I
-

ti(k(expt Ad (k) X)) ! ¢,],- o ®Ad (k) X,-}
=17 (07 D{8(x, 1) §3}ems

since {Ad (k) X;} is another orthonormal basis of p. Hence it is enough to show
that

.@{S(X, 1) ¢}.}x=1 =0

To compute this expression, we use the formula (2.10) for 2 with the explicit
orthonormal basis (3|8|%)"/? E; of p€. Let E;=X,+iY,. We have

1 d
DS 1) bles= T 518 P{E{ [P X0 7, e(exp LX) ™ §:),..0® Eaﬂ}
ped,

+ ) ~|[3|2 { t[e””‘“"‘y"’n(fc(expﬂ?z))‘l¢A],=0®E—n}
BeA
=ﬂ2;, $IBEPVPE)O,®E_g}— Y 31BP P{ry(PEs)$,®E_y}.

Bedn
We are ready to use the Iwasawa decomposition given in Proposition 5.2. The
fact that we shall use about P is that it annihilates all weight vectors that are not
of the form A —yu with y a sum of elements of 4*, Temporarily let us assume that
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case (ii) of Proposition 5.2 does not arise. Then

m

DS, 1) bi}yoy = Y L2 v(E, +E_,) P{§,®E_, )}

j=1

~ ¥ 4l AlH,) P19, ®F _,)
j=1

i
1
+
ﬂ#:zia,-z(IH“I)

In the third sum, the terms corresponding to >0 are 0 by (4.1) since ¢, is a
highest weight vector. For the terms with <0, we have

O=1;[E_,, E;] P(¢,®E _p)
=P(r,®@ad [E_,, E;]($,®@E_))
=P(t;,[E_,, Ej] 0,QE _p)+P(¢,®L[E_,, Egl, E_g)).
Introduce normalized vectors X,=(3|a|)"?E, and X,=G|p1*)"?E,. With
notation N,; as on page 146 of [9], we have
(X o Xpo X _p=N_, yIX o5 X pI=N_, ;N o5 X ,
=N—a,ﬁNa, —a+BX—a'

|BI? P{t,[E_,. E;] 9, QE _y}. (1.1

But by (5.3)
% I(xtz p(‘]+ 1)X5=[Xa> [X—as Xﬂ]] =N—a,BNa, -—ot+[i’XB‘
Thus

2
[(E_,. E;).E_]=12

CIBP
and we conclude, for <0, that

_plg+ D) Jaf?
181

rq+1E_,,

P(t,[E _,, E,s] ¢1®E—ﬁ)=
Substituting in (7.1), we obtain

P(¢Z®E-a)'

m

1 2 _ B 2p(g+1)
P {S(x, 1)¢A}x=1—4j=zlla,-| {V(E.,ﬁE‘aj) AH,,) ,Z:o “ota) }
a(f)=a;
-P($,®F _,).

To evaluate the sum over B, let us replace f by — f, interchanging p and q.
A term is

2q(p+1)
p+q)

If ¢=0, this is 0. Otherwise g=1 and p+1=p+g¢. Hence the term counts 2 if
B+a(p) is a root, 0 if not. The sum is 2n;, with n; defined by (6.5b). Consequently

m 244 j Xjs O
21505 1)8,)ens =% Bl e, + £~ A

By (6.5a) the expression in braces vanishes. Thus the left side is 0 as required.

}P(%@E_a). (7.2)
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Finally we indicate what modifications are necessary if case (i) of Proposi-
tion 5.2 arises. In the third sum of (7.1) fix x=u«; so that case (ii) applies and sum
over f with a(f)=a;. A typical term is a coefficient times P{t,(E; )¢, ®E_g}.
Here we may take n<0 since P annihilates the other terms. If 8> 0, (4.1) shows
the term is 0. Thus we can take f<0 and n negative and odd. In the notation
or Proposition 5.2, we have simple roots « and y— 3« for a split G, factor, and j
must be —y or —y+2a to be negative and noncompact. Since f+no is to be a
root for some odd n<O0, the only possible choice is f=—y+2a and n=1.
Tracking down the coefficient by means of Proposition 5.2, we see that the
relevant term in the third sum of (7.1) is

+5 PP P{x,[E .. E1¢,®E _4}. (7.3)
Since p+q=3, this is 2 of
1
2(p+9q)

Hence we can repeat the argument that computed the relevant term in the third
sum of (7.1) in the previous case to see that (7.3) equals

3 1y, 2f_249p+1)
24 1o ( R )P(@@Eﬂj).

|BI> P{t,[E _., Eg] 6, ®@E _g}.

Since n;=1, p=1, and gq=2 for this exceptional «;, formula (7.2) is still valid.
The proof is complete.

8. Infinitesimal Character of W (s,,v'(4))

The main result of this section, Proposition 8.2, relates 4 to the parameters
o, and v of Theorem 6.1 by means of the standard Cayley transform built from
the roots in a fundamental sequence. This result will be applied in § 10. An
immediate consequence of the result is a simple formula in terms of 4 for the
infinitesimal character of the image of the Szegd kernel.

We continue with notation as in § 2. Let G=ANK be the Iwasawa decom-
position of G constructed as in § 5 from a fundamental sequence {o,,...,0,}
of positive noncompact roots. With h~ defined as in (5.8), let h=h~ @a. Then b
is a Cartan subalgebra of g, and the corresponding Cartan subgroup is F Ty A,
where M =M,F as in Lemma 5.3 and T;, is the analytic subgroup corresponding
to h~. T, is the identity component of M T.

Let ¥ denote the root system of (g% §°), and let ¥, =¥ be the root system
of M. Let ¥* be the system of positive roots of ¥ obtained by requiring that a
comes before §~. The corresponding restricted positive roots of (g, a) are as in
§ 5, and the positive roots of ¥, are as in Proposition 5.5. Put ¥, =¥, n¥*.

Now M=MyF as in Lemma 5.3. Let T, be the identity component of
MnT. Then FT,A is a Cartan subgroup of G. If (s, H) is an irreducible represen-
tation of M and if v is a complex-valued real-linear form on q, let 6 ®v denote
the representation of M AN on H given by (6 ® v)(man)=a(m)e* ™9, Let A(o, v)



Szego Kernels Associated with Discrete Series 183

denote the representation of FT,A4 on the lowest weight space of (¢ ®v, H)
relative to ¥,. Clearly A(o, v) determines a ®v.

Let A(o,v) denote the complex-linear extension of the differential of A(s,v)
to ht, Set

nt= Z 9> n-= Z 9 o

ae¥ * ae¥*

The universal enveloping algebra U(q) of g¢ decomposes as
Ul@)=Ubh)@n* Ulg)+ Ulgn"),

and we let n: U(g) — U(h) be the corresponding projection. For z in the center &
of U(a) and for A a complex-linear form on }<, define

x4(2)=A(n(z)).

We say that y, is the infinitesimal character corresponding to A. According,
for example, to [4, p.87], the infinitesimal character of the nonunitary principal
series is given as follows.

(8.1) Lemma. For z in &, W(o, v, 2) =Y 40 »(2) .

The main result of this section is a formula that yields the infinitesimal
character of the nonunitary principal series representation appearing in Theo-
rem (6.1). With (t,, V) as in § 6, let o, be defined as in Proposition (5.5) and let
v=v(4) be as in (6.5). Set v'(1)=2p* —v(4).

To state the result, we introduce Cayley transforms as in (5.7). Let. u,=

exp (%(Ea‘——E_aI)) fori=1,...,m. Set u=u, - ----u,. Then Ad(u)t®=H¢. Also,

the Weyl group W(,) of ¥, canomically imbeds in the Weyl group of ¥, and
we let s, be the element of W(¥,) such that s, ¥, = — ¥},

(8.2) Proposition.

Ao, V(A)=s0(4d o AdW) ™) +p,

where p=%1 Y o and A=71+6,—4,.
ae¥+
The proof of this proposition takes some preparation. To simplify the notation,
we write u~! for Ad(u)~!

(8.3) Lemma. lffisind,,if & +o, forj=1,...,m, and if a(f)=«; but {B, a;>=0,
then {B,a;>=0 for j=1,...,m

Proof. If {B,a;)#+0, then j>i. We may suppose by changing 8 to —f that
{B,;»>0. But B+o; is in 4 since a(f)=a, and {B,a;>=0. Since {f+o;,a;
= <B a;>, we see that f+a;—a; is a root, clearly noncompact. If a(f+o;—a))=a,
for some r<i, then |f+o,—a;|*=|—o*+|o|?, and f+o;—a;+a, are roots
with |[B+o,—o;+ 0,2 =|f—q; |2+|oc |2+loc |2. Thus we would have roots of three
different lengths Hence oc(ﬁ-i—oc —a)=a,. But {o,|> <|B+o;— ;1> =|f—o;|* +]o,|%.
Thus (4a) fails in Definition 4.1 for y=f+a;—a;, and (4b) must hold But
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then o, cannot be orthogonal to f without being strongly orthogonal, since
orthogonality implies strong orthogonality in G,.

(8.4) Lemma. Let
4y ) y={Bed a(p)=0; and f—ac 4},
At ,={Bedf{o(f)=a; and B+a;ed},
4t 1={Bed;f1{B, a;>=0 for i<j and {B, a;» >0},
4, ,={Bedi|<B, a>=0 for i<j and {B, a;» <0}.
If each B in A with a(B)=a; has |B|=<|a;|, then the mappings
ar; 1—>A,;‘,j’2 given by ﬁ—»B—ozj
and
A:] 2—>A,jfj,1 given by ﬂ—»ﬂ+aj
are bijective.

Proof If Bis in 4, ; |, then f—a; is in 4} by (3) of Definition 4.1. Since |a;} 2|,
the Schwarz inequality implies {(f—a;,a;><0. Hence f—a; is in A} ; ,. Next,
if Bis in 47, ,, then B+a; is in 4. Then a(f+a)=a;. [In fact, if a(f+a;)=0;
with i<j, let y be the longer of # and ;. Then {f+a;+a;—7, 7> is >0, and we
conclude that either f+o; or a;+a; is a root. But 4o, cannot be a root by
Lemma 4.2, and a;+a; cannot be a root by strong orthogonality of the funda-
mental sequence. Thus a(f+a)=a;] Then f+a;is in 4,7, ; and the map 4, ;
to 4,7, , is bijective.

If /3 is in A4, ,, then B+a; is in 4] and the Schwarz inequality implies
{B+aj,a;>>0 since |o;|=|B|. Hence f+a; is in 4f; . Finally, if §is in 4g; 4,
then ﬁ —ocj is a noncompact root. Lemma 4.2 shows that f is strongly orthogonal
to ay,...,0;_;. Hence B—a; is positive by (3) of Definition 4.1. Arguing as in
the previous paragraph, we see that a(f—a)=a;. Thus f—a; is in 4, ,. The
proof of the lemma is now complete.

(8.5) Lemma. Let m;=[4}, | and n;=|4; ,|. If each B in A} has |B|=Z|a(p)l,
then

(@) p*(E,,+E_,)=1+m;+n; and

5 . a.
b) 240, n,ozj>=
<aj5 aj>

Remark. The integer n; coincides with the integer in (6.5b) of Theorem 6.1.
Proof. p*(E,,+E_,)=% ). &(E,+E_,). Now Adw)H,,=—E, —E_, . Thus

de¥+

Y+ ={aou"!{aeRc 4}, where

——l—mj—}—nj.

R=%¥F 0w {aed|for some j, {a,a;> <0 and {«,a;> =0 when i< }.
Since a(H, )= 2, we obtain
{a, ;)
agi <dj’ o >
We note that if g is in 4,7, ;n4,; ,, then {f,a,>=0 for all »r by Lemma 8.3.

p+(Ea,-+E-—aj)= -
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Hence

pHE,4E_)=1+Y Y L%

i penio <0
B Z <ﬁ o >

i<ipeat ., < 1>

by oy B sy B

iZ)Bedy, o500 {Zjpeag. %%
s O , 0
=1+Z Z M—Z Z B,
iSipear 0D iZpeat, %%
+Z Z <ﬁ+aiaaj>__z <ﬁ cx,,a)
Sipeirns U0 Spedt., <oy

by Lemma 84. If i <j, {o;, ;> =0. Hence we find

prEHE)=1+ ¥ L <B.2>

Bedy, ; <aj,oc> BeA*Jz<a1’ 1>

g rapy o Boma
Bedd ;.2 <°(J’ J> Bedd, i <aJ’ J>
=1+m;+n;

+

as asserted. Conclusion (b) is proved in the same way.

Proof of Proposition 8.2. We may assume that G is simple. First suppose that
|BIZja(p)| for all fin 4. By (6.5a) and Lemma 8.5a,

24A .
Aoy V) By E_)=2p* (Ey 4 E_y)— T2

D)
=2+2mj+2nj—2<§j:zjj>> —2n;
i 20
By Lemma 8.5b
(sold o u™1) 4 p) (E, +E_,)= —%g—w*(&ﬁlﬁ)

C2¢hay 28—, a)

+14m.,+n;
<°‘j,°‘j> <°‘ja°‘1> s
24, a;>
=_—W+1+mj—nj+1+mj+nj
XA o om,

<ajsaj>
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Hence A(g,,vV(A),=(so(Acu)+p)|,. Now Ao, V(A)]y- =50 Aly-. Thus
we must show sq Al - + ply- =54 Ay~ . That is, we want s4(3, —3,)|y- +ply- =0. Now

A ={Bedf|{Bay=0 for j=1,...m}u 4], ,v4f; )
=1
A::{al,...,am}ujgl(A,tmuA,fjj,z).

The decomposition of 4; is disjoint, but the decomposition for 4, is not. In fact,
Lemma 8.3 gives

U ndl; )={Bed} KB a;>=0 for j=1,...,m}.
51

By Lemma 8.4,

A ialy-=4520- and ALl =4 (-

n, j,2
Hence

G=0l-=%2 Y B+3 2 B
Bedi BeAt
{B,2j>=0 (B,aj>=0
for all j forall j

=1 Y B=ply-- 8.1)

Be¥h

This proves the proposition in the case that || <|a(f)| for all fin 4.

Since we are assuming that G is simple, the only case in which |f|>|a(B)| can
occur for some § in 4., i.e,, in which (4b) of Definition 4.1 can occur, has G=G,
and m=2. As in the proof of Proposition 4.5 we see that if ¢, ¢, are the simple
roots of 4%, then |e,|?=3|¢ |2 We find 4} ={s,,2¢, +&,}, 4] ={¢,,¢ +¢,,
e, 46,38 +2¢,}, 0, =¢,, 0,=3¢,+2¢,, n,=1, n,=0. We have

{2y, 8> _1

(oy, 0,y 2
if fisin 4" and f is not a; or a,. Also

{&y,04) 3 e +ey,0) 1

oy 0 2’ CY) 2’
(g +&5,040> 1 Be+e,0) 3

CD 2’ D 2
Hence we find
@) p* (B, +E_.)=5,
2{6,—96,,0,>
O aay T
© p™(E,+E_,)=1,
248, =0, 057 _

d = -1,
@ e ay



Szego Kernels Associated with Discrete Series 187

Now
, . 2y o 20y
A(O-Aav(’l))(Eml_FE—au)—zp (E011+E—a1) <CX1,061> 2=8 <('XI,LZ1>,
. KAy 2 . 20D
Golou™ 4 p) (B, *E_y)=5—p a5 7y 3y

2{4, oc2>=2_-2<i,oc2>

oy, 000 (o, 0,0

_2(A,oc2>:1_2</1,a2> 1___2_2<A,cx2>'
PNy CPN2Y oy, 05

Comparison of these formulas completes the proof of Proposition 8.2.

Ao, VON(E,+E_,)=2p*(E,+E_,)—

(SolAou)+p) (B, +E_,)=1

9. Image of S “Far from the Walls”

With 1 integral and dominant with respect to 4,7, let S,(x, ) be the Szegd kernel
defined by (6.1) with parameters A and v=v(), with v(4) given by (6.5). The Szego
mapping, which is aiso denoted S, and is defined by (6.4), carries C*(K, ;) into
the kernel of 2 in C*(G, t,). Let Q, be the right regular representation of G on
C*(G, 1;) and 4 be the subspace of K-finite vectors in the kernel of & in C*(G, 1,).
Then (Q,, #% is a representation of g.

(9.1) Definition. The integral parameter A is said to be far from the walls if
A—<{Q) is 4 -dominant for all Q= 4. (Here {Q>= ) a)
aeQ
We now quote more precisely the three results mentioned in § 1 that we need.
If A=1—6,+9, is regular and A*-dominant, we let (n,, H*) be the discrete
series representation with Harish-Chandra parameter A, as in § 1.

(9.2) Theorem (Schmid [19], Hotta-Parthasarathy [10, p. 156]). If 1 is far from
the walls, then the representation (Q,|x, #*) splits into a direct sum X@®m (1) T,
with

my ()b, (W=}, det(s) Q(s(u+3,)—(A+3))

seWk

where Q(&) is the number of distinct ways that & can be written as a sum of elements
of 4;}.

Remarks. In Hotta-Parthasarathy [10] the unnecessary condition that G be linear
is imposed. The proof in [ 10] goes through without this condition since 2 is then
the first term of the elliptic complex E;, of [10, p. 153]. This complex is defined
for all A far from the walls. The proofs in § 5 of [10] go through without change.

(9.3) Theorem (Hecht-Schmid [87, Enright [31). Suppose that the integral param-
eter A is far from the walls and that A=A—0,+9, is regular and A*-dominant.
Then the representation 7 4|, of K splits as

Tyl = sz(ﬂ) Tyo
u

with b,(u) as in Theorem 9.2.
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(9.4) Theorem (Schmid [19], Hotta-Parthasarathy [10, p. 164]). If the integral
parameter 1 is far from the walls and if A=A—03,+ 90, is regular and A*-dominant,
then the subspace of square-integrable elements of (Q,, #?%) is equivalent as a
representation of g with the representation of g on the space of K-finite vectors
of (n,, HY).

(9.5) Corollary. Ifthe integral parameter 2 is far from the walls and if A=17—6, + 6,
is regular and A*-dominant, then (Q,, #%) is equivalent as a representation of g
with the representation of g on the space of K-finite vectors of (n ,, H*).

Proof. The point is to show that every member of s#* is square-integrable. Theo-
rems 9.3 and 9.4 show that 7, occurs in the space of square-integrable elements
with multiplicity at least b,(u), and Theorem 9.2 shows that 7, occurs in all of
#* with multiplicity at most b, (u). Since all elements of #* are K-finite, the result
follows.

(9.6) Corollary. Ifthe integral parameter A is far from the walls and if A=12—6,+96,
is regular and A*-dominant, then the image under the Szegd mapping S, of the space
of K-finite vectors in C*(K,a,) is the full K-finite kernel #* of @ in C*(G,1,).
Therefore S, is a g-intertwining operator from the K-finite subspace of W(a,, V' (1)),
where v(A)=2p* —v(4), onto (Q,, #*) and exhibits the K-finite vectors of (r ,, #*)
as a g-equivariant quotient space of the K-finite subspace of W(a,, v'(4)).

This corollary is immediate from Corollary 9.5 and Theorem 6.1 since we
know that §, is not the zero operator. We have thus proved Theorem 1.1 in a
particularly sharp form far from the walls.

10. Tensoring with Finite-Dimensional Representations

Theorem 1.1 was proved in § 9 when 4 is far from the walls. In oversimplified form
the idea in the general case is that everything can be shifted compatibly from a
parameter A+ u far from the walls to a general parameter A by forming suitable
projections of tensor products with finite-dimensional representations. This
technique was introduced by Zuckerman [25] in a general context, and a specific
result of his concerning discrete series will be used in Theorem 10.8. The other
machinery concerning tensor products will be developed in this section, and
Theorem 1.1 will then be proved at the end.

Let 4 be an integral form that is 4, -dominant. We retain the notation of §§ 8-9.
Fix p to be the highest weight of an irreducible {inite-dimensional representation
of G. Let (rn, U) denote a finite-dimensional representation of G with lowest
weight — u. We make repeated use of the following lemma.

(10.1) Lemma. 7, ,®mnl; contains the K-type t; with multiplicity 1, and its
other K-types have highest weights i+y with y a sum of elements of A*. If ¢, _,
is a nonzero highest weight vector for t, _, and v, is a nonzero lowest weight vector
for m, then the 1, projection of ¢, , ,®v, is a nonzero highest weight vector for t,.

Remarks. All but the last assertion of the lemma is well known, but we reproduce
part of one standard proof of the remainder in order to obtain the last assertion.
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Proof. Let u,, ..., pu, be the weights of |, arranged in increasing order and re-
peated according to their multiplicities, and let v, ..., v, be a corresponding basis
of weight vectors. Let M; be the cyclic space of ¢, , B, in the tensor product,
and let ;=3 M,. Then ¥, 2---2V;2¥,,,; =0, and it is clear that the root vectors

Jjzi
corresponding to 4, carry ¢, , ,®u; into V,_,. It follows readily that
V/ :+1"0 or Tl+u+un (10-1)

and correspondingly that
Tan®T =D Ty (10.2)

with each n,=0 or 1. An elementary argument with characters shows that n,=1.
Hence V,/V; =1, 0. Therefore ¢, ,®v, has nonzero projection on the , space.
Since its weight is 4, it projects to a nonzero highest weight vector. This proves
the lemma.

For the remainder of this section we shall assume that u is chosen so large
that A+pu—0,+4, is regular and 4*-dominant and that A+p is far from the
walls in the sense of Definition 9.1. For now, we do not require that A—§,+4,
itself be A*-dominant.

We shall use Lemma 10.1 to introduce the shift that carries #*** to #* Let

Q,: C*(G, 1, )QU - C*(G, 1, ,®7|g) (10.3)
be the G-equivariant map defined by

0,(f ®v)(g)=f(g)®n(g)v

for fin C*(G,t1,,,) and vin U. Let P,: V,, , ®U—V, be a nonzero K-inter-
twining operator; P, exists and is unique up to a scalar factor by Lemma 10.1.
Define

P,(f ®1)(8)=P,(Q,(f ®) (2) (10.4)
for fin C*(G,t;,,)and v in U, and let

Pr=P (H***QU). (10.5)
(See § 9 for the definition of #**~)
(10.2) Proposition. (a) P, carries #***QU into #* and is a g-intertwining
operator from (Q, . ,®n, #* *@U) to (Q,, #™).

(b) The image 2* of #***®U under P, contains the K-type t, with multiplicity 1,
and its other K-types have highest weights A+y with y a sum of elements in A™.

(¢) 2* has an infinitesimal charcter.

Remark. In Theorem 10.8 we shall see that 2* is independent of u if A satisfies
certain properties.

Proof. (a) It is enough to show that 2(P,(f ®v))=0 whenever f is in #*** and
visin U. Since P, is G-equivariant from C*(G, t, +)®U to C*(G, 1)), it is enough
to show that .@(PA( f®uv)) (1)=0. This expression will be 0 because of the map P
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in the defining formula (2.9) for 2. In fact, the map 2 o P, followed by evaluation
at 1, as a map from #*+**@U to the representation space for 7; (see (2.6)), is a
K-intertwining operator. Every K-type of #***# is of the form TewithE=A+pu+y
and with y a sum of elements of 4+, by Theorem 9.2, and 1, , has multiplicity 1.
By Lemma 10.1 applied to 1+, we obtain a decomposition

HHHQU=1,+1,, , (10.6)

with each ¥ a nonempty sum of members of A4*. Since, by (2.6), every K-type of
1 is of the form 1, _, with § in 4., we see that Z(P,(f ®v)) (1)=0.

(b) Equation (10.6) proves the assertion about K-types, provided we show
P, (t, space)+0. We saw in § 6 that there is some f;, in #**+# with f,(1)%0. It then
follows from the transformation property for C*(G, t, ) that evaluation at 1
carries #*** onto V,,, and hence carries H**@U onto V,, ,®U. Composing
with P,, we see that the map F-— B F(1) is a K-intertwining operator carrying
A QU onto V. By (10.5), this map must annihilate all but the 7, space. Hence
it must carry the t, space onto V;. Therefore P, (t, space)+0, and 1, does appear
in 2%,

(¢) The K-finite dual space (2** of 2* is a g-module. For v in V}* let §,(f)=
{f(1),v). Then §, is in (#*)* and we obtain a K-homomorphism of V'* into (2%)*.
The image is not 0 by the argument for (b) above. If f is in 2* and U(g) V;* maps f
to 0, then f=0 by real analyticity of f. Hence V;* is U(g)-cyclic in (#%)*. Since V*
appears with multiplicity 1, it follows that (#%)* has an infinitesimal character:
z-u=y(z)u for all u in (P** and z in the center & of U(g). If u is in (#*)* and f
is in 24, we have

Cz-fuy=Lf"z-uy={y(2) fu>
and

(z- f=x(2) f,u>=0.
Since u is arbitrary, zf = x(‘z) f. The proof is complete.

The next step is to study tensor products of nonunitary principal series re-
presentations with finite-dimensional representations. To describe matters
we introduce a class of representations wider than the nonunitary principal

series. If (¢, H) is a finite-dimensional representation of MAN, let Y¢ be the space
of all C® functions f: G — H* such that

() f(bg)=E(b) f(g) for g in G and b in MAN
(i) f is right K-finite,

and define

d
(WS, X)) (@)= f(gexptX)l_o

for X in g and fin Y Then (W(&), Y¢) is a representation of g. For a special case,
let o be an irreducible representation of M, let v be a complex-valued real-linear
form on a, and put (c®v) (man)=e"'°®*g(m). The representations c®v describe
all irreducible representations of MAN, by [1, p. 186]. Moreover, W(oc®v) is
the infinitesimal version of the nonunitary principal series representation W{a, v).
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(10.3) Lemma. Let (¢, HY) be a finite-dimensional representation of MAN,
let H < H* be an M AN-invariant subspace, and let &, and &, be the associated
representations of MAN on H, and H/H,, respectively. Let p: H— H/H, be the
quotient map, and regard Y* as a subspace of Y*. For fin Y, define

p(f) (g)=p(f(g).

Then p is a g-intertwining operator of Y* onto Y** with kernel Y%,

Proof. It is enough to prove that p(Y°)= Y%, the rest being obvious. On the level
of representations of M, we can regard H,=H/H, as a subspace of H, writing
H=H,®H, and &|y =&, |, DE, |y If fis in Y42, we look upon f; as a function
from K into H, & H satisfying f(mk)=_¢,(m) f (k). Define g(bk)=&(b) f (k). Then g
isin Y¢and p(g)=f. Hence p maps onto Y*2.

(104) Lemma, Let (¢, HY) be a finite-dimensional representation of MAN. Let
H§=H1:)H2:)"':)Hd3{0}

be a composition series for (£, H®) with o,Qv; the corresponding irreducible re-
presentation of MAN on H,/H, . If &, denotes the restriction of £ to H,, then there
corresponds a chain

Y =Y%2Y%5. oY {0},
and the representation of g on Y*/Y* ! is infinitesimally equivalent with W (o, v}).
Remark. We follow [11] in the terminology “chain” and “composition series.”
Proof. Iterate Lemma 10.3.

(10.5) Lemma. Let (¢, H%) be a finite-dimensional representation of MAN,
and let (n, U) be a finite-dimensional representation of G. Set f=mnly . For f
in Y¢ and v in U define

Q,(f®v)(g)=f(g)®n(g) v. (10.7)

Then Q,: YU — Y*®# defines a one-one g-intertwining operator of W(£)®@mn
onto W(ER ).

Proof. An obvious computation shows that Q, carries YS®@U into Y*®# and is
a g-intertwining operator. For fin Y*®# let

Q3 ) (®)=URn() ") (f(g)
Then Q, 0 Q, is the identity on Y*®U. Moreover, if f is in Y*®% let {v;} be a
basis of U and define functions f; by

@)= file)®n(g) v;.
Then each f,is in Y and it follows readily that Q, - Q, is the identity on Y*®#.

(10.6) Proposition. Let £ =0®v be an irreducible finite-dimensional representation
of MAN on H, and let (n, U) be a finite-dimensional representation of G. If EQ 7|y an
has a composition series

H®U=H,oH,>-->2H;o{0}
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with irreducible quotient representations o,®v; on H,/H; |, then W(o,v)®n has
a corresponding chain, and the respective quotients are infinitesimally equivalent
with the W(o;,v) for 1<i<d.

Proof. Combine Lemmas 104 and 10.5.

We have studied tensor products of finite-dimensional representations with
the representation on the space #* and with nonunitary principal series. Next
we study the effect of tensoring on the Szegé kernel.

(10.7) Proposition. If the integral parameter A is such that A=A+6,—9, is
A*-dominant and A—5,=24—-9, is 4;F-dominant, then the Szego kernel S, carries
W(a,, V' (4) into P~

Remark. So far, we have not proved that 2% is independent of u. We do not prove
this until Theorem 10.8.

Proof. Again introduce pand (n, U). Let { and  be the representationsa,, @V (A+p)
and 7|y 4y, respectively, of MAN. By Corollary 9.6, S;,, maps Y*¢ onto #**~
By (10.5), B(S;,,®I) maps Y*® U onto #* On the other hand, if f is in Y¢ and
visin U, (10.4) and (10.7) give

PA(SA+,4f®U) (g)=P,1(j‘r,1+n(k)f(k_lg) dk®@n(g) U)
K
=P (1. (0@n(k) (f (k' ) @n(k~ g) v) dk
K
= [ k) P(f(k~ g)@n(k ' g) v) dk
K
= [ (k) P,Q,(f ®v) (k' g) dk.
K
Here Q,(f®v) is in Y*®# by Lemma 10.5, and we conclude that the operator
Z defined on Y*®# by
Z(f)(g)= [tk P,(f (k' g)) dk (10.8)
K
carries Y¢®# onto 2%
Let v, be a nonzero lowest weight vector for =, taken relative to the Cartan

subalgebra t. Let u=u, -----u, be the Cayley transform with u, defined by (5.7).
A computation in SL(2, C) gives

n(u,)=exp n(E,) exp n(log (1/2) H,) expn(—E_,). (10.9)
Since v, is a lowest weight vector, we can apply (10.9) to see that

n(uw) vo=cexpn(E, +---+E, )v,=cv,+higher weight vectors, (10.10)
where c is the nonzero constant

c=2-Emap/Kay,a)
In view of (10.10) and Lemma 10.1, we see that

Fy(¢;,,@7() vo)=cPi(§,, ,®vo)=C"¢;, (10.11)

where ¢’ +0 and ¢, is a unit highest weight vector for the 7, subspace of 7, | ,®7lg.
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We return to the operator Z, given by (10.8). For fin Y°*®¥ define

f(k)=Afl(é(m)®ﬁ(m))<f(M'1k), G5 (@14, ®7(U) vo) dm. (10.12)

A change of variables shows that

f(mk)=(&m)® (m) £ (k),

so that we can extend f to G and obtain a member of Y*®# by defining

Sbky=¢®B0) f (k)

for b in MAN and k in K. Thus Z is defined on f. Under the hypotheses of the
proposition, we shall prove that

S, f@=c"""Zf(g) (10.13)

with ¢ #0, and this equality will finish the proof since the image of Z is 2%
For now, let us observe that (10.13) holds at g=1. In fact, first we note that

P,(f(k)=c"f (k) (10.14)
because (10.12) and (10.11) give
P(f (k)= f Sfm=h), ¢, P, (m@n(m) (¢, ,®TW) v5)) dm

=A]; {Sk), 0,(m) @, ©,(m) Py(@, , ,@7(u) vy) dm
=C’A£ (fk),a,(m) D> 1,(m) b, dm
=C,1\£ (Sfk),0,(m) @, > 0,(m) b dm

=c"f (k)

by Schur orthogonality. Combining (10.14) and (10.8), we see that (10.13) holds
for g=1. Since S, is a g-intertwining operator; the proof will be complete if we show
that f— Zf is a g-intertwining operator. This step will require some preparation.

The Cayley transform u carries t€ to the Cartan subalgebra h¢ defined in § 8,
and hence n(u) v, is a weight vector of = relative to . Its weight is —pou=l.
Let p,, ..., u; be the weights of (n, U) relative to €, repeated according to their
multiplicities and arranged in increasing order relative to ¥*. Let v,, ..., v, be
corresponding nonzero weight vectors; we can arrange that v,=nW)v, is a
member of this list. Let w;=¢,,,®v;, let W, be the MAN cyclic space for w;
within the space H,, ®U of E®B, and let U Y. W,. Then we have

jzk

+u
L2U,2---2U,2{0}.

The Lie algebra n operates trivially on ¢, , , and increases the weight of v; relative
to ¥*; thus {®B(n) U, U;,,. Also root vectors corresponding to ¥,.° carry
U; into U; - It follows that MAN operates irreducibly on U/U; ,, if U/U,,, is
not 0. That is,

U/U;,1=0 or o,®v;.
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Setting Y,={ f€ Y°*®’|f (g)e U for all g}, we see from Lemma 10.4 that
Y,/Y;,,=0 or Y°i®

as g-modules.
If i is the index with v,;=¢, , ,®n(u) v, and if f is in Y°*®*'¥), then f takes its
values in W, U,, and hence f is in Y,. We shall identify the parameters (o,, v,).

In fact, for any j, our arguments above give the highest weight of 6,®v; as

SoA(0;,v)=s04(0; ,,, V(A + W)+ (weight of ), (10.15)

i
and the weight of mis —pou~+Qou~! with Q a sum of members of 4*. More-
over, Q is 0 if and only if j=i. Applying Proposition 8.2, we see that the right
side of (10.15) is

=(A+,u)0u_l-l—sop—/,tou_l-}—Qou_l

=Aoul+s,p+Qou? (10.16)

=5oA(0,, V(A)+Qou="t. (10.17)
Taking j=i, we see from (10.17) that g,|,,, =~ 0,|y, and

v,=V(4). (10.18)

With this much information, we can see that f—f+Y,,, is a g-intertwining
operator. In fact, it is easier to work on the G-level and differentiate afterward.
Denoting the operation of G by subscripts, we are to compare (f,)” with ( f )e-
With the Iwasawa decomposition G=ANK as g=e"®n«(g), we have

(f) (k)= Ai C®Pm) (fo(k), a,(m) ¢ (D, @) vo) dm
=I£ CRBm) < fkg), 0,(m) d,> (s, ,®n(u) vo) dm
=A£ E@Blm) " DEED  f(1c(kg)), 0,(m) ¢, (@, ,OT(W) vo) dm

=" W] ((kg)
and
(Ne(k) =f(kg)=ERP(e"*Pn) f(x(kg))
=" H%9)[ (se(kg)) mod U,
By (10.18), we therefore have

(N =(f (kymod U,., .

Differentiating in g and applying Lemma 10.3, we conclude that the map

f_’f+Yi+1

of Y°*®¥® into Y/Y,,, is a g-intertwining operator. Now Z is a g-intertwining
operator, and hence f—Zf +Z(Y,,,) is a g-intertwining operator from Y°+®¥®
to P*/Z(Y, ,4)-

To complete the proof, we shall show that Z(Y,,,)=0. It is enough to show that
the value of the Casimir operator Q on 2* (Proposition 10.2¢ and Corollary 3.2)
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is different from the value of Q on W(g;,v) if j=i+1. Corollary 3.2 gives the
value on 2* as |A|*—|5|%, since Proposition 10.2a says #*< s#*. The value on
Wig;,v))is

|A(o;,v)—pl?—1pl?,

which by (10.16) is
=lso(dou™)+p+s,(Qou)—pl*~|pl?
=|A+Q~pl*.

Since A is A*-dominant, (A, Q) is 20. Therefore
|4+ Q1 ~pl*> 41> ~|p|?

as soon as Q is not 0. Therefore the values of 2 do not match and we have Z(Y; ,,)=0.
The proof is complete.

The final step is to bring in tensor products with discrete series. We obtain
the theorem below as a sharp form of Theorem 1.1, in view of Theorem 6.1".

(10.8) Theorem. Suppose the integral parameter A is such that A=248,—9, is
A*-dominant and A— 8, is At -dominant. Then

(i) 2% is canonically defined, is independent of u, and is irreducible,
(ii) S, carries W(a,, v'(A) onto P*, and

(iii) 2* contains t, with multiplicity 1, and <, is the lowest K-type in #*.

Moreover, if {A,a>>0 for all « in A*, then P* is infinitesimally equivalent
with the discrete series representation (n ,, H?).

Proof. By Corollary 9.6, #*** is irreducible and is equivalent with (. ,, H***)
if p is sufficiently large. Form (r, U) with lowest weight — u. Zuckerman [25] has
proved that the image of the projection of H***® U according to the infinitesimal
character corresponding to sy(Aou~')+p is irreducible if A is 4*-dominant
and is infinitesimally equivalent with =, if A is also nonsingular. Now HA**®@U
is isomorphic with #***®U, and the image of the Szegd kernel also has in-
finitesimal character corresponding to so(Aou~')+p, by Proposition 82. By
Proposition 10.7, the image of the Szegd kernel is contained in 2%, and by
Proposition 10.2¢c 2% has an infinitesimal character. Hence #* has infinitesimal
character corresponding to so(4°u~')+p and is contained in the image of the
projection according to this infinitesimal character. By Zuckerman’s irreducibility
result, we must have equality. Then #* must be irreducible, and S; must map
onto it. That is, 2* is canonical. Result (iii) is by Proposition 10.2b. The final
statement of the theorem is now clear.

Remark. The hypothesis in both Proposition 10.7 and Theorem 10.8 that
A=6,=A-§,be 4} -dominant was made in order to guarantee that the eigenvalue
of the Casimir operator on #* be |A4|?>—|§|2. By means of Corollary 3.9 of
Wallach [23], it is easily seen that this fact persists for all 4} -dominant A. The
proofs of Proposition 10.7 and Theorem 10.8 go through unchanged for the
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wider class of 4 if this observation is made. Therefore Proposition 10.7 and Theo-
rem 10.8 are valid without the additional assumption that A — 4§, is 4, -dominant.

11. Analog of Harish-Chandra’s  ,-Function

In this section we describe an alternate, and as yet unsuccessful, approach to the
proof of Theorem 1.1. We start with a generalization of Harish-Chandra’s
¥, function for holomorphic discrete series. With the parameter 1 chosen so that
A=1+6,—46, is A*-dominant and nonsingular, introduce the member f, of
C*(K, g,) defined by

fik)= j. 1,(m) " K, (mk) 4, ;> P dm.

M

Then f, is K-finite. Extend it to a function on G as in § 6.

We compute a particular K-finite matrix coefficient for the representation Q,
in the image of the Szegd kernel S,. The coefficient is

¥1(8)=<Q:(8) S, £, 6,

where fis f; and § is the K-finite linear functional on the image of S, given as the
composition of evaluation at 1 followed by inner product with ¢,. If ¢, is a unit
vector, easy computation gives

vi(g)= I{ e (1, (kg b, ¢, (Tuk) ;. b, > dk. (11.1)

Suppose that one could prove
(i) ¥, is square-integrable on G and
(i)) the image of S, is irreducible.

Since ¢, is & -finite and right-and-left K-finite, it would follow from Harish-
Chandra’s theory that the image of S, is infinitesimally equivalent with the cyclic
space for y,, which in turn would be an irreducible subspace of I?(G). Then it
would have been proved that the image of S, is an irreducible discrete series
representation. Proposition 8.2 would show its infinitesimal character matches
that of (n,, H*), and we would know it contained the K-type t,, since S, f, has
that K-type. These facts would substantially prove Theorem 1.1.

Partial results in this direction have been proved by the authors in some
special cases. For SU(2, 1), see [24].

12. Groups of Real-Rank One

We assume in this section that rank G =rank K, that G has a simply-connected
complexification G€, and that G has real-rank one. That is, dim 4 =1 in any Iwa-
sawa decomposition G=ANK. We shall show how irreducible images of Szego
kernels account for all of the reducibility of the unitary principal series of G.

Temporarily fix a system A* of positive roots, We begin with four easy results
that give interpretations of the real-rank one data.
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(12.1) Lemma. All the elements of A have the same length.

Proof. If « and f are in A4, then R(E,+E_,) and R(E;+E_j) are maximal
abelian subspaces of p. Consequently there is an element k in K with
Ad(k)(E,+E_,)=c(E;+E_j). Possibly by interchanging « and f, we may
assume that |c|< 1. By Lemma 3 of [12], the eigenvalues of ad(E,+ E_,) on g are
bounded by 2 in absolute value, and 2 is achieved, say on a vector X. Similarly
the eigenvalues of ad(E;+E ;) are bounded by 2. But we readily compute that

[E;+E_p Ad(k) X]=2c"" Ad (k) X,
and we conclude that |[¢|=1. Then (2.1) shows that |a|=|f].

(12.2) Corollary. If « in A} is simple, then o is a fundamental sequence of positive
noncompact roots, in the sense of Definition 4.1.

Fix « as in the corollary, and construct the corresponding Iwasawa decomposi-
tion as in § 5.

(12.3) Lemma. M =M,Z, where Z is the center of G.

Proof. We may assume G is simple. By Proposition 5 of [12], either M is connected
or G= SL(2,R). The lemma is clear in both cases.

(12.4) Lemma. Let A be integral and A} dominant, and let A=2+6,—3,. Then
Wi(o,, V' (4)) is in the unitary principal series if and only if (A, o> =0.

Proof. By (6.5) and Lemma 8.5,
244, o
< b > 2

(uay 0
2A+5,—8,, 0

VIV(E,+E_)=2p"(E,+E_)—

=p (B +E_J)— oo
o _2{A 0
=p (B E_) =

Since A is integral, v'=p* +iy with u real on a if and only if (A, «)>=0.

To proceed, we shall adopt in succession two points of view —first that we
want to imbed a class of “limits of discrete series” in unitary principal series,
and second that we want to decompose all reducible unitary principal series by
means of Szego kernels as sums of “limits of discrete series.” For a special case
of these results, see § 8 of [14].

For the first point of view we start with A integral such that A is orthogonal
to each member of a nonempty set of noncompact roots and to no compact roots.
Introduce 4™ so that A is dominant with respect to 4*. The data (4, 4*) determine
one representation that we shall imbed.

(12.5) Lemma. If the integral parameter A is A*-dominant and is orthogonal to
at least one noncompact root and to no compact roots, then there is exactly one a
in A* such that {A,a>=0, and o is simple.
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Proof. Since A is dominant, the set of roots in 4% orthogonal to A is generated
by the simple roots in the set. All of these must be noncompact. If there is more
than one, two such cannot be orthogonal since they would be strongly orthogonal
and would exhibit the real rank of G as greater than one. If they are nonorthogonal,
their sum is a compact root, and A is orthogonal to it, contradiction. This proves
the lemma.

With « as in Lemma 12.5, let
AV =PAT=(4" —{a})u{—a}. (12.1)

Then A%’ is a new system of positive roots, 4*’ has the same positive compact
roots as 47, and A is dominant with respect to 4*'. The data (A, 4*’) determine
a second representation that we shall imbed. Let &, be half the sum of the positive
noncompact roots for 4™,

Since « is simple in 4* and —a is simple in A*’, Corollary 12.2 allows us to
apply our theoryto (4, a)and to (4%, —a). If G=ANK is the Iwasawa decomposi-
tion associated to (4%, ), then G=ANK is also the Iwasawa decomposition
associated to (4%, —a), since E_,+E,=E,+E_,.
(12.6) Theorem. Suppose the integral parameter A is A*-dominant and satisfies
{A,0>=0 for a noncompact simple root o and {A, B>+0 for all other positive
roots. Define A*' by (12.1) and let

A=A-6,+9,
N=A—-4+d,=L—a.
Then A and X' are integral and At -dominant and o, is equivalent with o ,.. Moreover,

the unitary principal series representation W(ag,, p*) is infinitesimally equivalent
with the direct sum of the K-finite images of S; 4+, and Sg;. 4+/,.

Proof. Since G€ is simply-connected, § is integral. Thus — 3, +0,= —25,+96 is
integral and A is integral. The form 1 is 4; -dominant since d, is and since A —J,
is (A being A7 nonsingular and G being linear). Similarly A’ is integral and A -
dominant. Now A'=A1—a shows A|,- =1"|;-, where b~ is the Cartan subalgebra
of m given by (5.8). Since A" and 4 differ by a root, their associated characters are
equal on the center Z of G. Then Lemma 12.3 and Proposition 5.5 show that
c,and g, are equivalent. The domain of S, ,.,is W (g, p*) by the proof of Lemma
12.4. Since W(o,, p*) is unitary, the K-finite image of S, 4+, imbeds in W(s;, p*).
Now p* is insensitive to the change from 4" to 4*', and thus S ;. 4., has domain
W(o,,p*)=W(o,, p*). Then the K-finite image of S;. ;.. imbeds in W(a,, p*).

In any ordering compatible with 4™, Theorem 10.8 shows that 7, is the lowest
K-type in the image of S; 4.,. In particular, 7, occurs and t; =1,_, does not.
Symmetrically 7, occurs in the image of S;. 4., and 7, does not. Since by [1]
W(o,, p*)decomposes into at most two irreducible pieces, we obtain the theorem.

Turning to the completeness theorem, we note that the case A=0 when
G=SL(2,R) in Theorem 12.6 accounts for the only reducibility of the principal
series of SL(2, R). Thus we may assume that M is connected, by Proposition 5
of [12]. For this theorem we regard M AN as fixed, obtained in the standard way
from a noncompact root +o. Let h~ be the Cartan subalgebra of m given by
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(5.8), and fix a system ¥, of positive roots of m. Let p~ be half the sum of the
positive roots of m.

(12.7) Theorem. Suppose M is connected. Let o be an irreducible representation
of M with highest weight A~, and suppose that the unitary principal series representa-
tion W{o, p* +ip) is reducible. Then u=0. Moreover if A denotes the extension
of A=—+p~ tot by 0 on RH, and if A* is chosen to make A A*-dominant and to
make o, say, positive, then

() ais simple
(i) <A,a>=0, and {A, B> =*0 for all other positive roots
(iii) A is integral
(iv) A=A —38,+ 9, has the property that o, is equivalent with o.
Consequently the reducibility of W(o, p*) is accounted for by Theorem 12.6.

Proof. By Theorem 5 of [15] and the remarks after it, the reducibility implies
that u=0, that (A~ +p~, f>=0 only for f=+a, and that exp {(4~+p ") (H)} =
+1 for any element H in h~ with exp H=y=expni(E,+E_,).

Since <A, >={A"+p~, B> for all B, (ii) is immediate and (i) follows from
Lemma 12.5. To prove (iv) we are to show that A|,_=A". That is, we want p~ =
(—0;+3,)l,_ - But this is simply formula (8.1), which is valid since (i) shows that M
has been constructed from a fundamental sequence.

We are left with (iii). A computation in SL(2, R) shows that the element y is
also given by y=expniH,. For any root B let y,=expniH, and B=—p.B.
Suppose {B,a>>0 and f+o Then Lemmas 1 and 3 of [12] show that either

2 <|ﬁﬁ’l§> =—1land f+f=ao0r 2 <|z’|2ﬂ> =0 and 1 (B+ B)=o. In either case it follows

that y,y5=7y. A computation in SL(2, C) shows that yf,=1, and so yzyﬂylf‘:
exp ni(Hy— Hp). The element ni(H,— Hp) is in h~, and therefore

(A~ +p7) (mi(Hy— Hy)) is in 2miZ.

. 2{AT+p7, B> . ) .
That is, Lm“—_l—f—ﬁz is an integer. For the remaining roots f, we note that
A~ - . . . .
{A™ +p~,ay=0 and that <—‘-—;—ﬁ—’ﬁ~>‘ is an integer if {f, «> =0 since § is then

a root of m. Consequently A=4"+p~ is integral in the algebraic sense. Since
G€ is simply-connected, A is integral. The proof is complete.
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Notes Added in Proof. (1) J. Carmona has discovered a proof of Proposition 4.5 that avoids the case-by-
case check for B,, C,, and F,, but not for G,.

(2) The second named author has recently carried out the program of § 11 in the case of real-

rank one.



