THE INSTITUTE FOR ADVANCED STUDY

PRINCETON, NEW JERSEY 08540

Telephone 609-734-8000

SCHOOL OF MATHEMATICS

October 19, 1982

Dear David,

I seem to remember that you wondered whether the representations in a single Langlands L-class are necessarily all unitary or all nonunitary. The answer is "no," and here is an example.

The example occurs in SU(3,2) attached to a maximal parabolic. Here M is connected and is locally the product of a circle and SU(2,1). With roots formed relative to the diagonal subalgebra, the roots of M are $\pm (e_1 - e_2)$, $\pm (e_2 - e_5)$, and $\pm (e_1 - e_5)$. Define two discrete series of M to have Harish-Chandra parameters

$$\lambda_0 = (e_1 - e_5) + \frac{1}{2}(e_3 + e_4)$$

$$\lambda_0' = (e_1 - e_2) + \frac{1}{2}(e_3 + e_4),$$

and regard a as built from the Cayley transform $\underline{c}(\alpha)$ of $\alpha = e_3 - e_4$. Proposition 9.1 (p. 35) of the paper "The role of basic cases ..." by Birgit and me says the complementary series for λ_0 extends to $\lambda_0 + \frac{3}{2}\underline{c}(\alpha)$, whereas for λ_0' it extends only to $\lambda_0 + \frac{1}{2}\underline{c}(\alpha)$. Then the (irreducible) induced representations corresponding to $\lambda_0 + \underline{c}(\alpha)$ and $\lambda_0' + \underline{c}(\alpha)$ are in the same L-class, the first is infinitesimally unitary, and the second is not infinitesimally unitary.

I'll give a copy of this letter to anyone who raises the same question to me.

Best,

Long