The Existence of Comp[ementaq Series
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1. Introduction

Let G be a semisimple Lie group. The principal series for G consists of
unitary representations induced from finite-dimensional unitary represen-
tations of a certain subgroup of G. These representations are not all
mutually inequivalent, and their study begins with a study of the operators
that give the various equivalences—the so-called intertwining operators.

For G = SL(2, R), these operators are classical transformations. The
principal series can be viewed conveniently as representations on L2 of the
line or L? of the circle. In the first case, the operators are given formally by
scalar multiples of

(1.1a) )= [ s = iyt ay
and
(1.1b) Fe) = [ fx = y)sign )yl =+ .

The operator (1.1a) is fractional integration of the imaginary order it and
is also known as a Riesz potential operator of imaginary order; for t = 0,
the operator (1.1b) is the Hilbert transform. If the principal series instead
is viewed on the circle, the operators are less familiar analogs of these,
given formally in the case of (1.1a) by

(1.2) 1(6) — j:“ 70 — @)1 — cos g)-A 1012 g,

In [3] the authors investigated the operators that generalize (1.1) to an
arbitrary group G of real-rank one in order to determine which representa-
tions of the principal series are irreducible. The idea was roughly that
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reducibility occurs exactly when the operator generalizing (1.1) can be
interpreted as a bounded operator given as a principal-value integral.

Here we shall study these operators for the same groups G for a different
purpose. We wish to determine what unitary representations of G can be
obtained by inducing from nonunitary finite-dimensional representations
of the special subgroup. In other words, we ask what the representations
are of the complementary series of G.

We shall treat the problem of existence of complementary series by
considering analytic continuations of the operators generalizing (1.1) and
(1.2). The essential question will be to determine which of the continued
operators are positive-definite in a suitable sense. [In (1.1) the operators
(1.1a) are positive-definite when it is replaced by a real number between
0 and 1, and the operators (1.1b), with if replaced by a complex parameter,
are never positive-definite.] The ideas used in answering this question will
be given in Section 2, and a more precise exposition will follow in the later
sections. Most of the arguments will involve operators A(z) generalizing
(1.2), rather than (1.1), but at one point indicated in Section 3 we shall pass
to the operators generalizing (1.1). This passage back and forth between
integration on a compact group and integration on a noncompact group
appears to play an important role in our work.

Our results are special, in that we work only with semisimple groups of
real rank 1. Among other results concerning existence of complementary
series in special situations are those of Kostant [4] (for general G but only
for “class 17 induced representations) and Kunze [5] (for complex semi-
simple groups G).

The sections of the paper are arranged as follows. The notation and
motivation are in Section 2, the precise definition of complementary series
and the main theorem (Theorem 3.3) are in Section 3, and a discussion of
the applicability of the main theorem is in Section 4. Since it is our inten-
tion to present here only the main ideas, we defer most proofs until another
time.

The authors wish to thank S. Rallis for stimulating conversations about
this work.

2. Notation and heuristics

In what follows, G will denote a connected semisimple Lie group with
finite center. Let G = ANK be an Iwasawa decomposition of G, let 6 be
the Cartan involution of G corresponding to K, let M be the centralizer of
A in K, let M’ be the normalizer of 4 in K, let p be half the sum of the
positive restricted roots, and let N = 8N. Then MAN is a closed subgroup
whose finite-dimensional irreducible unitary representations are all of the
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form man — Ma)o(m), where A is a unitary character of 4 and o is an
irreducible representation of M. The principal series of unitary representa-
tions of G is parametrized by (o, A) and is obtained by inducing these
representations of MAN to G.

These representations may be viewed as operating on a space of func-
tions on K by restriction. That is, let ¢ operate on the finite-dimensional
space ¥, and let H? be the subspace of members f of L%(K) ® ¥, such
that, for each m in M,

S(mk) = o(m)f(k)
for almost all k in K. Define operators on H° by
2.1 (UM )k) = e” <2 N(exp H(kx))f (<(kx))  x€G

where the notation on the right refers to the Iwasawa decomposition
kx = exp H(kx)-n-x(kx). The representation U is unitarily equivalent
with the member of the principal series corresponding to the pair (o, A).
The definition (2.1) of a representation in the Hilbert space H? also
makes sense when A is a nonunitary character of 4. In this case, U7(x) is
a bounded operator with norm = iu;? [Mexp H (kx))|, butit is not unitary.
=]

We call these representations the nonunitary principal series. Somewhat
imprecisely, the complementary series consists of those representations of
the nonunitary principal series that can be made unitary by redefining the
inner product. (A precise definition will be given in Section 3.)

Temporarily we shall proceed only formally and see what has to happen
for a representation to be in the complementary series. Suppose ¢-,- is
an inner product for which U”* is unitary. This inner product will be
given by an operator, possibly unbounded, say

<& = (L g)

Here (-,-) is the usual inner product on L%(K) given by integration. The
condition that <U”Nx)f, U”Nx)g> = {f, g» means that

LU""\(X) — Uu.?\(x— 1)*L’

where the adjoint is defined relative to (-,-). On the other hand, we have
the lemma below, which follows from a change of variables.

LevMA 2.1.  USAM(x~Y)* = U2A~Y(x),
We conclude that

2.2) LUXx) = U*A Y(x)L
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with L # 0. There is a theorem of F. Bruhat [1], in the case that A is
unitary, that most U?** are irreducible and that U and U™* are equiva-
lent if and only if there is some member m’ of M’ such that o™, defined by
o™ (m) = o(m'mm’ 1), is equivalent with = and such that A = . If we
assume (slightly inaccurately) that these facts persist for nonunitary A,
then we expect that, for most A, if (2.2) holds, then L is unique up to a
scalar and there exists some m’ in M’ with ¢™ equivalent with o and A™
equal to A%

From now on, assume that dim A = 1 (the real-rank one case). Then
M’/ M has order 2. Fix an m’ in M’ but not in M, and introduce a complex
parameter z by the definition

)l(a) — g?PH(@)

If A corresponds to z, then A~! corresponds to —Z and A™ corresponds to
— 7. From what we have just said, there are only two possibilities:

(i) z = —Zz. That is, z is imaginary and A is unitary; hence U7 is in the
principal series.
(ii) o™ is equivalent with o, and —z = —Z. That is, it is possible to

define o(m’), and z is real.

Thus we are looking for an operator L such that LU®* = U? ~*L, and
we expect it to be unique up to a scalar for most z. Such an operator was
obtained by Kunze and Stein [6] for Re z > 0. It is

(23) A@)fko) = .[ et =20 108 skmo(m)o = (m(km')) f(kko) dk,
K

where the notation on the right refers to the decomposition of G into
MANN, namely

km' = m(km')-a(km’)-n-n;

this decomposition exists uniquely for all kK not in M.

In short, for (o, z) to give a representation of the complementary series,
we expect that o must be equivalent with o™ and that z must be real. In
this case if z > 0, the inner product should be a multiple of (A(2)f, g).
That is, a multiple of A(z) must be a positive Hermitian operator. 4(z) is
always Hermitian for z real, and it is positive if and only if its kernel is a
positive-definite function.

For z > 1, we can settle the question of positivity immediately. For
such a value of z, the kernel vanishes at the identity and is continuous and
bounded on K; since it is not identically 0, it is not positive-definite. Thus
there should be no complementary series for z > 1.
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Our approach to the question of positivity when 0 < z < 1 involves
complex methods. To begin with, z — A(z)fis analytic for Re z > 0, and,
if f'is smooth, we show that this function of z extends to be meromorphic
in the whole plane. Denoting the new operators, defined for Re z < 0, by
A(z) also, we shall see that z — A(—z)A(z)/f is meromorphic in the whole
plane. For z purely imaginary and not 0, A(—z)A(z) is an intertwining
operator for the unitary representation U?* which is irreducible by
Bruhat’s theorem. Thus A(—2z)A(z)f = e(z)f with ¢(z) scalar for z imagin-
ary. If we introduce a suitable normalization B(z) = y(z) *A4(z), we shall
obtain B(—z)B(z)f = f for imaginary z, hence for all z by analytic con-
tinuation. Suppose B(0) is the identity. Then for B(z,) to fail to be positive-
definite for some positive z,, the equality B(—z)B(z)/ = f says that either
B(z) or B(—z) must have a singularity for some z with 0 < z < z,. Thus
an investigation of the singularities of B(z) will be the key to the whole
problem of the existence of complementary series associated with o.

3. The existence theorem

We continue to assume that G has real-rank one. The representations
U7 *(x) of the nonunitary principal series, which was defined in Section 2,
are parametrized by the finite-dimensional irreducible unitary representa-
tions o of M and by the complex number z, which corresponds to the
character g — **%@ of 4.

The space H? on which U”'# operates is a subspace of L%(K) @ V, that
depends on o but not on z, and the action of K, by right translation, is
independent of z. The space of C* vectors for U?*# is the subspace of C*
functions in /7; thus, it too is independent of z. We denote this subspace
by C*(o).

We shall say that U?"* is a member of the complementary series if there
exists a positive-definite continuous inner product ¢-,-> on C*(¢) x
C*(o) such that

(3.1) CU*x)f, UH(x)g> = <[, &>

for all x in G and all f and g in C (o). If there is a nontrivial positive-

semidefinite continuous inner product on C*(s) x C*(o) such that (3.1)

holds, we shall say that U?# is a member of the quasi-complementary series.
In either case, the continuity of the inner product, equation (3.1) for

x in K, and the Schwartz Kernel Theorem together imply the existence of

a continuous operator L mapping C *(o) into itself such that

fe=(Ufg
for f and g in C*(o). Here (-,-) denotes the usual inner product on
LAK) ® V,.
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As in Section 2, equation (3.1) translates into the fact that L intertwines
U and its contragredient. Applying Lemma 2.1, we see that

(3.2) LU(x) = U *(x)L

for all x in G.

Recall that m’ is a fixed member of M’ that is not in M. If ¢ is equivalent
with ¢, then it is possible to extend o to a representation of all of M’ on
V,; that is, we can regard o(m') as defined. In this case, we define the
operator A(z) for Re z > 0 by equation (2.3).

The operator A(z) (actually a slight variant of it) was considered in [6].
It was shown that the kernel

(33) ell—2m log a(km’}o.(m’)c—vl(m_(kmf))

is an integrable function of k for Re z > 0 and hence that A(z) is a bounded
operator on H°. Moreover, A(z) satisfies

(3.4) AR)UT%(x) = U ~*(x)A(2).

(For Re z < 0, the expression (3.3) is not an integrable function, and we
consequently shall not deal directly with this case. In any event, one
expects that U?*# is in the complementary series if and only if U ~*is and
that, in this case, U?* and U? ~# lead to the same unitary representation.)

LemMA 3.1.  Fix o and z, and suppose Re z > 0. Unless o is equivalent
with o™ and z is real, the only continuous linear operator L on C* (o) satis-
fying (3.2) is 0. If ¢ is equivalent with ¢™ and z is real, then the continuous
operators on C* (o) satisfying (3.2) are exactly the scalar multiples of A(z).
A(z) is bounded and Hermitian.

Before we pass to a study of the analyticity of A(z), let us observe that
the A(z) have a common finite-dimensional resolution. Specifically, let
H3§ be the subspace of H? of functions that transform under K according
to the equivalence class D of irreducible representations of K. H7 is finite-
dimensional since H? < L*(K) ® V,, and it is independent of z. Then each
A(z) maps each HJ into itself, by equation (3.4) for x in K.

If fis in C*(o), the mapping z — A(z)f is an analytic mapping of
{Re z > 0} into C*(0). We shall be concerned with extending this mapping
to a meromorphic function defined in the whole complex plane. It will be
enough to consider the simpler function z — A(z)f(1), where 1 is the
identity of K, provided we prove joint continuity of this function in z and /.
Since the singularities of the kernel (3.3) occur only for k in M, we can
suppose that f'is supported near M, particularly away from M' — M.
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This turns out to mean that we can transform the whole problem to a
problem about the simply connected nilpotent group N. In fact, using the
change-of-variables formula of [2, p. 287], we find that

(35) A@SQ) = [ et =28 a2 m(ym e IS ()} d.

The notation here is the same as in formulas (2.1) and (2.3). The ingredients
of this formula are technically much simpler than those of formula (2.3),
and we consider them one at a time.

First we make some comments about N. The restricted roots of the Lie
algebra g of G are either 2e¢, &, 0, —, —2c or «, 0, —a. In this notation,
N =exp(8-«@ g-2). Let p = dimg_, and ¢ = dim g_,. The group 4
acts on N by conjugation; geometrically this action looks like dilations,
except that the g_,, directions are dilated twice as fast as the g _, directions.

Now consider the first factor in the integrand of (3.5). Although it is not
necessary to do so for the present problem, one can compute this factor
explicitly. If y = exp (X + Y) with Xeg_,and Y e g_,,, then?

(36} ell—-2wlogatum’) — (icz ilX||4 L zcﬁ Y]js)—(p+2q)(1~z1,r4,

where the norm is that induced by the Killing form of g and where
¢ =(2p + 8g)" % Put |y| = e ?'82@m) Then the function (3.6) has an
important property of homogeneity relative to 4: if b is in 4, then

|byb”1| = e-2oH(DJ|y|‘

Next we consider a(m")o~(m(ym’)), which we shall denote o(y). This is
a matrix-valued function defined everywhere but at the identity and satis-
fying the homogeneity property o(byb~') = o(y) for all b in A.

Finally we consider the factor e!**2?H®f(k(y)). This function is a
smooth function of compact support in N because f is assumed to be
supported away from M’ — M. The function depends on the complex
parameter z but is entire in the variable z since pH () has no singularities.

To see that (3.5) extends to be meromorphic in the whole z-plane, we
choose a continuous function ¢(r) of compact support on [0, c0) so that
o(| yf(x(y)) = f(x(y)), we expand e * 2 @)f(i(y)) about y = identity in a
finite Taylor series with remainder term, we collect the polynomial terms of
the same homogeneity relative to 4, we multiply both sides of the expan-
sion by ¢(] y|), and we substitute into (3.5). The terms of the expansion can
be computed well enough to conclude the following: each term but the
remainder has a meromorphic extension with at most one pole, that one
simple and occurring at an integral multiple of z = —(p + 2¢) %, and the

# That this explicit formula holds might be guessed from an earlier formula that S.
Helgason had derived for exp {—2pH(3)}.
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remainder term gives a contribution analytic in a large right-half plane.
Collecting these results, we have the following theorem:

THEOREM 3.2. Let f be in C*(0). As a mapping into C “(c), the function
z— A(z)f has a meromorphic extension to the whole complex plane with
singularities only at the non-negative integral multiples of —(p + 2q)~*. The
singularities at these points are at most simple poles. The poles can occur only
at integral multiples of —2(p + 2q)~* if o(y) = o(m')o~*(m(ym")) satisfies

(3.7) alexp (—X + Y)) = olexp (X + Y))

for Xeq_, and Y € q_,,. Moreover, the mapping (z, ) — A(z)f for z in
the regular set and f in C*(c) is a continuous mapping to C* (o).

ReEMARKS. Condition (3.7) holds for all ¢ for the Lorentz groups
SO,(n, 1), the Hermitian Lorentz groups SU(n, 1), and the symplectic
Lorentz groups Sp(n, 1), but it fails for the spin groups Spin(n, 1). In any
case, the parameter z is normalized so that z = | corresponds to p; there-
fore, z = 2(p + 2¢) " corresponds to the restricted root «. The result for
SO, (n, 1) that the only poles of A(z)f are simple and are at multiples of —«
was obtained by Schiffmann [7].

Using Theorem 3.2, we can now define A(z) for all z. To proceed further,
however, we need more information about o. It is possible to show, under
the additional assumptions on G that G is simple and has a faithful matrix
representation, that some representation D of K, when restricted to M,
contains o exactly once.* By the reciprocity theorem, this means that K acts
irreducibly on some Hj # 0. Fixsucha D = D, and let v(k) be a nonzero
member of Hj . Since A(z) commutes with K, we obtain

(3.8) A(2)v = y(2)v
for a complex-valued meromorphic function y(z). Define
B(z) = y(2) "' A(2).

As we shall see in Section 4, there is no complementary series associated
with o near z = 0 unless the unitary representation U?° is irreducible.
[And for G = Spin(n, 1) or SU(n, 1) there is no complementary series for
any z unless this condition is satisfied.] We therefore assume now that
U°-9 is irreducible. A necessary and sufficient condition for this irreducibil-
ity is given as Theorem 3 of [3]. The condition implies that y(z) does have
a pole at z = 0, which implies that the operators B(z) are uniformly
bounded on compact subsets of 0 = Re z = ¢ if ¢ is sufficiently small. The

irreducibility and equation (3.4) then imply that B(0) = 1.

4+ Independently J. Lepowsky has obtained this result and a generalization in his thesis
at the Massachusetts Institute of Technology.
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The definition of y(z) is arranged so that B(—z)B(z)f = f for all f in
C*(¢) and for all z. In fact, Theorem 3.3 implies that B(—z)B(z)f is
meromorphic in the whole plane. But B(—z)B(z) for purely imaginary
z # 0 intertwines U?'# with itself. By Bruhat’s irreducibility theorem in [1],
B(—z)B(z) = c(z)I with ¢(z) scalar for z imaginary. Applying both sides to
v, we see that ¢(z) = 1 for z imaginary. That is, B(—z)B(z)f = f for z
imaginary. By analytic continuation, B(—z)B(z)f = ffor all z.

B(z) preserves each H, and B(0) = I Fix D, and suppose B(z,)|p, is not
positive-definite for some z, > 0. Then either B(z) has a pole nearer 0, or
some B(z)f has a 0, in which case B(—z) has a pole, because B(—z)B(z) = I.
The poles of B(z) (and similarly for B(—z)) arise when A(z)f has, for some
/. a pole of higher order (possibly negative) than does y(z). These are the
ideas behind the main theorem:

THEOREM 3.3. Suppose that G is simple, that G has a faithful matrix
representation, and that dim A = 1. Let o be an irreducible finite-dimensional
unitary representation of M satisfying the necessary conditions above,
namely, that

(1) o is equivalent with o™, where m' is a member of M that is not in
M, and
(i1) the unitary representation U®° is irreducible.

Define A(z) by (2.3) and y(z) by (3.8). Let z, be the least number =0 such
that, for some fe C*(c), z— A(z)f has a pole at —z, and y(z) does not or
such that y has a zero at z, or at —z,. Then zo > 0 and the parameters
(o, z) give rise to representations of the complementary series for 0 < z < z,
with inner product

Srgd = HD) f U@, &)y, di

for fand g in C*(0).

It is a simple matter to see also that the parameters (o, z,) give rise to a
representation of the quasi-complementary series. It can happen that this
representation is the trivial representation of G.

We should emphasize why the number z, in the theorem is strictly
positive. The set whose least member is z, consists at most of the positive
nonzero integral multiples of (p + 2¢)~ ! and the non-negative values z
such that one of the meromorphic functions y¢(z) and y(—z) vanishes. This
set is discrete, and it does not contain z = 0 because y(z) has a pole at
z = 0.
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4. Further investigation of the singularities of B(z)

For the case that ¢ is the trivial representation of M, we can choose the
eigenvector v of the A(z) to be a constant function. The associated function
¥(z) is closely related to Harish—Chandra’s ¢ function (see [2]), and we can
obtain very explicit results as a consequence. For G of general real rank,
the ¢ function can be defined as the analytic continuation in u to the whole
complexified dual of the Lie algebra of A of the function

o) = [ s g,
N

Let us return to the real-rank one case.

ProrosiTION 4.1.  Let o be the trivial representation, and choose v to be a
constant function. Then the function y(z) is given by v(z) = ¢(—izp). There-

fore
(z) = 2@ +2001-2)2 I'G(p + g + )YI'G(p + 29)2) g
H TC(p + 29)(1 + 2)TG(p + 2 + (p + 29)2))

where p = dim g_,, and ¢ = dim g _,,.

PROOF.
}?(Z) —, f e(l—z)ploga{km') dlc = J. e{l—z)plus a(k) dk
K

K

— f ell—2wlogalk) Jl- — f etl —2)p 1og alk(x)) g2p H(x) dx,
KM N

the last equality following from [2] (see p. 287). If x = ank € ANK, then
k = aYan='a')x e MANN. Hence a(x(x)) = exp (— H(x)), and we ob-
tain p(z) = Lv el +20H gy as required. The formula for y(z) then follows

from [2] (see p. 303).

In [4], B. Kostant obtained the existence of complementary series for o
trivial and G of any real rank. For a first application of Proposition 4.1,
we shall compare his results in the rank-one case with what we can prove
from Theorem 3.3 and Proposition 4.1 when o is trivial.

Using the explicit value of y(z) in the proposition, we see that y(z) is
nonvanishing for —1 < z < I and that the only poles of y(z) for -1 < z £ 0
occur at the non-negative integral multiples of —2(p + 2¢)~ % If ¢ = 0,
there is a pole at every multiple of —2p~! less than 1. If ¢ > 0, then p is
even and a pole occurs at every multiple satisfying —(p + 2)(p + 2q) ! <
z = 0. By Theorem 3.2 the poles of A(z)f occur only at multiples of
—2(p + 2g)~*. Thus by Theorem 3.3 there is a complementary series for

1 ifg=0
(4.1) 0<z<zop=<p+2
p+29

ifg > 0.
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Kostant has this estimate (in [4], see Section 3.1 and Theorem 10).
Kostant shows further that there is no (positive-definite) complementary
series to the right of the point z, in this inequality. We can obtain this
result by our method if ¢ = 0, 1, or 3. But if ¢ = 7, we obtain only the
weaker result that there is no complementary series immediately to the
right of z,. This weaker result comes from comparing the signs near z, of
v(z) and (A(z)f, f) for an f'such that A(—z,)f has a pole. (Such an fexists.)

We turn to other applications of Proposition 4.1. When ¢ = 0 or 1, we
have z, = 1 in (4.1). If exp {(1 — z,)p log a(km’)}o(m' )oY (m(km 1)) is a
positive-definite function and if 0 < z < z; < 1, then the product with
exp [{1 — (I — z; + z)}plog a(km')] is also positive-definite. We obtain
the following corollary:

CorOLLARY 4.2. Let G = SO,(n, 1), Spin(n, 1), or SU(n, 1). Let o be
an irreducible unitary representation of M such that o is equivalent with o™ .
Then the positive z such that U is in the quasi-complementary series form
an interval with 0 as left endpoint.

CoroLLARY 4.3. Let G = SO,(n, 1), Spin(n, 1), or SU(n, 1). Let o be
an irreducible unitary representation of M such that o is equivalent with o™
and such that U*° is reducible. Then there is no positive z such that U°® is
in the quasi-complementary series.

For the proof of the second corollary, it is possible to use Theorems |
and 3 of [3] to show from the reducibility of U?° that B(0) is unitary and
not scalar. But if U is in the quasi-complementary series, A(z) is semi-
definite for 0 < z < z,, by Corollary 4.2; this fact implies that B(0) is
semidefinite, which is a contradiction.
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