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Langlands Classification and
Unitary Dual of SU(2,2)

A. W. Knapp'

This paper continues a theme addressed by some seminar participants:
investigation of the irreducible unitary representations of semisimple Lie
groups. For the group

G=5UQ,2)=1gesL(4.0g*| ", le=| ", (b

which is locally isomorphic to the conformal group of space-time, the
classification problem has been completely solved in joint work with B.
Speh [8].

The detailed answer appears in [8], and some parts of that answer will
be reproduced presently. Qualitatively there are no surprises, and more-
over the argument shows that all the unitary representations are unitary
for simple reasons. This is so even for the ladder representations that
have been studied by a number of mathematical physicists!

Instead of concentrating here on the answer to the classification
problem, we shall emphasize the approach to such a problem. In particu-
lar, the Langlands classification (of irreducible “admissible” representa-
tions) and its method of proof will be of special interest because the
classification and proof may well have independent applications in
mathematical physics and they are available in full only as unpublished
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notes [6, 7, 9, 3, 14, 11]. Partial proofs appear in published form in
Warner [15], Borel and Wallach [2] and Mili&i¢ [12].

Historically, approaches to classification of the irreducible unitary
representations of semisimple groups have always proceeded in two
steps:

(1) Get control of some larger class of representations (such as the
irreducible “admissible” representations defined below in §1).
(2) Decide which ones are unitary.

In fact, in some groups, seemingly only a little more complicated than
SU(2,2), the pattern of unitary parameters is much more complicated
than in SU(2,2). Thus either this two-step approach is forced on us as a
nontrivial subdivision of the problem, or else people are completely off
track in the current thinking of what kinds of variables to use as
parameters.

Step (1) above is nowadays solved in considerable generality—com-
pletely in connected semisimple groups G having faithful matrix repre-
sentations. The relevant theorem is the Langlands classification [9] ob-
tained in 1973. This result is not simply a generalization to G of earlier
techniques, and we shall contrast the earlier techniques with the Lang-
lands approach in §1.

Step (2) is the relatively new part for SU(2,2). For SU(2, 2) this step
involves only a little more than an exercise with known techniques. The
techniques succeed because of the small size of the group. Aspects of this
step are the subject of §2.

1. Admissible representations of SU(2,2). Let K be the maximal
compact subgroup of G = SU(2,2) given by

K= S(U(2) X U(2)) = SU(2,2) N U(4) = {(; 0)}
A (continuous) representation 7 of G on a (complex) Hilbert space V, say
with K acting unitarily, is said to be admissible if each irreducible
representation of K occurs only finitely often in the restriction [y It is
known [5] that irredicible unitary representations are admissible.
In this case we can pass to the Lie algebra g of G, which acts on

Vg = {v € ¥|7(K)v spans a finite-dimensional space}.

The vector space Vy is called the space of K-finite vectors in V, and the
representation of g on ¥y provides an instance of an admissible represen-
tation of (g, K') (= a complex vector space on which g and X both have
representations, in compatible fashion, with every vector K-finite and
with each irreducible representation of K occurring only finitely often).
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A number of properties of admissible representations were established
by Harish-Chandra [5]. The representation of G on V is irreducible if and
only if the representation of (g, K) on Vj is algebraically irreducible. An
irreducible admissible representation of (g, K') comes from a unitary
representation of G if and only if the representation of (g, K) admits an
inner product such that g acts by skew-Hermitian operators, and any two
such irreducible unitary representations of G leading to the same irre-
ducible representation of (g, K) are unitarily equivalent. (We summarize
this condition on the representation of (g, K) by saying it is infinitesi-
mally unitary.)

It is convenient to define equivalence of admissible representations of
G on the Lie algebra level, saying that two admissible representations of
G are infinitesimally equivalent if the corresponding representations of
(g, K') are algebraically equivalent. Every irreducible admissible repre-
sentation of (g, K) arises from an admissible representation of G,
according to a theorem of Lepowsky [10]. Let f be the Lie algebra of K.

The traditional approach to Step (1) of the introduction would be as
follows: Write g = £ @ p, where p is the set of Hermitian members of g,
and complexify to get g€ = € ® p€. We can assume that we understand
the action of f€ in an irreducible representation, and we want to
understand the action of p€. In the first place, this action has to be
consistent with the bracket relations in g€ (Recall that [£€, p€] C p€©
and [p€, p€] C t€) But also it must satisfy some further relations
because the center Z(g€) of the universal enveloping algebra (the gener-
alized Casimir elements) must act as scalars. In the case of SU(2,2),
Z(g€) is a full polynomial algebra (with no relations other than com-
mutativity) in three operators that one could write down explicitly if
necessary; so we essentially have three additional relations beyond the
bracket relations. The idea is to play these relations off against each other
and see what happens.

This calculation seems to be just barely possible for SU(2,2) (cf.
Angelopoulos [1]), but the result that is obtained does not obviously fall
into any general pattern.

The Langlands approach to Step (1) is quite different. One begins by
constructing models for some irreducible admissible representations;
these will be denoted J(P, o, »). To construct these representations, let
G = KA,;, Ny, be an Iwasawa decomposition of G. Here 4, and N,
have Lie algebras a ;, and n,, respectively, where

0 O
0 0 11
T (1.1)
0

0
t
0
0
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and where n ; is a certain nilpotent subalgebra of g of dimension 6. We
define M, to be the centralizer of 4, in K; this is the group generated
by the scalar fourth roots of unity and the circle group

T= g _ : (1.2)

Then P, = M_, AN 1s a closed subgroup of G that plays the same
role for SU(2,2) that the upper triangular group plays for SL(n,R) or
SL(n,C).

There is a standard series of admissible representations U(P,,, a, »)
induced from P,_;, known as the nonunitary principal series. The parame-
ter o is a unitary character of the compact abelian group M,,, acting in
the one-dimensional complex vector space V° = C. The parameter v is a
complex-valued real-linear functional on qa_; , which we may write in

coordinates as

v = ¢f, +df, (1.3)

where f, and f, on the matrix (1.1) are s and ¢, respectively. Then

o ®@e" @ 1 is a representation of P_; (nonunitary unless v is imaginary),
and we let

U(P,

min *

a,r)= indgmin(a ®e"®1).

The conventions in the definition of U(P,,,, o, ») are that G is to act on
the left on the representation space in the form

(fe LXK, V) |f(km) =o(m) "' f(k)fork € K,m € M}, (1.4)

and the parameters are arranged so that unitary data lead to unitary
representations U (“Mackey induction”).

In the notation of (1.3), let p = 3f, + f,. If » in (1.3) satisfies Re ¢ >
Re d > 0 and f and g are continuous, then one has the limit formula

lim e " Ples(y(P . 0,v, ma)f, g)= (f a(m)f(n*)dn* | g(1)
a— + oo Nie

(1.5)

for m in M, . Here “*” refers to adjoints, and ¢ - +co means that

(f, — fL)loga) - +oo and fy(loga) — +oo. Equation (1.5) is easy to
see on a formal level by changing variables from K to N, and passing to
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the limit, provided one is content to omit the justification of the inter-
change of limit and integral. We shall rewrite (1.5) a little. We define an
operator by

A(Ply: Py 0:0)[(x) = [ f(xn*)an®. (1.6)

Under our assumption on » that Re ¢ > Re d > 0, one can show that this
-is a bounded operator on the space (1.4) that satisfies

U(Pm*ins a, P)A(Pr:in: Pmin:a: y) = A(P;lin: Pmin: 0. y)U(Pmin’a‘ p)_
(1.7)
We can then rewrite ( 1.5) as

lim e =edeea(y(P o Yo, v, ma)f, g) 12 K,V

= (o(m)(A(PYn: P 0:9)f)(1), g(1)),0. (1.8)

It is easy to see from (1.8) that if f is not in the kernel of
A(PRin: Pyt 0 w), thenf is cyclic for U(P,, , o, »). Tt follows readily
that U(P,,;,, 0, ») has a unique irreducible quotient J{( P ins 0, 7), known
as the Langlands quotient, and that J(P,. . o, v) is isomorphic to the
image of A(PX, : P, :0:v). In view of (1.7), we can therefore regard
J( Py, 0, ¥) as operating in a subspace of U( B2 g, v)

A version of this construction works when P.in 1s replaced by any
larger closed subgroup of G. There are four such subgroups P (including
Prin and G) in the case of SU(2,2), and they are listed explicitly in [8,
p. 44]. Each can be written as P = MAN with M O M i, A C A, and

N C N,;,- Except in the case of P_,., M will be noncompact. We form
U(P,o,7) =indG(c ®e”® 1),

where o is an irreducible unitary representation of M whose (KN M)-
finite matrix coefficients are in L’*%(M) for every ¢ >0 (ie.. o is
irreducible tempered) and where v is a complex-valued real-linear func-
tional on the Lie algebra of 4 such that Re  satisfies a suitable positivity
condition. Then (1.6), with the subscripts “min” erased, is a convergent
integral for K-finite £, (1.7) holds at least on the Lie algebra level when
the subscripts “min” are erased, and (1.8) is valid for / and g K-finite
when the subscripts “min™ are erased. In the same way it then follows
that U(P, o, ») has a unique irreducible quotient J( P, o, »), the “Lang-
lands quotient,” and J(P, o, ») is isomorphic to the image of
A(P* oPiios v)

Langlands showed conversely that all irreducible admissible represen-
tations of G are obtained this way, and each arises from this construction
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only once. A precise statement follows. We shall refer to the relevant
triple (P, o, ») as the *“Langlands parameters” of an irreducible admissi-
ble representation.

THEOREM (LANGLANDS CLASSIFICATION FOR SU(2,2)). The equivalence
classes of irreducible admissible representations of SU(2, 2), under infinitesi-
mal equivalence, stand in one-one correspondence with triples (P, o, »),
where

P = MAN is a closed subgroup of SU(2,2) containing P,

o is an irreducible tempered representation of M, two such representations
being regarded as the same if they are unitarily equivalent,

v is a complex-valued real-linear functional on the Lie algebra of A with
Re v in the open positive Weyl chamber.

The correspondence is that (P, o, v) corresponds to the class of J(P, a, v).

We shall give the idea behind the proof of completeness. Let 7 be
irreducible admissible on a Hilbert space V, and consider a finite
K-stable block of matrix coefficients, which we write as E,m(x)E,, where
E, and E, are orthogonal projections. This function has known behavior
on the left and right under K. Also, if we regard each member X of the
universal enveloping algebra of ¢ as a left-invariant differential operator
on G, then we have

X(E\n(x)E,) = E;n(x)n( X)E,.
For X in the center Z(g), m( X) is a scalar, and it follows that
Z(E\m(x)E,) = c¢(Z)E\n(x)E, for Z € Z(g€). (1.9)

Now G = KZ“,J,:,HK and it turns out that one can use the transforma-
tion laws under K to rewrite the system (1.9) as a system of differential
equations on A4, with variable coefficients. Solutions of the rewritten
system will be functions on 4, whose value at each point is in the space
W of linear maps from image(E,) to image(E,) commuting with the
action of M, ;.. One can arrange that the coefficient functions in the
rewritten system have values in the space of linear maps from W into W,

The rewritten system behaves as if it has a regular singular point at
+oo in A4, except that the domain is two-dimensional. All solutions
have series expansions (about + o0) with coefficients in W, and the space
of solutions is finite-dimensional.

Any leading term of a solution leads in a natural way to an imbedding
of the K-finite vectors of 7 as a subrepresentation in some U( P*, o, »),
hence to a realization as J( P, o, »). In more detail, there are only finitely
many candidates for growth/decay rates on 4., of leading terms,
independently of £, and E,. Thus fix v’ in V. For any v in ¥y choose E,
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and E, with E,p = v and E,v’ = v’. Then the analysis above enables us
to expand (#(x)v, v’) in series and to pick off the coefficient of the
leading term we are studying. The result is a linear functional / on Vi
with good behavior relative to a ;, and with /(7(n*,, Wi ) = 0. Formally
we complete the argument by mapping v in Vy to the function f, on G
given by f,(x) = /(w(x) 'v) to obtain an imbedding of V in an induced
representation from A, N, 10 G. Bringing in the M, behavior, we
extract a g-commuting mapping of V. into the space of some
U(Prin» 99, ¥,) with Re », in the closed positive Weyl chamber. Separat-
ing out directions in which Re », = 0 and building a bigger M subgroup
from them, we obtain a g-commuting mapping of V into the space of
some U(P*, o, v) with Re » in the open positive Weyl chamber and with
o irreducible tempered, provided the leading term that we use is suitably
extremal.

2. Irreducible unitary representations of SU(2, 2). In view of the results
mentioned in §1, the problem of classifying the irreducible unitary
representations of SU(2,2) comes down to deciding which Langlands
quotients J( P, g, ») are infinitesimally unitary. This decision is simplified
by the following general facts:

(1) If J(P, o, ») is infinitesimally unitary, then a fortiori J(P, o, v) has
a nonzero invariant Hermitian form. The existence of such a form is
equivalent with the condition that J(P, o, ») be infinitesimally equivalent
with its complex contragredient, which can be realized as J(P*, 0,— 7).
This equivalence forces a conjugacy of (P, o, ») with (P*, 0,—#), and we
conclude that if J( P, g, ») is infinitesimally unitary, then there exists w in
the normalizer of 4 in K with wPw™' = P* wo = o and wy = —7.

(2) If J(P, o, ») has a nonzero invariant Hermitian form, then the form
is unique up to a scalar and is given by a simple modification of
(A(P*: P:o:v)f, g). The question of unitarity is then whether this
specific form is semidefinite.

(3) There are some standard techniques to make the decision in many
cases whether the form in (2) is semidefinite. We list two of them.

(a) Continuity: If the operator appearing in the form is definite for one
value of » (e.g., if it is the identity), then it must remain definite on any
connected set where the symmetry conditions of (1) hold as long as the
operator remains invertible on the K-finite vectors. And the operator is
invertible until some reducibility occurs for U( P, o, ).

(b) Boundedness of matrix coefficients: The K-finite matrix coeffi-
cients are unaffected by changing the inner product for an admissible
representation, and they must be bounded for a unitary representation.
Hence the K-finite matrix coefficients of J(P,o,») are bounded if
J(P,0,v) is infinitesimally unitary. The limit relation (1.5), rewritten
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with P in place of P, enables us to conclude that J(P, o, ») cannot be
infinitesimally unitary if Re » lies outside a certain bounded region.

Now let us return to G = SU(2,2). We defined a circle subgroup T in
(1.2), and we let y be the diagonal matrix

y = diag(1,-1, 1,~1).

Then

M. =Te&({l,y}, (2.1)
and the dual group is correspondingly parametrized by

M., = {(n, =)}. (2.2)

There are four closed subgroups P containing P i, and we shall discuss

unitarity of some of the representations attached to two of them. (For a

full discussion of unitarity in all cases, see [8, Main Theorem and §5].)
For one of them, P = MAN has dimension 10 with

M=SL(2,R)®T,

with 4 one-dimensional, and with N equal to a Heisenberg group of
dimension 5. We discuss only the representations o of M given by

oH(D,;' ,n],

where D, is a discrete series (k = 2) or limit of discrete series (k=1)of
SL(2,R) and where n refers to a character of the circle group 7. Here
dim A = 1, and general fact (1) at the start of this section says we may
take » to be real-valued (and equal to a positive multiple of f,). The
unitary points among such » are given by » = ¢f, for the following values
of ¢:

0<e=<1 ifk=nmod2,
0<e<2 ifln|=k—1,
no ¢ in the remaining cases.

The Langlands quotients that occur at the endpoints are of special
interest. For ¢ = 2 and |n|= k — 1, J(P, 0, v) is a ladder representation,
and all ladder representations (except the trivial representation) are of
this form. The usual proofs (e.g., [4]) that the ladder representations are
unitary use complex variable theory and /or the Fourier transform. Here
we obtain the unitarity as a consequence of general fact (3a) after seeing
that the induced representation at » = 0 is irreducible.

For ¢ = 1 and k = n mod 2, some of the representations J( P, g, v) are
highest weight representations (but not of ladder type), and others are
not.

Now let us consider P,;,. The group M, and its characters are given
in (2.1) and (2.2). Let us suppose » = cf, + df, is real with ¢ > d > 0. For
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the character ¢ « (0, +), the unitary points are (¢, d) = (3, 1), where the
trivial representation of G occurs, and the points with ¢ < 1; those with
¢ =1 arise from degenerate complementary series induced from the
10-dimensional MAN with the trivial representation on M. For the
character o < (0, -), the unitary points are the ones with ¢ + 4 < 2;
those with ¢ + d = 2 arise from degenerate complementary series in-
duced from the 11-dimensional MAN with the signum character on the
two-component group M.

For the character o < (2n,+) with n # 0, the unitary points are the
points with ¢ < 1; those with ¢ = 1 arise from degenerate complementary
series induced from the 10-dimensional MAN with a unitary character on
M. In the limiting case d =1 along the line ¢ = I, the Langlands
quotient is of the type constructed explicitly by Strichartz [13] for the
analysis of the discrete spectrum of L2(SO(4, 2)/SO(3, 2)).

Note added in proof. Since this paper was written, some of the material
in [3] and [11] has been published as [16].
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