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The purpose of the present paper is to expand the use of intertwining operators 
for semisimple Lie groups. In an earlier form (see [20]), these operators were 
meromorphic continuations of integral operators and exhibited equivalences 
among nonunitary principal series representations, those induced from a mini- 
mal parabolic subgroup. We demonstrated that there was an intimate con- 
nection between these operators and the irreducibility of the principal series, on 
the one hand, and the unitarity of the analytically continued representations (the 
complementary series), on the other hand. 

In the intervening years we have generalized the setting for intertwining 
operators significantly, and we have learned of new applications. For the most 
part, the expansion in the setting is that minimal parabolic subgroups have now 
been replaced by arbitrary parabolic subgroups M A N ,  and the representations 
that are studied are induced from a representation of M A N  that is irreducible 
unitary on M, is one-dimensional on A, and is trivial on N. The expanded 
theory allows us to determine the degree of reducibility of all series of repre- 
sentations appearing in the Plancherel formula of the group, and to study 
complementary series attached to them. Such intertwining operators have also 
now found major applications in classifying representations (see Langlands [29] 
and Knapp-Zuckerman [-25]) and appear to have significance for some prob- 
lems in number theory. 

Our objective in this paper is threefold: to develop the analytic properties of 
intertwining operators in what seems to be the appropriate degree of generality, 
to give a dimension formula for the commuting algebras of the unitary repre- 
sentations induced when the representation of M is in the discrete series and the 
character of A is unitary (and to give some further insights into these repre- 
sentations), and to illustrate a technique for dealing with complementary series. 
To make it possible to be more specific, we introduce some notation. 

Let G be a reductive group whose identity component has compact center; 
the precise axioms for G are given in w 1. Fix a Cartan involution 0 for G, and let 
P be a parabolic subgroup of G. Then P c~ OP decomposes into the product of 
commuting subgroups M and A, where A is a vector group and M satisfies the 
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same axioms as G. There are finitely many distinct nilpotent groups N such that 
M A N  is a parabolic subgroup of G. To each of these and to data consisting of 
an irreducible unitary representation 4 of M and a one-dimensional repre- 
sentation expA of A, we can associate the induced representation of G given by 

UMAN(~,A,')= ind ( ~ | 1 7 4  
MAN'rG 

We adopt the convention that G operates on the left and that the parameters are 
arranged so that U is unitary when expA is unitary. 

To each pair of choices N 1 and N z for N, there is a formal expression for an 
operator intertwining the representations induced from M A N  1 and M A N  2 in the 
presence of the same data (4, A) for MA,  namely 

A ( M A N 2 : M A N , : ~ : A ) f ( x ) =  j f ( x v ) d v .  (0.1) 
N2c~ON1 

There is not always an element w in the normalizer of A with N z = w -  1 NI w, but 
if there is, then right translation R(w) by w carries representations induced from 
M A N  2 to representations induced from M A N i  and then the composition 

AMAN, (W, 4, A )=  R (w) A (MANz : M A N  1:4:A)  (0.2) 

is the kind of operator that was studied in [20] under the additional hypothesis 
that M A N  1 is minimal parabolic (and hence M is compact). 

Part I of this paper deals with the development and analytic properties of 
these operators (0.1) and (0.2) in the generality noted above. In the cases of 
interest, the integral (0.1) is usually divergent, and the operator is defined by 
analytic continuation from values of A for which there is convergence. A direct 
attack on the question of analytic continuation seems now to be quite difficult, 
because the singularity in the integral is complicated and the analytic behavior 
of the integral depends on the full asymptotic expansion at infinity of the matrix 
coefficients for the representation ~ of M. Our approach instead will be to 
capture this asymptotic expansion in the form of an imbedding on the algebraic 
level of ~ in a nonunitary principal series representation of M; such an 
imbedding exists by a theorem of Casselman quoted in w By means of this 
imbedding, we are able to reduce the analysis of the operators (0.1) and (0.2) 
substantially to the case of the operators considered in [20]; the details of the 
analysis are carried out in w167 Only a small part of [20] needs to be used 
after the reduction - and not exactly in the form in [20]; for this reason, we 
have included some material in w167 3-4 similar to that in [20]. 

After the development of the operators, the next step is their normalization. 
For  this purpose, we make the following 

Basic Assumption. ~ The infinitesimal character of 4 is a real linear combination 
of the roots of M. 

a Vogan has pointed out to us that for many purposes the Basic Assumption is no restriction 
since every irreducible unitary representation of G is a full induced representation UMaN(~, A, ") for 
some parabolic subgroup MAN and some r satisfying the Basic Assumption. 
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Under this assumption, any system of normalizing factors satisfying certain 
properties will serve to produce nice relations among the intertwining operators, 
as is shown in w 8, and we readily prove the existence of such a system. However, 
different systems of normalizing factors are useful for different purposes. Our 
own treatment of complementary series here and in [20] requires a system free 
from unnecessary zeros and singularities. Kun'ze and Stein [28], Stein [33] and 
Gelbart [7] had earlier used a different normalization in some special cases that 
lends itself to Euclidean Fourier analysis. Arthur [3] has exhibited one useful in 
number theory, verifying a conjecture of Langlands. 

Part II combines the techniques of Part I with results of Harish-Chandra to 
analyze the commuting algebras of the induced representations corresponding to 

in the discrete series and expA unitary. Briefly, Harish-Chandra's theory of c- 
functions led him to recognize a spanning set for the commuting algebra. This 
spanning set is identified in w as a set of intertwining operators of the kind in 
Part I. Starting in w from further results of Harish-Chandra, we are able to 
identify in w 13 a subset of these operators that forms a basis for the commuting 
algebra. This identification can be given either in terms of the nonvanishing of 
certain "Plancherel factors" defined in w or in terms of a certain finite group 
Re, A described in w The core of the proof is the proof of linear independence, 
and this step is carried out in w In w we identify R~. a as the direct sum of 
two-element groups for the case that G is a linear connected semisimple group 
split over R and the parabolic subgroup is minimal; this result had been 
announced in [21]. 

Part III establishes a basic existence theorem for complementary series, to 
illustrate a general technique. Our result is far from best possible, and the state 
of knowledge in this area is nowhere near complete. Further progress in this 
area will doubtless have to precede a classification theorem for irreducible 
unitary representations. 

We list here the main results of our paper: 
(i) the meromorphic continuation of the intertwining operators (Theo- 

rem 6.6), 
(ii) the basic cocycle relations of the normalized intertwining operators 

(Theorem 8.4), 
(iii) the determination of the "reducibility group" (the R group) and the 

formula for the dimension of the commuting algebra in terms of the nonvanish- 
ing of Plancherel measures for the case of representations induced from discrete 
series (Theorem 13.4), 

(iv) the construction of a wide class of complementary series (Theorem 16.2). 
Substantially all of the present work was announced in [22] and [23]. The 

idea behind Part II and the theorem of w date from [21]. All this material was 
organized into its current form in 1975, and it was the subject of a lecture series 
by the first author at the Institute for Advanced Study in the fall of 1975. The 
press of other matters has delayed publication until now. 

At a number of points the present work touches on the work of others. In 
some instances, results of ours (or at least special cases of them) have been 
obtained independently by other people. In addition, some authors have found it 
useful to quote some of our announced results and, in some cases, to supply 
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proofs. This circumstance has created problems of exposition for us. Our choice 
has been to maintain the continuity of our presentation, even though an 
occasional lemma may be found elsewhere in the literature. 

Several aspects of our work can be done in alternate ways, at least in special 
cases, and it is useful to understand the roles of the different methods: 

(a) The connection between c-functions and intertwining operators is de- 
scribed in detail in w 9. In the context of discrete series representations ~ of M 
(which for us is not the general case), the two concepts are equivalent. However, 
their thrust is quite different, as are the methods used to develop them, and the 
theorems they lead to are complementary. Harish-Chandra [15] naturally 
obtains a spanning set of self-intertwining operators, whereas we are naturally 
led to linear independence. 

(b) Arthur [2] independently discovered parts of the connection between c- 
functions and intertwining operators and used it to develop intertwining oper- 
ators. While his development has several advantages, it does impose two 
limitations: it restricts r to the discrete series and it restricts the domain of the 
intertwining operators to "K-finite" functions. The first restriction limits appli- 
cability of the theory in .classification problems, such as in [25]. The second 
rules out dealing with questions of linear independence like that in w 

(c) Wallach [35] independently developed some of the material of w by 
making use of Harish-Chandra's subquotient theorem in place of Casselman's 
subrepresentation theorem. 

(d) Vogan [34] has recently developed an algebraic approach to the group 
Rr a of w His approach seems very different from ours, and the exact 
connection between the two approaches seems to be an interesting question. 

We are indebted to several people for making known to us their own 
unpublished theorems at an early date - Borel and Tits for Theorem 12.2, 
Casselman for Theorem 5.1, and Harish-Chandra for Theorem 9.7. We are also 
happy to acknowledge valuable help given us by Langlands, Wallach, and 
Zuckerman; we were influenced both in our research and in this exposition by 
several of their suggestions. 
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I. Construction and Normalization of Intertwining Operators 

w 1. Notation, Formal Intertwining Operators 

The Lie groups G that we deal with will all satisfy the following axioms: 
(i) the Lie algebra g of G is reductive, 
(ii) the identity component  G O of G has compact  center, 
(iii) G has finitely many components  
(iv) Ad(G) is contained in the connected adjoint group of the com- 

plexification gr (1.1) 

Except for requirement (ii), these are Harish-Chandra 's  axioms ([12] and [13]), 
and the groups we consider are the same as Harish-Chandra 's  groups that have 
trivial split component.  

We collect some notation and properties for such groups. Let [ be a maximal  
compact  subalgebra of 9, let g=t~ G p  be the corresponding Cartan decompo-  
sition, and let 0 be the Cartan involution. By (ii) the center of g is contained in L 
We introduce an inner product B o on g in the standard way, with the properties 
that Bo(X, Y ) = - B ( X ,  OY) and B is an Ad(G)-invariant O-invariant symmetric 
bilinear form on g. Let ap be a maximal abelian subspace of p. If  we fix a notion 
of positivity for %-roots, we can let Up be the nilpotent subalgebra given as the 
sum of the root spaces for the positive roots and we can let op=0np.  The 
Iwasawa decomposition is g = t~ Gap Gap. Let rap= Z~(ap) be the centralizer of ap 
in L 

On the group level, let K = N~([) be the normalizer of [ in G, let M'p = N~(ap), 
let M p =  Z~(ap), and let Ap, Np, and Vp be the analytic subgroups corresponding 
to ap, Up, and up, respectively. These groups have the following properties: 
(i) K has Lie algebra f and is a maximal compact  subgroup. The identity 

component  K 0 equals NGo([ ). 
(ii) G=GoM p 
(iii) The map  (k,X)eK x p ~ k e x p X ~ G  is a diffeomorphism onto. 
(iv) The map (k,a,n)EK x Ap x Np--*kaneG is a diffeomorphism onto. (1.2) 

Any conjugate of mp Gav Grip is called a minimal parabolic subalgebra, and 
any Lie subalgebra ~ that contains a minimal parabolic subalgebra is called 
parabolic. Then ~ has a Langlands decomposit ion (relative to 0) ~ = m  G a  Grt; 
see, e.g., [17]. Here m Ga=Z~(a), and we can impose an ordering on the a-roots 
so that n is built from the positive a-roots. Let o = On. If  a M is a maximal abelian 
subspace of m n p ,  then a G a  M is a maximal abelian subspace of p and can be 
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taken as ap in our theory. When we introduce an ordering on the ae-roots so 
that a comes before aM, then the positive a-roots are the nonzero restrictions to 
a of the positive a~-roots. The sum of the root spaces for the positive ap-roots 
that vanish on a is denoted nu. 

Let Mo, A, A M, N, V, N M be analytic subgroups corresponding to m, a, aM, rt, 
u, riM, and define 

M = M o Mp. (1.3) 

The group P =  M A N  is a parabolic subgroup. The subgroups under discussion 
have the following properties. See [13]. 
(i) 

(ii) 

(iii) 
(iv) 
(v) 
(vi) 
(vii) 
(viii) 

MA = Za(a), MAN = NG(m Oa | M A N  is closed, and 
(m, a, n)EM x A x N ~ m a n e M A N  is a diffeomorphism onto, 
M satisfies the axioms (1.1), 0Ira is a Cartan involution of m, and K M 
= K n M is the corresponding maximal compact subgroup of M, 
M = K ~ A M N  M is an Iwasawa decomposition of M, 
Ap= AMA and Np= NMN diffeomorphically, 
G = K M A N  with the KM, A, and N components unique, 
K n M A = K n M ,  
Vc~MAN= {1}, and 
the Mp group for M equals the Mp group for G. (1.4) 

Let us prove (viii). We have 

Z~ riM(aM) = Z~:(au) c~ (K c~ M) = ZK(aM) c~ (K c~ MA) 

= ZK(aM) C~ ZG(a) = ZK (%), 

with the second and third equalities following from (vi) and (i), respectively. 
Then (viii) is proved. 

Two parabolic subgroups with the same MA are associated. The choices for 
N are in obvious one-to-one correspondence with the Weyl chambers of a 
formed by the a-root hyperplanes. Let M ' =  Nx(a)M. The "Weyl group" for this 
situation is W(a)=M'/M. The group W(a) permutes the Weyl chambers, and a 
nontrivial element of W(a) does not leave any Weyl chamber stable. However, 
W(a) does not necessarily act transitively on the set of Weyl chambers. In terms 
of the groups N, if w is in M', then w- ' N w is another choice of the N group, but 
not every choice of N group arises by conjugating a particular one. 

M' acts on characters of A and representations of M by 

w 2 (a) =/l  (w- 1 a w) 

wr rnw). 

Then W(a) acts on characters of A and classes of representations of M. Later we 
shall denote the class of the representation ~ of M by [4]. 

It is not known in general whether W(a) is isomorphic with the Weyl group 
of a full root system. However, it is known in a special case that will be sufficient 
for the purposes of Part II of this paper. See [17-1. 

There is another kind of construction that leads to subgroups of G satisfying 
the axioms (1.1). Fix MA arising from a parabolic subgroup. L e t / / b e  an a-root 
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in the dual a', H_~ the corresponding member of a under the identification set up 
by Bo, and (Hp) the orthogonal complement of P~H a in a. Then 

Z~((H~) l) = a G m  (~ Y~ 9cp, 
cr  

where 9~a is a root space. Define 

9(~)=IRH~ | | Z g~p, 
c=l=0 

and let G~ ) be the corresponding analytic subgroup. We shall be interested in 

G (a~ = G~ ) M. (1.5) 

Since M normalizes g(P~, G ~a~ is a group. Essentially by Lemma 2.3 of [15], G ~a~ 
satisfies the axioms (1.1). Also 0[g~a~ is a Cartan involution, and the correspond- 
ing maximal compact subgroup of G (a~ is K ta~ = K c~ G (~. 

Let n(Pl= ~ 9~, D(P)= 0n(t~)= ~ 9~, and a(~)=IRH~; letA (~, N ~, and V (t~) be 
c > 0  c < 0  

the analytic subgroups corresponding to a (a~, n ~a~, and o(a~. Then MA(a)N ~t~ and 
MA(a~V ~ are maximal parabolic subgroups of G ~a). 

We now introduce classes of representations. Let P = M A N  be a parabolic 
subgroup, and let p=pp be �89 ~ (dim ga)fl. To each continuous representation 

# > 0  

of M on a Hilbert space, say H r and each complex-valued real-linear functional 
A on a we associate a representation Up(~,A,.) of G as follows. A dense 
subspace of the representation space is 

{ f :  G ~ n r  is C ~ and f (xman)=e-(O+a~~ 

the action is 
Up({, A, g) f (x) = f ( g -  ~ x), 

and the norm is the L 2 norm of the restriction to K. This representation is 
unitary if A is imaginary and ~ is unitary. 

What we have just described is the "induced picture" for Ue(~,A, .). The 
"compact picture" is the restriction of the induced picture to K. Here the dense 
subspace is 

{ f :  K--->Hr is C ~176 and f (km)=r  

and is independent of A. For  the action, we introduce notation for the G 
= K M A N  decomposition of (1.4), writing 

g = x(g)/~(g)(exp n(g)) n. (1.6) 

Then 
Ue( ~, A, g) f (k) = e -  (~ + a)n~g -, k) ~ (#(g- ~ k)) - ~ f (x(g- ~ k)). 

Since the space is independent of A, we can speak of holomorphic functions with 
values in the space, and it is clear that Up(~, A, g ) f  depends holomorphically on 
A. 
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Next we introduce formal expressions, often divergent, for operators that 
implement equivalences among some of these representations. For  now, we 
work in the induced picture. Let P = M A N  and P'=MAN' ,  and set 

A(P ' :P:~:A)T(x )=  ~ f ( x v )d v ,  (1.7) 
V n N '  

with the normalization of Haar  measure to be specified in w 

Proposition 1.1. When the indicated integrals are convergent, 

Up, (~, A, g) A (P' : P : ~ : A) = A (P' : P : ~ : A) Up(i, A, g) (1.8) 

for all g in G. 

Sketch. The point is that A(P ' :P:~ :A)  carries members of the representation 
space for Up into members of the representation space for Ue,. If f transforms 
appropriately under M A N  on the right, the image function is to transform 
appropriately under MAN'.  One verifies this separately for M, A, N ' n N ,  and 
N' n V as in [28], page 395. The action of G is on the left and does not interfere 
with the transformation laws on the right, and the proposition follows. 

For  w in Kc~M', let R(w) f ( x )= f ( xw) .  Then it follows from Proposition 1.1 
that 

Ae(w, 4, A) = R(w) A(w-  l p w : P: ~ : A) (1.9) 
satisfies 

Ue(w r w A, ") Ae(w, 4, A) = Ae(w, ~, A) Up(~, A, ") (1.10) 

whenever the indicated integrals are convergent. 
We shall want to relate induced representations and intertwining operators 

defined relative to different subgroups of G. For  this purpose it will be necessary 
to know how the various quantities p (half the sum of the positive roots) are 
related. First, in the case of a parabolic subgroup M A N  containing a minimal 
parabolic MpApNp, so that % = a OaM, we have 

Pp=P+PM" (1.11) 

The ordering on %-roots here is such that an %-root c~ is positive if ~l, is 
positive or if a ] , = 0  and ~ is a positive aM-root. To see (1.1t), we note first that 
W(aM) fixes no nonzero members of a M and consequently the sum of the 
elements in any W(aM)-orbit of a M is 0. From this we see that if/3 is an a-root, 
then the sum of all %-roots a with ~l ,=f l  has 0 component in a M. Formula 
(1.11) then follows. 

The situation with G (a~ and its associated p{a) is more complicated and is 
given in the next proposition. In the case of minimal parabolics, this result 
appears on p. 399 of [28]. In that case, root reflections are available, but in the 
general case they are not. 

Proposition 1.2. Let P = M A N  and P'= MAN'  be associated parabolic subgroups 
such that V n N ' =  V(aJ for an a-root ft. Let p=pp, and let H a be the member of a 
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corresponding to ft. Then 
p (Ha) = p~a)(Hp). (1.12) 

I f  fl is reduced (i.e., c fl is not an a-root for  0 < c < l ) ,  then fl is simple for  P and is 
the restriction to a o f  an ap-root simple for  Pp. .  

A p roo f  is given in Appendix  A. 

w 2. Normalization of Haar Measures on Niipotent Groups 

In this section we shall describe normal iza t ions  s imul taneously  for the H a a r  
measures  of  all relevant  ni lpotent  subgroups  of  all groups  G under  considerat ion.  
O u r  const ruct ion is mo t iva t ed  by the one given by Scbiffmann [-32]. z 

T o  define the normal iza t ion ,  we proceed  as follows. To  each ap-root ct, we 
normal ize  H a a r  measure  on V ~') by the requi rement  

exp{ - 2 p~) H~)(v) } d r =  1. 
V(~) 

For  any s imply-connected  ni lpotent  group,  the exponent ia l  m a p  carries Lebes-  
gue measure  to a H a a r  measure ,  and we use this fact to transfer  normal ized  
H a a r  measure  on V ~) to a mul t ip le  of  Lebesgue measure  on D ~'). Each  of the 
ni lpotent  groups  that  we work  with will have as its Lie a lgebra  the direct sum of 
some v~')'s with the 7's lying in an open half  space. Accordingly we form the 
p roduc t  measure  on the Lie a lgebra  and then carry it to the g roup  by the 
exponent ia l  map.  Our  normal iza t ion  is then well defined and comple te ly  de- 
termined.  

L e m m a  2.1. Let  u be a nilpotent Lie algebra contained in the vector space np Oop,  
and suppose that u is o f  the form u = ~ D t~) for  a set S o f  ap-roots ~ lying in an 

~tES 

open half  space. Put  U = e x p u ,  and let w be in the normalizer of  ap in K.  Then the 
normalized Haar measures on U and w-1  U w satisfy 

jV(u)du= j F(wu'w-1)du '. 
U w - l U w  

Proof. In view of our  construct ion,  we pass to the Lie a lgebras  of  U and w -~ U w  
and c o m p a r e  the Lebesgue measure  there. Each is given as a product ,  and 
consequent ly  the l e m m a  will follow if we show that  

f ( v ) d v =  ~ f ( w v ' w - 1 ) d v  '. (2.1) 
V( ~1 w -  1 V ( ~ ) w  

Here  w -a V t ' )w=  V ~w-'~), and it is enough to p rove  (2.1) for the single funct ion 

f ( v )  = exp { -- 2p  ~') H~')(v)}. 

2 Two slips need correction on p. 35 of [32]. Formula (2.2.8) should have an additional factor of 
cw(p)- ~ on the right side, and the right side of formula (2.2.9) should he cw(p). The corrected (2.2.8) is 
by induction from [8] and (2.2.5). 
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The left side of (2.1) is then 1 by definition ofdv .  For g in G (w-l~), we have 

p<~) H (~) (w g w - 1) = p(W-, ~) Ho~-I  ~) (g),  

and hence the right side of (2.1) is 1 by definition of dr'. The lemma follows. 

L e m m a  2.2. Let M A N  o and M A N  1 be associated parabolic subgroups, and let w 
be a representative of a member of W(%) such that Ad(w)(n 1 +nM)=no+nM. 
Then 

(V,)on W- ' (Np)o W= V o n N  , . 

Remark. This lemma allows one to relate the integral formulas in [32] and in the 
present paper. 

Proof. The Lie algebra of the intersection on the left is 

(% + DM) n (n 1 +nM), 
which is just Do~n 1. 

Proposition 2.3. Suppose that P~=MAN i, 0<i__<2, are three associated parabolic 
subgroups such that n 2 C~no ~_n ~ C~no. Then 

f ( v ) d v =  ~ f ( u l u z ) d u ,  du 2. 
VonN2 (VI r x (VonNI) 

Proof. We have 

D 1 f'3 n 2 = D 1 (3112 (3 D O @)D 1 (3 II 2 (3110 

~ D  1 f 3 n  2 (~D 0 + D 1 ('3ii I ("~ IlO = D1 ('3H 2 ('3D 0 

and 

DO + H i  = D o  ('3111 (~n2  @DO ("till (3D2 

~ DO (-~ Il 1 ( ~ n  2 -[- D0 (~ Il 1 (~D 1 --:-- Do ('-~ Il 1 ('-t Il2. 

Thus 

and 

DI(-3II2=DI(-3(DOU~H2) and D o n n l = n l n ( D o n n 2 ) ,  

DoC3H 2 = D  1 ('~(D0 (3 n2)  ( ~ n  1 (3(Do (3n2)  = (D1 (-3112) (~(Do F3 I l l ) .  

In view of our normalization of Haar measures, we therefore have 

.[ f (v)dv= ~ f(expx)dx 
VOnN2 1)on)t 2 

= ~ f ( e x p ( x l + x 2 ) ) d x x d x z  

= ~ f (exp Yl expy2)dy tdy2  
(Vt nrt2) (~ (aontt t) 

= ~ f ( U t u 2 ) d u I d U 2 ,  
(VlnN2) • (Voc3N 1) 

with the third equality holding since (Yl, Ye)-'exp -1 (expyl expY2) is a diffeo- 
morphism whose Jacobian determinant is identically one. (See [36], pages 95 
and 235.) 
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Lemma 2.4. Let M A N  and M A N '  be associated parabolic subgroups. Then the 
normalized Haar measures on N, N ~ V', and N ~ N' satisfy 

dn N = dnN~ v, dnNnN,. 

Proof. We apply Proposition 2.3 to the three parabolic subgroups MAV,  MAN' ,  
and M A N .  The result applies since 

0 = rt n I0 ~ n't"~ D. 

Lemma 2.5. Let M A N  be a parabolic subgroup. Then the normalized Haar 
measures on NNM, N, and N M satisfy 

dnNn,~ = dn N dnN M. 

Proof. This follows from Proposition 2.3 applied to the three parabolic sub- 
groups MpApVVM, MpApVNu,  and M ~ A , N N  M. 

Lemma 2.6. Let M A N  and M A N '  be associated parabolic subgroups and let s be 
in NK(a ). Then the normalized Haar measures satisfy 

f ( v ) d v =  ~ f ( s - l u s ) d u .  
Vt~N' s (Vc~N ' ) s -  x 

Proof. Under the assumption that s is also in Nx(ap) , this result follows from 
Lemma 2.1. In the general case, by Lemma 8 of [17], we can write s = m t  with t 
in NK(%) and m in M. The special case applies to t, and we have 

f ( v ) d v =  ~ f ( t - ' u t ) d u  
V n N '  t (Vc~N') t -  I 

= ~ f ( t - l m - ' u m t ) d u  
s ( V n N ' ) s  1 

= ~ f ( s - l u s ) d u ,  
s(V c~N')s- a 

the middle equality holding since m is in M. This proves the lemma. 

Corollary 2.7. Let M A N  and M A N '  be associated parabolic subgroups and let s be 
in N~(o) and satisfy s N s -1 = N'. Then the normalized Haar measures on N and N' 
satisfy 

f(n)dn= S f( n's)dn'. 
N N' 

Proof. This follows from Lemma 2.6 applied to the parabolics M A V  and M A N  
and to the same element s. 

Lemma 2.8. Let M A N  and M A N '  be associated parabolic subgroups, and let dn 
and dn' be the normalized Haar measures of  N and N'. Then the integrals 

f ( k m n a ) d k d m d n d a  and ~ f ( k m n ' a ) d k d m d n ' d a  
K M N A  K M N ' A  

define the same normalization of Haar measure on G. 
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Proof. We can write d m = d k u d n M d a  M for a suitable normalization of da M. 
Conjugation of N by a M does not affect dn, since a M is in M, and thus we can 
regroup the first integral as 

~ ~ ~ f ( k k M n u n a M a ) d a M d a d n M d n d k ~ d k .  
K KM AMA NMN 

The dku  goes away after a change of variables, daMda can be grouped as dap, 
and dnMdn can be grouped as dnp according to Lemma 2.5. Thus Lemma 2.8 
reduces to the identity 

f ( knpap)dkdnpdap= ~ f (kn ' ,a , )dkdn 'pda, ,  
KNpAp KN'pAp 

which follows from Corollary 2.7 and a change of variables. 

w 3. Existence of Operators, Real-rank One Minimal Case 

In this section we shall assume that G has dim ap= 1, and we shall drop the 
subscripts p. The theory of intertwining operators for this real-rank one minimal 
case was developed in [20] when G is a linear connected semisimple group. 
Much of that development is unnecessary for our current purposes, and we shall 
now isolate the essential results, referring to [20] for most  of the proofs. 

Our basic minimal parabolic subgroup is P =  M A N ,  and M is contained in 
K since P is minimal. The assumption that dim A = 1 enters in the following 
way: The group M'=NK(a ) has W ( a ) = M ' / M  of order 2. Let w be in M'  but not 
M. By the Bruhat decomposition, we have 

G = M A N  u M A N  w M A N ,  

and it follows that every v + 1 in V has the property that w-  1 v is in V M A N .  [To 
see this, we note that V ~  M A N  = 1. Thus v ee 1 implies that v is in M A N  w M A N  
= N w M A N  and hence that w - i v  is in w - I N  w M A N  = VMAN.]  This property 
of V means that the basic convolution operator  given by (3.6) and (3.7) below 
has a one-point singularity. The analysis of the operator  is therefore relatively 
simple. 

Convergence and analytic continuation follow after a computat ion giving a 
number  of equivalent forms for the intertwining operator  Ap(w, 4, A). Before 
giving the computation,  we assemble some identities. Corresponding to the 
decomposition G = K A N ,  we write g---x(g)emg)n as in w 1. Corresponding to the 
decomposition of most of G as V M A N ,  we write g = vm(g)a(g)n. Then we have 

e an(~) = e-A log.(~(~)) (3.1) 

m(~(v)) = 1. (3.2) 

The unique positive reduced a-root  is denoted a, and we let p =  dim 9, and q 
=d im92 , .  The linear functional P---Pe is given as p = � 8 9  With the 
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normalization of Haar measure as in w 2, we have 

• e-2pntV) dv= 1 
v 

since V= V ~). Consequently we see from [I0, 15. 287] that 

~ f(k)dk= j f(~c(v)m)e-2Om~)dmdv. 
K V x M  

(3.3) 

We can now do our computation for a function f on G satisfying 

f (xman)=e-(O+ a)'~ ~(m)- ~ f (x), 

provided one of the integrals in question is absolutely convergent: 

I f (x w v ) d v =  f e-(P+ a)mv) f (xwK(v))dv 
V V 

= I e-  (p - a~ log.(~(v)) e-  2a U(~) ~ (m (K (v))) f ( x  w to(v)) d v 
V 

(3.4) 

= ~ e - ( P - A ) l ~ 1 7 6  v 
V •  

= ~ e -  (o- A)loga(k) ~ (m (k)) f (x w k) d k 
K 

= j e -  (p- a)Log.(,~-, k) r (m (w-  1 k)) f (x k) d k (3.5) 
K 

= ~ e-(P-a)l~176 -1 tc(v)mo))f(xtc(V)mo)e-Zan(V)dmodv 
V x M  

= j e-  (p-A)'~ , ~)~ ~(m(w-X x(v))) f ( x  so(v)) e -  2om~) dv 
V 

= j e-(p - - A ) l o g a ( w  -1  v) e-tP+A)n(~) ~(m(w-X v)) f ( x  ~c(v)) dv 
V 

= j e-(O-a)Jog.(w-, v)~(m(w- 1 v ) ) f (x  v)dv. 
V 

(3.6) 

(3.7) 

The left side of (3.4) is, of course, the formal expression for Ae(w, 4, A ) f ( x ) .  
Formulas (3.5) and (3.7) show how to write this expression as a convolution on 
K and V, respectively, and (3.6) is the useful form of the expression in the proof 
of the theorem below. 

Theorem3.1. For the rank-one minimal case, let A = z p  and p=�89 
Suppose f is a C ~ function in the space of the representation Ue(~, A, .), realized 
in the "compact picture", i.e., f is a C ~ function on K satisfying f ( k m )  
=~(m)- I  f ( k )  for k in K, m in M. Then 

(i) for R e z > 0 ,  Ap(w, 4, z p ) f  is convergent, 
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(ii) for general z, Ap(w, 4, z p ) f  extends to a meromorphic function of z with 
at most simple poles at nonnegative integral multiples of - (p  + 2q)-1; except on 
this set, the map (z,f)-~Al,(w, 4, z p ) f  is continuous from ff~ x C ~ into C ~ 

Conclusion (i) was observed in [28]. It follows from (3.4), the finiteness of 
e-(1 +~)pH(v)dv (see [10], p. 290), and the boundedness of f ( x w  ~(v)). Conclusion 

v 
(ii) is Theorem 3 of [20] if G is linear connected semisimple, and the proof is the 
same for general G. 

As soon as we have the convergence in conclusion (i), we obtain the 
intertwining property (1.10). By conclusion (ii), (1.10) extends to be valid for all A, 
as an identity of meromorphic functions (when applied to a C ~ function f).  

We now introduce the function qe(z), which was called c~(z) in [20]. The 
operator Ap(w-a,w~,wA)Ae(w,~,A) commutes with Up(4, A, ') ,  which by 
Bruhat's theorem ([5], p. 193) has no nonscalar self-intertwining operators 
continuous in the C ~ topologies if A is imaginary. Letting A = z p  and noting 
that wA= - A ,  we have 

Ap(w -1, w~, - z p)ap(w, 4, z P)=tl~(z)I (3.8) 

for z imaginary. From Theorem 3.1 (ii), this identity extends to be valid for all z, 
with qe(z) meromorphic in C. 

The operator Ap(w, 4, zp) commutes with left translation by K, and each K- 
space of functions is finite-dimensional. In other words, there are disjoint finite- 
dimensional spaces left stable by A~,(w, 4, zp) whose sum is a dense subspace. In 
the sense of K-space by K-space, straightforward computation from (3.5) yields 
the adjoint formula 

Ae(w, 4, -A)*  =Ae( w- l ,  w 4, w A). (3.9) 

Proposition 3.2. The function q~(z) has the following properties: 
(a) t/r is independent of the choice of w and depends only on the class of 4, 

(b) ,7~(z)=,7~(- ~), 
(c) ~/r on the imaginary axis, and q~(z) is not identically O, 

(d) ~w~(-z)=~(z), 
(e) ~l~(z)=q~(z) if q~ is an automorphism of G leaving K stable and the 

positive chamber of A fixed and if ~ ( m ) =  ~(q~-l(m)), 

6) ~(z):,7~(- z). 
Proof. Conclusions (a), (b), (c), and (d) are contained in Proposition 27 of [20]. 
For (e), we can check directly that 

(Ap(w, 4, A) f )(q~- ~(k))= ap(q~(w), ~ ,  A) ( f  o q~)(k), 

and then (e) follows readily. For (f), we combine (d) and (e), using q~(g) 
=w-l(Og)w. 

Finally we define A(P:P:4:A)  by means of (1.9), where P =  MA V. Namely 
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A (fi : P : ~ : A) = R ( w ) -  1 Av(w ' ~, A). (3.10) 

Proposition 3.3. For the rank-one minimal case 

(i) A ( P : f i : ~ : A ) = R ( w - 1 ) A ( P : P : w ~ : w A ) R ( w ) ,  

(ii) A ( P : f i : r 1 6 2  if A '= zpv .  

Proof. In (i), apply each side to f and evaluate at k, under the assumption that A 
= - z Pv with Re z > 0. The left side is 

~ f ( k n ) d n ,  
N 

and the right side is 
5 f ( k w - l v w ) d v ,  
V 

and these are equal by Lemma 2.6. Then (ii) follows from (i), (3.10), and (3.8). 

w 4. Existence of Operators, Higher-rank Minimal Case 

We drop the assumption that G has dim a v = 1. But since we shall work in this 
section only with minimal parabolic subgroups, we continue to omit the 
subscripts p. 

The operators Av(w, 4, A) and their normalizations were dealt with in [32] 
and [20], and the operator A ( P z : P I : ~ : A  ) may be defined in terms of them by 
(1.9). However, following a suggestion due to N. Wallach, we shall rederive the 
theory by dealing with A ( P  2 :P I :~ :A)  first; this approach is one that can be 
adapted easily to the case of nonminimal parabolics and will make it possible to 
omit a number of proofs in w 6 and w 7. 

The inner product B o on g induces an inner product on the dual a' of a, 
which we denote by ( . , - ) .  

Recall that the formal expression for an intertwining operator is 

A ( P 2 : P , : ~ : A ) f ( x ) =  5 f ( x v ) d v  
g l n N 2  

if 1~ = MAN~ and P2 = M A N 2 .  For a reduced a-root a, we recall the definition of 
G r in (1.5) and of the subgroups N ~') and V ~'). 

Proposition 4.1. Let Px = M A N  t and P2 = M A N 2  be minimal parabolic subgroups 
such that V I c~ N 2 = V ~') for  a Pj-positive reduced root a. Let  f be in the C ~ space 
for Uvl(~ , A, "), and let fk be the restriction to G ~) of  the left translate o f f  by k in 
K. Then fk is in the C ~ space for Ue~,,(~ , A[,~,,, .), and 

A(Pz : P 1 : ~ : A) f (k)= At'~(O P~) : P~') : ~ : AI,,,,) fk(1). (4.1) 

Consequently A(P2 : PI : ~ : A) f is given by an absolutely convergent integral i f  
(Re  A, , )  > 0, and it continues to a global meromorphic function in A. Moreover, 

A(PI : Pz : ~ : A) A(Pz : P, : ~ : A)=tl(P2 : P, : ~ : A) I, (4.2) 
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where q is the meromorphic function of A given by 

( <A, p'~)) 

Proof. It is clear that fk satisfies the appropriate transformation law, apart from 
the relationship between Ppl and p(~). Here ppHpl(V)=p(')H(')(v) by p. 399 of 
[28] or by Proposition 1.2. The two sides of (4.1) are, respectively, 

S f (kv)dv  and ~ f(ku)du. 
V I ~ N  2 V (a) 

Since V i n N  2 = V (~), formula (4.1) is a question of whether the normalizations of 
Haar  measure, the one for VI r~ N 2 _c G and the one for V(')__q_ G ('), are the same. 
But both normalizations are defined the same way, in terms of the integral of 
exp { - 2 p  (') H(~)(v)}, and hence the two normalizations are the same. 

In view of (4.1), the absolute convergence of the integral when (ReA,  ~ ) > 0  
is a consequence of Theorem 3.1(i), and the meromorphic continuation follows 
from Theorem 3.1 (ii). Formula (4.2) then follows from Proposition 3.3 (ii). 

Let P = M A N  and P ' =  MAN' be minimal parabolic subgroups. A sequence 
Pi=MANg, O<i<r, is called a string from P to P' if there are P-positive reduced 
a-roots ct~, 1 <=i<r, such that 

Vii - 10  N~ = V (~') or N (~'), 1 < i N r, 
(4.3) 

Po=P and P,=P'. 

The string P~ is called a minimal string from P to P' if 

VI_ I ~ NI = V (~'), l < i < r, 
(4.4) 

Po=P and P,=P'. 

The parabolics P and P' can always be connected by a minimal string ([12], 
p. 145). Namely, we choose H and H'  in the respective open positive Weyl 
chambers of a for P and P' so that 

H(t )=(1- t )H+tH' ,  0 < t < l ,  

is never annihilated by more than one P-positive reduced a-root for a given t. 
Let 0<t~  < ... < t r <  1 be the values of t such that H(ti) is annihilated by some P- 
positive reduced a-root ~i. Let Pi= MAN~ be associated to the Weyl chamber in 
which (ti, t i+l) lies, for O<_f<_r, with t o = 0  and t r+x=l .  Then P~, O<i~r, is a 
minimal string from P to P'. 

Theorem 4.2. Suppose that P= M A N  and P'= MAN'  are minimal parabolic sub- 
groups and P~=MAN~, O<i<r, is a minimal string from P to P', with associated 
reduced P-positive a-roots {~i}. Then 

(i) the set {~} is characterized as the set of reduced a-roots ~ that are positive 
for P and negative for P'. 

(ii) r is characterized as the number of roots described in (i). 
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(iii) the unnorrnalized intertwining operators satisfy 

A(P' :P:~:A)=A(Pr:P~_ I : ~ : A ) . . . . .  A(P 1 :Po: r  

they converge when (ReA,  ai> > 0  for each i, and they have global rnerornorphic 
continuations in A that satisfy the intertwinin'g identity (1.8). The merornorphic 
continuation of A(P' : P : ~ : A) is holornorphic at A o unless 

2(Ao,  c~) 
�9 Z (4.5) Icr 2 

for some reduced Up-rOot ~ that is positive for P and negative for P'. 

(iv) P•_/, O<=i<=r, is a minimal string from P' to P, with associated reduced P'- 
positive a-roots {-cq}.  

(v) A (P : P' : ~ : A) A (P' : P : ~ : A) = tl (P' : P : ~ : A) I, where ~ is the scalar-valued 
function rnerornorphic in A given by 

rI(P' : P : r  FI 
aredtced \<P( 1, P( )>]" 

~>0 forP 
at<O forP" 

The function rl is holomorphic at A o unless (4.5) holds for some a-root ~ that is 
positive for P and negative for P', and it satisfies 

r/(P : P ' :  ~ : A) = q(P' : P : ~ : A). (4.6) 

Proof. First we show by downward induction on i that 

{6 = reduced a-rootlg~ _ rt i n n} 

= {3 =reduced a-rootlg~_u'c~n}w{c#}w.. .w{cti+l} (4.7) 

disjointly. Formula (4.7) is clear for i=  r. Assume (4.7) holds inductively for i=  
j + 1 ; we prove (4.7) holds for i =j. Then we have 

rtj~rt=(rtj~Vj+ 1 ~n)+(njchrt j+ 1 ~n)_~rt(~J+l)+(n/+l An), 

which says that the left side of (4.7) is contained in the right side for i= j .  Also 

nj+ 1 c~n = (n j+ 1 &vj&n) +(n  j+ 1 n n j  n n )  ~_0 +(rtjnn) 
and 

H(aJ+ D=gIj(%Dj+ I ~ n j ,  

which says that the right side of (4.7) is contained in the left side for i=j .  If the 
union stopped being disjoint for i=j ,  we would have 

n(aJ + D c_ ltj + l ('311~ 

but this inclusion contradicts the inclusion n(~J+')___vj+l. Thus the induction 
goes through, and (4.7) holds. 
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Taking i=  0 in (4.7) and identifying the left side as the set of reduced o-roots 
6 that are positive for P and the right side as the set of reduced n-roots 6 that 
are positive for both P and P', we obtain conclusion (i) of the theorem. Then (ii) 
is immediate. 

For (iii), if we disregard convergence questions, we can use (4.7) to see that 
n~ n n___n~_ x n n. Applying Proposition 2.3 inductively on i downward, with 

M A N ,  MANI-1 ,  and M A N  i 

as the three parabolics in the proposition, we obtain 

S f ( x v ) d v =  ~ f (xvrv)dvrdv  
VnN' (Vr-  I nNr) x I g n N r -  1) 

= ~ f(XVrV) dvr dv 
V(atrl x ( V n N r -  1) 

. . . . .  ~ f ( x v r . . . v O d v ~ . . . d v l ,  
V(~O x ... x V(=I) 

which is formally the identity in conclusion (iii). To deal with the convergence, 
we note that if f is in the space for Up(~,A, "), then Ifl is in the space for 
Up(I, ReA, .). We apply our formal computation to lfl ,  and the ith integration 
on the right produces a finite result since (ReA, ~ ) > 0 .  (Here the relevant part 
of the proof of Proposition 4.1 is valid, even though the function acted on by the 
intertwining operator need not be C~.) Thus the integral on the left is absolutely 
convergent, and our formal computation is justified. As soon as we have 
convergence, the intertwining identity (1.8) is valid, and the meromorphic 
continuation follows from the continuation of each factor of (iii), known from 
Proposition 4.1. The singularities of A(P':P:  ~ : A) are limited in location to (4.5) 
by the product decomposition of the operator and by Theorem 3.1. This proves 
(iii). 

For (iv), let Qi=g_i  . Then 

VO,_, ~NQ, = V,_i+ 1 ~ N, - i= O(N~-i+ t ~ Vr-i) 

= O V  ( . . . . . .  ) ~ V  ( ...... i) l < i < r .  

This proves (iv). For (v), we expand the two factors on the left by means of (iii) 
and (iv) and then collapse pairs of factors (starting from the center) by means of 
(4.2). This proves the product formula. In (4.6), at any A where either side of (4.6) 
is nonzero the two operators A(P ' :P  : r :A) and A(P" P': ~ : A) must commute 
with each other on each K-space, hence globally. Then (4.6) follows. This proves 
(v). 

Lemma 4.3. Suppose that f is a C ~ function on K such that 

f ( k m ) = ~ ( m ) - l f ( k )  for k in K, m in M, 

and such that A ~ A(P' :P:  ~ : A) f fails to be holomorphic at A = A o. Let f = ~f~ 
be the Fourier expansion o f f  on K, with f~ the projection o f f  to the space of the 
K-type z. Then A ~ A ( P '  :P :~ :A) f ,  fails to be holomorphic at A = A  o for some z. 
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Proof. Expand A(P' :P : ~ :A) as in Theorem 4.2(iii) and let A(P i :P i-  1 : ~ :A) be 
the term corresponding to the P-positive reduced root a. By Theorem 3 of [20] 
and Proposition 4.1, the operator 

( A - A o ,  ~)A(P/: P/_ t :~:A) 

is holomorphic at A o on all of C ~ and is continuous on C ~ Consequently 

{ 1-I <A-Ao ,~ ) }A(P ' :P :~ :A)  (4.7) 
ct reduced 
~t>0 for P 
~t<0 for P'  

is holomorphic at A o on all of C ~ and is continuous on C~ Applying (4.7) to 
both sides of the identity f = ~ , f , ,  we obtain an equality of holomorphic 
functions near A0: 

{ H < A - A o ,  ~ ) } A ( P ' : P : ~ : A ) f  
(4.8) 

= ~ { H ( A - A o ,  ct>}A(P':P:~:A)f,.  

Assuming by way of contradiction that our operator is holomorphic at A o on 
K-finite functions, we see that the right side of (4.8) is 0 term by term for all A 
near A o such that 1-[<A-Ao, ~5=0.  The factors in H < A - A o ,  ~5 are of the 
first order, and their zero varieties are distinct. From the theory of one complex 
variable, we may divide through the right side of (4.8) by one factor at a time, 
retaining the holomorphic behavior. Thus the left side of (4.8) is holomorphic at 
A o if the factor H ( A - A o ,  :t) is dropped, and we have arrived at a con- 
tradiction. 

At this time we could derive further properties of the operators 
A(P':P:~:A),  and we could introduce their normalizations, as well as the 
operators Ae(w, 3, A) and their normalizations. But these further properties will 
not be needed to develop the operators for nonminimal parabolics, and con- 
sequently we shall obtain the further properties as special cases of the theory for 
nonminimal parabolics. 

w 5. Subrepresentation Theorem 

Casselman [6] has proved the following subrepresentation theorem. A detailed 
exposition has been given by Mili~i6 [31]. 

Theorem 5.1. (Casselman). Let G be a connected semisimple group with finite 
center, and let o//(g) be the universal enveloping algebra of go. Let ~ be an 
irreducible admissible representation of G on a Banach space H ~, and let H~r be 
the subspace of K-finite vectors. Then there exists a nonunitary principal series 
representation U (a, A o, ") such that H~ imbeds in o?l(g)-equivariant fashion in the 
space of K-finite vectors for U(a, A o, "). 

In unpublished work, Casselman and Mili~i6 have extended this result to all 
groups satisfying the basic axioms of w 1. We shall give such an extension here, 
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providing a proof that starts from Casselman's theorem and keeps track of the 
parameters in the imbedding. We need the result only for irreducible unitary 
representations and shall limit ourselves to that context. The result we seek is 
Theorem 5.4. Before stating the result, we put matters into perspective with 
Lemma 5.3 below, giving a proof based on Lemma 5.2, which is well known. 

Lemma 5.2. Let ~ be an irreducible unitary representation on a Hilbert space X of  
a group G satisfying the axioms of  w 1. For each z in the center ~ of  the universal 
enveloping algebra ~ ~(z) acts as a scalar on the C ~ space of X.  

Proof. Since Ad(G) is contained in the connected adjoint group of the com- 
plexification ~r Ad(G) fixes every element z of ~ .  It follows then from standard 
arguments that ~(z) is scalar on the C ~ space of X. 

Lemma 5.3. 3 Let ~ be an irreducible unitary representation on a Hilbert space X 
of  a group G satisfying the axioms of w Then under ~[Oo, X admits a splitting 
into the finite orthogonal sum of  irreducible closed subspaces, with at most 
[G:Go]  terms in the orthogonal sum. 

Proof. By Lemma 5.2, ~]Go is quasisimple. We shall apply Corollary 2, p. 229, of 
[9], which is proved in [9] for connected semisimple groups and is easily seen to 
be valid for G o. By this corollary, there exist closed Go-invariant subspaces 
V~_ U such that ~l~o is irreducible on U/V. Since ~ is unitary, F =  U n V  • is a 
closed subspace of X invariant and irreducible under G o. 

Let gi, 1 < i < n ,  be coset representatives of G/G o. Since G o is normal, E i 
= r is another closed irreducible subspace under G o. Since ~ is irreducible, 

it follows that ~ E  i is dense in X. Here the Ko-finite vectors of El are 
i = l  

irreducible under g and are dense in E v If P1 denotes the orthogonal projection 
on E~, then P~ is a bounded Go-intertwining operator from Ei into E~-. So 

Z E i = E I  + P1E2 + ... +PIE, ,  

and the Ko-finite vectors in P~ El, 2 < ~ < n, are dense in P~ E~ and irreducible (or 
0) under g. Let Pz be the orthogonal projection on (P1E2) • Proceeding as above, 
we obtain 

~ E i = E 1  +P1E2 + P2 P1Ea + ... + Pz P1E,, 

with each space on the right invariant under G O and such that its Ko-finite 
vectors are dense in the space and are irreducible (or 0) under g. In similar 
fashion, we obtain 

Y~E,=E1 + ~ E 2 + ~ E 3 + ~ E ,  +... +~_~..... ~E.. 

The closure of each space on the right is irreducible under G O . Since the sum is 
orthogonal, the sum of the closures is the closure of the sum. Then X is 

3 This is a relatively easy special case of Lemma 1.16 of Mili~i6 [38]: If G is a locally compact 
group and H is an open subgroup of finite index and ~ is an irreducible unitary representation on X, 
then, under ~[n, X admits a splitting into the finite orthogonal sum of irreducible closed subspaces, 
with at most [G : HI terms. 
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exhibited as the orthogonal sum of at most n closed Go-irreducible subspaces, as 
required. 

It follows from Lemma 5.3 that, in an irreducible unitary representation of G, 
the K-finite vectors for each K-type form a finite-dimensional space and are 
necessarily analytic vectors. We can therefo're form an infinitesimal repre- 
sentation in the subspace of K-finite vectors; this consists of the algebra action 
by ~#(g) and the group action by K, and the two are consistent in the obvious 
fashion. The space of K-finite vectors is irreducible in the sense that there are no 
proper subspaces invariant under ~(g) and K. 

Theorem 5.4 (Casselman-Mili6i6). Let G be a group satisfying the axioms of w 
let ~ be an irreducible unitary representation of G on a Hilbert space H r and let 
H~ be the subspace of K-finite vectors. Then there exists a nonunitary principal 
series representation U(a, Ao,. ) such that Her imbeds in the space of K-finite 
vectors for U(a, A o, "), equivariantly with respect to g and K. 

Proof. Let M A N  be a minimal parabolic subgroup of G. Then (Me, Go)AN is a 
minimal parabolic subgroup of G o. We have Go=ZGo. G,, where ZGo is the 
compact center of G o and G s is the (semisimple) commutator  subgroup of G o. 
The group (M c~Gs)AN is a minimal parabolic subgroup of G s, and (Mc~ Go) 
= ZGo. (M c~ Gs). 

By Lemma 5.3, we can choose a constituent ~o of 4, irreducible under G o. 
Then ZGo acts as scalars under 4o (say ~o(Z)=Z(z)l), and 4o]~ is irreducible. By 
Theorem 5.1, we form an equivariant imbedding of the (K c~ Gs)-finite vectors of 
4ol6s in a nonunitary principal series U(a~, Ao, ") of G~. The latter representation 
extends to a representation of G o given as U(a~,Ao, .) on G~ and the scalar Z(z) 
on z in ZGo, and this extended representation is easily seen to be canonically 
identified with U(ao, Ao, .) of G o, where 

ao ={~s on (M~Gs) 
on ZGo. 

the required result for Go: ~o imbeds infinitesimally in Thus we have 
U(a o, Ao," ). 

Now we pass to G. By Theorem 4' of [30], Frobenius reciprocity holds for G 
and G o , provided we count only discrete occurrences of representations. The 
formula gives 

[4 IGo : 40] = [ i nd  4o : 4]. 
Goi"G 

Since the left side is nonzero, ~ occurs in ind 40, which in turn imbeds in 
GoTG 

equivariant fashion in ind U(ao, Ao,.). This last representation is canonically 
Go "f G 

identified with U( ind ao, Ao, .), which in turn is identified with a direct sum 
( M c~ Go) T M 

• U(ai, Ao,'), 
i=1  
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where 

ind a o = ~ a ~ ,  
(M c~Go) "f M i= 1 

a i irreducible. Since ~ imbeds in the direct sum and is irreducible, it must imbed 
into one of the factors, by projection. This proves the theorem. 

In Lemma 5.2 we saw that the center ~( of q/(9) acts by scalars, for an 
irreducible unitary representation, and thereby defines a character of ~e. It is 
well known that such characters are classified by complex-linear functionals on 
a Cartan subalgebra of 9 r modulo the action of the complex Weyl group. 

Lemma 5.5. Let the irreducible unitary representation ~ of G imbed in the 
nonunitary principal series representation of G with parameters (a, Ao). I f  the 
infinitesimal character of ~ is a real linear combination of roots, then A o is real. 

Proof The infinitesimal character of ( must match that of the nonunitary 
principal series representation, which is ~a-+p-+Ao, where A -  is the highest 
weight of a and p -  is half the sum of the positive roots of M r. Since the infini- 
tesimal character of ~ has been assumed real, it follows that A o is real. 

w Existence of Operators, General Case 

We turn to the general case with P - - M A N  a parabolic subgroup, and we deal 
with MAN and its associated parabolics. We fix an Iwasawa decomposition M 
=KMAMN M of M such that K M is Kc~M and a M is in p. Then G=KApNp is an 
Iwasawa decomposition of G if we put a~=a Oa M and np=rt  GuM, as in w 

We shall construct intertwining operators that go with representations 
induced from P and associated parabolics. An approach that works when the 
representation ~ of M is in the discrete series is to connect intertwining 
operators with Harish-Chandra's c-functions (cf. w However, we shall follow a 
different approach, for two reasons: 

(I) there would be no evident way of handling a representation ~ that is not 
in the discrete series 

(2) there would be no clear way of dealing with functions in the induced 
space that are not K-finite, and such functions are critical to the proof of the 
linear independence in Theorem 12.1. 

The different approach is to use an imbedding of ( in the nonunitary 
principal series of M, by means of Theorem 5.4 applied to M. On an algebraic 
level, we shall see that 

Up(r ind (~(~)eA(~l) 
M A N ~ G  

then imbeds in the nonunitary principal series of G and its intertwining 
operators are identified with restrictions of the operators constructed in w and 
w The results in this section were announced in [22]. 
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Let ~ be an irreducible unitary representation of M, and let P~ = M A N  1 and 
P2=MAN2 be given. The formal integral for the intertwining operator is 

A(Pz:PI:(:A)F(x)= ~ F(xv)dv. (6.1)  

By means of Theorem 5.4 applied to M, let the space H~,~ of K~t-finite vectors 
in r imbed by a mapping t in the space H '~ of K~t-finite vectors of KM 

09 = ind (o" Q e a~ Q 1), 
MMAMN M "f M 

with the K M and q/(m) actions equivariant. Here co acts on the space* 

H '~ = { f :  M~H"] f ( xmMa~tn~)=e  -('tM+~176 a(rnM)- if(x)}, 

whose norm is the L z norm on K M. Form 

Ue(co, A , ' )=  ind (CO|174 
MAN~iG 

acting on 

HV'= {F : G-* H~176176 co(m)- l F(x)} (6.2) 

with norm squared 
SIF(k)12u~dk. 
K 

Evaluation F ( . )~F( . ) (1 )  exhibits Up(co, A,-) as equivalent via a unitary mapping 
with the nonunitary principal series representation 

ind (a|174 1). 
MpAp Np T O 

(This is routine to check and uses the equalities M M = M v and pv= p + PM.) 
Now we pass to intertwining operators. In terms of N 1 and N2, we let 

(NI)p=N1N M and (N2)p=NzNM, 
so that 

(V1)v=VIV M and ( V 2 ) p = V 2 V  M. 

Then the set of integration for (6.1) is 

Vl nN2--(V,),,c~(N2),. 

Therefore, using our evaluation map, we see that we have an equality of two 
formal expressions: 

A(P2 : Px : co : A)F(x)(m) 

= (A ((P2)v :(POp : a:AM OA)F(.)(1))(xm). 
(6.3) 

4 To avoid measure-theoretic complications, we may stick to smooth functions. 
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The  expression on the right has a definition and analyt ic  cont inuat ion  whenever 
F(.)(1) is smooth ,  and we can therefore use it to define the left side of (6.3) for 
smooth F and give an analytic cont inuat ion  for it. (The left side of  (6.3) is not  
identically singular in A; we shall identify in Theorem 6.6 a dense set of  A in 
which it is holomorphic . )  

Next we bring in ~. For  now, we shall be content  with the effect of  
A(Pz :P1:r  :A) on K-finite functions. ~ We have 

Let 

, ( / - /~ , )  =- nT, M. 

H ~ = c l o s u r e  o f  ~(H~,)  in no rm topology of  H ~'. 

The space H~ is m-stable under  M o and KM, by [9], hence is stable under  ~o(M). 
(But beware:  A priori, the Coo vectors of  H~' need not  be related to C ~ vectors of  
H r since no continui ty of  t has been established.) 

Let 

C~(HoV)= {smooth F in HVlF(x) is in H~ for all x in G} 

= {smooth F in HVlF(k) is in H~ for all k in K}. 

Lemma6 .1 .  The closure of Coo(HVo) in the norm topology of H v yields a 
representation of G in a Hilbert space, and the C ~ subspace is C"~(H~). The 
topology that Coo(HVo) gets as the Coo subspace is the same as the topology it 
inherits as a subset of the Coo subspace Coo(H v) of H v. 

Proof C~176 is G-invariant, and hence so is its closure clCoo(Ho~). If  
g ~  U(g) F o is Coo and F o is in the closure, then F o is in Coo(HV)ncl C~(Ht~). Let l 
be any cont inuous  linear functional on H ~ that  vanishes on H~ and let h be in 
L 2 (K, ~). Then  

F--, S h(k) F(k) d k ~l(S h F d k) 
K K 

is a composi t ion  of  cont inuous  functions in the n o r m  topology  and so vanishes 
on F o. Peaking h, we o b t a i n / ( i m a g e  Fo)=0.  Allowing l to vary, we obtain image 
Eo_c H ~o. Hence F o is in Coo (HoU). 

In the reverse direction, if F o is in COO(HV), then F o is in Coo(H v) and 
g ~ U ( g ) F  o is Coo. Hence F o is a Coo vector. 

To see that  the topologies coincide, 6 we note  that the representat ions in 
quest ion are quasisimple. A Laplacian  on G can therefore be given in terms of  
the scalar Casimir opera tor  and a Laplacian  A on K. This means  that  bo th  
topologies in quest ion are given in terms of  seminorms tl A"FI[, and they 
coincide. 

s It will be crucial in w and in Appendix B to consider a wider class of functions than the K- 
finite functions. The wider class that we use will be smooth functions on K that transform 
appropriately under K M and have their values in a finite-dimensional K~t-finite subspace of H e. 
6 This style of argument for dealing with C ~~ topologies was pointed out to us by Roe Goodman. 
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Lemma 6.2. The imbedding t induces an imbedding 7 # of the K-finite space for 
Up(~,A,') onto the K-finite space for Ue(co, A,')]ac~(ng r The map z* is equi- 
variant with respect to K and g. 

Proof. The K-finite space for Uv(~, A, .) consists of 

{F: G--*H~[F(xman)=e-(p+A)l~ and dim {span F(k -)} < oo}. 
k~K 

These functions are determined by their restrictions to K, which satisfy 

F(km)=~(m)-l F(k) for k~K, m ~ K n M  
and 

dim {spanF(k .  )} < oo. 
k e K  

For such an F, F(k) is in H ~  because 

span ~(m)- t (F(k)) = span F(k m) 
m~Kc~M meKc~M 

= eval 1 { span F(k m.)} _~ eval 1 {span F(k.)}. 
m~Kc~M k~K 

Hence these F are characterized as 

F " ~ H  ~ [F(km)=~(m)-' F(k) for keK, meKM} 
:r~ KM dim {spanF(k-)} < oe . (6.4) 

k e K  

Similarly the K-finite space for Up(~o,A, ")ldC=(H~o~ is 

{F" K--*'H ~ F(km)=e)(m)-l F(k) f~ keK' m~KM} (6.5) 
�9 ~ 0JKM dim{spanF(k. )}  < oc 

k~K 

If F is in the space (6.4), then t*F=zoF is in the space (6.5), since 1 is K M- 
equivariant. It is obvious that 7" is K-equivariant.  For  the g-equivariance, let X 
be in g. Then we have 

Up(i, A, X)F(k)=j~ F((expt X)- 1 k)lt= o 

d 
=~-iF(k exp( - t Ad(k-  ~) X))[,= o. 

Thus if we decompose - A d ( k - X ) X  according to g = t  O m  @a Gn,  we see that 
that above expression is given in terms of differentiation on K, the transfor- 
mation law of ~(m), and the transformation law for a. These are compatible with 
the corresponding formula for Ue(o), A, X), and thus t* is g-equivariant. Finally 
t* is one-one onto since (7*) -1 F =  t -1 oF provides a two-sided inverse. 

For  F in the K-finite space of Up,(r "), we define 

A(Pz:PI :~:A)F=O*)-I A(Pz:PI :co:A)I* F. (6.6) 
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The right side is meaningful, in view of the following lemma. 

Lemma 6.3. A(P 2 :P1:09: A) carries the space C~(H~), with transformation laws 
according to P1, 09, and A, continuously into C~(HV), with transformation laws 
according to P2, 09, and A, provided A is a regular value. 

Proof By (6.3) and Theorem 4.2(iii), A(P 2 : P1 : 09 : A)F(k) is given by a convergent 
integral of values F(kv), provided A is in a suitable region. Each F(kv) is in H~' 
and hence so is the integral. Then A(P 2 : P1 : 09 : A)F(k) must be in H~ for all A, by 
analytic continuation. The continuity of the intertwining operator follows easily 
from Lemma 6.1 and the technique at the end of its proof. 

Formula (6.6) gives us a definition and analytic continuation for the left side 
of (6.6) for K-finite F. Before deriving the basic properties of the operators, we 
shall show that this definition is independent of the choice of nonunitary 
principal series 09 into which ~ is imbedded. We do so by giving an intrinsic 
definition for the left side of (6.6) by means of a convergent integral for A in a 
suitable region; the definition extends to be intrinsic for all A because of the 
analyticity that has already been proved. 

Lemma 6.4. The trivial representation of M is imbedded as a subspace of the 
nonunitary principal series when tr = 1 and A M = - PM. 

Proof The space for this induced representation of M is 

{ f :  M ~ r  f (mmMaMnM)=e--~oM + AM)log"M f (m)} 

= { f :  M ~ C I f  is right invariant under M MA~t NM} , 

and the space of constant functions is an M-invariant subspace. 

Lemma 6.5. For each a-root fl, let 

cp=max{pM(H,)}, (6.7) 

where the maximum is taken over all %-roots ~ such that ~[a=fl. I f  M A N  and 
MAN' are associated parabolics, then exp(-(A+pe)He(v))  is integrable on 
V n N ' ,  provided (ReA,  fl) >cp for all fl with gt~___n~'. 

Remark. For a minimal parabolic, each c a should be interpreted as 0. 

Proof. Taking note of Lemma 6.4, we apply our theory to the representation 
Ue(1,A, .) of G. The function F: G ~  given by 

F (x) = e x p ( -  (A + Pe) He(x)) 

is in the space of this representation, and t* F(x) is the constant function on M 
given by 

t* V(x)(m) = F(x). 
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By (6.3), we have, for k in K and m in KM, 

(A(P' : P : co:A) z* F)(k)(m) 

= (A(Pp' :Pp : 1 : - PM OA) t* F(.)(1))(km), 

with the expression on the right given by the absolutely convergent integral 

= ~ , * F(kmv) (1 )d v=  S F(kmv)dv  
Vpc~N'p V nN" (6.8) 

= ~ exp ( - (A+pp)Hp(v ) )dv ,  
VeiN' 

provided the condition of Theorem 4.2(iii) is satisfied, 

( R e ( - p M + A ) , a )  >0,  

for every %-root a such that g~_~ np c~ v'p. The ct's with g~ ~ np r~ v'p = n ~ v' are the 
c~'s with ct]a= fl and fl~_nc~v'. For such an ~, our hypothesis gives 

( R e ( -  pM + A), ct) = - pM(H~) + (ReA, fl) 

> - %  + ( R e A ,  fl> >O. 

Hence the integral on the right of (6.8) is indeed convergent. 

Theorem 6.6. Let P~ = M A N  1 and P2 =MAN2 be associated parabolics, and sup- 
pose that (ReA, fl) > % for every a-root fl such that gp__c_ n 1 c~ o2, where c~ is given 
by (6.7). I f  F is a smooth function in the space for Ue,(~,A, "), then the integral 

F (xv )dv  
VxnN2 

is a convergent HCvalued integral. If, in addition, F is K-finite, then 

A(P2:PI:~:A)F(x)= ~ F(xv)dv.  (6.9) 
VIc~N2 

In this case, if the restriction of  F to K is regarded as a member of  a space 
independent of A and if x is in K, then the integral has an analytic continuation to 
a global meromorphic function in A. Moreover, there exist a rational number c and 
finitely many complex numbers di(~) such that the meromorphic continuation of 
A(P2 : P1 : ~ : A) is holomorphic at A o unless 

2 
( ~ f l > e c  Z ~- d,(O (6.10) 

for some a-root fl that is positive for "~ and negative for P2./ f  rank M =  rankKM, 
the number c can be taken to be 1/3. I f  the infinitesimal character of  ~ is a real 
linear combination of roots of M, then the numbers di(~) are all real. 

Proof For convergence of the integral, we have 
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F (x v) = exp { - (A + pp,) He, (x v)} ~(#(x v))- a F(x(x v)) 
and 

lF(xv)lu~ <exp{  - ( R e A  + pe)Hpl(xv)}  sup IF(k)ln~. 
keK 

Write x = k m a n l v l ,  with n 1 in N1 n N  z and v 1 in Va n N  z. For a suitable constant 
C depending on a, we have 

IF(xv)Ix~dv<C j e x p { - ( R e A + p e ) n e , ( n l v l v ) } d v  
Vlc~N2 VI~N2 

= C  ~ e x p { - ( R e A + p p ) H e ~ ( n l v ) } d v .  
VInN2 

Since Nz=(N 1 nNz)(VI ~N2)=(VI c~Nz)(N 1 c~N2), we can write n 1 v=~hl ,  and it 
is known that v ~  is unimodular  (cf. [28] or I-8]). Thus the above integral 
equals 

= C  ~ exp{ - (ReA+pp , )Hp , ( v ) }dv ,  
V I n N 2  

which is finite by Lemma 6.5. This proves convergence of the integral. 
To prove (6.9), it is enough to handle x = k in K, since both sides transform 

the same way under M A N  z on the right. Set 

AF(k)= ~ F(kv)dv. 
V~ nN2 

Here F is K-finite, and it follows that AF and A(P z : P~ : ~:A) are K-finite. Taking 
the spaces of left K-translates of F and AF and evaluating at 1, we see that 

span {all F (k), all AF (k), all A (Pz : P1 : ~ : A) F (k)} (6.11) 

is finite-dimensional in H~M. Then we can find an orthogonal projection E on 
H e that is 1 on (6.11), has finite-dimensional image, and is 1 on every vector of a 
given Ku- type  whenever it is 1 on one nonzero vector of that KM-type. Let E' 
= l E ~ - I  be the corresponding projection for H~. 

We shall show that 

E' a)(m) E' = t E ~(m)E 1 - 1 (6.12) 

for all m in M. The KM-equivariance of l, E, and E' implies (6.12) for m in KM, 
and it is enough to prove (6.12) for m in M 0. For  X in Og(m), the m-equivariance 
of z implies 

og(X) E' = o9(X) t E t-  t = t r t -  t. 

Left multiplication of both sides by E' gives (6.12), but with m replaced by X. 
This means that the two sides of (6.12) are analytic functions on M 0 (since image 
E' is finite-dimensional) with respective derivatives of all orders equal at m = 1. 
This proves (6.12) for Mo, hence for M. 



Intertwining Operators for Semisimple Groups, II 37 

Thus we obtain 

A F ( k ) = E A F ( k ) = E  ~ e x p { - ( A + p e , ) H e , ( v ) }  E~(#(v ) ) - l  F(kx (v ) )dv  
Vlc~Nz 

since E is bounded 

= E  ~ exp{-(A+pel)He,(v)}E~(/~(v))  -1EF(k tc (v ) )dv  
VIc~N2 

= E ~ exp { - (A + pp,) He l(v)} t -  1 E' r 1 E' t F(k x(v)) dv 
Vl c~N2 

= ~ e x p { -  ( A + p j , ) H e , ( v ) } E t  -1 Z'~o(p(v)) -1 t E F ( k x ( v ) ) d v  
VIc~N;~ 

= E t - I E  ' ~ e x p { - ( A + P e , ) H p , } ~ o ( P ( v ) ) - l t F ( k t c ( v ) ) d v  
VlnN2 

since E t -  1 E' is bounded 

= E t -1 E' A ( P  z : Pa : ~ : A)(t  *~ F)(k) 

= E l -  1 E'(l # (A(P2 :P1 : r :A)F)(k)) 

= E l -  1 (l ~ (A (P2 : Pl : ~ : A) F) (k)) 

= A(P2 :P1 : ~ : A)F(k) .  

The qualitative statements about analytic continuation were proved earlier 
and center about Theorem 4.2(iii) and formulas (6.3) and (6.6). We still have to 
prove the quantitative estimate (6.10). Imbed ~ in a nonunitary principal series 
representation of M with parameters ((r, AM). Theorem 4.2(iii) and formulas (6.3) 
and (6.6) show that A(P  2 : P1 : ~ : A) is holomorphic at A 0 unless 

2 (Ao  + AM, o~) E Z  

for some ap-root ~ that is positive for (POp and negative for (Pz)p. For such an a, 
write ~ = f l + 7 ,  where fl=ala and ?=a [ ,  M. The condition is that the operator is 
holomorphic at A o unless 

2(Ao,  fl> Z 2(AM,~)  

It~+rl  2 I /~+~i  2 

for some f l+y.  To obtain (6.10), we are to show that Ifl-I-yl2=cn]fl[ 2 for some 
integer n and fixed rational c. Since W(aM) fixes no nonzero member of au,  we 
know that 

w~ =0 .  
w~ W(ata) 
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Then 

2<fl+?,w(fl+7)> 2<fl+7, 3+w7> 2131z IW(aM)l = Z  - 
w~w(oM) 13+712 w 13+712 13+712 

The left side of this expression is an integer <21W(aM)I, and (6.10) follows. If 
r a n k M = r a n k K  M, we can compute c directly from [17]. In fact, ]fl+?]Z=r]fl] 2 
with r =  1,2,4, or 4/3; hence c=1/3.  Finally if ~ has a real infinitesimal 
character, A M is real by Lemma 5.5, and then 2<AM, ?>/13+712 is real. 

w 7. Properties of Unnormalized Operators 

We retain the notation of w working with general parabolic subgroups. The 
results in this section were announced in [22]. 

Proposition 7.1. The analytic continuations of the operators A(P 2 :PI:~ :A), de- 
fined on K-finite functions for Up,(~, A, .), have the following properties: 

(i) Let F be a finite set of K-types, and let E be the orthogonal projection onto 
the span of all functions of one of the K-types in F. Then 

E F Up2(r A, x)EFA(P 2 :P1 : ~ :A)=A(P  2 :P1 :~ :A)EF UpI(~, A, x)E F 

for all x in G. 

(ii) A (P2 : P1 : E ~ E -  1 : A) = E A (P2 : P1 : ~ : A) E -  1 if E is a unitary operator on 
H r (carrying H~M onto HECE-XM ')" 

(iii) I f  W is in NK(a), then 

A ( P E : P l : ~ : A ) = R ( w ) - l A ( w P 2 w - l : w P l w - l : w ~ : w A ) R ( w  ). (7.1) 

(iv) A(P 2 : P1 : ~ :A)* = A(P 1 :P2 : ~ : --'t), with the adjoint defined K-space by 
K -space. 

Proof. For (i), let A be in the reg ionof  convergence of Theorem 6.6, and define 
A(P2 : PI : ~ : A )F  by (6.9) for F in C ~. By Proposition 1.1, 

Vl,2(r A, x )A(P  2 :P1 : ~ :A)=A(P  2 :P, : ~:A) Up,(~, A, x) 

for all x in G. Multiplying by E r on the right and left and commuting E F past 
A(P2 : P1 : ~ :A), we obtain (i) for A in the region of convergence. On the range of 
E F, both sides of (i) are operators in a finite-dimensional space varying mero- 
morphically in A. Hence (i)' extends to all A. 

For (ii), let F be in the K-finite space for Uel(E~E -1, A, .). Then E- I (F ( . ) )  
satisfies 

E -  1 F(x  m a n) = e -  (pv, + a) loga E -  1 (E ~ (m)- 1 E -  1) F(x)  

= e-(pp, +A)loga ~(m)- 1 (E-  1 F(x)) 

and 

dim {span E -  1 F(k.)} = dim {span F(k . ) ) ,  
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so that E-I(F(.)) is in the K-finite space for Uel(~, A, .). For A in the region of 
convergence, 

EA(Pz :P1 :~:A) E- ' F(x) 

=E ~ E-1F(xv)dv 
V I A N 2  

= ~ EE-IF(xv)dv since E is bounded 
V l c~Nz 

= ~ F(xv)dv 
V I  A N 2  

=A(P2 :Pl :E~ E-1 :A)F(x), 

and (ii) follows by analytic continuation. 
For (iii), suppose A is in the region of convergence of Theorem 6.6 for the 

operator on the left side of (7.1). This means that 

(ReA, fl)>ca whenever 9a___rtx noz .  
Then 

(RewA, wfl)>ct~ whenever gwp__ Ad(w)(t/1 n ,2) .  

Setting fl '= w fl, we obtain 

(RewA, fl')>cw_, ~, whenever 9r 

It is easy to see from Lemma 8 of [17] that c,,_,a,=ca,, and it follows that wA is 
in the region of convergence of Theorem 6.6 for the operator on the right side of 
(7.1). For such A, the left and right sides of (7.1), applied to F at 1, respectively 
a r e  

S F(v)dv and ~ F(w-luw)du, 
V I  c~N2 w (V 1  A N 2 )  w - 1 

and these are equal by Lemma 2.6. Translating the functions by members of K 
on the left, we obtain (7.1) for A in the region of convergence. The conclusion for 
general A then follows by analytic continuation. 

For the proof of (iv), we need the lemma below, which is also needed for the 
detailed proof of Proposition 1.1. 

Lemma7.2. ~ f (ava- t )dv=d  ~176176 ~ f(v)dv fora inA.  
VtAN2 Vlc~N2 

Proof. We have 

where 

c(.) I f ( "w-1)  av= S f(v)dv, 
VtmN2 VlmNz 

c(a)= det Ad(a)[,,~, 2 = exp { y '  (dim Op) fl(log a)}. 
g# ~-- D1 nn2 
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But 

2 Z (dim g#)fl= Z -  Z + Z -  Z 
g 6  --~ D l :3 r t 2  ~fl--~D 1 gfl ~ U l f3U2  ~]fl --C It2 gfl ~_- rl 1:3rt  2 

The second and fourth terms on the right cancel, and the lemma follows�9 

Proof of Proposition 7.1(iv). 7 Let A be in the region of convergence for 
A(P z :P~:~ :A) given in Theorem 6.6. Then - l i  is in the region of convergence 
for A(PI:P2:~: -A) .  Suppose f and g transform according to 

g(xrnanO=e-~m +a,o,. ~(m)- i f (x )  

f (xmanz)=e -~p~-'~)l~ r l f (x). 

(7.2) 

(7.3) 

Choose ~0>0 on G with 

~o(xs)d: = 1 
MAN2 

for all x in G, where d~s denotes left Haar measure�9 Then 

(g, A(P2 :P1 : ~" A)* f )  

=(A(P2�9 P1 : ~ : A)g, f )  

= ~ (  ~ g(kv)dv, f(k))ur 
K VIC3N 2 

= S ( ~ g(kv)dv, f(k))n~q~(kman2)dl(man2)dk 
KMAN2 VlC~N2 

= ~ ( ~ e-(#'+A)x~ e-'P2-a)l~ 
KMAN2 V I ~ N  2 

�9 e~m +p2)log. cp(kman2 ) d~(man2) dk 

= ~ ( ~ g ( kma: - ' ) dv ,  f(kma))n~ 
KMAN2 VI:',N2 

�9 eCOl +p2)loga ~p(kman2 ) dl(man2) dk 

= ~ ( ~ g(kmav)dv, f(kma))n~ 
KMAN2 VIc~N2 

" eZP~l~ by Lemma 7.2 

, = ~ ( ~ g(kma(n2)v,,,t~z(nz)N,~Nzv)dv, f(kman2))ng 
KMAN2 V1F'~N 2 

�9 e2O~o,- ~p(kman2) dI(manz)dk 

with n 2 introduced into f by (7.3), (n2)vl~N ~ introduced into g by translation, 
and (n2)N1~N ~ introduced into g by (7.2) and the same change of variables as in 
the proof of Theorem 6,6. Then the above expression is 

This proof evolved from an argument by Schiffmann [32]. 
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= ~ ( ~ g(kman2v)dv, f(kman2))n~tp(kman2)e2"2'~ 
KMAN2 V I n N 2  

=~ ~ (g(xv),f(x))n~q~(x)dvdx 
G Vlr~N2 

since e 2p2 loga dt(m a n2 ) dk = dx 

=~ ~ (g(x),f(x))n~q~(xv)dvdx 
G VI~N2 

under xv-~x  and v ~ v  -1 

= ~ ~ (g(kmanO, f(kmanO)n~q~(kmanxv) 
KMAN1 VInN2  

�9 e2p~l~ dvdk  by Lemma 2.8 

= ~ ~ (g(kma),f(kmanN~v2))n~q~(kmans,,-,v2nn,ns2 v) 
KMA(NInV2) (NI~N2)  Vlc~N2 

�9 e2p,l~ dnN,~N2dvdk 

by Lemma 2.4 with n a =nN,~v:nN,nN 2 and by (7.2) and (7.3), and this is 

=~ ~ ~ (e-(P'+a'l~176 ~ 
J \  NtnV2IIH~ 

K MAN2 NInV2  

�9 qa(kma nN,~v 2 n2) e 20' loga dnu,nv2 dm da dn 2 dk 

by Lemma 2.4 and (7.2) and (7.3) 

=~ ~ ~ (g(k),f(knN,~v~))n~ q)(knN,,-,v2man2)dtsdnN,,-,v:,dk 
K N I n V  2 MAN2 

by Lemma 7.2 

=~ ~ (g(k),f(knN,,~v~))n~dnN~v2 dk 
K Nlc~V2 

by the defining property of q~ 

=(g, A(P1 :P2 : ~ : - ' 4 ) f ) .  

The result for general A follows by analytic continuation. This completes the 
proof of Proposition 7.1. 

Proposition 7.3. Let PI=MAN1 and P2=MAN2 be associated parabolic sub- 
groups. Then there exists a scalar-valued function tl(PE : PI " ~ : A ) meromorphic in 
A such that 

A(Pa : P2 : ~ : A)A(P2 : PI ' ~ : A)=q(P2 : Px : ~ : A) I. (7.4) 

The function q satisfies 

q(P2 : P1 : ~ : A)=q(Pa :P2" ~:A). (7.5) 
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Moreover, there exist a rational number c and finitely many complex numbers di(~ ) 
such that the meromorphic continuation of r/(P 2 :PI :~  :A) is holomorphic at A o 
unless 

2 ( A ~  fl) ~c7/ +di(~) (7.6) 
I/~l 2 

for some a-root fl that is positive for P1 and negative for P2. I f  rank M = rank KM, 
the number c can be taken to be 1/3. I f  the infinitesimal character of  ~ is a real 
linear combination of roots of  M, then the numbers di(~ ) are all real. I f  ~ imbeds 
in the nonunitary principal series representation of M with parameters (a, AM), 
then 

~/(P2 :P1 : ~ : A) = ~/((P2)p : (P1)p : tr :(A 03AM) ). (7.7) 

Proof. By means of (6.6), it is enough to prove (7.4) and (7.7) with ~ replaced by 
the nonuni tary  principal series representation ~o of M. We compute the left side 
of (7.4) from (6.3), obtaining 

(A(PI :P2 :co : A)A(P  2 : P1 : co : A)F)(x)(m) 

= A ((P1), : (P2), : a A 03 A M) ((A (P2 : PI" a~ : A) F)( ')(1))(x m) 

= A ((P1)v : (P2), : tr : A OAM){ [A ((P2)v : (P1), : a : A  03AM)F(' ')(1)] (')} (x m) 

= [A ((P1)p : (P2)p : a : A  03AM) A ((P2). :(P1)v : a : A  |  )(1)] (x m) 

= t/((P2)v : (P1)v : a : A  03An)F(xm)(1 ) 

by Theorem 4.2(v) 

= r/((Pz)p : (P1)p :a :A  OAM)F(x)(m), 

and (7.4) and (7.7) follow. Applying (4.6), we obtain (7.5). Then (7.6) follows 
from Theorem 6.6, provided we enlarge the set di(~ ) so as to be closed under 
multiplication by - 1. 

Proposition7.4. Let d i m A = l  and let P = M A N  and P = M A V  be 
associated parabolic subgroups. Define r 

~/r r/(P : P : ~ : zpe). 

Then rle(Z ) is a scalar-valued meromorphic function of one complex variable with 
the following properties: 

(a) r/r depends only on the class of  4, 

(b) ,t~(z) = , t~(-  ~), 
(c) r/r on the imaginary axis, and r/r is not identically O, 8 

(d) r/we(-z)=~/r ) if w is an element of  NK(a ) satisfying w P w  -1 =P, 

s Actually r/~ vanishes nowhere on the imaginary axis. The proof of this fact is deferred to 
Appendix B. 
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(e) rlr ) if  tO is an automorphism of G leaving K stable and the 
positive chamber of  A fixed and if  r162 

(f) tl~(Z)=tle(-z) if  the infinitesimal character of  ~ is a real linear com- 
bination of  the roots of  M. In this case all the poles of  tlr are real. 

Proof. Part (a) is immediate from (7.4) and Pr6position 7.1(ii). For (b), we take 
the adjoint of (7.4) on a single K-space and then apply Proposition 7.1(iv). For 
(c), we apply Proposition 7.1 (iv) to the first factor in (7.4) to exhibit tl~(z)I as an 
operator times its adjoint for z imaginary. Then t /dz)>0 for z imaginary. The 
proof that t/e(z) is not identically 0 is harder. 

If qr is identically 0, then the vanishing on the imaginary axis of qr 
implies that A(P:P:  ~ :zpe)=O for all imaginary z. By analytic continuation, 
A ( P : P : ~ : z p e  )=0 for all z, and then Theorem 6.6 gives 

0 = S F(v) dv = S e-Ca + ~)o~,n~,cv) r (kt (v))- 1F(x(v)) dv (7.8) 
V V 

whenever F is in the K-finite space of the induced representation and Re z is 
sufficiently large. Passing to the limit by dominated convergence and the 
integrability in Lemma 6.5, we obtain (7.8) also for all smooth F on K such that 
F(km)=~(m)- lF(k)  for k in K and m in KM: there are many such F, by the 
techniques of [5]. If F is one such function and tO is the lift to K of a function on 
K / K ~ ,  then tOF is another such function. Now Lemma B.1 assures us that we 
can make tO(~c(v)) have compact support in V and then peak tO0c(v)) for v--1, 
and it follows from (7.8) that F(1)=0. Since this equality holds for all the left K- 
translates of F, F is 0. Thus (7.8) for all F implies F = 0  is the only function in 
the space, contradiction. This finishes the proof of (c). 

For (d), we apply Proposition 7.1(iii) to obtain 

A (P: P : ~ : A) = R(w)- 1A(P : P: w ~ : w A)R(w) 
and 

A ( P : P : ~ : A ) = R ( w ) - I  A ( P : P : w ~ : w A ) R ( w ) .  

Here if A = z p e ,  we have w A =  - z p e .  Then (d) follows by making use of (7.5). 
For (e), let A =zpl,  be in the region of convergence. If F is in the space for 

Up(~,A,.),  then Foto is in the space for Ue( r A, . ). In the region of con- 
vergence for A, 

(A (P : P" ~ : A) F) o to (k) = ~ F(to(k) v) d v 
V 

= ~ F(to(k to- ~(v)) dv 
V 

= ~ F(to(kv))dv 
V 

= A ( P : P  : ~*" A)(F o tO)(k), -(7.9) 

since tO acts in unimodular fashion on V (because a finite power of tO must be 
Ad(ko) on [g, g] for some k o in K). By analytic continuation, (7.9) extends to all 
A, and then (e) follows. 
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For (f), let ~ imbed in the nonunitary principal series of M with parameters 
(a, AM). By Lemma 5.5, A M is real. Thus we apply (a) to our parabolic, then (7.7), 
then (a) to a minimal parabolic, then (f) to a minimal parabolic, and finally (7.7) 
again to find 

~r = f f ( P : P :  {: - -4)  

= F/(Mp Ap VN M : Mp Ap N N M : a : - . / i  + AM) 

=q(MpApVNM:MpApNNM:cr:A-AM)  since A M is real 

= q (MpA p VN M : MpAvNNM: cr : - A  + AM) 

=~ ; ( P :P :~ :  - A ) = q ~ ( - z ) .  

In this case, the poles of q,(z) occur only for z real by Proposition 7.3. 

Proposition 7.5. Let P1 = M A N t  and PE=MAN2 be associated parabolic sub- 
groups such that V 1 c~ N 2 = V (p) for a Pl-positive reduced a-root ft. Let f be in the 
K-finite space for U~,I(~,A,-), and let fk be the restriction to G (~) of the left 
translate o f f  by k in K. Then fk is in the K(P)-finite space for Up{a)(~, A[,{~), "), and 

A(P2 : P1: 4 : A) f (k)= A{g)(O P(a) : P(#) : ~ : Al,(a))fi(1). (7.10) 

Moreover, 
~/(P2 :P1 : ~ :A)=~I(~)( OP(~):P(~): ~ : A[~(~)). 

Proof. The transformation law for fk under MA(a)N (~) is immediate if we take 
into account Proposition 1.2. Also 

span {fk(k~')} ~_ span { f ( k . ) }  
k~K(l~) kEK 

shows fk is K(g)-finite. As in Proposition 4.1, the remainder of the proof comes 
down to the question of whether the normalized Haar  measure for V lc~N 2 
within G is the same as the normalized Haar  measure for V (~) within G (~). If a is 
an ap-root whose restriction to a is a nonzero multiple of fl, then the proof of 
Proposition 4.1 notes that V (~) gets the same Haar  measure whether considered 
as in G or in G (~). Applying this result to G (p) in place of G, we see that V (~) gets 
the same Haar  measure whether considered as in G or in G (~). We therefore run 
through the proof  of the first three parts of Theorem 4.2, applied to minimal 
parabolics, to see that the Haar  measure in V~ c~ N 2 = V (~) can be written as the 
product of the Haar  measures for the various V (~). Since the normalizations of 
the measures for V (~) are the same in G as in G (~), the normalizations of the 
measures for V ~) are the same in G as in G (~). 

Let P = M A N  and P ' = M A N '  be associated parabolic subgroups. Proceed- 
ing as in w after Proposition 4.1, we can define strings {MANi} and minimal 
strings from P to P'. The parabolics P and P' can always be connected by a 
minimal string, just as in w (see [12], p. 145). 

Theorem 7.6. Suppose that P = M A N  and P ' = M A N '  are associated parabolic 
subgroups and Pi=MANi,  O<=i<=r, is a minimal string from P to P', with 
associated reduced P-positive a-roots {fli}. Then 
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(i) the set {ill} is characterized as the set of reduced a-roots fl that are positive 
for P and negative for P'. 

(ii) r is characterized as the number of roots described in (i). 

(iii) the unnormalized intertwining operators satisfy 

A(P' :P:~:A)=A(Pr:P,_  1 :~:A)2 . . . . A ( P  1 :Po : ~ :A). 

(iv) Pr-i, O<i<r, is a minimal string from P' to P, with associated reduced P'- 
positive a-roots {--fli}. 

(v) the q-functions satisfy 

q ( P ' : P :  ~ 'A)--  FI 
reduced 

,fl> O f o r P  
fl <O fo rP '  

q(IJ)(OP(P):P(P): ~ : AI,(,)). 

Proof. Conclusions (i) and (ii) are proved just as in Theorem 4.2. For  (iii), let A 
be in the region of convergence of Theorem 6.6 for the operator on the left. Then 
A is in the region of convergence for each of the operators on the right. The 
proof of the formula for (iii) is then the same as in Theorem 4.2. Conclusion (iv) 
is proved as in Theorem 4.2. For  (v), we obtain, by the method of Theorem 4.2, 

q(P' :P ' r  :A)= l [  q(Pi" Pi-1 :~ "A), 
i = 1  

and (v) then follows from Proposition 4.1. 

Corollary 7.7. Suppose that P = M A N ,  P ' = M A N ' ,  and P " = M A N "  are as- 
sociated parabolic subgroups such that n" c~ u ~_ n' c~ u. Then the unnormalized 
intertwining operators satisfy 

A(P" : P : 4 : A ) = A ( P "  :P' :4:A)A(P'  :P: 4:A). 

Proof. Let Po . . . . .  Pk be a minimal string from P to P', and let Pk, "",  P, be a 
minimal string from P' to P". Applying Theorem 7.6(iii) to the three operators 
in the statement of the corollary, we see that it is enough to prove that Po . . . .  , Pr 
is a minimal string from P to P". Referring to the definition of minimal string, 
we see that we are to show that the U-positive a-roots fli associated to the string 
Pk . . . . .  P~ are P-positive. From Theorem 7.60), we see that these fli are character- 
ized as the reduced o-roots fl that are positive for P' and negative for P". If such 
a fll were pinegative, then we would have g_~___n"nn and g_~,~r t 'nr t ,  in 
contradiction to hypothesis. Thus fll is P-positive, as required. 

Let P = M A N  be a parabolic subgroup. Recall from w 1 the definition 

Ap(w, 4, A) = R(w) A(w-  1Pw : P : 4 : A), 

where w is assumed to be in NK(a ) and where R(w) is defined by R(w) f (x )  
= f (xw) .  

Proposition 7.8. The analytically continued operators Ap(w, 4, A), defined on K- 
finite functions for Up(4, A, .), have the following properties: 
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(i) Let F be a finite set of K-types, and let E e be the orthogonal projection 
onto the span of  all functions of some K-type in F. Then 

EFUr(w4, wA, x) E~Ar(w, r A) = At(w, 4, A)EF V~(~, A, x) e~ 

for all x in G. 

(ii) Ae(w , E 4E-1 ,  A)= EAr(w, 4, A )E-1  if E is a unitary operator on H r 

(iii) Ar(w , 4, A)* = A t ( w - 1 ,  w4, - w A ) ,  with the adjoint defined K-space by K- 
space. 

(iv) Ar(w t w2, 4, A)=Ae(w~,  w24, w2A)Ar(wz,  4, A) if  every P-positive a-root 
fl such that w 1 w2fl is P-positive has w2fl P-positive. 

Proof. For (i), start with the formula of Proposition 7.1(i) with P I = P  and P2 
= w  -1Pw,  and multiply on the left by R(w). Since R(w) commutes with Ev, the 
identity in question will follow from knowing 

R (w)Uw-1 r w(4, A, x)= tlr(w 4, w A, x)R(w), (7.11) 

which is readily verified. (The identity p,,_, ew = w-  ~ Pr is relevant here.) 
Conclusion (ii) is immediate from Proposition 7.1 (ii) and the fact that R(w) 

commutes with E. For (iii), we note that R(w) is unitary on L2(K), since it is 
given by translation, and hence 

At(w, 4, A)* = A ( w -  l Pw : P : 4 : A)* R(w) -1 

= A(P : w -  1Pw : 4 : - . 4 ) R ( w ) -  1 

by Proposition 7.1 (iv) 

=R(w)-~ A(wPw -~ :P:w4: -w/i) 
by Proposition 7.1(iii) 

=Ar(w-l,w~, -we ) .  

For (iv), we apply Corollary 7.7 with P' = w z 1 p w  2 and P" = w 21 w~ 1 p w  1 w2" 
Suppose ~a is in n"c~u. Then B is a P-positive root such that w~w2~ is P- 
positive, and by assumption w2fl is P-positive. Therefore ga is in n'r~n. Thus 

ar(wlw2,  4, A) 

= R ( w  1 w2)A(w 21 w{ 1 p w  1 w2 : p : 4 :A) 

= R(wi)R(w2)A(w21 w-{ 1 p w  1 w2 : w21 p w2 : 4 :A)R(w2)-  1 

�9 R(w2)A(w ~ ~ Pw 2 :p  : ~ :A) by the corollary 

= R ( w l ) A ( w ;  x p w  1 :p : w2 ~ : w2A)R(w2 ) A(w2 i p w  z :p  : 4 :A) 

by Proposition 7.1(iii) 

=Ar(w l, w24, w2A)Ap(w2, ~,A). 

In dealing with questions of reducibility and complementary series, we shall 
use also a slight variant of Ar(w , ~, A) addressed in Proposition 7.10 below. We 
first need the construction in Lemma 7.9. 
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Lemma 7.9. 9 Let H ~_ H' be locally compact groups with H closed and normal and 
with H' /H cyclic of  order n, let x be an element of  H' whose powers meet all 
cosets of  H'/H, and let L be an irreducible unitary representation of  H on a 
Hilbert space V such that L and x L  are equivalent. Then it is possible to define 
L(x) as an operator on V in exactly n ways, differing only by an n th root of  unity as 
a factor, such that L extends to a unitary representation of  H' on K 

Proof. For  existence, let E be an operator,  which we may  take to be unitary, 
such that L ( x - l h x ) = E - 1 L ( h ) E  for h in H, and put L(x)=ei~ with 0 to be 
specified shortly. According to Lemma 59 of [20], it suffices to check that 

L(x) L(h ) L(x) -  i = L(x h x -  1) (7.12) 

and 

C(x) ~ = V,(x~). (7.13) 

Now (7.12) follows from 

L(x) L(h) L(x) -  1 = eiO E L(h) e-io E -  t = EL(h) E -  1 = L(x h x -  1). 

For (7.13), we have 
L(x) n L(x-~) = e i~~ E" L(x-~), (7.14) 

and the conjugate of L(h) by E"L(x -~) is 

E" L(x - n) L(h) L(x") E -" = E ~ L(x - ~ h x ~) E - ". 

By successive applications of the definition of E, we see that the right side 
simplifies to L(h). By Schur's Lemma,  EnL(x -~) = cI  for a constant c (necessarily 
of modulus 1). Define e i~ by ei~~ - t .  Then the right side of (7.14) is the 
identity, and so (7.13) holds. This proves existence. 

For  the uniqueness result, we observe that any choice of L(x) exhibits x L 
and L as equivalent and hence by Schur's Lemma is a multiple of E. The 
existence proof  found all possible multiples of E. The proof  of  the l emma is 
complete. 

Returning to the situation with P = M A N  a parabolic subgroup and ~ an 
irreducible unitary representation of M, let us suppose that w is a member  of 
NK(a) such that w~ is equivalent with ~. Taking H in the lemma to be M and H '  
to be the smallest group containing M and w, we see that we can define ~(w) so 
as to extend ( to a larger group acting on the same space H e. 

Proposition 7.10. I f  w is in NK(a ) and if wr is equivalent with 4, then the operators 
~(w)Ap(w, r defined on K-finite functions for Ue(~,A, .), have the following 
properties: 

(i) Let F be a finite set o f  K-types, and let E F be the orthogonal projection 
onto the span of  all functions o f  some K-type in F. Then 

9 S. Lichtenbaum has pointed out to us that when dim V= 1, the lemma is an immediate 
consequence of the long exact sequence for cohomology of groups and the easy fact that H 2 of a 
finite cyclic group with coefficients in the circle is 0. 
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E e Ue(~, wA, x) E v ~(w)Ae(w, r A) = ~(w)Ae(w , ~, A)E v Ue(~, A, x)E v 

for all x in G. 

(ii) [4(w)Ae(w, 4, A)]* = 4(w)- 1Ae(w- 1, ~, _ wA), with the adjoint defined K- 
space by K-space. 

Proof. For conclusion (i), we note that i f f  is in the space for Up(w4, wA, .), then 
r  is in the space for Ue(r A, .). Then (i) follows from Proposition 7.8(i). For 
(ii) we use Proposition 7.8, parts (ii) and (iii), to find 

[ ~(w) aAw, 4, A)]* = Ae(w, ~, A)* 4(w)- 

--Ap(w - t ,  w~, - w A ) ~ ( w )  -1 

= ~(W)-  1 a p ( w -  1, 4(w)(w 4) ~(w)- 1 -- W.~) 

= 4(w)- 1Ap(w- 1, 4, - wA). 

A final remark is in order. The operator 4(w)Ae(w, 4, A) is unchanged if w is 
replaced by wm with m in. K M. In other words, the operator depends only on the 
element of W(a) that w represents. We shall occasionally use notation that 
incorporates this fact. 

w 8. Normalization of Operators, General Case 

We retain the notation of w 6, working with general parabolic subgroups. The 
results in this section were announced in [23]. Taking into account the functions 
re(z) and their properties as given in Proposition 7.4, we recall the following 
lemma. 

Lemma 8.1 (Lemma 36 of [20]). I f  q(z) is a meromorphic function in the plane 
that is not identically 0 and is such that 

(i) q (z )=q( -g )  for all z and 
(ii) r/(z)>O on the imaginary axis, 

then there exists a meromorphic function V(z) in the plane such that 

~(z)=~(z)~(-z). (8.1) 

The function V(z) can be chosen to be regular and nonvanishing whenever ~l(z) is 
and to have all its zeros in the closed right half plane and all its poles in the closed 
left half plane. I f  also q(z) satisfies 

(iii) r/(z)=~/(-z) for all z, 

then V(z) can be chosen to be real for real z. 

We shall apply this lemma to our functions ~/r to obtain normalizing 
factors re(z). A construction of such factors was made in [20], but we shall redo 
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the construction even there because, by error, the functions 7,(z) in [20] may not 
have had the important invariance property suggested by Proposition 3.2(e). 10 

Thus assume now that P=MAN and P'=MAN' are any parabolic sub- 
groups. We first treat the case that dim A = 1. Guided by Proposition 7.4(0, we 
introduce the following 

Basic Assumption. The infinitesimal character of the irreducible unitary repre- 
sentation r of M is a real linear combination of the roots of M. 

What we do is select simultaneously for each scalar-valued meromorphic 
function r/(z) of one complex variable satisfying (i), (ii), and (iii) in Lemma 8.1 a 
meromorphic ~,(z) that satisfies (8.1) and is real for real z. (When it is convenient 
to do so, we shall assume that y(z) is regular and nonvanishing whenever q(z) is 
and that ~(z) has all its zeros in the closed right half plane and all its poles in the 
closed left half plane.) 

Proposition 7.4 says that t/,(z) is such a function t/(z), and we let yr be the 
corresponding function 7(z). In this way, we obtain yr whenever r/,(z) 
=r/r in particular when 4 '= (~ (see Proposition 7.4(e)). 

Restoring the notation that carries all the variables, let us write 

~(P:P:~:A) for 7r 

whenever A =zpe and r/~(z) is given by r/(ff: P : ~ : A). 

Lemma 8.2. If dim A = 1, then 
(i) 7(P:P:~:A)=v(ff:P:~:-A),  

(ii) r(P:P:~:A)7(P:P:~:A)=,I(P:P:~:A). 
Proof. Let A =zpe=-zpp .  By Proposition 7.3 

tl(P : P: r : A)=~I(P: P: ~ :A), 

and hence 

r/(P : P :  ~: -zp~)=~l(P: P:~ : zpe). 

Because of the Basic Assumption and Proposition 7.4(f), 

rl(P : P :  4: -zPl,)=rl(P:P: ~ :zp~). 

Therefore 

I / ( P : P : ~ : z p p ) = r l ( P : V : ~ : z p e  ). 

That is, the function r/r for (P :P)  is the same as for (P:P) ,  and the same must 
be true of ~(z). Consequently 

~'(P:P:~:A)=7(P:P: ~ : -zPt,)=7(P: P : r  -zpe)=~'(P:P:~: -A)  

lo This error becomes troublesome when we pass to G of higher rank. In a construction in that 
case, we recognize a certain subgroup as being of real-rank one, and we do not want our normalizing 
factors to depend on what isomorphism we choose between this subgroup and a standard real-rank 
one group. 
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and (i) follows. The right term here equals the complex conjugate of 

7( iV: P : ~ : - -  zPe), 

since 7r is real for real z. Substituting in (8.1), we obtain (ii). 

For the general case with dim A arbitrary, we define 

7(P' : P : 4 : A ) =  1-I 7(P)(OP(tJ):P(~):4:Ala(,)), 
fl reduced 
~>0 for P 
f l<0 for P' 

where 7 ta) is a factor attached to data for the group G ta), fl an a-root. The 
normalized intertwining operators are defined, under our Basic Assumption, by 

d ( P '  :P:4:A)=7(P '  : P : 4 : A ) - I  A(P' :P:4 :A)  

~r 4, A)= 7(w - 1 P w  : P : 4  :A) - IAp(  w, 4, A). 

Once the initial choice of functions 7(z) has been made, these definitions are 
unambiguous. Notice that y (P ' :P :4 :A)  is not identically 0 since it is a product 
of functions that satisfy (8.1), and t/~(z) is not identically 0 by Proposition 7.4(c). 

LemmaS.3. Let P = M A N  and P ' = M A N '  be associated parabolic subgroups. 
Then 

(i) d ( P : P ' : 4 : A ) d ( P ' : P : 4 : A ) = I ,  
(ii) for any minimal string Pi=MANi,  O<i<r,  from P to P', 

sr : r : A ) . . . . .  sr : P0 : 4 : A). 

Proof. Conclusion (ii) is trivial from Theorem 7.6, parts (iii) and (i), and from the 
definition of the normalization. For (i), we use (ii) and Theorem 7.6(iv) to see 
that it is enough to conclude that 

~ (P / -1  :P/*' ~ : A)~r :P/-1 :~ : A ) = I  

for each i. Let fl be the associated P~_l-positive reduced a-root here. The left 
side, in view of Proposition 7.3 and the definition of the normalizing factors, is 

y(a)(P(a):0P(a):~:Ala(a))-lT(a)(0P(a):P(a):~:Ala(a))-Irl(Pi:Pi_l :~:A)I ,  (8.2) 

and the r/factor here equals 

rl(~)(O P (t~) : P(p) : 4 : Al~(a)) 

by Proposition 7.5. Thus (8.2) collapses to I by Lemma 8.2(ii), and the result 
follows. 

TheoremS.4. For any three associated parabolic subgroups Pi=MANi with 
1 < i < 3 ,  

M ( Pa : P1 : ~ : A ) = ~r ( Pa : PE : ~ : A ) s /  ( P2 : P1 :r :A). 
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Proof. We shall suppress ~ and A in the notation. By Lemma 8.3(i), we are to 
show that 

d (P1  : P3) d (P3  : P2) d (P2  : P1) = I.  (8.3) 

Choose minimal strings from P3 to P1, from P2 to P3, and from P1 to t'2, and 
replace each of the factors on the left of (8.3) by the product of operators given 
in Lemma 8.3(ii). Then we can change notation and reformulate the result in 
question as follows: If Po, P1 . . . . .  Pn is a string with Po --P~, then 

d ( P .  : P,_ x)" .. .- d ( P2: P , ) s I ( P  1 : P0)=I .  (8.4) 

We shall prove this result by induction on n. We may assume that no two 
consecutive parabolics in the string are the same, since ~ ( P : P ) = I .  

First we show that n is even. Arguing as in the first part of the proof of 
Theorem 4.2, we see that 

nic~rto=U (~'+') O(ni+l C~no) if V i n N i + l = V  (~+') 
and 

1Ii+ 1 ("~ltO =11 (/~`+1) (~(rliNlq[0) if V/nNi+ 1 = N  {a'+') 

That is, the number of reduced a-roots fl such that ga___ ul c~ n 0 either increases or 
decreases by one in passing from i to i +  1. Since Po =P,,  the number of such 
roots is the same for i = 0  as it is for i=n,  and it follows that n must be even. 

The same argument shows that if P and P' are parabolics that are connected 
by a nonminimal string p=p(O), p , ) ,  ..., pc,)=p,, than any minimal string P 
=Q(O), Q,), ..., Q(,)=p, between P and P' must have s<r. In fact, the counting 
argument of the previous paragraph shows that the number of reduced a-roots fl 
such that ga ~ n exceeds the number such that ga ~ n'c~ n by less than r (and also 
by exactly s). Thus s < r. 

We return to (8.4). For  n =2,  the result follows from Lemma 8.3. Fix n and 
the expression on the left of (8.4), and assume that such an identity holds for all 
shorter "circular" strings. We examine the strings 

Po, P,,- . . ,  P_~ (8.5 a) 
2 

. . . . .  

and distinguish three cases. 
If both (8.5a) and (8.5b) are minimal, then Lemma 8.3(ii) allows us to 

collapse the left side of (8.4) to 

d ( P .  : P./2) g (P./, P o), 

and this collapses to ! by Lemma 8.3(i) since Po=P,. 
If (8.5a) is not minimal, let Qo . . . . .  Qr be a minimal string with Po=Qo and 

P,/z = Q,. We have seen that r < n/2. Then 

P o - - Q o ,  Q I ~ - - ' ,  Q r - l :  Qt=P_n, Pn__l ~ ..-, Po 
2 2 
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n 
is a string with r +~  < n members, beginning and ending with Po. By inductive 
hypothesis 

~ ( Q o  Q1)  d ( Q 2  : Q3)  . . .  d ( Q r -  1 Qr) ~r : Pn 1 ) ' "  s J ( P 1  : P  o) = I 
2 2 

and hence, by Lemma 8.3(i), 

d ( e ,  : e, 1)... ~r : Vo) = d ( Q , :  Q,_ , ) . . .  ~'(Q 1" Qo). 
2 2 

We make this substitution on the left side of (8.4). Then 

Po~- Pn, Pn_ I , . . . ,  Pn_=Qr, . . . ,  Qo : Po 
2 

n 
is another string of r + ~  members to which we can apply the inductive 

hypothesis. Thus the left side of (8.4) collapses to I. 
Finally if (8.5 b) is not minimal, nor is the string in the reverse order. Then no 

string of that length can be a minimal string from Po to P,,/2, and (8.5 a) cannot 
be minimal. Thus we are reduced to the previous case. This proves the theorem. 

Proposition 8.5. The operators d ( P  2 :Pl :~ :A), defined on K-finite functions for 
Up ~ ( ~, A, .), have the following properties: 

(i) Let F be a finite set of K-types, and let E f be the orthogonal projection 
onto the span of all functions of one of the K-types in F. Then 

E r Ue2(~ , A, x) EFsJ(P z :P1 : ~ : A) = 5~'(P2 :P, : ~ : A) EF Ue,(r A, ")E F 

for all x in G. 

(ii) d (P2 : P1 : E ~ E -  x : A) = E d (P2 : P1 : ~ : A) E -  1 if E is a unitary operator on 
H r . 

(iii) I f  w is in NK(a), then 

d ( P z : P I :  ~ : A ) = R ( w ) - l d ( w P 2 w  -1 :wP l w -1 :w~:wA)  R(w). 

(iv) d ( P  2 : P1 : ~ : A)* = d ( P  1 : P2 : ~ : -/1),  with the adjoint defined K-space by 
K -space. 

(v) ~(P2 : P1 : ~ : A) extends to a holomorphic function of A for A imaginary, is 
unitary for every imaginary value of A, and, for such A, exhibits Ue, (~, A, ") and 
Ue2(~ , A, ") as unitarily equivalent. 

Proof. Property (i) is immediate from Proposition 7.1, as is (ii) if we take into 
account Proposition 7.4(a). For (iii), Proposition 7.1 shows it is enough to prove 

T(P2 :P1 :~:A)=~(wP2 w-1 :wP1 w-1 :w~:wA).  (8.6) 

The left side here is 

I-I ~(~)(O Pta) : P(~) : ~ : A ] ~ ) ,  
fl reduced 
fl>O for e 1 
fl<Ofore 2 
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and the right side is 

VI 7(t;)(o P(tr) : P(p') : w ~: wA[o(~,)). 
13' reduced 
fl'>OforwP~w 
f l '<0  for wP2w - j  

For fl '=wfl, let us notice that G (a) and G ta') are isomorphic since G(a')= 
wGta)w - 1. This isomorphism matches the parameters in 7 (a'~ and 7 (0) and shows 
the two products are equal, factor by factor. This proves (8.6) and (iii). 

For  (iv), Proposition 7.1 (iv) shows we want 

?(P2 :P1 : ~ : A)=Y(P1 :P2 : ~: - A ) "  

Expanding each side as a product of factors y(~), we see we are to prove that 

7(t~)(0p(~) : p(t~) : ~ : A[o(o,) = 7(~)(P(~) : 0P(~) : ~ : - A[a(~,)- (8.7) 

These factors are real for A a real multiple of p(P), and the right side of (8.7) is 
therefore 

= 7(t~)(P(a): 0 P(a): ~ : -AIo(~,), 

which equals the left side of (8.7) by Lemma 8.2(i). This proves (iv). 
For  (v), Theorem 6.6 and Proposition 7.3 show that A(P2:PI:~:A ) and 

rI(Pz:PI:~:A ) are both holomorphic on a dense open set of imaginary A. 
Moreover, Proposition 7.4(c) and Theorem 7.6(v) show that rl(P 2 :P t : 4  :A) is 
nonzero on a dense open set of imaginary A, and therefore the same thing is true 
for 7(P2 : P1 : ~ : A). Consequently 5~r 2 :/ '1 : ~ : A) is holomorphic on a dense open 
set of imaginary A. Applying (iv) and Lemma 8.3 (i), we obtain (v) for such A, 
with the statement about equivalence following from (i). 

The full conclusion of (v) will follow by a passage to the limit, provided we 
show that ~ ( P 2  : Pa : ~ : A) extends to a holomorphic function for A imaginary. If 
dim A = l ,  we can go over the above argument to see that the normalized 
operator can fail to be holomorphic only on a discrete set. At each point of this 
set, the possible singularity is at worst a pole but then is removable since 
~'(P2 :PI:~ :A) is unitary for those imaginary A where it is defined. Applying 
Proposition 7.5 and the definition of normalizing factors, we see that 
s~ ( P ' :P :~ :A)  extends to be holomorphic for A imaginary, provided VeiN '  
= V (~) for a reduced a-root ft. By Lemma 8.3(ii), ~r itself extends to 
be holomorphic for A imaginary in all cases. 

Proposition 8.6. The operators alp(W, ~, A), defined on K-finite functions for 
Uv(~, A, .), have the following properties: 

(i) Let F be a finite set of K-types, and let E F be the orthogonal projection 
onto the span of all functions of some K-type in F. Then 

EF Uv(w 4, w A, x) E v sly(w, r A) = ~r 4, A) E F Uv(4, A, x) E v 

for all x in G. 
(ii) d r ( w ,  E 4 E-1,  A)=E~Cv(w, 4, A )E-1  if E is a unitary operator on H ~. 
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(iii) ~r ~ , A ) * = ~ e ( w  -1, w ~ , - w A ) ,  with the adjoint defined K-space by 
K-space. 

(iv) d e ( w  , ~, A) is defined and unitary for all A imaginary. 

(v) s#(wlw2, ~, A)= d~,(wl, w2~, w2A) se~(w2, ~, A). 

Proof. Conclusion (i) is immediate from Proposition 7.8, and (ii) and (iii) are 
obtained by repeating the proofs of Proposition 7.8 but relying on Proposition 
8.5 instead of Proposition 7.1. Conclusion (iv) follows from Proposition 8.5(v) 
and the fact the R(w) is unitary. Conclusion (v) is obtained by repeating the 
calculation of Proposition 7.8 but relying on Theorem 8,4 instead of Corollary 
7.7 and on Proposition 8.5 (iii) instead of Proposition 7.1(iii). 

Corollary 8.7. I f  w is in N~(a) and if w ~ is equivalent with ~, then the operators 
~(w)de(w, ~, A), defined on K-finite functions for Ue(~, A, "), have the following 
properties: 

(i) Let F be a finite set of  K-types, and let E v be the orthogonal projection 
onto the span of  all functions of some K-type in F. Then 

E~ Up( ~, w A, x) E~ r (w)~(w, ~, A)-- ~ (w) sep(w, ~, A ) E~ Up( ~, A, x) E~ 

for all x in G. 

(ii) [~(w)de(w, ~, A)]*= ~(w)-l  x~Cp(w - 1, ~, _ w/i), with the adjoint defined K- 
space by K-space. 

Proof. This follows by comparing Propositions 7.10 and 8.6. 

II. Applications to Reducibility Questions 

w 9. Connection with Eisenstein Integrals and c-functions 

We mentioned in the introduction that the theory of intertwining operators and 
the proof of the Plancherel theorem should be regarded as complementary 
theories. One's first inclination might be to expect the theories to be identical. 
Indeed, there is a parallel structure to them. Matrix coefficients of induced 
representations lead, via asymptotics, to intertwining operators, as was pointed 
out in a special case in [19], and composition of intertwining operators leads to 
the ,/-functions. Meanwhile, within Harish-Chandra's theory, Eisenstein integrals 
lead, via asymptotics, to c-functions, and composition of c-functions leads to the 
Plancherel measure. It was already observed in [18] that intertwining operators 
and c-functions can be expressed in terms of each other in some special cases, 
and [19] gave a connection between ,/-functions and Plancherel measures. In the 
year 1971-72, Nolan Wallach (in unpublished work) extended these matters, 
explicitly relating matrix coefficients to Eisenstein integrals and relating in- 
tertwining operators to c-functions. In particular, he obtained formula (9.4) 
below. 

But it is apparent that the parallel between the two theories leads not to 
similar results, but to complementary ones. For example, Harish-Chandra's 
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results lead to an upper bound on the dimension of the space of self-intertwining 
operators, while the theory of intertwining operators itself leads to a lower 
bound. 

The purpose of this section is to bring Harish-Chandra's results to bear on 
our own theory, after showing in detail the correspondence between the two 
theories. This material was announced in [22]. 

The notation for this section will be as follows. We shall work with a 
cuspidal parabolic subgroup P = M A N  (i.e., one in which rank M=rankKM)  
and its associated parabolics with the same MA. The representation ~ will 
always be in the discrete series of M. Then the Basic Assumption of w is 
satisfied: the infinitesimal character of ~ is a real linear combination of the roots 
of M. For the most part, our notation will be similar to Harish-Chandra's ([12] 
and [15]), except that our a-parameter and his will be off by a factor of i. 

Let F be a finite set of irreducible representations of K, and let ev be the sum 
of the degrees times characters of the members of F. Let Ve be the space of 
complex-valued functions f on K x K such that 

~F*f ( ' , k2 )=f ( ' , k2 )  and ~ v , f ( k ~ , . ) = f ( k t , . ) .  

Define a double representation z of K on V r by 

z(kl) f z(k2)(k, k') = f (k[ 1 k, k 2 k'). 

Let ~ zM) be the space of all functions 0 from M to V v such that 

O(klmk2)=z(kl)O(m)z(k2) for meM,  k l e K u ,  kEeK ~ 

and such that the entries of ~k are linear combinations of matrix entries of ~. 
Finally let H e be the subspace of functions f in the representation space of 
U(~, A, .), regarded as H~-valued functions on K, such that e v . f = f .  It is easy 
to check that the linear map T ~ O r  given by 

0r(m)(kl, k2)= d~ Tr(e* ~(m)e L(k2)TL(k~ 1)), 
where 

e = evaluation at 1 
d~ = formal degree of 
L = left regular representation of K, 

carries End H r into ~ zM). The lemma below is proved in [15], p. 133 and 
w See also [35]. 

Lemma 9.1. The linear map T ~ O r  of End(Hr) into ~ ZM) is an isomorphism 
onto. Apart from a scalar factor, this linear isomorphism is an isometry under the 
definitions 

(T 1, T2)=Tr(T 1T*) for 7"1, T2~EndH v 

(01, ~b2)= J" ~ Ot(m)(k~, k2) O2(m)(kl, kE)dmdk~dk2 
K x K  M 

for r r176 M, VM)" 
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Moreover, f r  * f s = f s r  if a product on V r is defined by 

f .  g(k,, k2 )=~ f ( k l ,  k) g(k, k2)dk. 
K 

Using notation that is off by a factor of i from Harish-Chandra's, we define 
Eisenstein integrals by 

E(P : f :A :x) = j" O(xk) z(k)- 1 e~A-ppmp(Xk)dk 
K 

for O in ~162 zu) , under the convention O(kman)=z(k) f (m).  The lemma 
below is proved in w of [15]. See also [35]. 

Lemma 9.2. Let E e denote the orthogonal projection on H F. Then 

E (P : f r : A : x) (k 1, k2) - de Tr (E e Up(~, A, k ~ 1 x k2) TEp) 

for f r  in ~162 ZM). 

Before proceeding, l e t u s  underline the connection between Eisenstein in- 
tegrals and matrix coefficients. In one direction, Lemma 9.1 says that every f is 
of the form fir,  and therefore Lemma 9.2 expresses all Eisenstein integrals in 
terms of matrix coefficients. In the reverse direction, take k I = k 2 = 1, let f and g 
be members of He, and define Th =(h, g)f. Then we see from Lemma 9.2 that 

E(P : f  r : A : x)(1, 1)=dr A, x) f ,  g)n~- 

Hence all matrix coefficients can be obtained from Eisenstein integrals. 
Harish-Chandra (p. 131 of [12]) obtained asymptotics for Eisenstein in- 

tegrals, showing, for A imaginary and for f = E ( P : f  :A: . ) ,  that there exists a 
unique fe" on M A  transforming appropriately and satisfying 

lim {e "P' l~ a) - fp ,  (m a)} = 0. 

For the proof, see Theorem 21.1 and Lemma 19.1 of [13] and Lemma 17.1 of 
[14]. Harish-Chandra gave an expansion for fp, for A regular (p. 134 of [12]): 

E e , ( P : f : A : m a ) =  ~ (cv, le(s:A)f)(m)e sAl~ 
s �9 W(a)  

where Cp, ip(S :A) is in End(~162 ZM) ) and the dependence on A is meromor- 
phic. See Theorem 18.1 of [!4]. For Cpie(l:A), an integral formula is given as 
Theorem 19.1 of [14] for ReA sufficiently far out in the P-positive Weyl 
chamber: 

celP(l:A) f(m)(kl ,  k2) 

= Ce 1 ~ f (mtz(v) - l )z (x(v) ) - l (k l ,  k2)e-~PP+a)m'~~ (9.1) 
V 

C e = ~ e-  20l, Ul,~V) d v. (9.2) 
V 
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In applying these results, we shall work with ~ and its transforms wr by 
Nx(a), and we shall be led outside the space ~162 ZM). To emphasis the space 
to which ~k belongs, we shall write ~ or ~k we, as needed, and the c functions 
should be understood to be those appropriate to the space of ~k's being acted 
upon. 

Proposition9.3. Let T be in EndHv, let s be in W(a) with w in NK(a ) as a 
representative, and denote OP by P. Then 

(i) E ( P  2 ~ �9 A):A:x) "~b A~e2:e,:~:A) T" A x ) = E ( P  1 "t) ~ �9 TA(P2:P~:?,: 

and 

ce21e2(s " A) ~ ~I A(P2:PI:~:A)  T = C p 2 I P , ( S  : A )  ~r 

(ii) E ( P : r  p w  wr " x) �9 ~R(w) TR(wI-1 sA : 

and 

cele(s : A) ~J~ = Celwew_ , (1 : s A) r rttw)- ," 

(iii) cele(l :A ) ~ =  C ;  1 tP~A(P:P:*:A)T, where Ce is defined as in (9.2). 

(iv) ,/,w~_,l,~ if  we  is equivalent with ~ and S=r -1Tr where r is , r s  - -  W T  
defined as in Lemma 7.9�9 

Remarks. From (i) we can express Cpie,(S : A) in terms of Cpip(S : A), which by (ii) 
can be expressed in terms of Celwew_l(l :sA), which by (i) can be expressed in 
terms of Cele(l:sA), which can be evaluated by (iii) in terms of intertwining 
operators. Thus all c-functions for G can be computed in terms of intertwining 
operators for G. When wr is equivalent with ~, (iv) shows that all the com- 
putations can be made in terms of a single mapping T~kr 

Proof. Starting from Lemma 9.2, we see that 

E(P2 r "A" "~r  T"  x)(kl, kz) 
=d,  Tr(EFUp~(~,A,kg a xke)  A(P2 : P1 : ~ : A) TEF) 

= d, Tr (A (P2 : P1 : ~ : A) E F Lie, (~, A, k ~ ~ x k2) TEe) 

by Proposition 7.1 (i) 

= dr Tr (E v Up, (~, A, k~ 1 x k2) T E  F A (P2 : P1 : ~ : A)) 

since Tr (AB) = Tr (BA) 

= d, Tr (E F Up~ (~, A ~ 1 x k2) T A  (P2 : P1 : ~ : A )  EF) 

= E ( P  1 �9 r 'A" �9 I/JTA(P2:p,:r ) �9 x)(kl, k2), 

as a meromorphic identity in A. Suppressing (k~,k2), we form the P2-1imit of 
both Eisenstein integrals when A is imaginary and regular, obtaining 

(Cezte2(S " A) fffia(P2:l, :,:A) T)(m) e ~al~ 

= ~ (Ce~le,( s :A)~JTA~e~:e.r "al~ 
sEW 
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Since A is regular, we may equate coefficients to obtain (i) for A imaginary. 
Analytic continuation gives (i) for all A. 

For (ii), the operator T'=R(w)TR(w)  -1 is in End(Hi)  for the associated 
space H i of functions transforming according to w 4, and 

Up(~,A,x) T= R(w) -1 Uwv~- ~ (w ~,s A, x) T' R 

by (7.11). Hence 

E (P " OCT : A " x)=dr Tr(EF R (W) -1 Uwew , (w ~,s A, k { ' x k2) T' R (w) EF) 

=dcTr(R(w) -1EiUwvw-l(w~,sA,  k { l xk2 )T 'E iR(w) )  

=d~ Tr(E i U~vw-,(w~,sA, k { l x k 2 ) T ' E i )  

= E ( w P w -  1 :~ , r  :x). 

For regular imaginary A, the P-limit of both sides gives 

Y' Cele(t" A ) ~k~ e tAl~ = 2 r -I (r :s A) ~,r e rsAl~ 
t e W  r e W  

Equating the terms in which t=s  and r =  1 and using analytic continuation, we 
obtain (ii). 

For (iii) we start from (9.1) for ReA sufficiently far out in the P-positive 
Weyl chamber and find 

Cp cvw(1 : A) ~kCr(m) (k x, k2) 

= ~ ~kCr(m!a(v)- 1) "r (~:(v))- 1(kl, k2) e -COP+A)HP(~) d v 
V 

= j OCT(m g(V)- ')(k 1, K(v)- 1 k2 ) e-(Op+a)H,,(~, d v 
V 

= de ~ Tr(e* ~(m) ~(#(v))- x eL(x(v)- 1 k2 ) TL(k[  1)) e-(Ol~+a)a,,(~ dv 
V 

= de ~ ~ (r ~(#(v))- 1 Thi(k21 x(v)), hi(k { 1))n~ e-(P" + a)m,(~) d v 
i V 

where h i runs through a (finite) orthonormal basis of HF, and this is 

= de ~(4  (m)A (P: P : ~ :A) Th i(k~ 1), hi(k ~ x))nr 
i 

= ~O~4(r: P: r a) r(m) (k 1, k2). 

Analytic continuation gives the result for general A. 
Finally for (iv), with h i running through an orthonormal basis of the space 

H v for 4, we have 
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~'~(m)(kt, k2) = d~ Tr(e* w ~(m) e L(k2)S L(k-{ 1)) 

= de ~(w r S hi(k 2 l), hi(k- { t))n~ 
i 

= de ~(~(m) ~ (w) S hi(k 21), r h,(k{ 1))n~ 
i 

= de ~(~(m) T~(w) hi(k 21), ~(w) hi(k { 1))n~ 
i 

-- de Tr (e* ~ (m) e L(k2) TL(k 1)- ~) 

= ~r k2), 

the next to last equality holding since ~(w) h i runs through an orthonormal basis 
of the space for w 4. 

Corollary9.4. Let T be in EndHF, let s be in W(a) with w in NK(a ) as a 
representative, and denote OP by ~ Then 

where 
T '=R(w)A(w-l  f f w : P : r  Pw:r -1. 

Remarks. Qualitatively the corollary says that each cel e is given by a pair of 
"complementary" unnormalized intertwining operators, one operating on the 
left and one on the right. This result was obtained independently by Arthur [2]. 

Proof. We have 

c~,t~(s : A) ~ 
= ~ ' / R ( w ) T R ( w ) -  1) CelwPw_~(l:sA) we 

by Proposition 9.3(ii) 

= C p i p ( 1  " S A )  ~A(p:W~ w P w -  t : we:  s A ) R ( w )  T R t w )  - 1 A(P: w P w -  1 : w~: sA)  - t 

by Proposition 9.3(i) 

�9 ~ J R ( w ) A ( w _ l P w : p : ~ : A ) T A ( w _ i p w : p : ~ : A ) _ l R ( w ) _  1 = r  sA) ~ 

by Proposition 7.1(iii) 
= C ~  1 ,/,wr 

't" A ( P  : P: w~: s A ) R  ( w ) A ( w -  I p w :  P: ~: A)  T A ( w -  I p w :  P: ~: A ) -  I R (w)  - t 

by Proposition 9.3(iii) 

= C~- i ,/,wr (9.3) 
W R ( w ) A ( w  i P w : w -  t p w : ~ : A ) A ( w -  l p w : p : ~ : A ) T A (  w -  t p w : p : ~ : A  ) -  t R(w)-  1 

by Proposition 7.1(iii). Now 

A(w-l  P w : w - l  Pw:~:A)A(w- l  Pw:P:~:A)  

=A(w- l  p w : P : ~ : A ) A ( P : w - I  pw:~:A)A(w- I  pw:P:~ :A)  

by Corollary 7.7 

= r l ( w - l P w : P : r  

by Proposition 7.3 
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and 
A ( w - l  P w : p : ~ : A )  -1 

=rI(w-~ P w : P : ( : A ) - I  A ( P : w - I  P w : ~ : A )  

by Proposition 7.3. 

Upon substitution, the r/'s cancel and the result follows. 

CoroUary9.5. Let T be in EndHv,  let s be in W(a) with w in NK(a ) as a 
representative, and denote OP by ~ I f  w ~ and ~ are equivalent, then 

cpip(s : A)r ~ = C ;  ' 4,~,, 
where 

T ' =  A(P : P : 4 : sA)( 4(w)~'e(w, 4, A)) T( 4(w)slp(w, 4, A))-  ~. 

Proof. Starting from (9.3), we have 

Cele(s : A)~k~=eelp(1. �9 s A)  qG;.(w,~,~)~A~(w,~,A)-' 

= Cele(1 :sA) ~J~p(w,r 
= Cel p(1 : s A) r ,,A)r(r ~,A))-t (9.4) 

by Proposition 9.3(iv). The corollary now follows from Proposition 9.3(iii). 

Proposition 9.6. If f and g are in HF, then 

(A(fi: P : ~ :A) f ,g)L~(r)=df l Ce ~ (cetp(1 : A)tp~(1))(k,k)d k, 
K 

where Th = (h, g ) f  

Remarks. From this result we can express A ( P : P : 4 : A )  for G in terms of c- 
functions for G. By Proposition 7.5 and Theorem 7.6, we can therefore express 
all unnormalized intertwining operators for G in terms of c-functions for G and 
its subgroups G ~'). 

Proof Take T as above, and let {h~} be an orthonormal basis of H e with h 1 
=lgl-~g.  

~r r A) r(m)( k l, k2) 
= d< Tr  (e* ~ (m) e L(k2) A (P : P : 4 : A) T L ( k r  ~)) 

=dr ~ (4 (m)A(P  : P : 4 : A) Th~(k 2 X),hi(k ~ '))H* 
i 

= d<(~(m)A(P : P : 4 :A ) f ( k2  ~), g(k~ 1))u~. 

By Proposition9.3(iii), the left side is Cpcelp(l:A)~bCr(m)(kl,k2). Hence the 
result follows�9 

Following Harish-Chandra, put 

~ ce21e~ (s : A)=ce~re2(1 : s A)-1 Ce2lel (s . A)" 
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Harish-Chandra 's  completeness theorem is the following. For a proof  see 
Lemma 38.2 and Theorem 38.1 of [153. 

Theorem 9.7 (Harish-Chandra). Let A be imaginary and let 

Wc,a = (s~ W(a)]s [~3 = [~].and s A = A }. 

To each s in Wr A corresponds an operator 7s in GL(Hv) such that 

~ ~17s Ty~- 1 

for all T in E n d H  v. Moreover, the set of such ?~, for s in W~, A, spans the 
commuting algebra of E v Up(~, A, ")E v. 

Corollary 9.8. Let A be imaginary and let W~, a be as in Theorem 9.7. Then the 
commuting algebra of Uv(~,A,. ) is the linear span of the unitary operators 
~(s)dv(s,~,A ) for s in l, Vc, a. 11 

Proof It is enough to identify the commuting algebra of the operators projected 
to H e. Corollary 9.5 and Proposition 9.3(iii) combine to give 

~ Cel v(s : A) OCt = ~kcr ', 
where 

T'= (~ (w)de(w , 4, A)) T(~ (w)de(w , r A))- 1 

if w is a representative of s. Hence we can take 7s=~(W)de(W,~,A) in Theo- 
rem 9.7. The operators r ~, A) are unitary by Proposition 8.6(iv). 

w 10. Identities with Planeherei Factors 

We continue to work with cuspidal parabolic subgroups built from the same 
MA, and we continue to assume that ~ is a discrete series representation of M. 
In this section we shall use Harish-Chandra 's  formula relating c-functions to the 
Plancherel measure in order to give formulas for the q-functions. As a con- 
sequence of these results and the known form of the Plancherel measure when G 
has dim av=  1, we obtain explicit formulas for the q-functions. These explicit 
formulas will be used in a later paper by the first author and G. Zuckerman.  

According to Harish-Chandra  [123, Theorem 11 and Lemma 15, the contri- 
bution to the Plancherel measure of G from the series Up(f, A, .), with ~ in the 
discrete series of M and A imaginary, is 

cdr (10.1) 

where c is a constant, d e is the formal degree of ~, and/J~(A) is a meromorphic  
function that is holomorphic  for A imaginary, is positive for A imaginary and 
regular, satisfies #we(wA)=#~(A) for w representing a member  of W(a), and is 

11 As noted at the end of w 7, ~ (w) o~r ~, A) does not depend upon the choice of the representative 
w of s, and we may therefore write the operator as ~(s)~e(s , ~, A). 
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given by 

I W(a)l Cvl~r : A) cplv(1 : A) qJ = ~ (10.2) 

for ~9 in ~162 zM) , in the notation of w 

Proposition 10.1. The contribution #~(A) to the Plancherel measure of G is related 
to the rl-function of w by 

&(A) -  ~ = 1 W(a)l C~ ~ ~(P:  P : ~ :a) .  

Proof We apply Proposition 9.3. To simplify notation, let us suppress (1 : A) in 
the c-functions and (4 : A) in the intertwining operators and ~7-functions. Then we 
have 

cvlv c vl e ~O r = c vlv cvip ~ A(I~: v) r AtV: V)- ' 

-~- Cp 1 Cp}p I[/ a(p: P)A(P:P)TA(P:P)- 

= C~ 1 q(fi : p) cvlv erA(V: v)-, 

= C/~ l q ( P :  P) CpIp~lA(l,:V)TA(p:p)-,A(p:p)-i 

= C ~  i Cb- ~ q ( P :  P) ~A(V:V)A~v: ~)rA(V:V)- 'A0':V)- ~ 

= Cv ~ C;  ~ q (P:P)q(P:P)q(P:P) -~  er .  

Now Cs as follows from Lemma2.8 by an easy argument, and q(P:P) 
= q ( P : P )  by Proposition 7.3. The result follows. 

We shall not use the full generality of Proposition 10.1 but shall use it only 
for the groups G (a). Let #r be the function of Proposition 10.1 in this case. Then 
we have 

lzr )-  1 = ] W(a(a))l C;(~, r/(a)(fi(a) : P(a) : r : A Io~, ). (10.3) 

We shall work with #,.a instead of r/(a) in order to convert poles into zeros. For 
each pair of parabotics built from MA we define the Plancherel factor l~e, le by 

kq"0,(~ :A) = ] - ]  lar Iota,). (10.4) 
fl reduced ta-root 

,8>0 for P 
/~<0 for P' 

Proposition 10.2. The Plancherel factors have the following properties. 
(a) #~,~(Al,~)) is holomorphic for AL,(~, imaginary and is nonvanishing for 

ReA],(o) +0. 
(b) #v, iv(~:A) is holomorphic for A imaginary, 
(c) #v, lv(~ : A) = c q (P' : P: ~ : A) -  a, with c a positive constant depending on P 

and P'. 
(d) t~v, lv(~ : A) =e'#v, lv,(a :A ~ A M )  , with c' a positive constant depending on 

P and P', if ~ imbeds in the nonunitary principal series representation of M with 
parameters ( o, AM). 

Proof In (a), #~ p is holomorphic by a result of Harish-Chandra quoted above or 
by Proposition'B.2. Where it vanishes, r#  ) has a pole, and Proposition 7.4(0 says 
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this can happen only at real points. Then (b) follows from (a) and (10.4), (c) 
follows from Theorem 7.6(v) and (10.4)7 and (d) follows from Proposition 7.3 and 
(10.4). 

w II. Intertwining Operators Corresponding to Reflections 

Throughout  this section ~ will denote a discrete series representation of M. The 
Plancherel factors /~ will be those of w The point of this section will be to 
single out certain intertwining operators corresponding to reflections in W(o) 
that have to be scalar. 

Our results use two lemmas announced by Harish-Chandra [12] and given 
as Lemmas 11.1 and 11.2 below. (The proofs of these lemmas appeared later in 
[15] in Lemmas 3.1 and 39.1.) The first lemma for A = 0  has a long history. It 
was first proved for minimal parabolics in [19]. Arthur in his thesis [1] gave a 
completely different proof, which Harish-Chandra was able to extend to the case 
at hand. 

Lemma 11.1. Suppose P = M A N  has dim A = 1, and suppose A is imaginary. Then 
Up(~,A, .) is irreducible unless A--0, #~(0)>0, IW(a)[=2, and s[~] =[~] ,  where s 
is the nontrivial element of W(a). 12 

Lemma 11.2. Suppose P = M A N  has d i m A = l .  I f  p~(0)=0, then [W(a)t=2 and 
s [~]-- [~] ,  where s is the nontrivial element in W(o). 12 

Lemma 11.3. Let P = M A N  and P ' = M A N '  be parabolic subgroups such that 
Ve iN '=  Vtt~) for a reduced a-root ft. I f  the root reflection p~ exists in W(a), then 
p ,=p~lpp~.  

Proof We are in the situation of Proposition 1.2. The problem is to show that 
the only P-positive roots ? such that Pa 7 is P-negative are the multiples of ft. By 
Proposition 1.2 there exists a Pp-simple o f  root ~t such that a]a = fl" Let all the Pp- 
simple roots be 

(XI~ . . .  ~ 0~k~ 0~ 1~1, " ' "  ~ ~ l~  

where /q  . . . .  ,/h are simple for aM. Choose by Lemma 8 of [17] an element w of 
W(%) such that wla=Pr Then w fixes kerfl in o and must be the product of 
reflections in W(%) fixing kerfl, by Chevalley's Lemma. Each such reflection 
must then carry each ~j into the sum of ~j and a linear combination of the roots 
~,/~x . . . .  ,~ ,  by the formula for a reflection, and then w must have the same 
property. Thus 

w ( y  c~, +c~ + Y c )~)= y c,~ +d~ + Y d~j .  

If one of the ci's is >0,  the ap-rOot on the right is >0.  Thus the only positive a- 
roots that can go into negative a-roots under w are the multiples of ft. 

Lemma 11.4. Let P = M A N  and P ' = M A N '  be parabolic subgroups such that 
Vt~N'= V~a) for a reduced a-root ft. I f /~,a(A]o~)=0 with A imaginary, then the 

12 [~] denotes the equivalence class of ~. 
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root reflection p~ exists in W(a) and is such that pt~[~]=[~], p~A=A,  and 
4(P~)~e(Pp, 4, A) is scalar. 

Proof. Let #r By Proposition 10.2(a), A[,~ must be real. On the 
other hand, A is by assumption imaginary, and we conclude A[,~ =0. Hence 
#e,~(0)=0. By Lemma 11.2, p# exists in W(a~), hence in W(a), and it fixes [4]. 
Since A[,(~ =0, p~A=A.  By Lemma 11.1, Ue~(4,0, .) is irreducible. Then Corol- 
lary 8.7 shows that 

4(pflz*ce~),(p~,~,0)=cI with [c[=l .  

By abuse of notation, let us write pa for a representative of the Weyl group 
element p~ within K ~a~. For k in K, we have 

cR(p~)- i f ( k )=  c f ( k p ;  1) = cf~ (p~ ') 
(0) = 4 (p~) ~ ( p ~ ,  4, 0)f~(ph- ~) 

= 4(Pa)R(P~)SC(P~a~:P ~): 4 : 0)fdph- 1) 

= ~ (Pt~) ?la)(/sto) : pr : ~ : A [,coO- 1A(p~ 1 p@pr : p~O~: ~ : A I,,a,)f~(1) 

= ~(Pa) Y(P':P : ~ : A)-  1A(p , :p  : ~ : A)f(k)  

by Proposition 7.5 

=4(pa)~C(p~lppa:P:4:A) f (k)  by Lemma 11.3. 

Multiplying through on the left by R(pp) and commuting R(pa) past 4(Pa), we 
obtain 

4(Ptj)~lp(Pp : 4 : A) f (k) = c f (k), 
as required. 

Lemma 11.5. Suppose e is a a-root such that #~,~(AI,,~)=0, where A is imaginary. 
Then the root reflection p~ exists in W(a) and is such that P~[4] = [4], PeA = A, and 
4(p~)zgp(p~, 4, A) is scalar for every choice of  P. 

Proof. First suppose that p~ exists in W(a)  and fixes [4] and A. Fix P, let P' 
=p~iPp~, and choose a minimal string from P to P', say P=Po, P~ . . . . .  P,=P'.  
Write, by Lemma 8.3(ii), 

d(P' :P:4:A)=~e/(P~:P~_I:4:A) . . . . .~c(PI:Po:4:A ). (11.1) 

Multiplying ~ by a scalar if necessary, we may assume that e is P-positive and 
reduced. According to Theorem 7.6(i) the reduced a-roots ~,~ such that V~_ ~ n N i 
= V t~') are those such that g ~ , _ f i n  n, and e satisfies this condition. Hence one 
factor on the right of (11.1), say 

~4( e , :P~_ ,  : 4 : A), 

has V~_ 1 n N~ = V ~ ~. By Lemma 11.3, P~ = p ~- 1 p~_ 1 P,. Since #~, ~(A [,~o~) = 0, Lem- 
ma 11.4 yields (with w denoting a representative of p~ in NK(a)) 

4(w)R(w)ed(w-lPi_lw:Pi_t:~:A)=~(w)sCp,_,(w,~,A)=cI  (11.2) 
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for a scalar c. With our given parabolic P, we then have 

4(W)dp(W, 4, A) 
=~(w)R(w)N(w-X  p w : P : 4 : A )  

= 4 (w) R (w) d (w- 1 p w : w -  1 Pi- 1 w : 4 : A) R (w)- 1 4 (w)- 1 

�9 ~ ( w ) R ( w ) d ( w - l P i _ l W : P i _ l  : 4 : A ) "  d ( P / _  1 : P : 4 : A )  

by Theorem 8.4 

= c ~ ( w ) d ( P : P i _ l  :w4:wA)r  - l  �9 ~ ( P i - a  : P : 4 : A )  

by (11.2) and Proposition 8.5(iii) 

= c J~'(P : Pi_ 1:4, wA).  ~ (P i -1  : P : 4 : A )  

by Proposition 8.5(ii) 

= c I by Theorem 8.4 since wA = A. 

We still have to prove that p~ exists in W(a) and fixes [4] and A. In view of 
Lemma 11.4, we will be done if we can produce P1 = M A N 1  and P z = M A N 2  
with V 1 c~N 2 = V r Choose a basis ]al, ..., Pk for the dual of aM, adjoin e, and 
extend to a basis for the dual of ap by adjoining ~1, -.-, ~j. Write this basis in the 
order 

CZl, . . . ,  ~Xj,/3, ]al ,  " " ,  ]ak, 

and use it to define positive a-roots; the N for this ordering will be denoted N 1 . 
It is easy to see that e is a simple a-root in this ordering. If instead we use the 
basis 

{Xl' " ' ' ,  ~j ,  - -~ ,  ]al ,  " ' ' ,  ]ak 

to define another ordering (with N group N2) , then N 1 and N 2 have the required 
properties. 

Lemma 11.6. I f  s is a member of W(a) that fixes [4] and A and satisfies 

]a s - , p s [ p ( 4  : A ) = O  

for an imaginary value of A, then there exists a P-positive a-root e such that the 
reflection p, exists in W(a) and fixes [4] and A, such that ~(p,)~Cp(p,, 4, A) is 
scalar, and such that se is P-negative�9 

Proof�9 Choose a minimal string from P to s - t p s ,  say P=Po,  P1, ..., P~ = s - l P s .  
We have 

# , - ,p , ip ( r  H ]ar f i  ]aPdp,_1(r 
/3 reduced j = 1 
fl>0 for P 
fl <O for s- l Ps 

by (10�9 and Theorem 7.6(i). Since each ~ function in question is holomorphic 
at A by Proposition 10.2(b), the hypothesis implies that there is a value of i with 

I~pdp,_l(4 : A)=O. 
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Letting e be the reduced P-positive root associated with this factor, we then have 
#~.~(AL,,~)=0. Since ~ is negative for s -~ Ps, we see that s~ is negative for P. By 
Lemma  11.5, p, exists in W(a), fixes [4] and A, and is such that 4(P,)~p(P~, 4, A) 
is scalar. 

w 12. Linear Independence Theorem 

For  this section we fix a cuspidal parabolic subgroup P = MAN, and we let ~ be 
a discrete series representation of M. The Basic Assumption of w is then 
satisfied. For  A imaginary, let 

W~.A={We W ( a ) l w [ 4 ] = [ ~ ]  and wA=A} .  

The goal of this section is to prove Theorem 12.1 below, which was announced 
in [23]. 

Theorem 12.1. For A o imaginary, let 

R'= {re W~,Aolm_,p,iA4 : Ao)+0}. 

Then the unitary operators 4(r)dp(r, 4, Ao) for r in R' are linearly independent. 

In this form, the theorem was announced in [23]. For  minimal P the result 
had already been obtained in connection with [21], and the idea behind the 
proof  is implicit in Lemma 64 of [20]. 

The idea is that the operators  in question are given in terms of distributions 
on K whose supports are filtered according to the complexity of the elements of 
R'. A linear relation among the operators then implies that the operator  with 
the largest support  makes no contribution and is absent. The result readily 
follows. 

The technical aspects of the proof  involve two ingredients. One is a de- 
scription, due to Borel and Tits, of the closure of a Bruhat MpApNp double coset 
in G. The other is an analysis of our intertwining operators on a larger domain 
of functions than the K-finite ones - large enough so that we can shape them to 
suit our needs and small enough so that we do not have to cope with questions 
of continuity of z* or its inverse. 13 

We begin with the result of Borel and Tits [4]. For  w in W(ap), let 

B(w) = MpAp Np w MpAeNp. (12.1) 1 * 

The Bruhat decomposit ion ' theorem says that the B(w), we W(ap), disjointly 
exhaust G. 

Theorem 12.2 (Borel and Tits). For w in W(%), the closure of B(w) is the union of 
B(w') for all w' in W(ap) described as follows: Fix a decomposition of w into the 

13 In [23] it was asserted that 0*) -1 is continuous. We have since realized that there is a gap in 
our argument. However, the proof of Theorem 12.1 that we give here will not require that we know 
this continuity. 
14 Of course, w should be replaced on the right by any of its representatives in NK(%). 
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minimal product of simple reflections; then w' can be any element obtained from w 
by deleting some subset of the factors of w. 

Before applying this result, we introduce some notation. For  t in W(ap), let 
l(t) be the length of t relative to N p = N N  M. This is the number of reduced Pp- 
positive ap-roots a such that t a is Pp-negative. For  w in W(a), define 

Iw[= max l(s~v), 
s e W ( a M )  

where # is any member of W(%) with w=v~la. Such an element # exists by 
Lemma 8 of [17], and s #  runs through all such choices as s runs through 
W(aM). For w in W(a), let 

C(w) = M A N  w MAN.  

Lemma 12.3. For w in W(a), C(w)= U B(s~). 
s e W(aM)  

Proof. We may choose ~ so that ~ -  1 fi > 0 for all aM-roots 5 > O. Then 

C(w)= M A N  Vv N 

= U MpAMNMSNMANwN 
s e  W(aM)  

by the Bruhat decomposition for M 

= U MpApNMSNMNVvN 
s e  W(aM)  

= U MpApNMSNNM fvN 
s e  W(aM)  

= 0 MpApN~Ns~vNMN 
s e  W(aM)  

since s N s - l  = N  and # - l  N u f v = N  u 

= U B(sO). 
s e W(a M) 

Lemma 12.4. I f  p and w are members of W(a) with [p[>twl and p in C(w), then p 
~ W .  

Proof. Choose p in W(%) with/31a=p and Ip[=l(/3). Then 

C(w)= [J B(s~v) by Lemmal2 .3  
s e W ( a M )  

= U (B(s~)~Jcertain B(t) with l(t)<l(s#)) 
se W(aM) 

by Theorem 12.2. 

If/~ is in C(w), t h e n / ~ = s #  for some s or I(ff)<l(sW) for some s. In the first case, 
we obtain p = w by restriction to a. In the second case, we have 

IPl = l (p) < l(s~v) ~ lwl, 
contradiction. So p = w. 
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Lemma 12.5. For A o imaginary if r is in R', then the normalizing factor for 
s$le(r, ~, A) is holomorphic and nonvanishing at A = A  o. 

Proof. The factor in question is 7 ( r - l P r : P :  ~ :A). By (10.4) and Proposition 
10.2(a), each/~r is holomorphic and nonvanishing at A o when/~ >0  and 
r/~<0. Hence each reciprocal r/~a~ has the same property, and so must each ~,~P) 
and the product 7(r- 1Pr : P : ~ : A). 

By Lemma 12.5 the linear independence theorem really concerns the un- 
normalized operators ~(r)Ap(r, ~,Ao). Instead of limiting ourselves to K-finite 
functions on K, we shall work with C ~ functions on K whose values lie in a 
finite-dimensional space of Kin-finite vectors in H r Let F' and F" be finite sets 
of Kin-types , and let E v, and Ev,, be the orthogonal projections onto the span of 
all functions of one of the Kin-types in F' and F", respectively. Imbed the K m- 
finite vectors for ~ in the Kin-finite vectors of a nonunitary principal series 
representation co of M, via a mapping l, and let E~, and E~,, be the correspond- 
ing projections for the space H~ defined in w 6. Let X and Y be the images of H r 
under E F, and Ev,, , and let C~ X) and C~ Y) be the spaces of smooth 
functions transforming under K m according to ~ and having values in X and Y, 

~ K  respectively. Let C~ (K, X') and C,, ( , Y') be the corresponding spaces for 09. 

Lemma 12.6. For r in R' there is an analytic family of  operators B(r : ~ : A) from 
C~ (K, X)  into C~ (K, Y) such that 

(a) the family is holomorphic in an open connected set containing A o and all 
values of A with ReA sufficiently far out in the positive Weft chamber 

(b) for Re A sufficiently far out in the positive Weft chamber, 

B(r : ~ :A) f (k )=  ~ e -(A+a)t'l(v) Ev,, ~(/~(v))- 1 Ev ' f ( k  to(v))dv 
V n r -  l N r  

(c) for A = A o 

B(r : ~ : Ao) f (k )  = Ev,, A (r- 1 p r : P : ~ : Ao) E F, f(k) .  

Proof. Let 

B(r : ~ : A )  f (k )  = l - 1 E,v, ' ( A  (r  - ~ P r" P : co : A )  (~ o E v, o f ) (k) ( ' ) )  (12.2 a) 

= z -  a E,v," (A ((r- 1 p r)p : Pp: a : A + Am)(z o E r, o f)( ')(1))(k "), (12.2 b) 

where co has parameters (a, A~t ). Here the variable �9 in (12.2a) is in Kvt, and the 
variables �9 in (12.2b) are in K and KM, respectively. 

First we check on, the continuity and analyticity. The map 
(f, A)--*B(r:~:A)f  is to be continuous from C~(K, X)x {A} into C~(K, Y) and 
is to be holomorphic in A for fixed f .  In (12.2b), we have maps 

f ~zo  EF,,o f =h (12.3a) 
and 

h~h( ' ) (1 )~A( ( r -~  Pr)p:Pp:a:A+AM)h( ' ) (1 )=n (12.3b) 
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and 
H-~ H (k . )= L(k) (12.3 c) 

and 

L(k)~E' r L(k)~  t - 1 E~, L(k). (12.3 d) 

a K Line (12.3a) represents a continuous map of C~(K, X) into Co, ( , X') since X 
and X' are finite-dimensional and z: X ~ X '  is therefore continuous. In (12.3b), 
the maps are evaluation at 1 followed by the intertwining operator for the 

a K minimal parabolic, and (12.3b) is continuous from Co, ( , X ) into C~(K, H ~) by 
Theorems 3.1 and 4.2, provided A is a regular value of the intertwining operator. 
In (12.3c), the variable �9 is in KM, and the map is continuous from C~(K, H ~) 
into C~(K,H~ Ca(KM, H")). Finally in (12.3d), the maps are the 
projection from C~ (K, Ho,) to C~ (K, Y') and the effect of ~- x, which is to carry 
C~(K,Y')  to C~(K,Y). These are continuous since Y and Y' are finite- 
dimensional and z-1 : y , ~  y has to be continuous. 

The above argument proves f -~B(r : ~ : A ) f  is continuous. To bring in A, we 
simply cross the map in (12.3a) and the first map in (12.3b) with the identity 
operator in A, and we use the joint properties of the second map of (12.3b) in 
the function and A given in Theorems 3.1 and 4.2. Then the joint continuity in 
(f, A) and the holomorphicity in A follow, but only for regular values A of the 
intertwining operator in (12.3b). 

The argument that B(r:~:A) is given by the integral formula for ReA 
sufficiently far out in the positive Weyl chamber is the argument of Theorem 6.6, 
except that the single E there is now replaced by two projections E v, and Er , .  

Now let us consider a value of A near A o for which the intertwining operator 
in (12.3b) is holomorphic. For K-finite f ,  the right side of (12.2a) is equal to 

E r , A ( r - I P r : P : ~ : A )  E F,f(k) 

by formula (6.6). Lemma 12.5 shows that this expression is regular at A = A  o. 
Therefore the expression in (12.3b) is regular for A = A  o on K-finite functions. 
By Lemma 4.3, the expression in (12.3b) remains regular for A = A  o when we 
pass to C a functions. This means that A = A  o is in the domain in which 
B(r:~:A) is holomorphic and provides a continuous operator. We have 

B(r: ~ :Ao)= Ev" A (r- 1 p r :P: ~ :A o)E F, 

on K-finite functions with both sides continuous on C~ (K, X). (The right side is 
a nonzero scalar times a unitary operator that commutes with translation by K 
and so is continuous on Ca.) Hence the two are equal on C~(K, X). 

Proof of Theorem 12.1. In view of Lemma 12.5, we are to show that 

c,r r A0)=0 
r e R '  

implies cr=O for all r. Pick representatives in NK(a ) for each r, calling them r 
also. Among all members r of R' with c~=0, let p be one with IP[ as large as 
possible. We shall derive a contradiction by producing a smooth function f so 
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4(w)Ap(w, 4, Ao)f(1)=0 
~(p)Ap(p, 4, Ao) f(1) +0.  
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when % 4:0 and w 4: p 

B(p:r  e-  ca +,jm~) E r  ' 4 (# (v))- a E r  q~ (p x (v)) F (19 x (v)) d v. 
Vcap- l Np  

By Lemma B.1 choose q~ at least to have the property that q~(p x(v)) has compact 
support. Then this integral provides its own analytic continuation, and Lemma 

Now we consider p. 
chamber, we have 

First, we claim that p is not in the closure of 

U wx(Vnw-XNW)KM (12.4) 
w r  

c,,v * O 

within G. Here x(-) is the K-component relative to G = K M A N .  In fact, 

wx(V c~ w- 1NW)KM~WtC( w- 1 NW) KM= x(Nw)K M ~ Nw M A N  M = C(w). 

Consequently if p were in the closure of (12.4), then p would be in C(w) for some 
w:l:p, and Lemma 12.4 and the maximality of IP[ would give a contradiction. 

Because of the result of the previous paragraph, we can choose a complex- 
valued Coo function on K/K M that vanishes on (12.4) but does not vanish at p; 
let q~o be its lift to K. 

Next, let X ~ H  r be a finite-dimensional subspace of the kind discussed 
before Lemma 12.6. Construct F o in C~(K,X)  such that F0(P)4:0. (To do so, 
choose a Coo function F~ from K into X that is sufficiently peaked at p, and set 

Fo(k)= I 4(kM)F,(kkM)dkM. 
KM 

Then this F o has the required properties.) Put F = q~o Fo, so that F is in C~ (K, X). 
Our function f will be f =  q~F, where q~ is a complex-valued right KM-invariant 
C oo function on K to be specified. 

Suppose w~p.  In the notation of Lemma 12.6 we have 

Er, Ap(w, 4, Ao) f (1)= B(w : 4 : Ao) f (w). (12.5) 

However, when k=w, the integral in (b) of Lemma 12.6 vanishes for ReA 
sufficiently far out in the positive Weyl chamber. Thus the analyticity asserted in 
the lemma implies that B(w, 4, Ao)f(w)=O, and (12.5) gives 

Er, Ae(w, 4, Ao) f (1 )=0 .  

This equality holds for all F", and thus 

~(w) ae(w, 4, Ao)f(1)=0.  

For Re A sufficiently far out in the positive Weyl 
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12.6 implies 

Ev"Ae(P, 3, Ao)f(1) = S e-tA~ r -1 go(px(v))F(p~c(v))dv. 
Vc~p- 1 Np  

Choose F"= F', and then 

EF,, ~ (/~(1))-~ F(p x(1)) = F(p) 4: 0. 

Then if we choose go to be sufficiently peaked about p so that all of the mass of 
go(px(v)) is concentrated near v=  1, we conclude that 

EF,,Ap(p, 3, Ao) f(1) 4: 0. 

This inequality persists if we remove EF,, , and thus we have 

~(P) Ae(P, 3, a o ) f ( 1 ) + 0 .  

This completes the proof of Theorem 12.1. 

Corollary 12.7. Suppose that ~ is an a-root such that p~ exists in W(a) and is in 
We.A, where A is imaginary. Then ~(p~)~cge(p~,~,A) is scalar if and only if 
#~, ~(AI.,,))= 0. 

Proof. When /~r the result is contained in Lemma 11.5. When 
#~,,(AI,(,~)*0, we shall apply Theorem 12.1. We cannot do so immediately 
because I%-,epde may have several factors, i.e., e may not be simple. We proceed 
as in the 19roof of Lemma 11.5. Forming a minimal string P=Po,  P1, ..., it,, 
=p~-lpp~ and decomposing d(p~-1Pp~ :P :~ :A)  accordingly, we find a factor 

d(P/ :  Pi_ 1 : ~ :A) 

in which V~_ x c~ N i = V (~). By Lemma 11.3, P~ = p~- a p~_ i P~- Here 

# p ;  , e , - t  p~lP,- ~ ( 3 : A)  = ltr , ( A  1.(~,) 4: 0, 

and p~ is in the set R' defined relative to P~_ a. Thus the unitary operator 

~(p,)slp,_ ~ (p,, ~, A) (12.6) 

is not scalar. The computation in the middle of the proof of Lemma 11.5 shows 
that 

(P,) ~r 3, A) = ~ (P : P~_ x : r : A). r (p~) ~r (p,, 3, A) 

�9 ~r : P : ~ : A ) .  

That is, the operator of interest is the conjugate of the nonscalar operator (12.6) 
by the unitary operator ~t(p  : Pi- 1 : ~ : A) and hence is nonscalar. 

Corollary 12.8. Suppose P = M A N  has dimension A = I ,  and suppose A is imag- 
inary. Then Ue(~, A, ") is reducible if A=0,  #~(0)>0, IW(a)[=2, and s [~ ]= [~ ] ,  
where s is the nontrivial element of  W(a). 

Remark�9 This is a converse to Lemma 11.1. 
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Proof. By Corollary 12.7, the intertwining operator corresponding to the ele- 
ment s (which is a reflection in this case) is not scalar and therefore exhibits the 
reducibility. 

w 13. R Group and the Commuting Algebra 

Throughout  this section ~ will denote a discrete series representation of M, and 
A will be imaginary-valued on a. The parabolic subgroup P = M A N  will be 
fixed. Writing [~] for the class of 4, we recall the definition 

W~,A= {SE W(a)[S[#] =[~] and sA=A}. 

We shall describe below a decomposition of WCA as a semidirect product Wr A 
= Wr162 where Wr is normal and is a Weyl group. The group Rr A will turn 
out to coincide with the set R' of Theorem 12.1, and the operators 
r ~, A), for r in Rr will turn out to be a linear basis for the commuting 
algebra c~e(#, A) of Ue(~, A~ .). This result is given here as Theorem 13.4 and was 
announced in [23]. 

Lemma 13.1. Let  w a and w 2 be representatives in Nx(a  ) o f  members o f  WCA. 

(a) I f  w 1 and w z are in a cyclic extension o f  K M and i f  ~(wl) and ~(w2) are 
compatibly defined, then 

r r A) ~(wg~edw2, ~, A)= r w2)ddw, w2, r A). 

(b) Whether or not w 1 and w 2 are in a cyclic extension of  KM, 

r l) ddw~, ~, A) ~(w2)~e(w~, ~, A)= c r l w2)de(w , w2, r A) 

with c a constant satisfying Icl = 1 and given by 

~(wl w2 )-  1 r ) r ) = cI .  

Remarks.  Without further proof, it might not be possible to choose the constant 
c in (b) to be I, because ~(w~ w2) is determined up to an n th root of unity if w~ w 2 
has order n modulo KM. We shall take up this matter further in w 14. 

Proof. We shall drop A from the notation since it is unaffected throughout. We 
have 

dp(wl w~, ~)-~ ~(w, w9 -~ ~(w0dp(w~, ~)~(wgddw2, ~) 

= ~6,(w, w2, ~)-~ ~(w, wg- ~ r 4(w9 alp(w,, w~ r ~r 4) 

=sg~(w, w~, 4) -~ r w g - '  ~(wO~(wgddw~ w~, ~). 

Then (a) is immediate. For  (b), we need only prove 

~(wl w2 )-  1 ~(wl ) {(w2 ) = c I, 
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and we do this by Schur's Lemma, showing commutativity with ~(m) for m in M. 
Thus we compute step by step that 

~(wl w2)- 1 ~(wl) ~(w2) ~(m) ~(w2)- ~ ~(w0-1 ~(wl w~)= ~(m), 

and the lemma follows. 

In order to proceed, we need the main theorem from [17]. A root 0~ of a v can 
be written as ~ = 13 + 7, where/3 is the projection on a' and 7 is the projection on 
a~t. By Lemma 9a of [17], ~ = f l - ~  is again an ap-rOot. We say that a is useful if 
2 (~, ~)/[:t[2 :~ + 1, and a root of a is useful if it is the nonzero restriction to a of a 
useful root of ap. 

Theorem 13.2. The useful roots of a form a possibly nonreduced root system A o in 
a subspace of a'. A reflection pp in a root of a is in W(a) / f  and only if t/3 is useful 
for some t >0, if and only i f /3 itself is useful in case 9 has no split G 2 factors. 
Moreover, W(a) coincides with the Weft group of A o. 

We come to the fundamental definitions. We would like to define 

A'= {fl= a-root I/~,~(AI~,~,) =0}. (13.1) 

This formula will suffice as definition unless g has a split G 2 factor. In that case, 
we include in the definition the additional assumption that /3 is useful in the 
sense described above; Lemma 11.5 and Theorem 13.2 then assure us that all 
members of A' are useful in every case. Lemma 11.5 tells us also that if/3 is in A', 
then the reflection pa is in W~, a. Bringing in Corollary 12.7, we obtain an 
alternate characterization of A' as 

A'={/3=useful a-rootlpa~ W~, a and r ~,A) is scalar}. (13.2) 

We shall see in Lemma 13.3 that A' is a (possibly nonreduced) root system that 
is mapped into itself by every element of We, A" Thus we can define groups W~' a 
and Rr by 

W~',a = Weyl group of A'~  W(a) 
and 

Rr for every /3>0 in A'}. 

Lemma 13.3. I f  A' is nonempty, A' is a (possibly nonreduced) root system in a 
subspace of a', and We, A carries A' into itself. Consequently W~',a is a normal 
subgroup of W~,a, and R~, a is a group. 

Proof. By (13.2), A' is contained in the root  system A o of Theorem 13.2. 
Consequently A' is a root system if it is closed under its own reflections. Let/3 
and e be in A'. In view of (13.2), we are to show that the operator for PvotJ is 
scalar if the operators for pa and p~ are. But pwa=p,  pap~, and so this result 
follows from Lemma 13.1. 
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More generally if s is in We, a and fl is in A', then we can apply (13.2) and 
Lemma 13.1 to p~p=spps -1 to see that sfl is in A'. The rest follows immediately. 

Theorem 13.4. I,V~, a is the semidirect product We, a = We',aRe, a with W~',A normal. 
This decomposition has the following properties: 

(i) W~',a is the set of s in We, a for which 4(S)dp(S, 4, A) is scalar. 

(ii) R~, a is the set of r in W~, a for which #r-lprle(~ :A)@0. 

(iii) The unitary operators 4(r)~r 4, A) for r in Re, a are linearly independent 
and span the commuting algebra c~,(4 , A) of Up(4, A, "). 

(iv) The dimension of the commuting algebra of Ue(4, A , . )  is given by 

dim c~p(~, h)=lR~,al=l{r~ Wr :A)#0}I.  

Proof. The first step is to decompose every element of W~, a into the product of a 
member of R~, a by a member of W~',A. Let C § be the positive Weyl chamber of 
A' in the subspace of a spanned by vectors Ha, fleA'.  Let w be given in W~, A. 
Since w A ' c  A', w carries C § into another chamber w C +. By the transitivity of a 
genuine Weyl group on its chambers, we can find w' in the Weyl group WC',A of 
A' such that w'w C § = C § Then w'w is in Re, A and w = (w')-l(w' w) exhibits w as 
the required product. 

Now VC~',a is normal by Lemma 13.3, and it leads to scalar operators by 
(13.2) and Lemma 13.1. Lemma 11.6 implies that no element r of Re, A can have 
p,-~F,ip(4:A)=0. That is, R~,zl is contained in R', in the notation of Theorem 
12.1. By that theorem, the operators corresponding to R~, a are linearly inde- 
pendent. 

If w is in R', we can write w = w ' r  with w' in WC'A and r in R,, A. Applying 
Lemma 13.1, we see that the operator for w is a scalar times the operator for r. 
Since Theorem 12.1 says that the operators for R' are linearly independent, we 
conclude Rr This proves (ii) and the second equality in (iv). 

The same argument applied to a general element of W~, A shows that scalar 
operators come only from W~',A. (This proves (i).) It shows also that the span of 
the operators for Re, a is the same as that for We, a, which proves part of (iii). 
Obviously Wc',.i~Rc, a= {1}, and so we have a semidirect product. By Corollary 
9.8 to Harish-Chandra's completeness theorem, the span of the operators 
for Wr is all of c~e(4,A ). This proves the remaining part of (iii), and the first 
equality in (iv) follows from it. 

w 14. Reduction Lemmas 

Fix a cuspidal parabolic subgroup P = M A N ,  let 4 be a discrete series repre- 
sentation of M, and let A be an imaginary-valued linear functional on a. Under 
some additional assumptions on G, it will be shown in a later paper [37] that 
the group Re, a of w is a finite direct sum of copies of the two-element group 
Z 2. Briefly we write R r  2 for this conclusion. (In fact, the number of 
factors Z 2 will be shown not to exceed dimA.) In Lemma 14.1 we shall show 
that it suffices to prove this result for A = 0. 
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For A = 0, the proof is long and ultimately reduces to the case that G is split 
over IR and the parabolic subgroup is minimal. This case will be treated in w 15, 
but the reduction is deferred to [371. 

Even after it is shown that R ~ , a = ~ Z 2 ,  it does not follow directly that the 
intertwining operators ((r)dp(r ,  ~, A), r~R, commute and hence that the com- 
muting algebra ~p(~, A) is commutative. A hint of the difficulty is given in 
Lemma 13.1(b). We shall isolate the problem in Lemma 14.2 but shall defer the 
resolution of the problem to [371 . 

Lemmal4.1 .  I f  R~,o=~-~Z 2 and A o is imaginary, then R~,ao=XTZ2 and 
IRr <IRr 

Proof. Let w be in Nr(a), let I-w] be its class in W(a), and suppose that [w] is in 
W~,ao and [wl has order k. The set of A for which w A = A  is connected since 
such A form a vector subspace. Form ~(w)~Cv(w, ~, A) for these A. By Lemma 
13.1(a), 

[~ (w)~r ~, A)1/= ~(wt)~Ce(w z, ~, A) (14.1) 

for each I. Consider the restriction of 4(w)dp(w, ~, A) to a large finite-dimen- 
sional sum of K-spaces. Equation (14.1) with l=k says [4(w)de(w, ~,A)lk=I. 
Hence there are only finitely many possibilities for the characteristic polynomial 
of the unitary operator ~(w)dp(w, ~,A), and it follows that the characteristic 
polynomial of this operator must be independent of A. In particular, the order of 
the operator is independent of A. Taking A = 0  and applying Theorem 12.4 and 
the assumption that R~, o = ~  712, we see from Lemma 13.1(a) that 

[~(w) alp(w, 4, 0)12 

is scalar. Hence [4(w)~Cp(w, 4, Ao)l 2 is scalar. If [w] is in R~,ao, this contradicts 
Theorem 12.4(iii) unless [wl 2 = 1. Thus every element in R~.ao has order at most 
2, and it follows that R r  2. 

The same argument with characteristic polynomials shows that 
4(w)de(w, r 0) is nonscalar for each w=~ 1 in Rr By Lemma 13.1(b), the R~, o 
component of such an element w must be nontrivial in the decomposition W~, 0 
= W~',oRr o. However, the map of Rr into R~, o defined by inclusion into I,V~, o 
followed by projection into R~, o is a group homomorphism. Thus this map is 
one-one, and IR~,ao I < IR~, ol. 

Lemma 14.2. Under the assumption that A is imaginary and Re, a is abelian, the 
following conditions are equivalent: 

(a) The commuting algebra c~e(r A) of Ue(~, A, ") is commutative. 
(b) For every pair [r I and Is1 in a set of generators of R~,a, 

4(r) 4(s) ~(r)- 1 ~(s)- 1 = 4(rsr- i s -  1). 

(c) The representation ~ extends to a representation, still on H r of the group 
generated by M and a representative in Nr(a) for each member of R~. a. 

Proof. First we show (a),~(b). Let [r I and Is1 be in R~, a. By Lemma 13.1 we 
have 

(r) ~r ~, A) ~ (s) ~ ( s ,  ~, A) = c 4 (r s) sCp(r s, ~, A), 
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where cI = r r An analogous formula holds for sr, with a constant d 
on the right. Now rs and sr are representatives of the same member of R~, A 
since Re, a is abelian, and so the corresponding operators are the same. Thus the 
operators for r and s commute if and only if c = d, i.e., if and only if 

(r s)- 1 ~ (r) ~ (s) = ~ (s r)- 1 ~ (s) ~ (r). 

Multiplying through, we obtain the condition 

~(r) ~(s) ~(r)- 1 ~(S)-- 1 = ~(rs )  ~ ( s r ) -  1. 

On the right side, rs and sr are in the same cyclic extension of M, and so the 
operator on the right equals ~(rsr-1 s-1). Hence (a)..~(b). 

Obviously (c) implies (b). To see that (b) implies (c), we invoke Lemma 59 of 
[20]. We know from Lemma 7.9 that we can handle a cyclic extension of M. To 
handle an extension by a direct sum of cyclic groups, Lemma 59 says that it is 
enough to verify the relations in M' that correspond to the commutativity of 
R~, a. These are the relations of (b). Thus (b) and (c) are equivalent. 

w 15. Structure of R-group, Split Minimal Case 

The theorem in this section was announced in [21]. As will be seen in [37], 
the structure theorem for R~, a in the general case is reduced to the special case 
considered here. 

Theorem 15.1. Let G be a connected split semisimple Lie group of matrices, and let 
M A N  be a minimal parabolic subgroup. In this case R~, a is always ~ 2~ 2. 

Proof. By Lemma 14.1, we may take A=0.  For this G and for the minimal 
parabolic, a is a Cartan subalgebra. Also M is a finite abelian group and is 
generated by the elements 

7~=exp2ni  [~1-2 H~ 

for all a-roots ~. Each 7~ has order a (mos t  2. Direct computation gives 

PpT~P~ 1 = ~pa=  ~ <~,p>/l~l 2 

Let A be the set of roots. For a minimal parabolic all roots are useful. For �9 in 
A, g(~) is isomorphic with sl(2, IR) because g is split, and the element ~ is the 

o f - ( - -1  '~ - u ~ under the corresponding mapping of SL(2,~, .) into G. image 
\ O  -- /1  

Within SL(2, F,.) a representation (=  character) a of M has 

(o17) a 1 = +1 if and only i f /~(0)=0  

( O  1 ? ) = - 1  i f a n d o n l y i f / ~ , ( 0 ) . 0 ,  
a 1 
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as is well known (see, e.g., p. 544 of [-20]). By (13.1), 

In 
preserves A', then w preserves also its complement, and we have 

Thus w~=~.  A corollary of (15.1) is that 

Re, o=  {weW(a)lwA '+ =A'+}, 

where A '+ denotes the set of positive elements in A'. 
We shall introduce a dual situation. We associate to the data 

(g split, a most noncompact Cartan subalgebra, A +, ~ on M) 

a set of data 

A'= {~1 ~(Y,)= + 1}. 
We shall show that 

W~,o = {weW(a)lw A' =A'}. (15.1) 

fact, each member of W~, o preserves A' by Lemma 13.3. Conversely, if w 

(15.2) 

(g v with rank g v = rank k v compact Cartan subalgebra D, 

(A v)+, Cartan involution), 

as follows: (g v )e is a complex semisimple Lie algebra whose Cartan matrix is the 
transpose of the Cartan matrix for g. 15 We single out a Cartan subalgebra [ r of 
(g v)r and a positive system (A v)+ of roots, and we form in the standard way 16 a 
compact form u of (gv)e. Let D = u n t )  e. The simple roots in g and (gv)e 
correspond, and the Weyl groups correspond. The correspondence of simple 
roots extends to a correspondence e--,e v of roots via the Weyl group action, not 
via addition. 

We shall use ~ to isolate a real form 9 ~ of (gV)e. To do so, we designate a 
simple root ~ v as noncompact if ~(y~)= - 1, otherwise compact. Choose H o in b e 
such that 

f l  if ~v is a simple root designated noncompact,  

(H~ = , 0  if e ~ is a simple root  designated compact, 

and define O=Ad(expniHo). Then 0 is an involution of (gv)c leaving u stable. 
Consequently if we define 

" = u n ( + 1 eigenspace of 0 in (g ~ )c) 

p v = i u n ( - 1 eigenspace of 0 in (g ~)c) 

gV=fv  +pV, 

15 For example, B. leads to C,, and vice-versa. 
t6 See 1-36], page 155. 
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then gv is a real form of (9 v)r with Cartan decomposition 9 ~ = t~ ~ |  ~. Clearly 
b is in 1, and thus I) is a compact Cartan subalgebra of g v. 

Since I] is a compact Cartan subalgebra, we have a standard notion of 
compact and noncompact roots, and we can check readily for simple roots that 
this notion coincides with the one above used to define O. 

We shall show that a general root :~ is compact if and only if ~(~,)= + 1. To 
do so, we write ~ = p ~ . . . p ~ e  with fit . . . .  ,ft,, ~ simple and with n as small as 
possible, and we proceed by induction on n. The case n = 0  was noted in the 
previous paragraph. Thus let ~ =pa 6 and suppose it is known that 

6 ~ compact -:~ r + 1 

We compare 

with 

and fl~ compact ~ ~(7a)= + 1. 

c<v =,$v 2(<$",/7" >/1,, 2(,~,/7>/7,, 
_ I /TVff  = , $ v  I,$1 ~ (15 .3)  

~(Y~.) = ~ (Tv,~<~)--- ~ (')'<0 ~(7p 20'tl>/l<~12. (15.4) 

If flv is compact, (15.3) says ~v and c5 v are the same type, compact or 
noncompact, and (15.4) says r = ~(7~). If fly is noncompact,  (15.3) says ~ and 
6 ~- are of the same type if and only if 2(6,/~>/I,~12 is even, and (15.4) says ~(Y~) 
= ~(ya) if and only if 2(5, fl)/[,Sl 2 is even. The assertion follows. 

Thus we have 
(A') ~ = {compact roots}. (15.5) 

Let s be in W~,0, regard W(a) also as the complex Weyl group of (9~) C, and let 3 
be a representative of s in the complex adjoint group (G v)r we may assume that 
g is in the compact form U. Then (15.1) and the fact that the correspondence 
~--*~ is implemented by the action of the Weyl group together mean that 

Ad(~) (~v)r v)r 

Since ~ is in U, g U g - t = U .  Thus 

Ad (g) [ v = A d  (g)(u ~ (t~ ~ )r u n (f v )r f 

and Ad (g) normalizes I v. Similarly Ad (g) normalizes p v and so it normalizes g v. 
By Proposition 2 of Kostant-Rallis [27], Ad(g 2) is in Ad(K~). In other words, s 2 
is in the Weyl group generated by reflections in the compact roots. By (15.5), this 
means s 2 is in We', 0- 

Applying this conclusion to s in Re, o, we have 

Hence every element of Rr has order at most two, and consequently Re, o 
=~7Z 2. 
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IlL Complementary Series 

w 16. Existence 

Under the hypotheses given in part I for G, R and r we say that Up(r A, ") is in 
the complementary series if its K-finite vectors possess a nontrivial semidefinite 
Hermitian inner product with respect to which K acts by unitary operators and 
g acts by skew-Hermitian operators. If s is an element of order 2 in W(a) that 
fixes 4, then Corollary 8.7 says that 

[~(s) alp(s, ~, A)]* = ~(S) dp(S, ~, - s~ ) .  

Thus when s A =  - A ,  the form 

( f ,  g) = (~ (s)alp(S, ~, A)f, g)L2tK ) 

is Hermitian, and it is shown in Lemma 62 of [20] that it possesses the correct 
invariance properties. The question is whether the form is semidefinite. 

We shall not attempt a comprehensive answer to this question now but shall 
be content with a general result that illustrates a method. 

Lemma 16.1. Suppose P = M A N  is a cuspidal parabolic subgroup and ~ is a 
discrete series representation of M. I f  ~ imbeds in the nonunitary principal series 
representation of M with parameters (tr, Au) and if G O has a faithful matrix 
representation, then 

2 (A~ ,~ )  1 

for every %-root ~. 

Proof. Since P is cuspidal, Lemma 4 of [17] shows that aM has an orthogonal 
basis of roots 6 v These roots may be taken to be "inessential" in the nomencla- 
ture of that paper; this means that if a M is extended to a Cartan subalgebra of m 
and if each 6i is extended to be 0 on the orthogonal complement of aM, then the 
extended ~ is a root relative to the Cartan subalgebra. 

Since G o (and therefore M0) has a faithful matrix representation, the parame- 
ter of the infinitesimal character of r is algebraically integral, by [11]. This 
parameter is A-  + p -  + A M, where A-  + p -  is a part corresponding to tr that is 
in the orthogonal complement of a~. Therefore 

By Parseval's theorem, 

and therefore 

2(AM' fil)~TZ for all i. 
i6 12 

(AM' 6i5 Ji, 
A u = ~  l~il2 

2(Au,  c~) v ( A M ,  cSi5 2(fil, oe5 1 z 

- , -  i ,1 �9 



80 A.W. Knapp and E.M. Stein 

Theorem 16.2. Under the assumptions on G in w let P = M A N  be a cuspidal 
parabolic subgroup, let ~ be a discrete series representation of M, and suppose 
Wr is not the one-element group. I f  s is any element of order 2 in W~,o, then every 
complex A that is not purely imaginary and satisfies 

(i) s a = - A  
<A, fl> 

(ii) Ke t - T ~  <cr for every a-root fl is such that Up(r is in the 

complementary series. Here cr is a positive constant depending on ~. I f  G o has a 
faithful matrix representation, the number cr can be taken to be 1/4, independently 
ofr 

Remarks. (a) W~'0 is a Weyl group; if it is nontrivial, it must contain elements of 
order 2. 

(b) For a minimal parabolic when G o is a matrix group, cr can be taken to 
be 1/2, as will be apparent from the proof; 1/2 is the best possible universal 
constant, as is shown by SL(2, F,). 

(c) This theorem was announced in [23]. For earlier results in the direction 
of this theorem, see [26], Theorems 8 and 9 of [20], and Theorem 13 of [12]. 

Proof. By the techniques of [20], it is enough to show that the unnormalized 
intertwining operator 

A(s-  1Ps :P : ~ : A) (16.1) 

is holomorphic in the region 

<A,#> 
0 <  t~e r - 7 ~  <cr (16.2) 

and that t l ( s - 1 P s : P : { : A )  has no singularities or zeros in this region. 
To see that (16.1) is holomorphic in the region (16.2), we use Theorem 6.6 

and also examine the proof of that theorem. Singularities of the operator can 
occur only when there is some fl such that 

2<A' f l ) eZ  +di({) ' 
I:12 

where d~({)= --2<AM,~>/la[ 2 for an %-root ~ whose restriction to a is ft. For a 
suitable choice of c~, there are no singularities in (16.2). If Go is a matrix group, 
Lemma 16.1 says di({ ) is in �89 Thus the condition is that 

2<A'fl>e~Z. 

Here t~12/lfl[ 2 is one of the numbers i, 2, 4, or 4/3, and so singularities can occur 
only when 

1 2 2<A'fl>E~Z or Z or 227 or ~Z.  

Therefore ce can be taken to be 1/4. 
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Next, we deal with q. The singularities of ~/can arise only from singularities 
of one or another unnormalized intertwining operator, and there are none in the 
region (16.2). 

As for the zeros of ~/, the question is one of singularities of Plancherel factors. 
By Proposition 10.2(c) and formula (10.4), we are to examine the singularities of 

#,,~((A + AM)to~=~)= #~,~ (( A + An" c~) cQ 

for every reduced %-root c~ that does not vanish identically on a. A Plancherel 
factor for a real-rank one group gets its singularities (poles) only from a factor of 
tangent or cotangent. Letting p and q be the dimensions of g~ and g2~, 
respectively, we are to look at singularities of 

tan�89 or cot�89 if q = 0  
or  

tan�88 or cot�88 if q4:0. 

Here z is a parameter such that z =  1 corresponds to p(')=�89 (See w of 
[20].) The singularities are all contained in the set of z's that are integral 
multiplies of (p + 2q)-1, which corresponds to the set of multiples of a/2. Thus 
the singularities of/t~,, are limited to those A for which 

(A+AM,~) 1 
1~12 ~7Z,  

and this is the same set as before for the intertwining operator. Thus the q 
function has no zeros in the region (16.2). 

Appendix A. Proof of Proposition 1.2 

The Lie algebras n + n M and n '+  n M are the sums of the root spaces for positive 
%-roots in two different orderings, and there exists a member w of the Weyl 
group W(%) such that w ( n ' + n M ) = n + n  M. Let positivity of a-roots be defined 
relative to n + rtM. Without loss of generality, we may assume fl is reduced. Then 
V c~ N' = V ~e) implies 

n= 2 g,+ Z 9co (A.1) 
)'>0 c>1 
~,*c# 

and 

n '=  E 9r + E g-,a" (A.2) 
~>0 c ~ 1  

We claim that fl cannot be decomposed as the sum of positive a-roots fl=fll 
+f12, i.e., fl is simple. Assuming the contrary let ~1 and a2 be %-roots with ~ql~ 
= i l l  and ~2[a=f12, and write a 1 = i l l  +#1, ~ 2 = f l z + / t v  Since fll *cfl with c_>_ 1, 
the %-root space g,, must be included in the first term of (A.1), and similarly for 
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g~. Thus g~x and g~2 are in n'. Since w carries n' into rt+rtM, it follows that 

w(fl l+/~a)>0 and w(82+#2)>0.  

If s is in W(aM), then s~ 1 =81 + s P l  is also in rt', and similarly for s~ 2. Hence 

w(81+sl.q)>O and w(82+s#2)>O, seW(aM). 

Summing over s, we obtain w81 > 0  and w 8 2 > 0  and therefore w S >0 .  Let ~ = 8  
+/~ be an %-root with ~1,=8. Applying s in W(aM) and summing over s in 
W(au), we see from wS>O that w(8+slO>O for some s in W(aM). But 9-(a+*u) 
is contained in the second term of n' in (A.2), and w carries n' into n + riM, SO 
that - -w(8+ s#)>0 .  This is a contradiction, and we conclude that 8 is simple. 

Let ~ be the least ap-root with ~tl, = 8- We show ct is simple. Assuming the 
contrary, write ~=~1 + %  with ct I and ~2 positive. Then ~1 and ~2 cannot both 
have nonzero restrictions to a, by what was shown in the previous paragraph. 
Thus assume ~21,=0. Then ~1 is smaller than ~ and has ~1[a=8, contradiction. 
We conclude that ~ is a simple %-root. 

The simple aM-roots/x~ . . . .  , #k are simple for %, and thus ~, #1 . . . . .  #k are all 
simple %-roots. From this set of simple %-roots, we can form a new parabolic 
subgroup M*A*N* containing MAN. Applying (1.11) twice, first to the para- 
bolic M*A*N* of G and then to the parabolic MA(a)N(a) of M*, we obtain 

pt,= p* + pM. = p* + p(a) + plvt. 

Evaluation of both sides on H a completes the proof  of Proposition 1.2. 

Appendix B. Further Property of the )/Function 

We give here a further property of r/~(z) that could have been included in 
Proposition 7.4 but for the length of its proof. We require a lemma. 

Lemma B.1. Let MAN and MAN'  be associated parabolic subgroups. I f  q7 is a 
C ~ function on K/K M that is supported in a sufficiently small neighborhood of the 
identity coset, then r is a well-defined function of compact support in V ~ N'. 

Proof. The ambiguity with x(v)p(v) is with elements of KM; since q~ is right K M- 
invariant, q~(x(v)) is well-defined. Since N' is closed, it is enough to find that 
q)(x(v)) has compact support in V. Now veV--,K(v)K M is a smooth map such that 

f(k) d k = ~f(x(v)) e -  2ppHl,(V)d v, 
K/KM V 

which says that exp{-2ppHe(v)} is the Jacobian determinant. Moreover, the 
map is one-one since V n M A N =  {1}. Hence the image, all x(v)KM, is open and 
the inverse map is smooth onto V. The result follows. 

Proposition B.2. Let dimA = 1 and let P=MAN.  Then the function rl~(z ) defined 
in Proposition 7.4 is nowhere vanishing for z imaginary. 
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Proof. Suppose qr with z o imaginary. As in the proof of 
Proposition 7.4(c), this means that A(P:P: ( :Zope )  is the 0 operator on K-finite 
functions. To show that this is impossible, we shall give a simplified variant of 
the argument in w We introduce again the notation that follows Lemma 12.5: 

is imbedded infinitesimally in ~o, and there are projections E F, and E~,, in H e 
onto finite-dimensional subspaces X and Y 

We restate and reprove Lemma 12.6, replacing r - 1 P r  by P and r - t  Nr  by V 
throughout. Call the analytic family B(~ :A)f(k). To apply this lemma, we 
proceed as in the proof of Theorem 12.1. Construct F in C~ ~ (K, X)wi th  F(1)~e 0. 
Consider the function f =  tpF, where tp is a complex-valued right KM-invariant 
C ~ function on K to be specified. 

For A =zpe  and Rez sufficiently large, we have 

B(~ : A) f (1)= ~ e -C1 + ~)m~) Ev.  ~(#(v))-1 EF" q~(x(v)) F Oc(v)) d v. 
v 

By Lemma B.1 choose tp at least to have the property that rp(x(v)) has compact 
support. Then this integral provides its own analytic continuation, and our 
variant of Lemma 12.6 implies 

EF,, A (P : P : ~ : z o pc) f (1) = ~ e-Ct + ~o)p.m~, EF,, ~ (#(v))- 1 ~o (~c(v)) F(x(v)) d v. 
v 

Choose F"=F'.  Since F(1)~0,  if we choose rp to be sufficiently peaked about 1, 
we conclude that 

Ev,, A(P: P : ~ : z o pc)f(1) =t= O. 

Thus there is a function in C~(K,X)  on which the continuous operator 
A(P:P:~:Zopp)  is non-vanishing. Composing with projections to K-finite 
spaces, we obtain a contradiction to our assumption that A(P:P:~:Zopp)  
vanishes on K-finite functions. 
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