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Local Langlands Correspondence:
The Archimedean Case

A. W. KNAPP

The theory of group representations provides a rich supply of automorphic
L functions that are candidates to be the L functions of motives. A motivic
L function encodes arithmetic information in an analytic function defined
as an Euler product and convergent in a right half-plane. Exploiting this
information requires deriving conjectural properties of this analytic function,
such as its analytic continuation and functional equation. In practice these
properties are obtained only as a consequence of identifying the given motivic
L function with an automorphic L function.

Actually the calculus of L functions is a rather small manifestation of a
rather large enterprise known as the Langlands program. The general Lang-
lands program works with a reductive group G over a global field F and
with the representations that occur (in a suitable sense) in Lz(G(F)\G(A)) 3
where A denotes the adeles of F . To each such representation the program
associates an L function, and it is hoped that these L functions have the
same kinds of nice analytic properties as the L functions of Hecke. Some
original papers of Langlands on this program are [19, 20, 21]. Gelbart [7] has
given an exposition of the scope of the theory.

The point of the present paper is to give an account of the relevant parts of
representation theory that are occurring at the Archimedean places. Largely
what we shall discuss is the Langlands treatment of representation theory of
GL, over R and C. For GL (R) and GL,(C), the Langlands classification
theorem for irreducible admissible representations can be stated in a frame-
work that sounds plausible for all local fields. We call this framework the
“local Langlands correspondence.” Within this framework, the contribution
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of the Archimedean places to L functions is a rather simple topic.] A
companion paper by Kudla [18] treats the non-Archimedean places, where
the analogous statements are partly theorems and partly conjectures.

Discussion of the classification theorem and the local Langlands corre-
spondence for GL, will occupy §§2—-4 of this paper. In §5 we shall mention
the extent to which the Langlands theory generalizes from GL, to connected
reductive groups. The special case of symplectic groups is relevant for the
theory of Shimura varieties.

It is important for understanding the Langlands program to know some
features of the historical transition from classical automorphic forms to au-
tomorphic representation theory. The theory separated into two directions
at one time in the early 1970s and then came together several years later.
The interplay between the two successful theories accounts for the relatively
advanced state of knowledge for GL, in comparison with other groups, and
it is where we begin.

I am happy to acknowledge helpful discussions with E. Bifet, S. Kudla,
H. Matumoto, and C.-H. Sah in connection with writing this paper.

1. Historical transition

Classical automorphic L functions in the work of Hecke arise as Mellin
transforms of certain automorphic forms—particularly as transforms of a
kind of @ function (in the case of Hecke’s theory of grossencharacters) or as
transforms of modular forms of the subgroup

Ty(N) = {(jj) €SL(2,2) | c=0mod N}.

Hecke’s theory of grossencharacters establishes analytic continuations and
functional equations for L functions that generalize Dirichlet L functions.
Tate’s thesis [28] recast this theory of Hecke’s in a representation-theoretic
setting that corresponds to the regular representation of GL,(A) on
GL,(F)\GL,(A), A again being the adeles of a global field F . For a fixed
grossencharacter, Tate’s method in effect attaches to each place a local L
factor given by an integral, as well as a local & factor that contributes to a
local functional equation. Also in effect, the method constructs a global L
function as the product of the local L factors, and then it proves directly a
global functional equation. We shall amplify this discussion shortly.

In the 1950s Gelfand and Fomin realized that modular forms are con-
nected with representations of GL,. Some expositions of this connection are
in parts of Gelfand, Graev, and Pyatetskii-Shapiro [9], Weil [35], Deligne [2],
Gelbart [6], and Piatetski-Shapiro [23]. In part, the connection is that one can
identify cusp forms for I'j(N) in two stages with functions on groups. In the

" In classical terminology, it is customary to include only the factors from the non-Archime-
dean places in L and to give another name to the product of L with various gamma factors that
come from the Archimedean places. But we shall follow the convention used in representation
theory of including factors from all places in the definition of L .
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first stage the identification is with certain functions on SL,(R) transforming
on the left side by I';(N) and on the right side by the rotation subgroup. In
the second stage it is with functions on GL,(A) whose integrals of a cer-
tain kind vanish, where A is now the ring of adeles of @ . The cusp forms
are then intimately connected with the decomposition into irreducible rep-
resentations of the representation of GL,(A) on the space of functions on
GL,(Q)\ GL,(A) that transform by a character of the center Z, of GL,(A)
and are square integrable on GL,(Q)Z,\GL,(A).

The Hecke operators turn out to have a nice interpretation in the represen-
tation-theoretic setting. As a result, each cusp form with an Euler prod-
uct expansion corresponds, under the above two-stage identification, with a
function that lies in a subspace irreducible under GL,(A). This infinite-
dimensional representation is like a grossencharacter in that it is the “tensor
product” of representations for the local groups, one for GL,(R) and one
for each GL,(Q p) , and Jacquet and Langlands [13] were able to develop a
theory for GL, parallel to the Tate theory for GL, . They made critical use
of a classification of the irreducible admissible representations of GL, of
each local field. Expositions are in Robert [24] and Gelbart [6].

In the early 1970s, generalization to GL, took two different paths, because
of the absence of a classification for n > 2. Godement and Jacquet [10] used
the method of Tate to develop a theory that led to the analytic continuation
and functional equation of L functions, without an explicit identification
of all the L functions. Langlands [21] set up a conjectural framework for
classification, with explicit L functions, but his theory did not account for
the analytic continuation and functional equation. The final theory for GL,
requires both parts, and it was Jacquet [12] who showed the two parts are
compatible.

To make clear the distinction between the two parts, let us amplify the
discussion of Tate’s method, using notation appropriate to GL, . Proofs
of the various steps may be found in [28, 13, 10, 12]. We shall sketch the
theory at the Archimedean places, indicate how it can be adjusted for the
non-Archimedean places, and say briefly what happens globally.

First let k be R or C, and let M, (k) be n-by-n matrix space over k.
Let

2 { O(n) ifk=R,
“lum ifk=cC.
Let (p, V) be an admissible representation of GL, (k), “admissible” being

defined in §2, and let (5, ¥) be the admissible dual. A K finite matrix
coefficient of p is a function

(1.1)

e(x) = (p(x)u, u)

with w € V and @t € V both transforming in finite-dimensional spaces
under K . The function ¢(x) = c(x~') is another K finite matrix coefficient,
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because it is given by

¢(x) = (u, p(x)u).
The subspace .7 of the Schwartz space (M, (k)) is to consist of all func-
tions of the form

exp( anU) ifk=R,
P(z iiZij) exp( ZnZzUzU) ifk=C,

where P is an arbitrary polynomial. For any K finite matrix coefficient ¢
of p and any function f in the space .77, we define

(1:2) C(f,c,s):/M (k)f(x)C(x)|dctx|id’<x

for s complex. Here |z|, = |z| and |z|; = |z|2. The measure is d”*x =
|t:l'f:tx|;rl dx , where dx is a fixed invariant measure for M, (k) ; use of d™x
in the notation may be regarded as an additive normalization of the parameter
s

Assume p is irreducible. Then all the integrals (1.2) converge for s in a
common right half-plane and extend to be meromorphic functions for s in
C. Moreover, there exist finitely many choices of (c, f), say (c;, f;), such
that

(1.3) L(s, p) = sz ¢ )

has the following property: For any (¢, f),
(1.4) C(f,c,s+3(n=1))=P(f,c,s)L(s, p)

for a polynomial P in s. The function L(s, p) is uniquely determined by
these properties, up to a scalar factor, and is called a local L factor. (In
Tate’s original work, in which n = 1, the matrix coefficient ¢ is essentially
unique, and the sum on the right side of (1.3) collapses to a single term.)
Let v be the additive character of k given by
w(x) = exp(2mix) if k=R,

{1e3) w(z) =exp(ni(z+2)) ifk=C,

and define the Fourier transform / of a member f of S by
(1.6) Foo=[  fowe s,
M, (k)

where dy is the self-dual Haar measure on M, (k). Then f is again in 7.
With p still irreducible, there exists a meromorphic function y(s, p, )
independent of f and ¢ such that

(1.7)  USf, & l=—s+im=1)=p(s, p, W)US, c, s+4(n-1))
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forall f in % and all K finite matrix coefficients ¢ of p. In terms of
(1.8) &s, P, ¥)=7(s, p, W)L(s, p)/L(1 -5, p),

the local functional equation reads

((f, & L-s+}(n-1) (S, ¢, s+3n=1)

(1.9) — =e(s, p, W) —

From (1.3) and (1.4), it follows that &(s, p, ¥) is a polynomial. Let @,

be the quasicharacter of k™ such that p(a-1) = cop(a)l . Since (f)ﬁ(x) =
f(—=x), the change of variables x — —x in (1.1) and iteration of (1.9) gives

8(3’ P, {V)S(l -5, ,6, 'f‘/) = (,Up(‘—l).

Therefore &(s, p, w) is a constant. Apart from evaluation of L(s, p) and
&(s, p, ), this completes the local part of Tate’s method at Archimedean
places.

Next let k& be a non-Archimedean local field. In the definition of {(f, c, s),
we make the following adjustments: Admissibility of (p, V) is defined in
[18], mention of K finiteness of the matrix coefficient ¢(x) may be omit-
ted, and 5’6 is taken as the whole Schwartz-Bruhat space of locally constant
functions of compact support on M, (k).

For this new k, assume p is irreducible. It is still true that the integrals
(1.2) converge in a common right half-plane and extend to be meromorphic
functions for s in C. Moreover, the definition of L(s, p) in (1.3) and (1.4)
still applies, with the following modifications: P in (1.4) is a polynomial in
g' and g °, where g is the number of elements in the residue field, and
L(s, p) can be normalized so as to be 1/Q(q °), where Q is a polynomial
with constant term 1.

Let yw be a nontrivial additive character of k, and define the Fourier
transform by (1.6). Then there exists a meromorphic function y(s, p, w)
independent of f and ¢ such that (1.7) holds for all / in .% and all
matrix coefficients ¢ of p. With &(s, p, ¥) asin (1.8), the local functional
equation reads as in (1.9). One sees that &(s, p, w) is a nonzero multiple
of a power of g °.

Finally let F be a global field, let A be the adeles of F, and let I be
the ideles of F™. Some care is required in identifying what irreducible
admissible representations p of GL, (A) and what matrix coefficients are
to be allowed; these details are in §§10-12 of [10]. The representation p is
to occur in the regular representation on GL, (F)\ GL,(A). Moreover, it is
to reduce to a quasicharacter w , on members of I (scalar matrices) in the
sense that p(a-1,) = ®,(a)l,, and @, is to be trivial on F* . In addition,
p is to incorporate conditions of vanishing integrals of the kind satisfied by
embedded cusp forms when n =2 and F=Q .
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Such an irreducible representation p is the adelic product of irreducible
representations p, of each local field k,. This result is proved for n = 2
in [13], and a general argument may be found in Flath [5]. One defines
L(f,c,s) by (1.2), with k& replaced by A, and with f suitably restricted.
The main step is to prove that {(f, ¢, s) extends to be an entire function
and satisfies

(1.10) UF. & n—8)=2L(F56,9);
We define

L(s, p) =[] L(s. p,).

(1.11)
e(s, p, w) =[], 0, v,),

where y is a nontrivial additive character of A/F with local components
v, - The global L function L(s, p) initially is convergent in a right half-
plane, and &(s, p, w) has almost all factors 1 and hence is entire. At each
place, L(s, p,) is a sum of functions {(f,, c,,s). Assembling these s
and c,’s into global f and c, we find that L(s, p) extends to be entire.
Taking the product of (1.9) over all places and substituting from (1.10) and

(1.11), we obtain
(1.12) L(s, p)=¢&(s, p, ¥)L(1 -5, p).

This is the functional equation for L(s, p) that we have sought, and our
discussion of Tate’s method is complete.

We have not discussed the evaluation of L(s, p) and &(s, p, ) in the
local case. Godement and Jacquet [10] showed that it is possible to compute
these expressions for most places and most p’s with rather little information
about classification of irreducible admissible representations. Later Jacquet
[12] showed that one can compute these functions in all cases with just a little
more information about classification.

In the second part of the theory of GL, , Langlands [21] took the known
values of L and &, went a long way toward classification of irreducible
admissible representations in the Archimedean case, and organized the in-
formation about classification and L factors into a framework that showed
promise for being valid for all local fields, Archimedean or not. This frame-
work is called the local Langlands correspondence. One of its features is
that it makes sense for general reductive groups, not just GL, . We shall
describe the classification for GL, at the Archimedean places and then the
local Langlands correspondence for organizing this information. We work
with R in §§2-3 and with C in §4. The part of Jacquet [12] that deals
with Archimedean places effectively shows that the local Langlands corre-
spondence for GL, attaches the same L and ¢ factors for R and C as in
[10] .
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2. Langlands classification for GL, (R)

The Langlands classification for G = GL, (R) describes all irreducible

admissible representations?' of G up to infinitesimal equivalence.

Let K = O(n) be the maximal compact subgroup of G given in (1.1).
A representation (p, ¥) of G on a Hilbert space V' will be said to be
admissible if, in the restriction of p to K, each irreducible representation
of K occurs with at most finite multiplicity. It is irreducible if ¥ has no
nontrivial closed invariant subspace. If p is admissible, let Vi be the space
of K finite vectors, those transforming in a finite-dimensional space under
K . Each member of V isa C * vector, and Vi 1is a representation space
for both K and the Lie algebra g of G. (See [14, Chapter III].)

Moreover, these representations of K and g are compatible, and (p, Vi)
is a (g, K) module, in the sense of [33]. From Harish-Chandra [11], it
is known that the closed G invariant subspaces U of ¥ are in one-one
correspondence with the arbitrary (g, K) invariant subspaces Ue of ¥V,
the correspondence being U = UK and Uy = UNV . In particular, (p, V)
is irreducible if and only if (p, V}) is algebraically irreducible. (See [14,
Chapter VIII].)

Two admissible representations are said to be infinitesimally equivalent if
their underlying (g, K) modules are isomorphic. Infinitesimally equivalent
admissible representations have the same K finite matrix coefficients.

Any irreducible admissible representation (p, V) has a central character
given as a quasicharacter @, : R™ — C* by p(a-1,) = w,(a)l, for a e R™.

Let SLi(]R) be the subgroup of elements g of GL, (R) with |detg| =
1. The unimodular subgroup SL, (R) has index 2 in SL*(R). We shall
specify certain irreducible representations of SL:‘(R) for the cases m = 1
and m = 2. For m = 1, there are only two representations, and they are
both one dimensional; we write 1 for the trivial one and sgn for the nontrivial
one. For m = 2 the representations of interest are the ones in the “discrete
series,” denoted D, for integers / > 1. These representations are induced
from SL,(R) as

. SLY(R
(2.1a) D, = indg;? o (D}).

Here D;r acts in the space of analytic functions f in the upper half-plane
with

1A = [[ 170y axay
finite, the action by g = (%%) being
(2.1b) D} (g)f(z) = (bz +d) V1 (&252).

2 By convention a representation of a group always takes place on a complex vector space,
and the group action is assumed to be jointly continuous.
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The representations D, of Sin (R) are irreducible unitary, and their matrix
coefficients are square integrable. (See [14, p. 35].)

The building blocks for irreducible admissible representations of GL,(R)
are the representations of GL,(R) and GL,(R) obtained by tensoring the
above representations on SL* with a quasicharacter a — |deta|; on the
positive scalar matrices of size 1 or 2. Here, as earlier, |-|; denotes ordinary
absolute value, and ¢ is in C. Thus the building blocks will be

19| }
(2.2a) , for GL,(R),
sgn® | - |y
(2.2b) D,® |de1(-)|;} for GL,(R).

To any partition of » into 1’s and 2’s, say (n,, ..., n,) with each n;
equal to 1 or 2 and with Y n j=n,we associate the block diagonal subgroup

(2.3) D= GLnt(]R) X oo X GLnr(R).

For each j with 1 < j <r,let g; be a representation of GLnJ (R) of the
form (2.2), and write ¢ ; for ¢. Then (o, ..., 0,) defines by tensor product
a representation of the block diagonal subgroup (2.3), and we extend this
representation to the corresponding block upper triangular subgroup Q = DU
by making it be the identity on the block strictly upper triangular subgroup
U. We set

RO
(2.4) I(oy, ..., 0,) =indy(0,, ..., g,),
using unitary induction as in [14, Chapter VII]. (That is, in the transformation
law under @, (o, ..., 0,) is tensored with a one-dimensional representa-
tion so that when o, ..., 0, are unitary, I(o,, ..., 0,) is automatically
unitary.)

THEOREM 1. For G = GL,(R),

(a) if the parameters nj_]tj of (a,,...,0,) satisfy
(2.5) n]_I Rerlznz_1 Retzz---zn:l Ret.,

then I(o,, ..., 0,) has a unique irreducible quotient J(o,, ..., d,),

(b) the representations J(o,, ..., 0,) exhaust the irreducible admissible
representations of G, up to infinitesimal equivalence,

(c) two such representations J(o,, ..., 0,) and J(cr; — cr:) are in-
finitesimally equivalent if and only if ¥' = r and there exists a permutation

Jji) of {1, ..., r} such that cr: =0;, Jor 1<i<r.
Two ways are known for picking out the constituent J(o,, ..., d,) of
I(,, ..., 0,). One way, following Langlands [21], is as the image of a cer-

tain standard intertwining operator on I(o,, ..., 0,); see pp. 198-200 of
[14] for an exposition. If any of the inequalities in (2.5) is an equality, some

normalization of the operator may be necessary in order to eliminate poles.
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Techniques for this normalization are explained in Chapter XIV of [14]. The
other way, following Vogan [30], is by the theory of minimal K types. For
a fixed induced representation, the Vogan theory singles out finitely many
irreducible representations of K (one such in this case) that occur in the
induced representation with multiplicity one, and a vector transforming by
any one of these representations of K generates J (6,, ..., 0,) asa subquo-
tient. (See [14, Chapter XV].) Since G is disconnected, the original Vogan
theory is not quite general enough to handle this case, and one must appeal
to Vogan [32] instead.

The original paper [21] of Langlands reduced the classification of irre-
ducible admissible representations of fairly general reductive groups to the
classification of the irreducible tempered representations. Here “tempered”
is a term referring to the asymptotic behavior of matrix coefficients and need
not be explained in this exposition. (See [14, p. 198], for a precise defini-
tion.) Langlands proved also that the irreducible tempered representations
are exactly the irreducible constituents of the representations that in this case
have ¢, ..., t, purely imaginary. (See [14, Chapter VIII].) The irreducible
tempered representations were classified in 1976 by Knapp and Zuckerman,
and the result was reformulated in [16]. Detailed proofs are in [17]; for an
exposition, see [14, Chapter XIV].

The papers [16] and [17] treat connected semisimple groups and are not lit-
erally applicable to GL,(R). However, the results are still valid for GL,(R),
and no new ideas are needed for their proofs. (For general reductive groups
with some disconnectedness, a new idea is needed. This extension of the
classification was carried out by Mirkovié [22].)

With account taken of the remarks in the previous paragraph, parts (a)
and (b) of Theorem 1 are a special case of Theorem 5 of [16]. The latter
theorem has four hypotheses, and the first three are checked by inspection.
For the fourth, it is enough to check that I(o,, ..., 0,) is irreducible in the
tempered case, i.e., when all ¢ ; are purely imaginary. This is easily done;
see §7 of [15]. Part (c) is not explicitly written down in these sources, but
§3 of [16] tells what one has to do to classify the infinitesimal equivalences;
Example 3 in that section helps illustrate the technique.

We mention that the irreducible unitary representations of GL,(R) and
GL,(C) have been classified by Vogan [31]. The original Langlands program
makes no predictions about this kind of result.

3. Local Langlands correspondence for GL,(R)

The Weil group of R, denoted Wy » is the nonsplit extension of C* by
Z/2Z given by
Wy=C"ujcr,
where j2 =—1 and jc j_] = ¢. Here bar denotes complex conjugation. We
shall be interested in the set of equivalence classes of n-dimensional complex
representations of W, whose images consist of semisimple elements.
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The one-dimensional representations of C* are of the form

(3.1) z—z"z" with u and v in C and yu — v in Z.

In fact, if we write z = re'’ , we obtain re’ — r**e"*™ Hence u—v

is an integer and u + v is unrestricted.
Let us classify the one-dimensional representations ¢ of W,. On c*
we have ¢(z) = z"z" asin (3.1). Let ¢(j) =w . Then
- 5 st —1
9(z)=9(jzj )=we(z)w = ¢(2).
Hence ¢(z) = z"z" and u = v. In other words, ¢(re'’) = r** . Now
2
l=9¢(-1)=9¢0()=

says w = +1. Thus the one-dimensional representations are parametrized
by a sign and a complex parameter ¢ = 2u as follows:

(+.0):  o(z)=|zlg and @(j)=+1
(-, 0:  @(z)=lzlg and ()=~
Next let us classify the irreducible two-dimensional semisimple represen-

tations ¢ of W, up to equivalence. The set @(C*) consists of commuting
diagonable transformations. Let u, v be a basis in which ¢(C™) is diago-

(3.2)

nal. Say @(z)u=z"z"u and g(z)v=2"2"v.If u= ¢ and v =0, then
any one-dimensional invariant subspaCe for (0( 1) will exhlblt @ as redumblc
Hence we may assume that u # y' or v # v'. Put ' = ¢(j)u. Then

o2 = p(jzi W = 9(j)e(2)u=2"2"p(j)u=2"2"u.

If p=v,then u' isin Cu,and Cu is an invariant subspace, contradiction.
Thus %' must be in Cv with » = ¢’ and u = v’ . We shall replace the basis
u, v by the basis u, u'. Since qa(j)" =o(j)p(=1) = (=1)*""p(j) on the
span of # and u', we can write the result as

o(z)u=2"2"u, p(j)u=1u,
oz =z2"2"d, o =(-1)""u

In terms of the basis #', (—1)* "u, these formulas become

(2 = z”z"u’, o = (-1)"u
p(2)(=)"u) =22 (-1 "w), (=1 w) = (1)
In view of the symmetry here, we may assume that the nonzero integer u—v =
[ is positive. We conclude that the equivalence class of ¢ is classified by a
pair (/,t) with / = u—v an integer > 1 and with 2/ = u+v in C. For
the pair (/, ¢) there exists a basis u, u' such that
A, t:  oreyu=r"e"u, p(u=1u,

(3.3) ga(re )mr —rle” Heu', (9(})14:f = (—l)fu.
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LEMMA. Every finite-dimensional semisimple representation ¢ of We is
Sfully reducible, and each irreducible representation has dimension one or two.

ProoF. Let ¢ act on the vector space V. Since ¢(C™) consists of com-
muting diagonable transformations, ¥ is the direct sum of spaces Voo
where all ¢(z) act by z*z”. As above, we have ¢(}) V= Vv,#. Ifu=v,
then we can choose a basis of eigenvectors for ¢(j) in ¥V, > and the span
of each eigenvector is a one-dimensional invariant subspace under (W) .
If u# v, choose a basis u,...,u, of V, ., and put u; = ¢(j)u, for
1<i<r. Then Cy; ® {Cu:. is a two-dimensional invariant subspace under
@(W3), and the direct sum of these subspaces as i varies is lf;_y DY
This proves the lemma.

Now let ¢ be an n-dimensional semisimple complex representation of
W - By the lemma, ¢ is fully reducible. If we list the dimensions of the
irreducible constituents in any order, we can regard the result as a partition
of n into I's and 2’s, say (n,, ..., n,) with each n; equal to I or 2 and with
hD n; = n. Fix attention on n ;> and let ¢, be the corresponding irreducible
constituent of ¢. To ¢; we associate a representation o; from (2.2) as
follows:

(+,0in(32) — 18|y in(2.2a),
(3.4) (—,0)in(32) —  sgn®|-|g in(2.2a),
(I,1)in (3.3) — D, ®|det(-)|g in (2.2b).

In this way, we associate a tuple (@2 ooy o,) of representations to ¢ . If the
complex numbers ¢, ..., ¢, do not satisfy (2.5), we permute (075 oo 2. T)
so that (2.5) ends up being satisfied. Using Theorem 1, we can then make
the association

(3.5) i PR((H)ZJ(O'l, CE 5,.)
and come to the following conclusion.

THEOREM 2 (Local Langlands Correspondence for GL,(R) ). The associ-
ation (3.5) is a well-defined bijection between the set of all equivalence classes
of n-dimensional semisimple complex representations of W, and the set of
all equivalence classes of irreducible admissible representations of GL,(R).

To each finite-dimensional semisimple complex representation ¢ of the
Weil group of a local field, Weil [34] has associated a local L factor with
certain nice properties. The results are summarized in Tate [29]; see also
Shahidi [25, especially p. 990]. Some of Tate’s results are taken from Deligne
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[3]. In the case of W, when ¢ is irreducible, the formula is

(3.6)
xR skt) if ¢ is given by (+, t) in (3.2),
L(s, p) = { a 6HDIp(seLely if ¢ is given by (—, ¢) in (3.2),
202r) “HI0(s + 1+ L) if ¢ is given by (/, ¢) in (3.3).

(Recall our convention that / > 1.) For ¢ reducible, L(s, ¢) is the product
of the L factors of the irreducible constituents of ¢ .

Fix the additive character ¥ of R in (1.5), so that ordinary Lebesgue
measure is self-dual Haar measure on R. The ¢ factors are given for ¢
irreducible by

I if ¢ is given by (+, #) in (3.2),

(3.7) e(s,p,¥)= i if ¢ is given by (—, ¢) in (3.2),

™' if ¢ is given by (, t) in (3.3).
For ¢ reducible, &(s, ¢, ¥) is the product of the & factors of the irreducible
constituents of ¢ . Observe that the ¢ factors are constant in s.

In the terminology of [29], both L and ¢ are “additive” in their behavior
with respect to short exact sequences. Also L is “inductive” with respect to
change of field, and its formula over R should really be considered together
with its formula (4.6) over C. The existence of ¢ for all local fields is a
theorem of Langlands. See Theorem 3.4.1 of [29]. The & factors satisfy
a weaker property than “inductive”; they are “inductive in degree 0” with
respect to change of field. The formula (3.7) over R should be considered
together with the formula (4.7) over C. The rule for how & depends on
is given in (3.2.3) of [29].

We can now define local factors L(s, p) and &(s, p, w) for each irre-
ducible admissible representation of GL,(R) by the rule
(3.8) Hewpi=Lis, 5) } if p = pg(9) in (3.5) and Theorem 2.

es,p,p)=e(s,0,v)
These formulas are consistent with Jacquet and Langlands [13], especially
pp. 177-195. Jacquet [12] proved the following result.

THEOREM 3. The definition of L(s, p) in (3.8) satisfies the defining con-
ditions (1.3) and (1.4) for L(s, p) over R in §1, and the two definitions of
e(s, p, w) in (3.8) and (1.8) coincide.

4. Classification and correspondence for GL (C)

There is a corresponding theory for ‘G = GL,(C), quite a bit less com-
plicated. Admissible representations are defined for this G as in §2, but
with K = U(n) playing the role of maximal compact subgroup. The notions
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of irreducible representation, K finite vector, infinitesimally equivalent, and
central character are defined as in §2.

For z in C, let [z] = z/|z|. Also recall that 1z|c = ]z[z. The building
blocks for irreducible admissible representations of GL,(C) are the repre-
sentations of GL,(C) given by

(4.1) z—[z]|zl, with l€Z andteC,

which we write as [—]’ ® |- }fc. For each j with 1 < j < n, let g; be

the representation []'3' ® |- |;3' of GL,(C). Then (o,,...,q,) deﬁnes a
one-dimensional representation of the diagonal subgroup of GL,(C), and
we extend this to a one-dimensional representation of the upper lnangular
subgroup B. We set

(4.2) I(o,...,0,) =indi(s,, ..., 0,),
using unitary induction.

TrEOREM 4. For G =GL,(C),

(@) if the parameters L of (0,,...,0,) satisfy
(4.3) Ret?, > Ret, >--->Ret,,
then I(o,, ..., 0,) has a unique irreducible quotient J(oppene. )y

(b) rhe represemauons J(o,, ..., 0,) exhaust the irreducible admissible
representations of G, up to mﬁm{es:ma! equivalence,

(c) two such representations J(oy,...,0,) and J(al, - cr;) are
mﬁmtesemaﬂy eqmva(ent if and only if there exists a permutation j(i) of
{1, ..., n} such that o =0, for 1<i<n.

This theorem predates the Langlands classification and is due to Zelobenko
and Naimark [36, 37]. For an exposition, see Duflo [4]. The quotient
J(oy, ..., 0,) may be described within I(g, ..., 0,) in the same two ways
as in the case of GL, (R).

The Weil group of C, denoted W.., is given by We= C™ . As in the case
of R, we shall be interested in the set of equivalence classes of n-dimensional
complex representations of W, whose images consist of semisimple ele-
ments.

Since C™ is abelian, such a representation ¢ is diagonable and hence
is the direct sum of one-dimensional representations. A one-dimensional
representation is necessarily of the form (3.1). But now that conjugation no
longer plays any role, it will be more convenient to write it as

(4.4) (I,0):z—[z]'|z]. with I€Z and € C.

Let ¢ be an n-dimensional semisimple complex representation of W .
We can wrlte @ as a direct sum of one-dimensional representations ; w1th
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gpj(z) = [z]ﬂzif({ in the notation of (4.4). To ¢, we associate the representa-

tion o; = [-]"J'|- |;§' of GL,(C). In this way, we associate a tuple (g, ..., a,)
of representations to ¢ . If the complex numbers ¢, ..., ?, do not satisfy
(4.3), we permute (g, ..., 0,) so that (4.3) ends up being satisfied. Using
Theorem 4, we can then make the association

(4.5) 9 — pelo)=J(oy,...,0,)
and come to the following conclusion.

THEOREM 5 (Local Langlands Correspondence for GL,(C)). The associ-
ation (4.5) is a well-defined bijection between the set of all equivalence classes
of n-dimensional semisimple complex representations of W, and the set of
all equivalence classes of irreducible admissible representations of GL,(C).

The local L factor corresponding to a one-dimensional representation ¢
of W, is

(4.6) L(s, p) :2(2;:)‘(””%1“(”:#9) if ¢ is given by ([, ?) in (4.4).

For ¢ reducible, L(s, ¢) is the product of the L factors of the irreducible
constituents of ¢ .

Fix the additive character y of C in (1.5), so that twice the ordinary
Lebesgue measure is the self-dual Haar measure on C. The & factors are
given for ¢ one-dimensional by

i

(4.7) es,p,w)=1 if ¢ is given by (/, ?) in (4.4).

For ¢ reducible, &(s, ¢, y) is the product of the L factors of the irreducible
constituents of ¢ . As was noted in §3, formula (4.7) and the third part of
(3.7) are connected by the fact that ¢ is “inductive in degree 0.”
We can now define local factors L(s, p) and &(s, p, w) for each irre-
ducible admissible representation of GL, (C) by the rule
gy Hep=lsee) } if p = po(p) in (4.5) and Theorem 5.
E(Sa P, W)SE(SQ(", W)

Jacquet [12] proved the following result.

THEOREM 6. The definition of L(s, p) in (4.8) satisfies the defining con-
ditions (1.3) and (1.4) for L(s, p) over C in §1, and the two definitions of
e(s, p, ) in (4.8) and (1.8) coincide.

5. Results for other reductive groups

Some of the constructions and results in §§2-3 extend from GL, to arbi-
trary connected reductive groups G defined over R. For such a group G,
we shall work in the context of the representation theory of G(R). Lang-
lands [21] reduced the classification of irreducible admissible representations
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of G(R) to classification of the subset of irreducible tempered representa-
tions, which in turn were classified in [16]. Langlands [21] showed also that
the classification for G(R) fits into a framework that is consistent with what
was described for GL,(R) in §3. In this section we shall discuss aspects of
that framework. For full details one can consult the excellent exposition by
Borel [1].

The first step is to introduce the L group of G/R. The identity component
LG° is a certain complex reductive group depending only on G (not G/R),
having the same rank as G, and having root system dual to that of G. The
exact definition requires some care, but it has the following features:

(a) if G=GL,, then ‘G’ = GL,(C);
(b) if G is simply connected, then LG° is an adjoint group;
(c) if G is an adjoint group, then La is simply connected.

Now we bring in R, letting I" = Gal(C/R) = Z/2Z . The definition of Le°
is such that the action of I' on G yields an action of I" on LG° . Then
LG is defined as the corresponding semidirect product of LG® with T. This
semidirect product is a direct product if G(R) is a split group, as is the case
for G(R) = GL,(R).

By a representation of LG is meant any holomorphic homomorphism of
LG into some GL,(C). An element of LG is semisimple if its image is
semisimple under every representation of LG . Certain parabolic subgroups
described in [1] are defined to be relevant; all parabolic subgroups of G are
relevant if G(R) is split or quasisplit.

A continuous homomorphism ¢ : W, — G is said to be admissible if

(a) ¢(C™)C LG, and @(j) is contained in the nontrivial coset of Le®
in ‘G

(b) @(W}3) is contained in the set of semisimple elements of LG;

(c) whenever ¢(W}) is contained in the Levi subgroup of a parabolic
subgroup P of LG, then P is relevant.

The set of such ¢ ’s, modulo the equivalence relation defined by conjugacy
within LGO, is denoted ®(G). For G(R) = GL,(R), Theorem 2 says that
®(G(R)) parametrizes the set II(G(R)) of equivalence classes of irreducible
admissible representations of G(R). This statement needs adjustment for
more general G(R). What happens is that one associates to each admissible
¢ a finite subset Hw of II(G(R)) called an L packet. Inequivalent ¢ ’s lead
to disjoint subsets, and the union of all Hw is all of TI(G(R)).

Representations in the same I1 p are called L-indistinguishable. Two phe-
nomena contribute to this notion: discrete series with the same infinitesimal
character, and reducibility of standard induced tempered representations.
Shelstad [27] has quantified the statement that these are the only contribut-
ing factors, and she has explored the consequences of L-indistinguishability.
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Local L and & factors are associated not to irreducible admissible repre-
sentations p of G(R) but to pairs (g, r) in which r is a representation of
LG in some GL,,(C). The definition is as follows: Given p, we find ¢ such
that the class of p lies in Hw' Then ro ¢ is an m-dimensional semisimple
representation of W, and we can put

L(Sa p,f’)=L(S, Q’),
es,p,rov)=els, 0, v),

in the notation of (3.6) and (3.7). When G(R) = GL,(R), these definitions
reduce to (3.8) if r is the standard representation of GL, (C).

In the Langlands program, one expects that the above local correspondence
for G(R) will be valid in some form over non-Achimedean local fields as well,
that there will be a global theory, and that the local and global theories will
mesh in the same way that they appear to mesh for GL,. For accounts of
progress in these matters, see Gelbart and Shahidi [8] and Shahidi [26].

The full power of the Langlands program comes into play only when the
functoriality of these constructions is considered. Almost all aspects of func-
toriality are still conjectural. A general statement of functoriality, accompa-
nied by an overview of its consequences, is in Gelbart [7]. More detail may
be found in Chapter V of Borel [1].
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