MINIMAL K-TYPE FORMULA

A. W. Knapp"

In an effort to attach new invariants to group representations,
D. A. Vogan introduced in [9] a notion of minimal or "lowest" K-types
for representations of semisimple Lie groups and used it as a starting
point for several deep investigations in representation theory. What
we shall do here is to announce a simple formula for all the minimal
K-types of the standard representations induced from parabolic
subgroups MAN when the inducing data include a discrete series or
nondegenerate limit of discrete series representation of M and when
the total group is linear. If we anticipate that certain results of
Vogan's extend to all of our representations, then it follows from
Theorem 5 of [5] that we obtain a minimal K-type formula for all
irreducible admissible representations of linear semisimple groups
in terms of their Langlands parameters [T].

Some applications of our formula appear in the joint paper [4]
with B. Speh.

Let G be a linear connected semisimple Lie group, let K be
a maximal compact subgroup, and let g and 1 be the Lie algebras

of G and K. Fix a meximal abelian subspace b of 1, and let

A, = {roots of (1%,5%1 < (1b)"
a§ = some positive root system for QK
P = half the sum of the members of &;.
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To each dominant integral form A on bc, we associate the

irreducible representation TA of K with highest weight A. We
introduce an inner product {-,-) and a norm |[-| on (ib)' in
the usual way.

If 7 is an irreducible admissible representation of G, we

say that TA is a minimal K-type of w7 if, among all irreducible
representations T,, occurring in Tl s |A'-+2pK|2 is minimized
For PN =Th Existence of minimal K-types for any 7 1is clear;
there may be several. It i1s important to note that this notion is
independent of the cholce of the positive system AE.

Let P = MAN be the Langlands decomposition of a cuspidal
parabolic subgroup of G, let ¢ Dbe a discrete series or
nondegenerate limit of discrete seriesl representation of M, let
v be a complex-valued linear functional on the Iie algebra of A,

and form the induced representation2

U(p,0,v) = 1nd§m(u e’ ®l). (0.1)

The minimal X-types of U(P,o,v) are independent of v, and we

shall give a formula for them. For the precise formula we need to
define suitably compatible orderings for various root systems that
occur. But if we ignore this difficulty for the moment, we can give
the formula approximately. Disregarding the possible disconnectedness
of M, let A be the Blattner parameter of o¢; this is the highest
weight of the minimal XNM type of a. Then the minimal K-types

A of U(P,o,v) are given by

1 see §§1 and 12 of [6] for the definition and elementary properties
of limits of discrete series and nondegeneracy.

£ The notation refers to unitary induction with G operating on the

left.
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A =2X-E(2p,.) + 2p + . (0.2)
K Kr

Here E 1is the orthogonal projection to the subspace orthogonal to
the Lie algebra of M. The term EpKr refers to the 2pK for a
certain split subgroup Gr of G determined by G and M, and u
refers to any of several fine3 Kr-types for Gr' In practice the
group G, is often locally just a product of copies of SL(2,R),
and W 1s easy to understand; in principle G can be split and P
can be a minimal parabolic subgroup, in which case Gr = @, AN =1
and the formula gives no information.

The notation needed to make sense out of (0.2) and to define
the compatible orderings is assembled in §1. The reader is asked
to think first in terms of the case that rank G = rank K, where

Ar S A and where the other notation simplifies greatly. The

K
precisely stated minimal K-type formula appears as Theorems 1 and 2
in §2, and Theorem 4 of §2 gives additional information about u when

G, 1is locally a product of copies of sSL(2, R).

1l. Notation

We continue with G, ¢, X, t, b, and QK as in the

introduction, but we postpone defining the positive system AE. Let
8 = Cartan involution of g determined by 1
g=1@p : corresponding Cartan decomposition
t = centralizer of b in g .
3 See §1 below for a definition of "fine." The notion was introduced

by Bernstein, Gelfand, and Gelfand [1] and developed further by
Vogan [10]. We use some of Vogan's results.
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Here t 1is a maximally compact 6-stable Cartan subalgebra of g and
is of the form t =b ® a, where a =t N p. (This a will usually
not coincide with the Lie algebra of the group A 1in the
introduction.) Let

B =expb
A = {roots of (gg,tm)]
¢ .C
bp = {roots of (g ,t ) vanishing on a}.

€ €

The root vectors for the members of &B lie either in 1 ordn P,

and we call the corresponding roots compact or noncompact,

accordingly. Let

AB,c = {compact roots in AB}

AB,n = {noncompact roots in AB} .
One can show that restriction from t® to ¥ carries &'AB,n onto
Ap s consequently we can regard A.E,c as a subset of Ap.

To characterize the M of our parabolic subgroup up to
conjugacy, it is enough (by Harish-Chandra's construction in [2]) to
specify a conjugacy class of §-stable Cartan subalgebras in g, and
this conjugacy class in turn is determined by specifying a sequence

dys .5 @, oOf strongly orthogonal members of A (see §2 of

B,n’
Schmid [8] for an exposition.) Thinking of the effect of a Cayley

transform, we say that

real if in E]Raj@u’
a root in A is imaginary if orthogonal to L IRaJﬂan'

complex otherwise.

Let
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A, = {real roots in A}
b_ =L RiH , where H is dual in t% to «
r a a J
J )
b_ = orthocomplement in b to b, , so that b =b _®b,
Vo = br @ a

E = orthogonal projection of (1)’ onto (15)' .

The subalgebra
()
g.=gn (1. I cxﬁ)
Bear
is a @-stable reductive subalgebra of ¢ that is split over RR.
Let G. be the analytic subgroup of G with Lie algebra 8,

The group Kr = KnN Gr is a maximal compact subgroup of Gr’ and its
Lie algebra is t = 1Ng . Moreover, b, 1s a maximal abelian

r

subspace of 1es 1o is a maximally compact 6-stable Cartan

subalgebra of g., and A, 1s the root system of (gg,iﬁ).

To obtaln M, we build a Cayley transform ¢ out of the roots
Gy, ++.5 @, @and construct a new 8-stable Cartan subalgebra gf\s(tm),
as in [8]. Then we construct M and its Lie algebra m in the

standard way [2]. With
a_=1{pea| gl, =0},
r

m is equal to the intersection of g with

m® -1le = €5 (X,) -

T BeA_

Each root vector E(XB) for mm is either in tc or in pc,

and we call B M-compact or M-noncompact accordingly. Let

A-,c = {M-compact roots in A_}

>
]

5 {M-noncompact roots in A } .
L i
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Since t 2 a, we have A_C Ap. However, A4, need not be
E
€

contained in AB e’ since ¢ may move Xﬁ from pm Tri )i i
i

Every discrete series or limit of discrete series representation

of M is known to be induced4 from the subgroup

M == MEZM >

where Me is the identity component of M and ZM is the center
of M. The algebra b_ 1is a compact Cartan subalgebra of m;

let B_ =exp b_. By Lemma 2.1c of [6], we have
:
M" = MeMr, kb

where Mr is defined as the finite abelian group

I

M, = F(B) = span{Y,(s) | Bea and [, =0

SP&n{Yc(ﬁ) I B e ﬂr} .
The element Yc(ﬁ) is the element of G corresponding to the matrix
(-Ol _%_) in the SL(2,R) subgroup built from the root ¢(g). The

group Mr is the M of a minimal parabolic subgroup of the split
group G, .

Let of be a discrete series or nondegenerate limit of discrete
series representation of M¥.  Because of (1.1), it follows from §1
of [6] that o% 1s determined by & triple (A,,C,x), where

KO is a Harish-Chandra parameter of d# relative to (m,b_)

c is a Weyl chamber with respect to which RO is dominant

X is the scalar U1M :
=

iy See §1 of [6] for an exposition in the discrete-series case and
a proof in the limits-of-discrete-series case.
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This triple will allow us to define compatible positive systems for
the various root systems we have introduced.

Define (&_)"' so that C 1is the dominant chamber, and define
P, e and Pe,n as the corresponding half sums of positive members

ofl AL e and A_ He The Blattner parameter of o¥, given by
) £

)‘="\O+p_,n' P__’c s

has the property that the unigue minimal KN M# type of c‘# is

irreducible representation with
highest weight A on Kn Me

bd on Mr .

(This follows from Theorem 1.3 of Hecht and Schmid [3].)

To define &+, let

ay = {pea | (ngp > 0}

by ={Bea | (B = 0}
ta= /(L CH) NG
0 B
Bel,
R
Then A_ , 1s generated by (A_)" simple roots €5 --+5 €, - Since
L
tg2 0.9 a, we have
1o= (10 noL )e b.®a .

Therefore the following list provides an ordered basis of real

elements in (ig)':

€15 +ers €y orthogonal basis of remainder of i(toﬂ b_)',

O3, «+., ay, basis of a . (1.2)
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We use this ordered basis to define a lexicographic ordering. This

ordering defines At and we take

O!
+ _ Nt -
A" =4y U Ay -

Then one cen check that AT 1is a positive system with (A__)+ g_&+

and that

AR = [ g
bg = {8 ey | 8 =restriction to b~ of a member of A &B,n}

is a positive system for AK.

+

Finally the inclusions Ar < A and AK c A define &r and
r

= K

a+ for us, and these definitions are compatible within Gr with

Kr

the above construction for passing from G to K, .

TE o = indﬂ#(c#), then the representation (0.1) satisfies

U(P,0,v) |y = 1ndeM,(a*‘) :

and we shall work with it in this form. Correspondingly the
restriction to K. of the nonunitary principal series of G, induced

from data including a character w of Mr is
K
ind;; (w) .
er

A minimal Kr—type Tu in this case is called a fine Kr-type; Tp
contains no other characters of M, besides w and its conJugates

by the Weyl group.

2. Results

Now we come to the theorems. Let a#q—r(ko,c,y} be a discrete
series or nondegenerate limit of discrete series representation of

M#, and let the notation and orderings be as in §1.
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K #
Theorem 1. Every minimal K-type T, of 1ndeg(U) has A
of the form

A=2A-E(2p) +2p +u|, (2.1)
i o

where 'ru is a fine Kr—type whose restriction to M, contains the

character

w=x- exp(E(EpK) _QPKI‘)]MI" ] (2.2)

here exp(E(EpK) - 2pg ) 1is a well-defined one-dimensional
r

representation of Kr =) Mr . Conversely every fine Kr—type Tu with

T;J.'M D w 1is such that A in (2.1) is integral; 1f A 1s also AE
r
dominant, then T, 1s a minimal K-type of ind%mg(a#) :

Generically A, 1s equal to A, and then Theorem 2 below says

(0]
that every A defined by (2.1) is automatically AE dominant; in
this case the minimal 'rh's and the fine 'rp's are in one-one
correspondence. In the exceptional cases when /_\.O 3 &r » the fine
u's that lead to minimal A's are exactly those that satisfy certain
conditions relative to the members of By =Dy - The theorem uses the
following notation: ti denotes +1 or -1, oy is a member of our
strongly orthogonal set in ‘Q‘B,n’ and € 1s a member of (1c)'

orthogonal to (tf_)'.

Theorem 2. If 'ru is a fine Kr-type with 7T containing the

l-ler

character w in (2.2), then the integral form A defined by (2.1) is
QE dominant if and only if u satisfies all of the following
conditions:

(1) 2(u,ﬁ)/]ﬁ]2 > - 1/2 for each A; simple root B in Ay-A,

of the form B =¢ - -]g'ta such that |[B8| = |a| and also

e - %a and o are simple for AT.
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(ii) 2(u,ﬁ)/{;3]2> -1 for each AE simple root B in Aj-4,

Al 1
of the form B =e - zt;0; - ztsa; such that |8l = oyl =Ia,jl’
%(ai—kaj) is not in A, index i precedes index Jj for the
~ 1
ordering, e - T -]g'aj and aJ are simple for A+, and

elther £, =1 ‘opr oy is simple for A

1
(1ii) 2(p,ﬁ)/lﬁ]2 > - 1 for each 5; simple root B in Aj-4,
of the form B =¢ —%‘-tjad such that 2[5|2=Ia312, e -50g

is simple for AT when oq is the first o such that
%(a+aj) is in A, and either tJ=1 or ay is simple for A™.

Prototypes for the situations described in (i), (ii), and (iii)
occur with the minimal parabolic subgroup of SU(2,1) in the case of
(1), the minimal parabolic subgroup of SU(2,2) in the case of (ii),
and the maximal parabolic subgroup of Sp(2,R) with nonabelian N in
the case of (iili). Case (iii) may be dropped from the theorem if o¥*
is a genuine discrete series representation.

The proofs of the two theorems are straightforward but rather
long. One proves the integrality first, and theﬁ the long step is
Theorem 2. Next one constructs some p satisfying the conditions in

Theorem 2, and the rest is comparatively easy. We isolate from the

proof one key lemma, which we shall use elsewhere.
Lemma 3. 2(pg - p_ o) =p - p_ - Pp + E(2pp) -

We conclude with some information about u. It is always true
that p 1is a linear combination of the aj‘s with coefficients O,
%’-, or —%. When G, is locally a product of copies of SL(2,R),
i.e., when a=0 and Ar is a product of root systems Al’ we can
be more precise. This condition on G, is satisfied, for example,

whenever the restricted roots of G form a system of type (BC)n.
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For each a let Py be half the sum of the roots in A whose
inner product with ay is > 0 and whose inmer product with all

other T =0T

'S
Theorem 4. Suppose Gr is locally a product of copies of
SL(2; R TE T“ is a fine K -type with T“IM containing the

r
character w in (2.2), then p is of the form

W=7 Byoys B8y =1 %, (2.3)

with the sum extended over exactly those J for which

’a:j)/laj!e

2(
K(vg) = () Py : (2.4)

Moreover, every choice of signs in (2.3) leads to another such u.

There is a mnemonic for this result. To each a

5

associates

j? §7 of [6]

a "Plancherel factor" . When (2.4) holds,

Ha,a Ho,a

is the product of a polynomial and a cotangent; when (2.4) fails,
“c,aj is the product of a polynomial and a tangent. Consequently
Theorem 4 says that each cotangent-type ay contributes to the fine
Kr—type i in a pair of ways, via coefficlents s‘j = + %, while the
tangent-type ajfs contribute uniquely via coefficient SJ = 0.

It is known from Theorem 12.6 of [6] that reducibility of
U(P,o,0) arises when these Plancherel factors fall to vanish at the
origin. Theorems 2 and L4 say that this same phenomenon accounts for

multiple minimal K-types of U(P,0,0). When 0 1is a discrete serles

representation, Theorem 1.1 of Vogan [9] explains this correspondence.

5 gsee also §10 and Corollary 12.5 of [6].
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