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Intertwining Operators and Small Unitary Representations

A. W. Knapp

In memory of Harish-Chandra

ABSTRACT. In several authors’ attempts to classify the irreducible unitary rep-
resentations of semisimple Lie groups, representations that are “small” play a
pivotal role. The trouble is that there are too many small representations for
the unitarity of all of them to be decided by direct calculations. This article
proposes a technique for combining the use of intertwining operators and co-
homological induction to reduce the investigation of all small representations
to the investigation of just a few of them. It illustrates the technique by giv-
ing applications to analytic continuations of discrete series, both holomorphic
and nonholomorphic. It includes a certain amount of expository background
concerning discrete series, analytic continuations thereof, and cohomological
induction.

Introduction

Harish-Chandra spent most of his mathematical life working on the harmonic
analysis of semisimple groups. To him we owe an appreciation of the richness and
importance of the subject, the idea of reducing harmonic analysis to questions
in abelian Fourier analysis, the notion of a character of an infinite-dimensional
representation, the analytic properties of characters, the classification of the discrete
series, and many other things. These things are now taken by many researchers in
the field as so fundamental that one often no longer even cites the relevant papers
of Harish-Chandra, despite the hundreds of pages that Harish-Chandra may have
required in their development. Such is the nature of Harish-Chandra’s contribution
to the field: it is so fundamental that it is not done justice by citations of papers.

In this article we investigate a technique combining three things—a continua-
tion of Harish-Chandra’s discrete series, the construction of representations by coho-
mological induction, and properties of intertwining operators—in order to identify
certain irreducible representations as unitary. To put this construction in context,
we begin with some background.
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The problem of classifying the irreducible unitary representations of a semisim-
ple Lie group remains unsolved. Some of the partial results (e.g., [BSK1]), suggest
that the statement of a complete classification may be so complicated that no rea-
sonable theorem is possible. Instead of aiming for a complete classification, it may
be more advisable to search for all the “important” irreducible unitary representa-
tions, whatever “important” may mean.

General techniques for proving that representations are unitary are few in num-
ber. The oldest is ordinary induction: induction carries unitary representations of a
closed subgroup to unitary representations of the whole group, provided the induc-
tion process is suitably normalized. In practice the subgroup is often taken to be the
Levi component of a parabolic subgroup, and then the induction process is called
parabolic induction and also takes an irreducible representation to a representation
with a finite composition series.

Another technique is continuity arguments—originally done in the context of
parabolic induction. The idea is that positivity of an invariant Hermitian form
is preserved when a representation varies through a continuous family if the form
varies continuously through nonsingular Hermitian forms and if certain admissi-
bility hypotheses are satisfied. The nonsingularity is often proved by establishing
irreducibility for the representations in question.

Still another technique is cohomological induction, whose definition will be
reviewed below. Cohomological induction carries a representation of a certain kind
of subgroup to a representation of the whole group, and it preserves unitarity under
a suitable positivity condition on the parameters. This positivity condition can be
weakened when the inducing representation is “small” in a suitable sense, and this
fact will be an important ingredient in the theory.

The work of several authors (e.g., [B], [KS], [SRV], [BSK1]) suggests that in
order to find the “important” irreducible unitary representations of a semisimple
Lie group, one should first look for those that are “small.” The trouble is that
there are too many “small” representations of most groups to handle by special
arguments. The question that we therefore address is the building of most “small”
representations from a few of them.

The technique will be to use intertwining operators between cohomologically
induced representations. The organization is as follows:

1. Setting and Approach

Properties of Cohomological Induction

Unitarizability and Small Representations

Analytic Continuations of Holomorphic Discrete Series
Main Theorem

. Application to Single-Line Holomorphic Cases

7. Application to a Nonholomorphic Case

o ot W

When an irreducible representation is cohomologically induced with the positiv-
ity condition in place, the resulting representation is irreducible and should be
regarded as unlikely to be small. To obtain small representations, we need to go
outside the positivity range. There we can attempt to isolate irreducible subquo-
tients of cohomologically induced representations by means of kernels and images
of intertwining operators. The representations that we study in this paper will be
subrepresentations of images of such operators, and our main theorem for providing
these operators will be Theorem 5.1 below.
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We shall illustrate matters first with a case where the unitarity is already com-
pletely known—the case of “analytic continuations of holomorphic discrete series.”
We may think of all these representations as small. Among them we distinguish
Wine-bundle cases” and “vector-bundle cases.” The unitarity in the line-bundle
cases was settled by Wallach [W1] essentially by a direct calculation. Although
our technique yields the unitarity of some of these from others, let us regard all
these representations as handled by special arguments. We use Theorem 5.1 to
show how the unitarity of vector-bundle cases can in effect be deduced from that
of the line-bundle cases, at least when the Dynkin diagram of the underlying group
has only single lines. In this way we are building many small representations from
a few of them.

It is a relevant question whether we are succeeding in dealing with a signifi-
cant part of the problem of constructing small representations. As evidence that
we are, we cite the example of SU(N,2). The unitary dual for such a group is
completely known ([KS] and [BSK2]). Among the important irreducible unitary
representations are the Langlands quotients of representations induced from a min-
imal parabolic subgroup whose parameters are isolated in the set of parameters of
all irreducible unitary representations. The unitarity of all these isolated represen-
tations reduces by cohomological induction to that of finitely many “basic cases,”
the number of them being O(N?). It turns out that all of the basic cases are
line-bundle cases or vector-bundle cases of analytic continuations of holomorphic
discrete series. On the other hand, the number of line-bundle cases of analytic con-
tinuations of holomorphic discrete series for SU(N,2) is O(N). Thus we achieve
with our theorem a nontrivial reduction of the number of small representations that
need special study.

The applications of Theorem 5.1 are by no means limited to analytic continu-
ations of holomorphic discrete series, and we give in §7 some illustrations of what
happens in another situation. The examples we treat are continuations of nonholo-
morphic discrete series.

This article is a mixture of an exposition and a development of new results.
The material of §§1—4 is expository except for Theorem 2.8 and the description of
the theme of this paper. Section 5 contains the main theorem, while §6 amounts to
a new proof of an old theorem, proving unitarity for vector-bundle cases of analytic
continuations of holomorphic discrete series by means of the theorem of §5. The
point of the new proof is that it lends itself to a broad generalization. An illustration
of this generalization for representations not previously investigated is carried out
in §7.

1. Setting and approach

Let G be a connected reductive Lie group in the Harish-Chandra class. This
means that G is locally the product of a connected abelian Lie group and a con-
nected semisimple Lie group with finite center. Fix a maximal compact subgroup
K of G. For simplicity of notation, we shall assume throughout that

(1.1) rank G = rank K.

Let go = €y @ po be the Cartan decomposition of the Lie algebra of G corre-
sponding to K, and let 6 be the Cartan involution. We use subscripts 0 for real
Lie algebras and real vector spaces, and we drop the subscripts for the complexifi-
cations, so that the decomposition of the complexification g of go is g = €@ p.
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Cohomological induction was introduced by Zuckerman in 1978 and was devel-
oped by Vogan in [V2] and later work. An exposition appears in [K'V], and we
give references within this source when possible.

Cohomological induction is defined relative to a € stable parabolic subalgebra
q = [®uin g, u being the nilpotent radical. Part of the definition of @ stable
parabolic is that q has a Levi factor [ that is the complexification of [ = [N gg. If L
denotes the corresponding analytic subgroup, then L is closed connected reductive
in the Harish-Chandra class. Let § = [@ 11 be the opposite parabolic, which is given
in this situation by complex conjugation within g relative to go. See [KV, §IV.6]
for details.

We work with admissible representations of G and L, and it is known that it is
equivalent, for many purposes including investigations of unitarity, to work instead
with (g, K) modules and (I, L N K) modules. Cohomological induction is any of
several functors for carrying (I, L N K) modules into (g, K) modules: Let Z be an
(I, L N K) module, and define

£;(2) = (£8);(2) = (Mg 1k ); (nd§ 10k (2 ® \Pw)

In the middle expression we have dropped mention of the nilpotent part of q to
simplify the notation in later calculations; the nilpotent part does affect what the
functor does, however. The right side is a composition of four operations: The first
is that Z is effectively shifted in parameter by the sum of the roots contributing
to u (once we fix a Cartan subalgebra). The second is that the (I, L N K) module
Z® NP u is changed to a (§, LN K) module by having ii act as 0. The third, given
by the ind functor, is akin to the familiar Verma module construction and is simply
the tensor product over U(g) with U(g). The fourth is the j derived functor of
the “Bernstein functor” II whose definition we shall recall in the next section. See
[KV, §IL.1] for details.

The (g, K) module £;(Z) is 0 if j > S = dimc(u N ) and in favorable cases is
0 if j < S. The usual interest is in the case j = S.

MAIN DEVICE. If q and q' are @ stable parabolic subalgebras as above and if Z
and Z' are (I, LNK) and (I, L'N K) modules, respectively, find interesting members
of

(1.2) Homg x ((£7)s:(2"), (£7)s(Z)).

Kobayashi [Ko] and Trapa [T] have done work related to this problem in a
different context. Our work overlaps with theirs a little but not much.

The following is the particular situation of interest. Think of Lg/(Z’) as a (g, K)
module under study. Assume that Z and Z’ are unitarizable and that Z is “small”
for L in a suitable sense, so that £5(Z) has a better-than-usual chance of being
infinitesimally unitary. Also assume that some K type information is available
that permits the conclusion that there is a nonzero member of the above Hom.
Then the map gives a handle on the unitarity question for a particular irreducible
subquotient of Lg/(Z’). When the parameters of Z’ are outside the usual range,
this subquotient is likely to be small for G, and hence we get new information about
the unitarity of a small (g, K') module.

The main example of a “small” ([, L N K) module for this paper is that Z is
one-dimensional. In this case, let us write Z = Cy with A € [* and A([,[]) = 0.
Then Lg(C,) is called a Zuckerman module and is often denoted A4(A). The sense
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in which Ag()) has a better-than-usual chance of being unitary will be discussed
in the next section.

2. Properties of cohomological induction

In order to understand cohomological induction, it is helpful to understand how
# stable parabolic subalgebras are constructed operationally. Let to be a maximal
abelian subspace of €y; under our equal-rank assumption, this is a Cartan subalgebra
of go. Let A(g, t) be the set of roots; each root is said to be compact or noncompact
according as its root space is in € or is in p.

Fix a positive system A*(g,t). Form the corresponding Dynkin diagram of g,
and paint the noncompact simple roots. In [K2| the resulting diagram is called
the Vogan diagram of gy relative to AT(g,t). Label some of the simple roots as
generating A([, t). For example, the Vogan diagram of go relative to A™ (g, t), with
a labeled set of simple roots, might be the following:

O @ O *—©
e
AL )
Let A(l,t) be the root system generated by the marked simple roots, and let A(u)
be the set of positive roots not in A([,t). Then put

(=te| P s

acA(lt)

u= @ Ba;

acAfu)
and the result is a @ stable parabolic subalgebra q = [ & u. For our go, all such g's
arise in this way.

We denote various sets of roots by A(g,t), A(L,t), A(u), Ag, Arnk, and so
on. The corresponding sets of positive roots are indicated by superscripts +. Let 6,
81, 6(u), 8k, and érnx be the usual half sums of positive roots, and write W (g, t)
and W (I, t) for the Weyl groups of A(g,t) and A(l, t).

An ingredient in the definition of cohomological induction is the “Bernstein
functor” II, whose definition we now review. The universal enveloping algebra of
g is a ring whose unital modules are exactly the representations of g. There is a
corresponding ring R(g, K) for handling (g, K) modules, and its precise definition
is given in Chapter I of [KV]. Then II is given by a formula completely analogous
to the formation of Verma modules:

%X «(Z) = R(g,K) ®r(g,1nk) Z-

The functor II is covariant and right exact, and IT; is defined to be the j*" right de-
rived functor of II. One has at present no geometric or analytic interpretation of I;,
but a dual Hom functor, known as the “Zuckerman functor,” has an interpretation
in terms of sheaf-cohomology sections of vector bundles.

Fix a 0 stable parabolic subalgebra q as above, let S = dim(u N ¢), and define
L; as in §1. The following theorems give some basic properties of cohomological
induction. In each, Z is an ([, L N K') module. Historically Theorems 2.1 through

and
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2.7 are due to Zuckerman and Vogan. We give references to [K'V] for proofs; more
information about the history may be found in [K'V].

THEOREM 2.1. (Trivial vanishing). £;(Z) =0 ¢f j > 25.
REFERENCE. [KV, Corollary 2.125].

THEOREM 2.2. (Vanishing and admissibility). If Z is admissible as an L N K
module, then L;(Z) is admissible as a K module, and L;(Z) =0 for j > S.

REFERENCE. [KV, Theorem 5.35].

THEOREM 2.3. (Infinitesimal character). If Z has infinitesimal character Ay
relative to (I, t), then L;(Z) has infinitesimal character Ay + 6(u) relative to (g, t).

REFERENCE. [KV, Corollary 5.25].

THEOREM 2.4. (Double induction). Cohomological induction in stages is valid
if the inside cohomologically induced modules vanish in all but one degree, and then
the degrees add.

REFERENCE. [KV, Corollary 11.86].

For the remaining theorems in this section, let ty, t, A(g,t), and A™(g,t) be as
earlier in this section.

THEOREM 2.5. (Behavior in the good range). If Z has infinitesimal character
Ao relative to (I,t) and if (Ao + 6(u),a) > 0 for all @ € A(u), then
(a) £L;(Z)=0forj< S, and
(b) Ls(Z) is (nonzero) irreducible if Z is irreducible.

REFERENCE [KV, Theorems 5.99 and 8.2].

THEOREM 2.6. (Behavior in the weakly good range). If Z has infinitesimal
character )\ relative to (I, t) and if (Ao + 6(u),a) = 0 for all o € A(u), then
(a) £L;(Z)=0for j < S, and
(b) Ls(Z) is irreducible or zero if Z is irreducible.

REFERENCE. [KV, Theorems 5.99 and 8.2].

THEOREM 2.7. (Bottom Layer Theorem). If A is the highest weight of an LNK
type in Z relative to AT(INE,t), then A+ 26(unp) = A is the highest weight of
a K type in Ls(Z) relative to A*(8,t) if and only if A is A}, dominant, and then
the multiplicities are equal.

REFERENCE. [KV, Theorem 5.80].

The K types A of L5(Z) as in Theorem 2.7 are said to be in the bottom layer.
For example, Aq(A) has the single L N K highest weight A, and the bottom layer is
{A+26(unp)} if X+ 28(unp) is Aj; dominant and is empty otherwise.

Theorem 2.7 may be regarded as a theorem about objects in a certain category.
Theorem 2.8 below is the corresponding result about morphisms; it reduces to
Theorem 2.7 when applied to the identity map Z — Z.

Suppose that Z" and Z are two (I, L N K) modules and that \ is an LN K
highest weight. We say that an (I, L N K) map Z' — Z has LN K rank n on the
LN K type with highest weight A if this L N K type has multiplicity n in the image
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of Z’ within Z. In analogous fashion, we can define K rankon a K type for a (g, K)
map.

THEOREM 2.8. (Bottom Layer Theorem for Maps). Let q' = q, and suppose
that there is an (I, LN K) map Z' — Z that has LN K rank n on the L N K type
with highest weight X. If A = X+ 26(unp) is Aj. dominant, then the (g, K) map
Ls(Z" — Z) is a member of Homg g (Ls(Z'),Ls(Z)) that has K rank n on the K
type with highest weight A.

PROOF. Let us write 7 for the map Z’ — Z. Equation (5.74) of [KV] uses the
inclusion &€ — g to produce a (E, L N K) map

eI B roy g ey o
Bz : lndﬁﬂE.LﬂK(ZE?E) = lndg‘m;f-(z- )-

q
In the diagram of (¢, L N K) modules

indb LK it indg 1y i i () indBLNK (g

n ﬁﬂE_.LﬁK( q) m qm,LnK( q)

(2.1) bz | | o2
i“‘lngr:g(ﬁ)

ind§ 70 (Z'7) ind® 705 (22)

the four modules are tensor products of U(€) or U(g) with Z’? or Zg#. The vertical
maps act in the first member of the tensor product, and the horizontal maps act in
the second member. Therefore (2.1) commutes. If we apply the functor (]'I::fm K)S
to (2.1) and argue as in (5.75) and (5.76) of [K'V], then we obtain a commutative
diagram

& m -
cE(z) £29 cK(z)

(2.2) sl ls

Ls(2') =25 £5(2)

of K modules in which £ is the £ functor relative to K and in which B is the
“bottom-layer map” for Z' or Z. The form of Theorem 2.7 in [KV] shows that
each B is an isomorphism on the K type A. Consequently the commutativity of
(2.2) implies that £X (7) and Lg(r) have the same K rank on the K type A.

Meanwhile the functor Efs-" respects direct sums and carries an irreducible K
module of type A to an irreducible K module of type A. Thus the L N K rank of =
equals the K rank of £ (7). Combining this equality with the equality of the K
ranks of L5 (m) and Lg(m), we obtain the conclusion of the theorem.

3. Unitarizability and small representations

In this section we use the notation of §2, including the definitions of tg, t,
Alg,t), and AT(g,t). Let Z be an (I, L N K) module with infinitesimal character
Ao relative to (I, t).

The main theorem giving a sufficient condition for the unitarizability of Lgs(Z)
is due to Vogan [V3]. Wallach [W2] obtained a simplified proof, which is what
appears in [K'V]. The theorem is often stated in the following form.
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THEOREM 3.1. (Unitarizability Theorem) Let Z be an infinitesimally unitary
(I, L N K) module with infinitesirnal character Ay relative to (I,t). If Ao is in the
weakly good range, i.e., (Ao +6(u),a) > 0 for all @ € A(u), then Lg(u) is infinites-
imally unitary.

REFERENCE [KV, Theorem 9.1].

The unitarity of L5(Z) is deduced by considering an explicit Hermitian form
constructed on Lg(Z) from the given form on Z. This form on Lg(Z) is known
as the Shapovalov form, and its positivity is deduced by means of a continuity
argument.

Theorem 3.1 is not very useful for our current purposes. We are interested in
the unitarity of some special irreducible subquotient L£g:(Z’), and the technique of
interest will be to pick out this irreducible subquotient by means of an intertwining
operator. If Z’ is irreducible and if its infinitesimal character is in the weakly good
range, then Lg/(Z') will be irreducible or 0, by Theorem 2.6, and the irreducible
subquotient has to be all of Lg/(Z’). The intertwining operator is not needed to
isolate the irreducible subquotient, and our present theory becomes uninteresting.

Examination of either continuity argument, Vogan's or Wallach’s, used to prove
Theorem 3.1 reveals a better theorem, however.

THEOREM 3.2. Let Z be a (I, L N K) module with infinitesimal character \g
relative to (I,t), and suppose that Z carries a positive definite invariant Hermitian
form. Suppose further that the U(g) module ind?((Z ®c ng(u));#) 18 trreducible for
all t > 0. Then the corresponding Shapovalov form on Lg(Z) is positive definite.

REFERENCE. [KV, Theorem 9.68].

Theorem 3.2 is the general result, and in part we shall make use of it directly.
We shall make use also of a corollary of it that assumes that Z is “small” in a
suitable sense. The corollary is by no means best possible, as we shall see in one of
our applications later in this paper.
Define ts = t N [g,g]. A finite-length (g, K) module V with an infinitesimal
character A is weakly unipotent if
(i) the restriction of A to ts is in the R linear span of the roots
(ii) whenever F' is a finite-dimensional U(g) module and p is an infinitesimal
character appearing in V ®c F, then ||, | < |uls.,

ExXAMPLE 3.3. If V is one-dimensional, we show that V is weakly unipotent.
In fact, let A’ be the unique weight of V, so that V has infinitesimal character
A = X+ 6. The inclusion ty C £, forces A to be imaginary on ty, and (i) holds. In
(ii), we may assume that F is irreducible with highest weight », and what needs to
be checked is that |Alg,, | < [(A+v)]c. |- But the left side is 6|1, | since A’ vanishes
on ty, and the right side is |(V + 61)lc..|- The inequality follows by expanding the
square of the right side since (v, 1) > 0.

COROLLARY 3.4. Let Z be an infinitesimally unitary irreducible (I, L N K)
module with infinitesimal character Ay relative to (1, t), and suppose that Z is weakly
unipotent relative to [. If Ay is in the weakly fair range, i.e., if

(Ao +6(u),al;) 20
for all « € A(u) when 3 is the center of |, then Lgs(u) is infinitesimally unitary.
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REFERENCE. [KV, Theorem 12.4] except that only the barest sketch of a proof
is given.

PROOF. We run through the first part of the proof of Lemma 5.100 of [KV]
up through equation (5.104) except that we drop L N K from the notation and
we replace Z by Z ® Cus). Thus M = ind}((Z ® Cw(u))f). To be able to
apply Theorem 3.2, we want to prove that M is irreducible. Arguing by contra-
diction, suppose N is a nontrivial U(g) submodule of M. We claim that N meets
1® (Z ® Ctd(u))#‘

Assume the contrary. Then the argument in [K'V] for (5.104) shows that there
exists a finite-dimensional U([) submodule F of U(u) &C, i.e., the members of U (u)
with 0 constant term, such that F' ® (Z ® Cys())" has a nonzero U([) submodule
with infinitesimal character v satisfying

(3.1) v —6(u) = s( Ao + (¢ + 1)6(u))
for some s € W(g, t).

Let us decompose the norm squared on members of (itg)* according to the
formula | - [2 = - [+ - |%, the subscripts indicating the parts carried on 3 and
t N [1, 1], respectively. Tensoring F ® (Z ® Cté(u))# with C_(t42)5(u), We see that
v — (t 4 2)6(u) is an infinitesimal character in F'® Z. Since Z is weakly unipotent,
we obtain
(32) Mol < v = (¢ +2)8(w)[% = VI
Taking norms in (3.1) gives

v = 6(w)|* = [Xo + (¢ +1)é(w)[%,
and the ss parts satisfy
v — 62 = [vI% > ol = Ao + (¢ +1)8(w)Z

85 —

by (3.2). Therefore the 3 parts satisfy
(3.3) lv = 8(w)|? < [Xo+ (E+ 1)6(w)[2.

Since v is an infinitesimal character in F® (Z® Cys(y))™, v — 6(u) is an infinitesimal
character in F ® (Z ® C(;41)5(x))- Therefore a theorem of Kostant [K'V, Theorem
7.133] shows that some W (I, t) transform of v — 6(u) is of the form

weight of F' + infinitesimal character of Z ® Cs41)5(w),

hence of the form
> naa+ o+ (t+1)6(u)
aEA(u)
with all n, > 0. Since the action of W(I,t) preserves the 3 part of the norm, we
obtain

=P =] 3 nac+ro+(t+1)5w)

acA(u)
=| Y neef + Y 2naldo+ (E+ 1)), aly) + o + (¢ + DS,
acA(u) acA(u)

The middle term on the right side is > 0 since Ao is in the weakly fair range
and since (§(u),al;) > 0 [KV, Corollary 4.69]. Comparison with (3.3) thus yields
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|Zoez§(u} nacx|j < 0. It follows that the weight of I in question is 0, and this

contradicts the fact that F lies in U(u) & C. Therefore N meets 1 ® (Z ® Cys0))*.

The proof is completed in the same way that Corollary 5.105 of [K'V] is proved:
Let 1 ® z be a nonzero element in the intersection of N with 1 ® (Z ® Cys(u))? -
Then U(I)(1 ® z) = 1 ® (Z & Cys(u))* since (Z ® Cys())7 is irreducible under L.
Hence N D 1® (Z ® Cysu))”. Applying U(g), we see that N O M. Hence N = M.

EXAMPLE 3.5. If C,, is a one-dimensional ([, L N K) module, we show that its
infinitesimal character is in the weakly fair range if

(3.4) (A+8(u),a) >0  forall @ € A(u);

consequently Aq()) is infinitesimally unitary. In fact, Cy is weakly unipotent by
Example 3.3 since it is one-dimensional. Thus the unitarity will follow from Corol-
lary 3.4 if we show that the infinitesimal character is in the weakly fair range, i.e.,
that

(3.5) (A+6,+6(u),al;) >0  forall a € A(u),

since \g = A\ + 8. In (3.5), 67, vanishes on 3 and may be dropped. The remaining
terms in the left member vanish on t, since C, is one-dimensional; thus we may
drop the subscript 3 in the right member. Hence (3.5) is equivalent with (3.4), and
our assertion follows. This result appears explicitly in [K'V] as Corollary 9.70.

For future reference let us isolate from the proof of Corollary 3.4 the sufficient
condition for unitarity that was being deduced from Theorem 3.2.

COROLLARY 3.6. Let Z be an infinitesimally unitary irreducible (I,L N K)
module with infinitesimal character Ay relative to (L,t). In order for Ls(Z) to fail
to be infinitesimally unitary, it is necessary that there exist a number t > 0 and an
| weight p of U(u) & C such that

(3.6) A4 Ao+ (t+1)8(u) = s(Xo + (E+1)b(u))

for some s € W(g,t). If Z is one-dimensional and \g ts AT ([,t) dominant, then p
may be assumed AT ([, t) dominant.

PRrROOF. The condition from (3.1) is that there exist an [ infinitesimal character
vin (U(u) & C) ® (Z ® C42)s(u)) such that

v — 8(u) = s(Ao + (¢ + 1)5(w)).

Then v — 6(u) is an infinitesimal character in (U(u) € C) ® (Z ® C(z41)5(u))- The
theorem of Kostant mentioned after (3.3) says that v — §(u) is, up to a member of
the Weyl group W (I, t), the sum of a weight p of U(u) & C and the infinitesimal
character Ag + (¢t + 1)é(u) of Z ® Cy41)s(u)- Then (3.6) follows.

If Z is one-dimensional, we may calculate the infinitesimal character of
(U(u) & C) ® (Z ® Cy+2y5(w)) in terms of highest weights. From this observation,
the last statement of the corollary follows.

Now we can indicate more precisely how we shall pursue the theme of this
paper. In the setting of the Bottom Layer Theorem for Maps (Theorem 2.8), we
consider an ([,L N K) map Z' — Z. As noted in the discussion in §1, we are
interested in the case that Z is small, and in fact we shall consider exclusively the
case that Z is one-dimensional in this article, say Z = Cy. Put A = A+ 28(unp).
To be able to use Theorem 2.8, we need to have an (I, LNK) map Z" — C, that has
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LNK rank 1 on the LN K type A. Theorem 2.8 then tells us that Lg(Z' — C,) has
K rank 1 on the K type A. This intertwining operator is the interesting member
of (1.2) that we have in mind.

The simplest case to analyze is that the K type A has multiplicity 1 in Lg(Z").
Let us assume that we are in this situation. Then there is a unique irreducible
subquotient X of Lg(Z’) containing the K type A, and Theorem 2.8 is telling us
that a certain (g, K) map X — Ay()\) is nonzero. If we can show that Ag(A)
is infinitesimally unitary (for example by applying Theorem 3.2 or Example 3.5),
then we can conclude that the irreducible subquotient X of Lg(Z’) is infinitesimally
unitary.

The existence of an (I, LN K) map Z' — C, says that Z’ has a one-dimensional
quotient. There are various natural ([, L N K) modules Z’ with this property. For
example, the spherical principal series representation of L with parameter half the
sum of positive restricted roots has the trivial representation of L as its Langlands
quotient (in the sense of the Langlands classification); changing the principal se-
ries on the center of I allows for other one-dimensional representations of L as
Langlands quotient. However, no matter what Z’ — C, we use, we always have
to analyze Lg(Z'). To analyze this particular Lg(Z'), we would have to simplify a
composition involving a cohomological induction and a parabolic induction. This
step is related to finding the Langlands parameters of a cohomologically induced
representation when one knows the Langlands parameters of the inducing represen-
tation. A result in this direction when the parameter of Z' is in the weakly good
range is Theorem 11.225 of [K'V]; some results when the parameter is outside the
weakly good range appear in [F|. At any rate, this is quite a complicated matter,
and we shall not discuss this case further in this paper.

Instead let us consider the case that Z' — C, exhibits C, as the quotient of
a generalized Verma module. Since Z' must be also an ([, L N K) module, the
possibilities are fairly limited. We shall be quickly led to studying “holomorphic
discrete series” and their “analytic continuations.”

Actually generalized Verma modules are highest weight modules, and it will be
more convenient to work with lowest weight modules. Thus we shall have to make
some minor adjustments in the traditional formulation of the theory.

4. Analytic continuations of holomorphic discrete series

The discrete series consists of the irreducible unitary representations of G that
have a nonzero square-integrable matrix coefficient. The holomorphic discrete series
consists of those with a highest weight vector. Harish-Chandra constructed and
classified the holomorphic discrete series in a sequence of three papers [HC1], and
he parametrized the full discrete series in a later sequence of three papers [HC2].
One of the main theorems of [HC2] is that the discrete series is nonempty if and
only if rank G = rank K, and we are assuming this equality in this paper. See [K1]
for an exposition of holomorphic and general discrete series.

It will be more convenient for us to work with (g, K') modules, and then we can
describe the discrete series by using cohomological induction. In fact, finding such
a description was one of Zuckerman’s original goals in introducing cohomological
induction. In [KV] the discrete series representations are defined as follows: Fix
the Cartan subalgebras ty and t as earlier, and let ¢ = t&u be any @ stable parabolic
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subalgebra whose Levi factor is t. Then the discrete series consists of all
(£9)s(Cx) = (TI5:7)s(ind§ 7.(Cx ® AP u))
whose parameters are in the good range, provided all choices of u are allowed.

To make the correspondence with Harish-Chandra’s parametrization, one uses
the results of §2 above to recognize these (g, K') modules as irreducible and in-
finitesimally unitary, and then it is possible to give a direct proof of their square
integrability (cf. [W3]). Sorting out parameters then shows that these representa-
tions exhaust the discrete series, and it is easy to identify the equivalences among
them. When the parameters are outside the good range but in the weakly good
range, the nonzero (g, K') modules that are obtained are exactly the limits of dis-
crete series.

It is not hard, using double induction and the results of §IV.11 of [KV], to see
that (£?)s(Z) is in the discrete series whenever [ is compact and Z is irreducible
with parameter in the good range. It is a limit of discrete series if it is nonzero and
the parameter is merely in the weakly good range.

The condition on G to have a nonempty holomorphic discrete series is that the
centralizer in gy of the center of € is ;. This is equivalent with the condition that
G /K has an invariant complex structure (i.e., G/K is Hermitian symmetric), and in
this case the holomorphic discrete series representations can be realized in spaces of
holomorphic sections of equivariant holomorphic vector bundles over G/K. When
G is noncompact simple, G/K has an invariant complex structure if and only if the
center of ¢, is nonzero, and in this case it is one-dimensional. For background one
may consult [K2].

To relate holomorphic discrete series to cohomological induction, it is more
convenient to work with lowest-weight representations than with highest-weight
representations. First let us suppose that G is noncompact simple. Then the
holomorphic discrete series are the discrete series (L{)s(Cy/) for which the positive
system AT (g, t) defined by u has one noncompact simple root, say «, and o occurs
just once in the largest root. In terms of the Vogan diagram of gy, exactly one simple
root « is painted, and « occurs just once when the largest root is expanded in terms
of simple roots. When G is not necessarily noncompact or simple, the condition
on the Vogan diagram of gq is that each simple component of the diagram have at
most one painted root and any painted root occurs just once when the largest root
for that component is expanded in terms of simple roots.

Under these conditions, E is the [ built from the simple roots that are compact,
and the noncompact roots involve a painted root. Since a painted root cannot occur
twice in any root, the sum of two noncompact positive roots cannot be a root. We
denote the sum of the root spaces for the positive noncompact roots by p* and the
sum of the root spaces for the negative noncompact roots by p~. Thenp = pT @&p—,
p" and p~ are abelian subspaces of p normalized by €, and the sum & pT is a @
stable parabolic subalgebra of g. By double induction and the results of §IV.11 of
[KV], we can write

(£3)s(Cx) = (£8)o(Ly)s(Cx) = (£§)o(Vi) = iﬂd?.’:;__;(((Vx)#).
where V) is the representation of K with highest weight A’. This equation shows
that the (g, K') module in question is just a generalized Verma module, except that
the parabolic subalgebra € & p* that would produce highest weights has been re-
placed by €& p~ and the representations have lowest weights. A global version on G
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of the representation in question occurs in sections of an associated holomorphic vec-
tor bundle over G/K built from the representation of K on fo. Accordingly when
dim Vi = 1, we refer to the representation as a line-bundle case; when dim Vy, > 1,
we refer to it as a vector-bundle case.

In a 1979 paper [W1] Wallach classified the irreducible infinitesimally unitary
(g, K) modules that have a highest weight vector and a one-dimensional K type.
For all practical purposes we may assume that G/K is Hermitian symmetric, and
we do assume that. The (g, K) modules of interest are necessarily quotients of
generalized Verma modules having a one-dimensional K type. To describe the
situation, let us specialize to the case that G is noncompact simple.

Since G/K is Hermitian symmetric and G is noncompact simple, we have
ko = [Eo, Eo] ® 3¢, with the center 3¢, one dimensional. A one-dimensional skew-
Hermitian representation of €, is 0 on [Ey, ¥y] and therefore lies in a one-parameter
family according to the behavior on 3p,. Wallach thought in terms of working with
the universal cover of G, so that there was no integrability condition on 3g,. We
shall work with a linear G having a simply-connected complexification, so that the
parameter corresponding to e, is subject to an integrability condition. At any
rate, when this parameter is sufficiently large in one direction, holomorphic dis-
crete series representations result, so that the general case can be considered as a
kind of analytic continuation of the line-bundle case of holomorphic discrete series.
Wallach was able to settle the continued line-bundle cases by an explicit calculation
of the Shapovalov form, but the corresponding calculation could not be carried out
in the vector-bundle cases.

In 1983, Enright-Howe-Wallach [EHW] and Jakobsen [J]| were able to settle
completely the vector-bundle cases largely without making explicit calculations.
The proofs of unitarity involved a number of ad hoc arguments that we seek to
avoid. Let us state the result, adjusting the notation of [EHW] to reflect the
assumption that the representations have lowest-weight vectors instead of highest-
weight vectors. We confine ourselves to the case that G is noncompact simple. The
result when the Vogan diagram of go has a double line is more complicated to state
than the result when the diagram has only single lines, and we shall stick to the
single-line cases.

Thus the situation is that go is noncompact simple, there is one noncompact
simple root &, and a has coefficient 1 when the largest root is expanded in terms
of simple roots. We suppose that G is a linear group with a simply connected
complexification, so that a linear form p on t is (analytically) integral if and only
if 2(u, B)/|B|* is an integer for all simple roots 3. We assume further that the
underlying Dynkin diagram of the Vogan diagram of gy has only single lines, i.e.,
is of type A, D, or E. This last assumption excludes exactly gy = s0(2,2n — 1) and
go = sp(n, R).

Define a parabolic subalgebra of g by

g=lou=tap™.
Let X € t* be integral and K dominant, and let Vs be an irreducible representation
of K with highest weight ). Relative to this parabolic subalgebra q’, we have
dim(u' N€) = 0, and thus S’ = 0. The (g, K') module to study is

Lo(Va) =indf,_ _ (Vi ® A"PpT).
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We want to know whether the irreducible quotient of Ly(Vy:) containing the K
type X' + 28(pT) is infinitesimally unitary.

To orient ourselves, it is helpful to consider Vy. as a member of a one-parameter
family of representations of the universal covering group K of K. Let A; be the
fundamental weight of gy defined by the properties that 2(A;,a)/|a|* = 1 and
2(Ay, 3)/|BI*> = 0 for all other simple 3; A; is a nonzero multiple of 25(p*). The
one-parameter family is

Arp(z— 22 ER) i o

e
The Wallach set is defined to be the set of real z for which the irreducible quotient
of the corresponding g module is infinitesimally unitary. The g module is a (g, K)
module if and only if z is an integer.
Qualitatively the picture of the Wallach set is the set of bold points in the
following diagram, the numbers A, B, and C being defined in Theorem 4.1 below.

L & s s )
—-B T —-A 0 discrete series
spacing C'

The good range is {z > 0} and gives discrete series. A limit of discrete series occurs
at 0. To the left of 0 is a continuous range (in the universal cover) and then a finite
discrete set, with equal spacing.
The point with
20N +6, @)
="
|af?

in the above diagram tells about unitarity for the original (g, K) module Lo(Vy/).

(4.1)

THEOREM 4.1. The irreducible quotient of Lo(Vy/) containing the K type
N + 26(pT) is infinitesimally unitary if and only if the number z in (4.1) is in
the Wallach set defined by numbers A, B. and C' as follows: Let q =& u be the 0
stable parabolic subalgebra defined by taking
[ to be built from o and all simple roots -y that are compact and are
orthogonal to N
u to be built from the positive roots not contributing to L.
Then
22610k, @)
|ee[?

B=1-
A = B — ((real rank of [y) — 1)C

for go = su(m,n)
—2 for go = s0(2,2n — 2)
for go = 50*(2n)
for go of type E III with g = Eg
for go of type E VII with g = E7.

Q
Il
w3

REFERENCE [EHW] or [J].
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REMARKS. The largest possible [ is [ = g, which occurs exactly when A is
orthogonal to all simple roots that are compact. This is the line-bundle case. The
following table describes the Wallach set in this situation:

Dynkin | real
e diagram | rank = “ 2 @
su(m,n), Asin | m—=1| en —€mst n m+n—1 1
m<n
50(23 2”'_"2): Dn 2 €1.—'€2 n—1 2n—3 n—2
nz4
5 2 : n T
w@), | o, | 3] | eiten |2f]-1] ;-3 | 2
E II1 o g | endoflong 8 11 3
branch
E VII E, 3 end of long 9 17 4
branch

5. Main theorem

We now return to the case of an (I, LN K) map Z' — C, with Z’ a lowest
weight module. We suppose that go, to, €, and A*(g,t) are fixed throughout.

THEOREM 5.1. Suppose that q = | & u is a 0 stable parabolic of g and that
L/(LNK) is Hermitian symmetric in a fashion compatible with the inherited positive
system A (L, t) for I. Let A\ € t* be an integral parameter orthogonal to the roots of
[, and suppose that A = A+ 26(unp) is dominant for Aj;. Let ¢ =1 @ u' be any
0 stable parabolic subalgebra of g compatible with A™ (g, t) such that ' 2 [NE and
is compact, and define

N=Xx=28Inp"),
where pT denotes the sum of the root spaces for the positive noncompact roots. Put
S' = dim(w' N€). Then
(a) A is A}, dominant, so that there exists an irreducible representation Vi of
the compact group L' with highest weight X',
(b) the K type A has multiplicity one in both (L)s (V) and Aq()), and
(c) there exists a (g, K) map
(£3)s(Var) = Aq(A)
of K rank one on the K type A.
Consequently if Aq(\) is infinitesimally unitary, then the unique irreducible sub-
quotient of (LY)s/ (Vi) with K type A is infinitesimally unitary.

REMARK. A prototype for this theorem may be found in [KV, pp. 589-592

and 632]. In that example, L = G = Sp(2,R) and [' = £. Most of that discussion

is intended to show that for a suitable A, A4()) is infinitesimally unitary but the
map in (c) is not onto.



418 A. W. KNAPP

PRrOOF. For (a) we write
(5.1) N=X=28(Inp*)=A-28(pT).

The simple roots of [ are simple for g and are compact. If 3 is one of them, the
reflection s permutes the positive noncompact roots of g, and hence (26(p™), 8) =
0. Combining this equality with (5.1) and the Aj. dominance of A, we see that
(N, 8) > 0.

For (b) and (c) we note that Cy/ is a well defined L N K module since )\’ is
integral and is orthogonal to the roots of [M €. We begin by constructing a nonzero
(,LNK) map

(5.2) (Line)o(Cx) = Ca.
Defining p~ in analogy with p™, we write

(Line)o(Cx) = ind(ine)+(1np-)(CF) = U(D) ®u(uney+(inp-)) Ca-
Call the right side M, and let 3 be the center of [N € All weights of M, when
restricted to 3, are of the form

N+ >, ngBl
BeAT(L,L),
B noncompact

with all ng > 0. Let N be the sum of the weight spaces for which not all ng are 0.
We show that N is an [ submodule of M. Since M/N is then evidently isomorphic
to Cy, we will be able to conclude the existence of (5.2).

Without loss of generality, we may assume that gg is simple noncompact, so
that all 3|; are equal, say to , for 8 noncompact in A*([,t). The fact that N is
an [ submodule of M will thus follow if we show that each root vector E_g, for
B noncompact in A*(l,t), annihilates any vector in N of weight A|; + . Since
U(tnpt)Cy = M, it is enough to treat a vector in N of the form Eg v, with 3’
noncompact in AT ([,t) and vy in Cy. We have

(5.3) E_gEgvy = Eg E_gvg + [E_g, Eg|vo.

The first term on the right side of (5.3) is 0 since the restriction to 3 of the weight
of E_gvg is A|; —¢&, which is not allowed. The second term on the right side of (5.3)
is 0 since [E_g, Eg/] is in [, 1] and [[, [Jup = 0. Thus (5.3) is 0, and the construction
of the map (5.2) is complete.

In the map (5.2), we note that the L N K type A = A’ +26(INp) is in the
bottom layer for the domain module and thus (5.2) has LN K rank 1 on the LN K
type A. By the Bottom Layer Theorem for Maps (Theorem 2.8), the map

(5.4) (L8)s((Line)o(Cr) — Cy), S =dim(ung),

has K rank 1 on the K type A = A+ 26(unp). By Theorem 2.4 and the results of
§IV.11 of [K'V],

(5.5) (L})s(Line)o(Cx) = (LE)s(Cxr) = (L])s (L¥e)s—s/(Cx) = (L8)s (V).
Since also

(5.6) Ag(N) = (£])s(Cy),

the map (5.4) is the required map for (c). We have seen that the K type A has
multiplicity one in both (£f)s(Li~¢)o(Cx) and (L£])s(Cy). Thus the equalities
(5.5) and (5.6) complete the proof of (b).
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6. Application to single-line holomorphic cases

Our objective in this section is to obtain by continuity arguments a proof of all
the unitarity of the vector-bundle cases of analytic continuations of holomorphic
discrete series for linear groups whose Dynkin diagrams have only single lines. The
line of reasoning will be a model for proofs in §7 of unitarity in new nonholomorphic
cases.

Theorem 5.1 is phrased in such a way that q = [ u and X are given first and
q = U@u and N are constructed from them. In applications the construction goes
in the reverse direction; we look, successfully or unsuccessfully, for q = [& u and A
satisfying the hypotheses that lead to a given pair ¢’ = ' @ u’ and \'.

In this section we study the situation in which G/K is Hermitian symmetric
and AT(g,t) is chosen compatibly with this hypothesis. We assume that go is
noncompact simple, that the Dynkin diagram of gy has only single lines, and that
G is linear with a simply connected complexification. This is the setting in which
the description in §4 of the Wallach set is applicable.

In this setting we choose I' = € and v’ = p*, and we assume that A’ is integral
and A}, dominant. Then S’ = 0, and the (g, K') module (Lf,)s/(Vy) is equal to

(6.1) iﬂdirr (Var ® A*Ppt) = U(g) Que+p-) Vart26(p+)-

The question concerns the unitarity of the irreducible subquotient containing the
K type A = X +26(p™). Specifically if z is the integer corresponding to A’ via (4.1)
and if z is in the Wallach set, we want to understand the unitarity of (6.1) by using
a (g, K) map of (6.1) into some A,(A) with g and A as in Theorem 5.1.

Here is what happens: In the vector-bundle cases (i.e., dim Vy, > 1), we can
always choose q and an associated A so that the map into A4(\) exists and A4(A)
is infinitesimally unitary. In all these cases, Aq(\) is infinitesimally unitary as a
consequence of a continuity argument, namely Theorem 3.2. This is the desired
easy proof of unitarity. In more detail, when g is s0(2,2n — 2) or so*(2n) or one
of the real forms E III of Eg and E VII of E7, then A is in the weakly fair range
and Aq(]) is infinitesimally unitary as a consequence of the more readily applicable
Example 3.5. When gg is su(m,n), there are examples where Example 3.5 is not
applicable and we have to resort to the full strength of Theorem 3.2.

In the line-bundle cases (i.e., dim Vy» = 1), we mentioned that Wallach [W1]
settled matters by direct computation. We can ask whether Theorem 5.1 handles
these cases, too. The answer is “not always.” For the line-bundle cases, it turns
out that we can define q and an associated A\ all the time except for two values of
z in the real form E III of E; and three in the real form E VII of E;. Again A4(X)
is infinitesimally unitary as a consequence of Theorem 3.2, and the more readily
applicable Example 3.5 applies except for su(m,n).

In the remainder of this section, first we prove enough of Theorem 6.1 below
to verify our definitions of q and the associated A when z equals —B, the leftmost
point of the Wallach set. Second we prove enough of Theorem 6.2 to show in the
vector-bundle case how to choose q and A for other values of z. Third we give the
proofs of Theorems 6.1e and 6.2e, which say that A,()) is infinitesimally unitary.
We begin with gy # su(m,n), and then we consider gy = su(m,n). The argument
for su(m,n) is the deepest part of the proof of Theorems 6.1 and 6.2 because the
hypothesis “weakly fair” is not necessarily valid.
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THEOREM 6.1. Suppose that G/K is Hermitian symmetric, A1 (g.t) is chosen
compatibly with that hypothesis, gy is noncompact simple, « is the unique simple
root, the Dynkin diagram of g has only single lines, and G is linear with a simply
connected complexification. Let N' € t* be integral and A} dominant, and let Vy: be
a K module with highest weight \'. Define a 0 stable parabolic subalgebra q =1[$u
compatible with At (g,t) as in Theorem 4.1 so that | is built from

{a and all compact simple v with v L \'}

and u is built from the positive roots not contributing to |. If the number z =
2(N +8,a)/|al? of (4.1) corresponds to the leftmost point of the Wallach set, i.e.,
is equal to the number —B = (2(261nk,a)/|a|?) — 1, then

(a) A=XN +26(INp") is integral and is orthogonal to the roots of |

(b) A =X +26(p™) is integral and is Aj. dominant

(¢) the K type A occurs with multiplicity one in both (L3)o(Var) and Aq(N)

(d) there exists a (g, K) map (L3)o(Vi) — Aq(X) of K rank one on the K type A

(e) the (g, K) module Aq(N) is infinitesimally unitary as a consequence of the

continuity argument given as Theorem 3.2.

PROOF OF ALL BUT (e).

(a) Integrality is trivial. The simple roots of [ consist of @ and those compact
simple roots v orthogonal to A’. The roots « are orthogonal also to 26(INp™) and
hence to A = A +28(INp™). In addition,

2(\a) 20\ +26(Inp*),a) 2N +26p,0) 2(26Lnk, )
o2 |af? - |af? |aef?
2(.\! =17 6, O:) 2(26”\1;{, OE)
— = 1— - =
|a[? |ae]?

(b) Integrality is again trivial. Both X and 28(p™) are A} dominant, and
hence so is A.

(c,d) We shall apply Theorem 5.1. The hypotheses on A are satisfied by (a)
and (b) above since A = A+ 28(unp™) as a result of the definitions in (a) and (b).
Since u’ = p*, S’ = 0. Applying (b) and (¢) of Theorem 5.1, we obtain (c) and (d)
of the present theorem.

z+B=0.

THEOREM 6.2. Suppose that G /K is Hermitian symmetric, At (g,t) is chosen
compatibly with that hypothesis, gy is noncompact simple, « is the unique simple
root, the Dynkin diagram of g has only single lines, and G is linear with a simply
connected complexification. Let N' € t* be integral and Aj; dominant, and let
Vi be a K module with highest weight X'. Suppose that dimVy, > 1 and that
z=2(N +6,a)/|al?® is a negative integer in the Wallach set. Then there exists a
subset S of i

S = {a and all compact simple v with v L X'}
containing o such that if @ = [ @ u is the 6 stable parabolic subalgebra compatible
with AT (g, t) with [ built from S and u built from the positive roots not contributing
to [ then
(a) A= X +26(tNpt) is integral and is orthogonal to the roots of |
(b) A= X 4 26(p*) is integral and is A} dominant
(c) the K type A occurs with multiplicity one in both (L3)o(Var) and Aq(X)
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(d) there exists a (g, K) map (L§)o(Vx) — Aq(X) of K rank one on the K type
A

(e) the (g, K) module Aq(\) is infinitesimally unitary as a consequence of the
continuity argument given as Theorem 3.2.

PROOF OF ALL BUT (e). Reviewing the proof of Theorem 6.1, we see that it is
enough to choose S so that the associated \ satisfies 2(X, a)/|a|* = 0. Equivalently
we want L to have the property that

- 2(20 0k, @)
|af?

From the formula for B, there is no loss of generality in assuming that S is con-
nected.

We turn to the table in the remarks following Theorem 4.1, and we proceed
case by case. Suppose S corresponds to su(m,n) with m < n. We are to see
that all negative integer values of z from —(m + n — 1) to —1 can be achieved in
(6.2) by defining S suitably. The point is that (6.2) is just the number —B for
the line-bundle case in which the whole Lie algebra is built from S. We obtain
—(m+n—1) for S = S. As we delete simple roots from either end of the diagram,
one at a time, the table shows that —B increases by 1 each time. We repeat this
procedure, always retaining e,, — €41, and we see that all the required values of
z are obtained.

Suppose S corresponds to s0(2,2n — 2). We are to see that

—2(n—3),-(n—1),—(n—2),...,—
can be achieved by defining S suitably. In fact, —r with 1 <r <n —1 is achieved
by taking S = {e; —ea, . ..,e, —€,41}, according to the line of the table for su(1,r).
To achieve —2(n — 3), we use S = S.
Suppose S corresponds to s0*(2n). We are to see that

(6.2) =1

—(2n-3),—(2n—-5),...,—5,-3,—1
and also —(n — 1), —(n—2),...,—2,—1 can be achieved by defining S suitably. In
fact, $ = {€r — €r41y-++16n—2 — €n—1,En—1 — €n,€n—1 + €n} yields 2n — 2r — 1 if
1 <r < n—3, and this takes care of —(2n — 3), —(2n — 5),...,—5 in the first list.
Also S ={e, —€r41,-+-1n—2 —€n—1,€n—1 +€n} yields —(n—r) if 1 <r <n—1,

and this yields the whole second list. The second list always contains —3 and —1
since n > 4, and thus we can achieve all the desired negative integer values.

Suppose S corresponds to a subset of E III or E VIL Since dimVy» > 1 by
assumption, S cannot correspond to the whole Dynkin diagram. Since a is at
the end of the long branch, a proper connected subdiagram containing a must be
classical. All the classical cases for S have been treated above, and thus the proof
is complete.

REMARKS.

For gy of type E III, suppose dim V), = 1. The Wallach set then consists of
—11,-8,—7,—6,...,—1. We can achieve —11 with S = S. —7 with S corresponding
to the real form 50(2, 8) of Ds, and —5, ..., —1 with S corresponding to some su(1,r)

with 1 < r < 5. But we do not achieve —8 and —6.
Similarly for gy of type E VII with dim V), = 1, the Wallach set consists
of —17,—13,-9,—8,—7,—6,...,—1. We achieve —17 from S = S —9 with S
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corresponding to the real form so(2, 10) of Dg, and —6,. .., —1 with S corresponding
to some su(l,7). But we do not achieve —13, —8, and —7.

PROOF OF THEOREMS 6.le AND 6.2e WHEN g # su(m,n). By Corollary 3.4
and Example 3.5 it is enough to show that

(6.3) (A+6(u),B) >0 for all # € A(u).

For g € A™(l,t), we have (A + 6(u),3) = 0. Thus we may as well prove (6.3) for
all 5 € A*(g,t). It is then enough to prove (6.3) for all simple roots 3 in A*(g, t).
Suppose that the Dynkin diagram of [ has a compact component, so that we can
write lp = [, + [U#, where [;P" is compact semisimple plus abelian, [f is reductive
with « in its Dynkin diagram, and [** N ¥ equals ty. Let q# = [# & u# be the
@ stable parabolic subalgebra built from [(T such that A(u#) C At(g,t). First we
observe that the definition of A as A’ 4+ 26(I M p™) does not change in passing from
q to g# since [Npt = [# Np*. Now suppose we can prove that

(6.4) (A+6(u™),8) >0  for all simple 3.
We shall prove that
(6.5) (A+6(u),B) >0 for all simple 3.

If 8 is in A(L°P*, t), then 3 is in A([,t) and (6.5) follows from the orthogonality of
B to A and §(u). Thus suppose 3 is simple but is not in A(l °P*,t). Then A(u#)
consists of the members of A(u) and the members of A™([P' t), and the latter
roots do not involve [ in their expansions in terms of simple roots. Thus

§(u™) = &(u) + (a sum of positive roots with no 3 involved),

(6(w#), B) = (6(w), B) + (< 0).
Hence
(A+6(w), 8) = (A +6(u”),8) + (2 0) 2 0,
the final inequality following from (6.4). This proves (6.5).
Consequently there is no loss of generality in assuming that the Dynkin diagram
of [ is a connected subset of simple roots containing a. Now we write

A+6(u) =N +26(INp™)+6(u) =N +6—8pax +6(INpT) =N +6+61 —26L0k-
We are to prove (6.5), and we may assume that 3 is not in A([,t). Then 3 is a
compact root, say 7, and we have

200+8(u), ) 2\ ) 2(6r,7) _ 2(28pnk )
[~I? ==l T 1+ [+ 1M

(6.6)

2(8, 2(26 Lz,
ST4 (I'}f'['.-’ﬂ gt Ii-.fr'|121( )
since \" is A}. dominant by assumption.

It is enough to prove that the right side of (6.6) is > 0 for all possible [ having
as a root and having connected Dynkin diagram, and we do this case by case. Since
v is not in AT ([,t), we may always assume the Dynkin diagram of [ is a proper
subset of the Dynkin diagram of g.

First consider gy = s0(2, 2n—2) with o = e;—es. Up to the outer automorphism
e, — —e,, the possibilities for the simple roots of [, as was observed in the proof
of Theorem 6.2 above, are

{ei=eg; -, er=tarii},  L=r=a—1
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and the only 7’s of interest are e, 1 —e,qp ifr <n—1,and e, +e, if r >n—2.
Then we have

0,.-,0),
)

Srnk = (0 (2 ,0,...,0).
The right side of (6.6) is
1—§+2(2) z if ¥ = €rq1 — €rg2
1-252 42 ( =2 ifr=n—-2and y=en_1 +en
1_“7—3._ n— 2(‘)-}-2( )=n—3 ifr=n—1andvy=-¢€,-1+e€n,

and this is > 0 in each case. This handles so(2, 2n — 2).
Next consider gy = s0(2n)* with @ = e,,_; + €,. The diagram for [ can be of
type D,,—,, with simple roots

(673) {er —€ptly-+-3Ep—2 —€n_1,Ep—1 — €Ep,En—1 +eﬂ}s 2<r<n-—2,
or of type A,,_,_1, with simple roots
(6.7b) {er —€rfis---r8n_0—En—1,€n-1+€n}, LSr<n—2,

or of type A;, with simple root e,_; + e,. For (6.7a) we may restrict attention to
v =€er_1 — e, and

6, =(0,...,n—r,n—7r—1,...,1,0)
Sun = (0,255, 2522, —(252), —(25%)).

The right side of (6.6) is

l—-(n—-r)+(n—r)=1>0.
For (6.7b) we may restrict attention to ¥ =e,_; — e, and v = e,_1 — €,, and
B/ (14255, B3, oy~ (g2 (7))
SLHT(Z(OF"’!%)n“TM‘!" (n — 1) D)
The right side of (6.6) is

1-2f4(n—r—1)=3(n—r) ify=e—1—er
l—E:g_—2 n_h -]-(n—'r‘—l)—l if’}‘=en_]‘_en,

and this is > 0. Finally if the diagram of [ is just Ay, then v = e,—2 — €1,
0 =1(0;.:.50; %, %), and 8.~k = 0. The right side of (6.6) is 1 — % +0 = %, and
this is > 0. This handles so*(2n).

Next consider gg = E III of type Eg, in which the Vogan diagram is

@ O O O O

We let the simple roots on the horizontal A5 be ag, a4, as, ar, ag, and we call the
simple root on the short branch ag. If [ corresponds to D5, then we may take
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v = ag. We calculate the right side of (6.6) with v = ag by counting how many
times a7 occurs in 8y, and dpny:

#(times a7 occurs in 267) = #AT(Ds) — #A1(A4) = 20 — 10 = 10,
#(times a7 occurs in 26;x) = #AT(Dy) — #AT(A3) = 12— 6 = 6,

20, 08) _ 22k, as) _
e TR )
|evg] s
(right side of (6.6)) =1—5+6=2> 0.
Next let [ correspond to a horizontal A,,, and consider v = ag. For this situation
let us use 5-tuples to denote the respective values of quantities for n = 1,2, 3,4, 5.
Then

#(times a5 occurs in 26;) = (0,0, 3,6,9),
#(times a occurs in 26,nx ) = (0,0,2,4,6),
2(6r, as) 260K, @)
s |? | ]?
(right side of (6.6)) =1 — (0,0,%,3,2) +(0,0,2,4,6) = (1,1,%,2,3).
Thus the right side of (6.6) is > 0 for each choice of n. The other possibility to

check with the same A,, is that ~ is the root on the horizontal just beyond the A,,.
Then we have

:_(0103%}31%)3 :—(010)21436)3

#(times last root of A,, occurs in 26;) = n,
#(times last root of A,, occurs in 26rnx) =n — 1,
2(6L,7) 2(26 10K, 7)

Iv[? [v[?
(right side of (6.6)) =1—- 5+ (n—1)=75 > 0.

Finally let [ correspond to {as, a4, as,06} of type Ay, and let v = a7. Then we
have

. _(n - 1)1

|3

#(times a5 occurs in 267) =6
#(times a5 occurs in 267qx ) = 4,

2<6L$ 7) —— 2<26LHK H ’Y> et
2 Y 72 e )
ol [l

(right side of (6.6)) =1—-3+4=2>0.

This handles E III.
Last consider gy = E VII of type E;. The Vogan diagram is

® O O O O O

We let the simple roots on the horizontal Ag be as, a3, oy, a5, a7, g, and we call
the root on the short branch ag. If [ corresponds to Dg, then we may take v = as.
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We have
#(times @y occurs in 26,) = #A™(Dg) — #AT(As) =30 — 15 =15,
#(times oy occurs in 26pnx) = #AT(D5) — #AT(A4) =20— 10 =10,

2(5L1 F}‘) = i3 2(25LP’1K$7) =0
Iv[? > Iv|? ’
(right side of (6.6)) =1 — 1—25- +10=%2>0.
Next let [ correspond to a horizontal A,, and consider v = ag. For this situation
let us use 6-tuples to denote the respective values of quantities forn=1,2,3,4,5,6.
Then
#(times s occurs in 267) = (0,0,0,4, 8, 12},
#(times a5 occurs in 26.,nx) = (0,0,0,3,6,9),
2(6rnkK s 6)
|ag|?
(right side of (6.6)) =1 —(0,0,0,2,4, 6) + (0,0,0,3,6,9) = (1,1,1,2,3,4).
Thus the right side of (6.6) is > 0 for each choice of n. The other possibility to

check with the same A, is that 4 is the root on the horizontal just beyond the A,,.
Then we have

= _({}90:0: 23496): — _(0)0107 376}9)!

# (times last root of A, occurs in 201) = n,
#(times last root of A, occurs in 26pnx) =n — 1,

2(6L,7) 2(26LnK;7)
=2 s 1600 SR SR
[v[? g [y[2 ( )

(right side of (6.6)) =1—2 4+ (n—1) =2 >0.

Finally let [ correspond to {ag, as, aa, as, a6} of type As, and let ¥ = a7. Then we
have

#(times a occurs in 267) =8
#(times as occurs in 28k ) = 6,
2(6L,7) _ 2(261nK,7) — 6

712 \ 712
(right side of (6.6)) =1—-4+6=32>0.

This handles E VII and completes the proof of Theorem 6.1e for gy # su(m, n).

PROOF OF THEOREMS 6.1e AND 6.2e when go = su(m,n). We are considering
Aq(X) = Ls(Cy), and the infinitesimal character of Cy is Ag = A+0p. By Corollary
3.6 it is enough to prove that there are no solutions to

(6.8) A+ 64 t6(u) + = s(A+ 6 + t8(u))

with ¢t > 0, s € W(g, t), and p a nonzero weight of U(u). Since C, is one dimen-
sional, we need consider only solutions for which p is A™ ([, t) dominant.

To avoid complications that are only technical, we shall assume until near
the end that the Dynkin diagram of [ is connected. We let the simple roots of
go = su(m,n) be

€1 —€3, €2 —€3,..-; Emin—1 — Em+n
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as usual, with e,, — e,,+1 noncompact and the others compact. We may suppose
that the simple roots of [ are

€r — €pglyerny By — Bmaly.ee, €51 — €4 withl<r<m<s—-1<m-+n-1.

We begin by obtaining some inequalities for the inner product of A + § with
various positive roots. To simplify the notation, let us normalize all root lengths
squared to be 2. Referring to (6.6), we see that

(6.9) (A+6,7) > 1+ (26L,7) — (201K, 7)-
From this it follows that
A+6,v)>1 for y simple in A(u) if y # e,_1 — e, and v # e, — €54 1.
Direct calculation using (6.9) yields also
(A+6, erm1—er) >s—m+1,
(A+6, es—esp1) > —m.
In addition,
(A+6,7) =1 for v simple in AT (I, t),
by Theorem 6.1a or 6.2a. Writing
er —€s+1 = (er —€ry1) +++ + (€s—1 —€5) + (€5 — €g41),
we obtain
A+, er—€sp1) 214 +14+(r—m)=(s—1)+(r—-m)=s—-m>1.

This is the crucial step of the proof.
We combine these inequalities with the fact that £6(u) is dominant for A* (g, t),
and we obtain

i) N+ 6+ t5(u), )

>1 for « simple if v # e; — €541
(A+6+1t8(u), er —esq1) >1.

Let us write members of t* as (m+ n)-tuples; if o is in t*, the j*" entry of the tuple
for o is just (o,e;). Arguing by contradiction, suppose that (6.8) holds. We shall
obtain the contradiction p = 0. Write

A+ 6+t6(u) = (ar,az,..-,8min)-
From (6.10) we have
a1 2 Q> > 0p] > Qp > 200 > Qgy

(6.11) Qa1 = vor S Ok

Qr > Qsiq.
It follows that the largest r of the a;’s, in strict decreasing order, are ay,...,a,.
Therefore

A+6+t8(u), g+ +ep)
gives the sum of the largest p entries a; if p < r. Since u is a sum of positive roots
and e + - -- + e, is dominant,

(6.12a)  (A+6+t6(u), €1+ +ep) S A+8+18(u) +p, €1+ +ep)
= (s(\+6+1t8(w)), €1+ +ep)
=(A+6+18(u), s (er 4+ +ep)).
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The right side of (6.12a) is
(6.12b) <A+6+t6(u), ex+---+ep)

because the right side of (6.12a) gives the sum of p specific entries a; but not nec-
essarily the sum of the largest p entries. Therefore equality must hold throughout
in (6.12), and we conclude that

(g, e1+--+e)=0 forl<p<r

From this condition we see that

(6.13) (Ju'!el) == (p,e) =0.
Inductively let us see that
(tyer) =+ = (p,€5) =0.
Suppose r < p < s and (u,e,) = --- = (u,€ep—1) = 0. Since p is a sum of positive

roots and € + -+ + e, is dominant, (u, e; + -+ +e€p) > 0. Thus (u,ep) = 0
by inductive hypothesis. Since p is dominant for A™ (I, t), (4, e, — ep) = 0. But
(yer) = 0 by (6.13), and thus (u,e,) < 0. We conclude that {u, €p) = 0, and the
induction is complete. Therefore (p,e,) =0 for 1 <p < s.

Inductively let us see next that the remaining entries of u are 0. Thus suppose
p>sand (j,e) == {p,ep—1) = 0. The entries a; of A+§+t6(u) with a; > a,
all have j < p, by (6.11). Suppose these j’s are of the form

J1<ja<-+<Jg<p-
Then we have
A+ 6+ 8(u), €5, + -+ +e5, +ep)
< (A+6+t6(u), ej, +---+ej, +ep) +(ne1+:--+e) sinceert+---+ep
is dominant

= (A\+8+t6(u) +p, €, +---+e€j, +ep) by inductive hypothesis

= {s(A+6+ t6(u)), € tesaies ot 6p>

= (A+6+1t6(u), s (ej +- -+ ej, +6p))s
and this is

< (’\+5+t6(u)a €+ T €, +BP)
because of the choice of jy, ... j,. Equality must hold throughout and in particular
at the first step. We conclude that (u,e,) = 0. Thus (u,e;) = 0 for all j, and
u = 0. This completes the proof when the Dynkin diagram of [ is connected.
For general [, we observe that A = A + 26(I N p™) is unaffected when we

discard compact components from the roots of [. The inequalties (6.10) hold when
all compact components of [ have been discarded, and we readily check that they

remain valid for [ itself. The remainder of the above proof depended only on (6.10),
and thus the proof goes through for general L

7. Application to a nonholomorphic case

In this section we apply Theorem 5.1 to continuations of nonholomorphic dis-
crete series, again expecting that the theory will yield small representations that
may be unitary. We treat here only the situation in which the Vogan diagram of



428 A. W. KNAPP

go is connected and has just one noncompact simple root a, with o having coef-
ficient 2 in the largest root. This situation was considered originally by Enright-
Parthasarathy-Wallach-Wolf [EPWW]. We take A(l) to be generated by all the
simple roots that are compact, we let A’ be integral and A™ (') dominant, and we
study Lg/(Vy). Since the largest root contains a with coefficient 2, it is compact
but is not a root of I'. Thus S’ = dim(u’' N ¢) > 0.

The “line-bundle cases” are those with A’ orthogonal to A(l"). Much is known
about these, beginning with partial results in [EPWW]. The authors of [EPWW]|
were interested in all cases where the bottom layer of Lg/(Vy/) is not empty, i.e.,
A = XN +26' Np)is Aj dominant. It is known [K3, Corollary 8] that A must
be a minimal K type in the sense of Vogan. The results in [EPWW] concerning
unitarity are in effect those that can be obtained by direct continuity arguments.
They depend on explicit computations that require that the associated bundle over
G/L' be a line bundle. Some of the cases that [EPWW] did not settle have been
treated by Brylinski-Kostant, Gross-Wallach, Binegar-Zierau, Kazhdan-Savin, and
others.

Since our objective is to reduce the number of small representations whose
unitarity is to be studied manually, we shall largely leave aside the line-bundle
cases and concentrate on “vector-bundle cases,” those with A’ nonorthogonal to
A(I'). In this paper we shall limit our discussion to one group in order to highlight
some phenomena that occur. We choose an example with a double line in its Dynkin
diagram. Experience shows that a double line introduces complications not seen in
single-line cases, and thus we should expect to see a broader range of phenomena
than might be expected for a single-line case.

The example we shall work with is go = so(4,5) with Vogan diagram

O—e—(C—0

and with respective simple roots e; — es, es — es, es — ey, €4. The simple roots of
[' are e; — e, e3 — e4, and ey. We see directly that A(u' Ne) = {e; + ez}, so that
Sli=.,

We are going to be using Theorem 5.1, and the group L will have to corre-
spond to a Hermitian case. To have anything interesting happen, we want L to be
able to be relatively large. In addition, Theorem 5.1 produces a one-dimensional
representation of L, and thus A" should be orthogonal to the compact roots of any
prospective L. The paper [EPWW] studied X’ of the form X' = (a,a,0,0) with
a€ %Z. This yields the line-bundle case. We shall study

X = (a+b,a,0,0)

with a € %Z, b e Z, and b > 0. The vector-bundle cases are those with b > 0.
Actually, in any event, we restrict attention to a € Z in order to be able to use a

small representation on L that is one-dimensional.
We form (£§)1(Vy). This has infinitesimal character

N+b=(a+bthath § D).
The weakly good cases are those with @ > —1. Then (L£[){(Vx/) is irreducible

unitary, is in fact a discrete series or limit of discrete series representation. We
discard these cases as uninteresting for our purposes.
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The K parameter is
A=XN+25u'NE) =(a+b+5 a+5,0,0).

When A is A} dominant, the K type A occurs in (£{);(Vas) with multiplicity one.
A sufficient condition for A} dominance is that a > —5. In the line-bundle case,
this condition is also necessary, and we have noted that A is then a minimal K
type of (£§)1(Vy). In the vector-bundle case, values of a < —6 can lead to AL
dominance, as with @ = —6 and b = 2. But A then does not appear to be a minimal
K type in (L£%)1(Vy), and unitarity of the irreducible subquotient containing the
K type A seems unlikely. We shall therefore concentrate on a > —5, and then it is
easy to check by direct calculation that A is a minimal K type of (£} )1 (V).

The integer values of a of interest are therefore a = —2, -3, -4, —5. In the
line-bundle cases (b = 0), the “weakly fair” condition of (3.4) is satisfied for a = —2
and a = —3, and Corollary 3.4 shows that (£);(V)) is infinitesimally unitary for
those values of a. For a = —4, even the more powerful Corollary 3.6 does not settle
maftters.

Corollary 3.4 is not applicable in the vector-bundle cases, and Corollary 3.6
does not seem to be helpful. One other tool in the literature is Theorem 9 of [K3],
which combines double induction and use of the weakly fair condition. It handles
a = —2 with arbitrary b, but it does not handle any cases with a < —3.

Let us now use Theorem 5.1. We shall see that Theorem 5.1 provides an
interesting map (£} )1(Vx/) — Aq(A\) when a = -2, a = —3, and a = —5. Unitarity
can then be proved by applying Corollary 3.4 to A;(A) when a = —2 and a = —3.
It applies also when a = —5 if b > 1. Our technique will be to examine all possible
L’s to see what they give. Using an L whose Dynkin diagram is disconnected does
not help, and thus there are only three possibilities.

PossiBILITY 1. Take A(l) < {e; —e3}.
Then 26(INpT) = (0,1,—1,0), and Theorem 5.1 tells us to define

A=XN+26(tnpT)=(a+b,a+1,-1,0).

In order to be able to apply Theorem 5.1, A has to be orthogonal to A([), hence to
ez — es. We are led to consider a = —2. Then Theorem 5.1 is applicable, and we
obtain a map (£%)1(Var) — Aq()). Since 6(u) = (3,2,2, 3), we have

A+6w)=(2+b,1,1, 3).
This is dominant, and A,(\) is infinitesimally unitary by Corollary 3.4.

PossIBILITY 2. Take A(l) «» {e2 — e3, €3 — e4}.
Then 26(INp*) = (0,2,—1,—1), and Theorem 5.1 tells us to define

A= Na425(tnpH)=(a+b,a+2 —1, —1).

Having A orthogonal to A(I) forces a = —3. Then Theorem 5.1 is applicable, and
we obtain a map (L£7)1(Var) — Aq()). We readily check that

A+8u) = (3+b 353 3)
and hence Ag() is infinitesimally unitary.

PossiBILITY 3. Take A(l) < {es — e3, e3 — ey, €4}.
Then 256(INp*) = (0,5,0,0), and Theorem 5.1 tells us to define

A=XN4+25(Inp")=(a+b,a+5,0,0).
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Having A orthogonal to A(I) forces a = —5. Then Theorem 5.1 is applicable, and
we obtain a map (£)1(Va) — Aq()). We readily check that

A+6(u)=(-3+5,0,0,0),

and hence A4()) is infinitesimally unitary if b6 > 2. We do not know what happens
when b = 1, but we expect unitarity.

A natural question is what happens when a = —4. Although Theorem 5.1
does not provide us a mapping, we can give an answer about unitarity. Recall that
A = (b+1,1,0,0) is actually a minimal K type of (£})1(V)). Using Proposition
4.1 of [V1] and knowledge of the infinitesimal character A’ + 6, we can determine a
set of Langlands parameters (M AN, o, v) of the irreducible subquotient of interest.
Here M AN is a cuspidal parabolic subgroup of our G, ¢ is a discrete series or
nondegenerate limit of discrete series of M, and v is a suitable positive parameter
in the complexified dual of the Lie algebra of A. What the computation shows is
that A can be taken to be one-dimensional and o is a holomorphic limit of discrete
series representation of M, mg being sp(2,R) & sl(2,R). The part of the unitary
dual for which dim A = 1 is completely known, largely from [BSK1]. Let us write
v = jc@, where @ is the real root and ¢ is a positive number; in each case the
representation of interest is the Langlands quotient when ¢ = 3. Exceptions (v)
and (vi) of the main theorem of [BSK1] are what to use to decide unitarity. When
b > 2, exception (v) applies, and the unitary points are those with 0 < ¢ < 2.
Thus the representation of interest is not infinitesimally unitary when b > 2. When
b = 1, exception (vi) applies, and the unitary points are those with 0 < ¢ < 2 and
¢ = 3. Thus the representation of interest is infinitesimally unitary when b = 1.
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