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EXCEPTIONAL UNITARY REPRESENTATIONS

OF SEMISIMPLE LIE GROUPS

A. W. KNAPP

Abstract. Let G be a noncompact simple Lie group with �nite center, let

K be a maximal compact subgroup, and suppose that rank G = rank K. If

G=K is not Hermitian symmetric, then a theorem of Borel and de Siebenthal

gives the existence of a system of positive roots relative to a compact Cartan

subalgebra so that there is just one noncompact simple root and it occurs ex-

actly twice in the largest root. Let q = l�u be the � stable parabolic obtained

by building l from the roots generated by the compact simple roots and by

building u from the other positive roots, and let L � K be the normalizer of q

in G. Cohomological induction of an irreducible representation of L produces

a discrete series representation of G under a dominance condition. This pa-

per studies the results of this cohomological induction when the dominance

condition fails. When the inducing representation is one-dimensional, a great

deal is known about when the cohomologically induced representation is in-

�nitesimally unitary. This paper addresses the question of �nding Langlands

parameters for the natural irreducible constituent of these representations, and

also it �nds some cases when the inducing representation is higher-dimensional

and the cohomologically induced representation is in�nitesimally unitary.

Let G be a simple Lie group with �nite center, let K be a maximal compact sub-

group, and suppose that rank G = rank K. Let g0 = k0 � p0 be the corresponding

Cartan decomposition of the Lie algebra, and let g = k� p be the complexi�cation.

In this paper we investigate some representations of G �rst studied in [EPWW]

that are closely related to a fundamental kind of discrete series representations of

G. We are especially interested in the Langlands parameters associated to these

representations. We begin with some background.

In an e�ort to �nd unusual irreducible unitary representations of G in the case

that G=K is Hermitian symmetric, Wallach [W1] studied \analytic continuations

of holomorphic discrete series." When G=K is Hermitian symmetric, p splits as the

direct sum of two abelian subspaces p+ and p
�, and k�p

+ is a parabolic subalgebra

of g. An irreducible representation �� of K leads via this parabolic subalgebra to

a generalized Verma module that is a (g;K) module. If the highest weight � of ��
satis�es suitable inequalities, this (g;K) module arises from a holomorphic discrete

series representation [HC1]. Wallach [W1] studied the \scalar case," in which ��
is one-dimensional. By adjusting � on the center of k, he was able to move � in

a one-parameter family. For values of � outside the range that yields holomorphic

discrete series, he determined necessary and su�cient conditions for the unique

irreducible quotient of the generalized Verma module to be in�nitesimally unitary.
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2 A. W. KNAPP

Later Enright-Howe-Wallach [EHW] and Jakobsen [Ja] independently generalized

this study to the \vector case," in which �� is allowed to be higher-dimensional,

and they obtained a similar classi�cation.

With hindsight one could adjust this construction a little, relating it to cohomo-

logical induction, and then related constructions become apparent. In the adjusted

construction, one forms a generalized Verma module from k � p
� and a translate

of the parameter �. The result is the 0th cohomological induction functor

L0(F ) = ind
g;K

k�p�;K
(F 


Vtop
p
+);

where F is an irreducible representation of K whose highest weight is a translate

of �. (See [Kn-Vo, p. 328].) A special feature of this situation is that, relative to a

compact Cartan subalgebra of g0, there is just one noncompact simple root, and it

occurs just once in the largest root.

Enright-Parthasarathy-Wallach-Wolf [EPWW] undertook a parallel study of the

situation in which there is just one noncompact simple root �0 and it occurs exactly

twice in the largest root. This situation is rich with examples: According to a

theorem of Borel and de Siebenthal [Bo-deS], any G with rank G = rank K and

G=K not Hermitian has a positive system of roots with this property. Following

the line of [EPWW] but not the notation, we de�ne L to be the subgroup of K built

from the simple roots that are compact, and we let u be the sum of the root spaces

in g for the positive roots requiring �0 in their expansions. Then q = l � u is a �

stable parabolic subalgebra in the sense of [Kn-Vo, xIV.6], and the representations

to study are

L
S
(F ) = (�

g;K

g;L
)
S
(ind

g;L

q;L
(F 


Vtop
u));

where F is an irreducible representation of L with highest weight �, q is the opposite

parabolic of q, the l module F 

Vtop

u is extended to a q module by having the

nilpotent radical act by 0, S is dim(u \ k), and (�
g;K

g;L
)
S
is the Sth derived functor

of the Bernstein functor [Kn-Vo, p. 106].

The work of [EPWW] was a forerunner of the Unitarizability Theorem, which

was proved by Vogan [Vo2] and reproved in the spirit of [EPWW] by Wallach [W2].

[EPWW] proved that L
S
(F ) is in�nitesimally unitary if ind

g

q
(F 
 (

Vtop
u)t+1) is

irreducible for all t � 0. In particular, [EPWW] found that this condition is satis�ed

in the \scalar case" (i.e., F one-dimensional) if the in�nitesimal character �+ � of

L
S
(F ) is dominant, where � is half the sum of the positive roots. (The range where

the in�nitesimal character of L
S
(F ) is dominant is called the \weakly good" range

in [Kn-Vo].) The general Unitarizability Theorem of [Vo2] and [W2], which came

later despite the dates on the papers, proved that unitarity is always preserved by

cohomological induction in the weakly good range.

For the scalar case, [EPWW] determined exactly when indg
q
(F 
 (

Vtop
u)t+1) is

irreducible for all t � 0. They stated no result for F higher-dimensional (the \vector

case"), but they had the tools to observe that weakly good implies in�nitesimally

unitary for this situation.

A part of L
S
(F ) can be in�nitesimally unitary even outside the range when

ind
g

q
(F 
 (

Vtop
u)t+1) is irreducible for all t � 0. In their study, [EPWW] assumed

that � = �+2�
n
is dominant forK, where 2�

n
is the sum of the positive noncompact

roots. Then the K type � occurs with multiplicity 1 in L
S
(F ), and it makes sense

to consider the unique irreducible subquotient of L
S
(F ) containing the K type �.

Various authors (see [Ba], [Bi-Z], [Br-Ko], [G-W], [Ka-S], [McG1], [McG2]) have
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found additional scalar cases beyond the range treated by [EPWW] where this

irreducible subquotient is in�nitesimally unitary.

In this paper we undertake a further investigation of the representations studied

by [EPWW], maintaining the assumption that � = � + 2�
n
is K dominant. Our

main interest is in the Langlands parameters of the irreducible subquotient of L
S
(F )

containing the K type �, so that this representation is located in the classi�cation

of all irreducible admissible representations of G. After preliminaries in xx1{2, we

prove in x3 a strong vanishing theorem for L
j
(F ) when j 6= S. One consequence is a

formula for the multiplicities of the K types in L
S
(F ) that involves no cancellation.

Another consequence is that � is the unique minimalK type of L
S
(F ) in the scalar

case; in the vector case it need not be. In x4 we establish some unitarity of the

vector case of L
S
(F ) outside the weakly good range.

Finally in x5 we use combinatorialmethods to address Langlands parameters. We

show by example that these methods lead to ambiguous results in the vector case.

Thus we concentrate on the scalar case, where we conjecture a natural algorithm

for computing these parameters. The algorithm has the property that one can see

through to the answer without computation when G is classical; this algorithm is

di�erent from the one given by Vogan in [Vo1, Proposition 4.1]. We show that the

algorithm gives the correct Langlands parameters when G is classical. The line of

proof works at least sometimes when G is exceptional, but we have not carried it

through in general.

1. Preliminary Identities with u and u Cohomology

Let G be a connected semisimple Lie group with �nite center, and let K be

a maximal compact subgroup. We denote corresponding Lie algebras by the cor-

responding Gothic letters with subscripts 0, and we denote complexi�cations by

dropping the subscripts. Let � be the Cartan involution of g0 corresponding to

K, and let g0 = k0 � p0 be the associated Cartan decomposition. Let (g;K) be

a reductive pair built from G and K as in [Kn-Vo, xIV.3], and let C(g;K) be the

category of all (g;K) modules.

Let q = l � u be a � stable parabolic subalgebra of g in the sense of [Kn-Vo,

xIV.6]; here l is the theta stable Levi factor, and u is the nilpotent radical. The

normalizer L of q in G is connected and has Lie algebra l0 = l\ g0.

We let bar denote the conjugation of g with respect to g0. Then q = �q, u = �u,

and q and q are opposite parabolic subalgebras. We use bar also to stand for the

passage of a module to its conjugate. If V is a (q\ k; L\K) module, then xVI.2 of

[Kn-Vo] shows that the conjugate module V is naturally a (q \ k; L \K) module.

We shall make use of the invariants functor from C(q\ k; L\K) to C(l\ k; L\K)

that is usually written as V 7! V u\k. Proposition 3.12 of [Kn-Vo] shows that the

derived functors are the functors from C(q \ k; L \K) to C(l \ k; L \K) that are

usually written V 7! Hj(u \ k; V ).

Lemma 1. The two functors F1 and F2 from C(q \ k; L \ K) to C(l \ k; L \ K)

given by

F1(V ) = V u\k and F2(V ) = (V )u\k

are naturally isomorphic. Consequently

Hj(u \ k; V ) �= Hj(u \ k; V )
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as (l \ k; L \K) modules whenever V is a (q \ k; L \K) module.

Proof. The �rst statement is immediate from the de�nition of the action on V given

in [Kn-Vo]. We have noted that the functor from C(q \ k; L\K) to C(l \ k; L\K)

given by Hj(u \ k; � ) is the jth derived functor of ( � )u\k, and similar remarks

apply to u \ k. Let us compute the derived functors of F1 and F2, which are each

compositions. Since bar is exact, (C.27a) of [Kn-Vo] shows that the derived functors

of F1 are bar � Hj(u \ k; � ). Since bar is exact and sends injectives to injectives,

(C.28a2) of [Kn-Vo] shows that the derived functors of F2 are H
j(u\k; � )�bar. The

natural isomorphism of F1 with F2 yields natural isomorphisms of the respective

derived functors, and the lemma follows.

Proposition 2. If V is a �nite-dimensional (k;K) module, then

H
j
(u \ k; V ) �= Hj(u \ k; V )

as (l \ k; L \K) modules for every j � 0.

Remark. This result is given in [Kn-Vo, Lemma 4.82] for the case j = 0, but the

general case does not appear in [Kn-Vo].

Proof. Let ( � )c denote contragredient, and let ( � )h denote Hermitian dual, which

is de�ned as the composition of bar and contragredient. Every �nite-dimensional

(k;K) module is in�nitesimally unitary and hence is isomorphic with its Hermit-

ian dual, and a similar remark applies to (l \ k; L \ K) modules. Then we have

isomorphisms on the level of (l \ k; L \K) modules, given by

H
j
(u \ k; V ) �= H

j
(u \ k; V )h

�= H
j
(u \ k; V )c by de�nition of ( � )h

�= Hj(u \ k; V c) by [Kn-Vo, Theorem 3.1]

�= Hj(u \ k; V c) by Lemma 1

�= Hj(u \ k; V ) since V �= V h:

Corollary 3. Let S = dim(u \ k). If V is a (k;K) module, then

HS�j(u \ k; V ) �= Hj(u \ k; V )

V
S

(u \ k)

as (l \ k; L \K) modules for every j � 0.

Proof. This follows by combiningProposition 2 and Hard Duality [Kn-Vo, Corollary

3.13].

2. Setting

We shall now specialize from the generality of x1 to the setting of this paper.

We assume throughout that G is simple and that rankG = rankK. Let T � K

be a Cartan subgroup, and let � = �(g; t) be the set of roots. We introduce in

the usual way an inner product h � ; � i and a norm squared j � j2 on the real linear

span of the roots. Each root vector lies in k or in p, and roots are called compact

or noncompact accordingly. Let �
K
= �(k; t) be the set of compact roots.

Fix a positive system �+ = �+(g; t). The key assumption is that there is

exactly one noncompact simple root �0 and that �0 has multiplicity 2 in the largest
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root. The largest root and the simple roots that are compact then span the dual

t
�. (In particular, K is semisimple and G=K is not Hermitian.)

Let �
L
be the subset of roots not requiring �0 for their expansions in terms of

simple roots, and let �+
L

= �
L
\ �+. Then we can de�ne a � stable parabolic

subalgebra q = l�u by requiring that l is spanned by t and the root vectors for the

members of �
L
while u is spanned by the root vectors for the positive roots not in

�+
L

. As in x2 we let L be the normalizer of q in G. We have l � k and L � K.

De�ne �(u) to be the roots contributing to u, and let �(u \ k) and �(u \ p) be

the subsets of compact and noncompact roots in �(u). Let �, �
K
, �

L
, �(u), �(u\ k),

and �(u\ p) be the half sums of the members of �+, �+
K

, �+
L

, �(u), �(u\ k), and

�(u \ p), respectively.

When a positive root 
 is expanded in terms of simple roots, the coe�cient of

�0 is 0, 1, or 2 because of the key assumption above. The coe�cient is therefore 1

if and only if 
 is noncompact. The key assumption will play a role in the results

of the next section through the following lemma.

Lemma 4. If " is in �(u \ p) and � is in �(u \ k), then h"; �i � 0.

Remark. [EPWW] calls a general � stable parabolic subalgebra q \quasi abelian"

when the property in this lemma holds. The setting of this section is the subject

of [EPWW, x13].

Proof. If not, then h"; �i < 0, and it follows that " + � is a root. When " + �

is expanded in terms of simple roots, the coe�cient of �0 has to be 3, since "

yields coe�cient 1 and � yields coe�cient 2. Coe�cient 3 is not allowed by our

assumptions on �+ and �0, and we have a contradiction.

Let F be an (l; L) module. We shall be interested in the cohomological induction

functors L
j
: C(l; L)! C(g;K) de�ned by

L
j
(F ) = �

j
(indg;L

q;L
(F 


Vtop
u));

where �
j
is the jth derived functor of the Bernstein functor � = �

g;K

g;L
de�ned

in [Kn-Vo, p. 106]. The interesting degree for cohomology is j = S, where S =

dim(u \ k) as in Corollary 3. The number S is the complex dimension of the

complex manifold K=L.

Suppose that the (l; L) module F is irreducible with highest weight �, hence

with in�nitesimal character �+�
L
. Corollary 5.25 of [Kn-Vo] shows that the (g;K)

module L
j
(F ) has in�nitesimal character (�+ �

L
) + �(u) = �+ �. If h�+ �; 
i > 0

for every 
 2 �(u), then the parameter � is said to be in the good range. In

this case it is well known (and it is proved in [Kn-Vo]) that L
j
(F ) = 0 for j 6= S

and that L
S
(F ) is a discrete series (g;K) module with Harish-Chandra parameter

� + �. The unique minimalK type parameter of L
S
(F ) (called \lowest" in [Vo1])

is

� = � + 2�(u \ p) = (� + �) + � � 2�
K
:

In the special case that F is one-dimensional with unique weight �, we write

F = C
�
. The module L

S
(C

�
) is commonly denoted Aq(�) in the literature and is

known as a Zuckerman module.

When � is in the weakly good range (i.e., h�+ �; 
i � 0 for every 
 2 �(u)),

L
j
(F ) = 0 for j 6= S and L

S
(F ) is a discrete series or limit of discrete series. Our

interest in this paper is in the modules L
j
(F ) when the parameter � goes outside
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the weakly good range. We shall always assume that the parameter � = �+2�(u\p)

is �+
K

dominant. Under this assumption, Theorem 5.80a of [Kn-Vo] shows that the

K type � occurs in L
S
(F ) with multiplicity 1.

The modules Aq(�) with � outside the weakly good range have been studied by

Enright-Parthasarathy-Wallach-Wolf [EPWW]. Using continuity arguments with

generalized Verma modules, they established that a number of these modules are

in�nitesimally unitary.

A later theorem of Vogan (given in [Vo2] originally and appearing in [Kn-Vo] as

Corollary 9.70) implies that Aq(�) is in�nitesimally unitary if � is in the weakly

fair range, i.e., � is orthogonal to �
L
and has h�+ �(u); 
i � 0 for all 
 2 �(u).

In this paper we shall study the vanishing of L
j
(F ) for j 6= S, the K spectrum of

L
S
(F ), some unitarity of L

S
(F ) that can be obtained from continuity arguments,

and the Langlands parameters of the irreducible subquotient of L
S
(F ) containing

the K type �.

3. K Spectrum

We work in the setting of x2. Let S(u \ p) be the symmetric algebra of u \ p,

and let Sn(u \ p) be the subspace of elements homogeneous of degree n.

Lemma 5. If 
 is any L highest weight in Sn(u \ p), then 
 is �+
K

dominant.

Proof. Let � be a �+
K

simple root. If � is in �
L
, then h
; �i � 0 by the �+

L

dominance of 
. If � is not in �
L
, then � is in �(u \ k). Suppose that h
; �i < 0.

Since 
 is a weight of Sn(u \ p), 
 is the sum of members of �(u \ p), and there

must exist " 2 �(u \ p) with h"; �i < 0. We obtain a contradiction to Lemma 4,

and we conclude that 
 is �+
K

dominant.

Theorem 6. Let V be an irreducible representation of K, and let F be an irre-

ducible representation of L whose highest weight is �+
K

dominant. Then

Hom
L
(Hj(u \ k; V ); Sn(u \ p)
 F ) = 0

for all j > 0 and all n � 0.

Proof. Let �0 be the highest weight of V , and let W 1
K

be the set of all w in the

Weyl group of �
K

such that the conditions � 2 �+
K

and w�1� < 0 can happen

only if � is in �(u \ k). Arguing by contradiction, suppose that the Hom in the

statement of the theorem is nonzero. Then Kostant's Theorem [Kn-Vo, Theorem

4.139] implies that there is some w 2W 1
K

of length j such that w(�0 + �
K
)� �

K
is

a �+
L

highest weight of Sn(u \ p)
 F . Any highest weight of Sn(u \ p)
 F is, by

[Kn2, Problem 16 on p. 285 and p. 554] the sum of a weight 
 of Sn(u\ p) and the

highest weight � of F . Thus we must have

w(�0 + �
K
)� �

K
= 
 + �:

Since j > 0 and w has length j, w is not 1. Then there exists a root � 2 �+
K

such

that w�1� < 0. Since w is in W 1
K

, � is in �(u \ k). Taking the inner product of �

with the equation

w(�0 + �
K
) = 
 + (� + �

K
);

we obtain

h�0 + �
K
; w�1�i = h
; �i + h� + �

K
; �i:
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The left side is < 0 since �0 + �
K

is �+
K

dominant nonsingular and since w�1� is

< 0. The �rst term on the right is � 0 by Lemma 4 since 
 is a sum of members

of �(u\ p), and the second term on the right is > 0 since �+ �
K
is �+

K

dominant

nonsingular. Thus we have a contradiction, and the proof is complete.

Corollary 7. Let F be an irreducible representation of L whose highest weight �

has the property that � = � + 2�(u \ p) is �+
K

dominant.

(a) If j 6= S, then L
j
(F ) = 0.

(b) If �0 is any �+
K

dominant integral form, then the multiplicity of the K type

�0 in L
S
(F ) equals the multiplicity of the L type �0 in the (l; L) module

S(u \ p)
 F 

Vtop

(u \ p).

Proof. Let F 0 = F 

Vtop

(u \ p) as an (l; L) module. By Theorem 6,

Hom
L
(Sn(u \ p)
 F 0;HS�j(u \ k; V )) = 0

for 0 � j < S and for n � 0. Substituting from Corollary 3, we have

Hom
L
(Sn(u \ p)
 F 0;Hj(u \ k; V )


Vtop
(u \ k)) = 0:

Therefore

Hom
L
(Sn(u \ p)
 F 


Vtop
u;Hj(u \ k; V )) = 0:

By Theorem 5.35a of [Kn-Vo], L
j
(F ) = 0 for j 6= S. This proves (a).

Since L
j
(F ) = 0 for j 6= S, Theorem 5.64 of [Kn-Vo] gives

(�1)S dimHom
K
(L

S
(F ); V )

=

SX
j=0

(�1)j
1X
n=0

dimHom
L
(Sn(u \ p) 
 F 


Vtop
u;Hj(u \ k; V )):

We have just seen that the terms on the right side are 0 for j < S, and therefore

dimHom
K
(L

S
(F ); V ) =

1X
n=0

dimHom
L
(Sn(u \ p)
 F 


Vtop
u;HS(u \ k; V )):

Corollary 3 shows that the right side is

= dimHom
L
(S(u \ p)
 F 


Vtop
u;H0(u \ k; V ) 


Vtop
(u \ k))

= dimHom
L
(S(u \ p)
 F 


Vtop
(u \ p); V u\k):

Since V u\k is an irreducible (l; L) module of type �0, conclusion (b) follows.

Corollary 8. Let C
�
be a one-dimensional representation of L whose unique weight

� has the property that � = � + 2�(u \ p) is �+
K

dominant.

(a) The K type � is the unique minimal K type of Aq(�) = L
S
(C

�
).

(b) If �0 is any �+
K

dominant integral form, then the multiplicity of the K type

�0 in Aq(�) equals the multiplicity of the L type �0 � � in S(u \ p).

Proof. Let V be an irreducible (k;K) module of type �0. By Corollary 7b the

multiplicity of the K type �0 in Aq(�) is

= dimHom
L
(S(u \ p) 
 C

�+2�(u\p) ; V
u\k)

= dimHom
L
(S(u \ p); V u\k 
 C���2�(u\p) ):
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This proves (b). If this multiplicity is positive, then �0 � � is an L highest weight


 in S(u \ p). Hence

�0 + 2�
K
= (� + 2�

K
) + 


and

j�0 + 2�
K
j
2 = j�+ 2�

K
j
2 + 2h�+ 2�

K
; 
i + j
j2:

Since 
 is an L highest weight in some Sn(u \ p), Lemma 5 shows that 
 is �+
K

dominant. Thus � + 2�
K

and 
 are both �+
K

dominant. Remembering that K is

semisimple, we see from [Kn1, Lemma 8.57] that h�+ 2�
K
; 
i � 0. Therefore

j�0 + 2�
K
j2 � j�+ 2�

K
j2 + j
j2 � j�+ 2�

K
j2

with equality at the right only if 
 = 0.

The conclusion of minimality of the K type � in Corollary 8a is special to the

case that the representation of L is one-dimensional. Here is an example of what

can go wrong in a higher-dimensional case.

Example. Let g0 = so(4; 5) with the usual k0, p0, t0, and positive system. The

simple roots are e1�e2, e2�e3, e3�e4, and e4, and e2�e3 is the unique noncompact

simple root. Let

� = (a; a; 1; 0) = ae1 + ae2 + e3;

so that

�+ � = (a+ 7
2
; a+ 5

2
; 5
2
; 1
2
):

The parameter � is outside the weakly good range when a < 0. We readily calculate

that �(u \ p) = (5
2
; 5
2
; 0; 0). Therefore

� = � + 2�(u \ p) = (a+ 5; a+ 5; 1; 0)

is �+
K

dominant for a � �5.

First take a = �5, so that F has highest weight (�5;�5; 1; 0) and � equals

(0; 0; 1; 0). Since 2�
K

= (2; 0; 3; 1), we �nd that j� + 2�
K
j2 = j(2; 0; 4; 1)j2 = 21.

Put �0 = (1; 0; 0; 0). Then j�0 + 2�
K
j2 = j(3; 0; 3; 1)j2 = 19. To show that the K

type �0 occurs in L
S
(F ), it is enough by Corollary 7b to show that the L type

�0 = (1; 0; 0; 0) occurs in S1(u \ p) 
 F 

Vtop

(u \ p), i.e., the tensor product of

the L types (1; 0; 1; 0) and (0; 0; 1; 0). Now l is a direct sum l1� l2 corresponding to

the �rst two coordinates plus the last two coordinates. In the �rst two coordinates

the l1 type (1; 0) actually equals (1; 0)
 (0; 0). In the last two coordinates, the l2

type (0; 0) occurs in (1; 0)
 (1; 0) since (1; 0) is its own contragredient. Hence the

K type �0 occurs in L
S
(F ), and it has j�0 + 2�

K
j2 < j�+ 2�

K
j2.

Next take a = �4, so that F has highest weight (�4;�4; 1; 0) and � equals

(1; 1; 1; 0). Then j� + 2�
K
j2 = j(3; 1; 4; 1)j2 = 27. Put �0 = (2; 1; 0; 0). Then

j�0 + 2�
K
j2 = j(4; 1; 3; 1)j2 = 27. To show that the K type �0 occurs in L

S
(F ),

it is enough by Corollary 7b to show that the L type �0 = (2; 1; 0; 0) occurs in

S1(u\p)
F 

Vtop

(u\p), i.e., in (1; 0; 1; 0)
 (1;1; 1; 0). Arguing as when a = �5,

we �nd that this is the case. Hence the K type �0 occurs in L
S
(F ), and it has

j�0 + 2�
K
j2 = j�+ 2�

K
j2.
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4. Unitarity

We continue with the setting of x2. When � is orthogonal to �
L
and � is in the

weakly fair range, L
S
(C

�
) = Aq(�) is in�nitesimally unitary as a consequence of a

theorem of Vogan mentioned near the end of x2.

When the irreducible (l; L) module F has highest weight � and � is not orthogo-

nal to �
L
, the theorem of Vogan does not apply directly, and we get no information

outside the weakly good range. But Vogan's theorem can be combined with double

cohomological induction to get a positive result.

Let � be dominant integral for �+
L

. De�ne a parabolic subalgebra q
0 = l

0� u
0 of

g by

�
L
0 = f� 2 �

L
j h�; �i = 0g

�(u0) = �(u) [ f� 2 �+
L

j � =2 �
L
0g:

Then l
0 � l and q

0 � q. The group L0 is compact. We say that � is in the weakly

fair range if h�+ �(u0); 
i � 0 for all 
 2 �(u0).

Theorem 9. Let � be dominant integral for �+
L

, and let F be an irreducible (l; L)

module with highest weight �. If � is in the weakly fair range, then L
S
(F ) is

in�nitesimally unitary.

Proof. Let us write (L
g;K

q;L
)
j
to refer to the usual cohomological induction functor L

j
.

We introduce also the cohomological induction functors (L
l;L

q0\l;L0
)
i
and (L

g;K

q0;L0
)
k
.

Let S0 = dim(u0 \ l). By [Kn-Vo, Proposition 4.173], we have

(L
l;L

q0\l;L0
)
i
(C

�
) =

(
F if i = S0

0 if i 6= S0:

Since (L
l;L

q0\l;L0
)
i
(C

�
) is nonvanishing in only one degree, the double induction result

in [Kn-Vo, Corollary 11.86a] is applicable. When combined with a supplementary

argument to take
Vtop

u into account (cf. [Kn-Vo, xXI.7]), it gives

(L
g;K

q0;L0
)
S+S0(C �) �= (L

g;K

q;L
)
S
(L

l;L

q0\l;L0
)
S
0(C

�
) �= (L

g;K

q;L
)
S
(F ):

Since � is weakly fair in the sense of the de�nition preceding the theorem, Vogan's

theorem implies that the left side is in�nitesimally unitary. Hence the right side is

in�nitesimally unitary.

Example. As in the example in x3, let g0 = so(4; 5) with the usual k0, p0, t0, and

positive system. Let the irreducible (l; L) module F have highest weight

� = (a+ b; a; 0; 0) = (a+ b)e1 + ae2:

For G simply connected with Lie algebra g0, the conditions for � to be dominant

integral for �+
L

are that a 2 1
2
Z, b 2Z, and b � 0. Here

�+ � = (a+ b+ 7
2
; a+ 5

2
; 3
2
; 1
2
);

and � is outside the weakly good range if a < �1. The parameter � is

� = �+ 2�(u \ p) = (a + b+ 5; a+ 5; 0; 0);

and it is �+
K

dominant for a � �5.
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First suppose b = 0. Then F is one-dimensional, and Vogan's theorem is directly

applicable. Since �(u) = (3; 3; 0; 0), we have

� + �(u) = (a + 3; a+ 3; 0; 0):

Thus the weakly fair range is a � �3. Vogan's theorem says that L
S
(F ) is in-

�nitesimally unitary for a � �3.

Next suppose b > 0. Then F is no longer one-dimensional. The simple roots

de�ning the parabolic subalgebra q
0 are e3 � e4 and e4. Since �(u0) = (7

2
; 5
2
; 0; 0),

we have

� + �(u0) = (a+ b+ 7
2
; a+ 5

2
; 0; 0):

Thus the weakly fair range is a � �5
2
. Theorem 9 says that L

S
(F ) is in�nitesimally

unitary for a � �5
2
.

5. Langlands Parameters

By Langlands parameters for an irreducible (g;K) module V , we mean a

triple (MAN;�; �) with the following properties:

(i) MAN is a cuspidal parabolic subgroup of G

(ii) � is a discrete series or limit of discrete series on M

(iii) � is a complex-valued linear functional on the Lie algebra a0 of A with Re �

in the closed positive Weyl chamber

(iv) the induced representation indG
MAN

(� 
 e� 
 1), given by normalized induc-

tion, has a unique irreducible quotient, called the Langlands quotient and

denoted J(MAN;�; �)

(v) V is equivalent with the underlying Harish-Chandra module of the Langlands

quotient J(MAN;�; �).

Property (iv) is automatic if Re � is in the open positive Weyl chamber (cf. [Kn1,

Theorem 7.24]). Since every irreducible (g;K) module globalizes to an irreducible

admissible representation ofG, the Langlands classi�cation of irreducible admissible

representations ofG (cf. [Kn1, Theorem 14.91]) implies that every irreducible (g;K)

module has Langlands parameters. Such parameters are not necessarily unique, but

for given MAN the value of Re � is uniquely determined (by the asymptotics of

the K �nite matrix coe�cients of the representation).

We continue with the setting of x2. In this section we are interested in Langlands

parameters for the irreducible subquotient V of Aq(�) containing the K type �.

For Aq(�), Corollary 8a tells us that this V has minimal K type �, and we

know that V has in�nitesimal character � + �. Minimal K type and in�nitesimal

character together almost completely determine an irreducible (g;K) module up to

equivalence. In fact, the work of Vogan [Vo1] shows how to determine a pair (M;�)

from the minimal K type. (There is a question about whether (iv) above will be

satis�ed when the full triple (MAN;�; �) is in place, but this issue is not important

for our current purposes, and we set it aside in this introductory discussion.) If

�
�
is the in�nitesimal character of �, then the sum of �

�
and � has to match the

in�nitesimal character of V . The in�nitesimal character is determined only up to

a member of the complex Weyl group. Thus the question is whether the ambiguity

from the Weyl group allows for more than one � in the positive Weyl chamber.
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If we drop the assumption that we are working with Aq(�), the answer is that

more than one � can sometimes yield the correct in�nitesimal character. Here is

an example.

Example. As in the example in x3, let g0 = so(4; 5) with the usual k0, p0, t0, and

positive system. Starting from the Cartan subalgebra t0, we form a new Cartan

subalgebra by Cayley transform from the roots �1 = e2�e3 and �2 = e1�e4. Then

we take a0 to be the p0 part of this Cartan subalgebra, and we put A = exp a0.

Once A has been �xed, MAN is determined completely by the choice of a positive

Weyl chamber in the dual of a0. The Weyl group relative to A is transitive on

the Weyl chambers in this example, and the choice of positive Weyl chamber will

therefore not be important. To establish the notation, let us use the names �1 and

�2 also for the Cayley transforms of e2 � e3 and e1 � e4, and let us �x the positive

Weyl chamber of the dual of a0 as all � = c1�1 + c2�2 with c1 � c2 � 0.

The roots de�ning M are �(e2 + e3) and �(e1 + e4). De�ne �
�
= (4; 1; 1; 4).

There exist discrete series representations � ofM with �
�
as in�nitesimal character,

and [Kn-Vo, xXI.11] shows how to obtain a minimal K type that leads to this �.

Put �1 = 9�1+2�2 and �2 = 7�1+6�2. These are both in the open positive Weyl

chamber, and hence (iv) above is satis�ed. The parameters �
�
+ �1 = (6; 10;�8; 2)

and �
�
+ �2 = (10; 8;�6;�2) are conjugate by the complex Weyl group (per-

mutations and sign changes) and thus represent the same in�nitesimal character.

Since the � parameters are distinct, we have two inequivalent Langlands quotients

J(MAN;�; �1) and J(MAN;�; �2) with the same minimal K type and the same

in�nitesimal character.

This kind of ambiguity does not appear to occur for Aq(�) as in x2. When � is in

the weakly good range, the Langlands parameters are simply (G;Aq(�); 0). When

� is outside the weakly good range, we propose the Conjectural Method below for

determining Langlands parameters almost completely.

The Conjectural Method is intended to produce candidates for MAN , �, and

the in�nitesimal character of �. When M is disconnected, these data need not

determine the full Langlands parameters since the Harish-Chandra parameter of �

does not necessarily determine �.

Before stating the Conjectural Method, we carry it out in an example. The

example will also suggest a line of proof that the method is successful in a particular

case:

(1) show that there is no obstruction to carrying the method through to comple-

tion,

(2) use the minimalK type formula of [Kn1, (15.9)] and [Kn-Vo, xXI.11] to show

that the candidate for the in�nitesimal character of � leads back to � as

minimalK type,

(3) show that � is the unique member of the dual of a0 whose sum with the

in�nitesimal character of � is Weyl-group equivalent with the in�nitesimal

character �+ � of Aq(�).

We should emphasize that the Conjectural Method is di�erent from the well known

algorithm of Vogan [Vo1, Proposition 4.1]. That algorithm starts from an ordering

in which � + 2�
K

is dominant for �+ and shows how to obtain the in�nitesimal

character of �. For the example below, there is a unique positive system �+ in

which �+2�
K
is dominant, and �+ does not arise in the discussion of the example.
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Example. As in the example in x3, let g0 = so(4; 5) with the usual k0, p0, t0,

and positive system. Again e2 � e3 is the unique noncompact simple root. Let

� = (�7
2
;�7

2
; 0; 0), so that

� + � = (0;�1; 3
2
; 1
2
);

and

� = (3
2
; 3
2
; 0; 0):

The parameter �+ � has inner product > 0 with all simple roots that are compact,

and it fails to have inner product � 0 with one noncompact simple root, namely

�1 = e2 � e3. We decompose � + � into its components perpendicular and parallel

to �1 as

�+ � = (0; 1
4
; 1
4
; 1
2
)� 5

4
�1:

Put �1 + �1 = (0; 1
4
; 1
4
; 1
2
). A one-dimensional group A1 is obtained by Cayley

transform with e2�e3 (cf. [Kn2, xVI.7]), and the corresponding M1 is a group with

simple roots e2 + e3, e1 � e4, and e4. Of these simple roots, e2 + e3 and e1 � e4
are noncompact for M1. The parameter �1+ �1 has inner product > 0 with allM1

simple roots that are compact, and it fails to have inner product � 0 with one M1

noncompact simple root for M1, namely �2 = e1 � e4. Then we write

�1 + �1 = (1
4
; 1
4
; 1
4
; 1
4
)� 1

4
�2;

so that

�+ � = (1
4
; 1
4
; 1
4
; 1
4
)� 5

4
�1 �

1
4
�2:

Put �2 + �2 = (1
4
; 1
4
; 1
4
; 1
4
). A two-dimensional group A2 is obtained by Cayley

transform with e1 � e4, and the corresponding M2 is a group with simple roots

e2 + e3 and e1 + e4. Both these roots are noncompact for M2. The parameter

�2+ �2 is dominant for M2. At this stage, because of the M2 dominance of �2+ �2,

the Conjectural Method announces that the Langlands parameters of Aq(�) should

be (MAN;�; �), where M = M2, A = A2, N is determined by the Weyl chamber

fc1�1 + c2�2 j c1 � c2 � 0g in the dual of a0, � has Harish-Chandra parameter

�2 + �2, and � = 5
4
�1 +

1
4
�2.

This completes step (1) for the example. Step (2) is to apply the minimal K

type formula. Put �
�
= �2 + �2 = (1

4
; 1
4
; 1
4
; 1
4
), and form the induced series for a

corresponding �. To use the formula, we introduce a new ordering in which �
�

is still dominant and �1 and �2 are simple. Write � and �
K

for the half sums of

positive roots and positive compact roots in this ordering. Also write �
r
and �

Kr

for the corresponding sums in the split group built from �1 and �2. The formula

says that all minimal K types of such series are given by all dominant integral

expressions

�new = �
�
+ (� � �

r
) � 2�

K
+ (� + 2�

Kr
);

where � is a �ne K
r
type in the sense of Vogan [Vo1] and where � is related to � in a

particular way. Each �ne K
r
type is related to some �. The validity of this formula

has a proviso, namely that some such expression is �+
K

dominant. But since we
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are trying to achieve �new = �, the proviso will not be an issue. We choose the

ordering in which e2 � e3 � e1 � e4 � 0, so that

� = (3
2
; 7
2
; 5
2
; 1
2
)

�2�
K
= (0;�2;�3;�1)

�
r
= (1

2
; 1
2
;�1

2
;�1

2
)

2�
Kr

= 0:

Then we �nd that

�new = (5
4
; 5
4
; 1
4
; 1
4
) + �:

If � = (1
4
; 1
4
;�1

4
;�1

4
), then the K

r
type � is �ne and we obtain

�new = (3
2
; 3
2
; 0; 0) = �;

as required.

This completes step (2) for the example. Step (3) is to show that � = 5
4
�1+

1
4
�2

is the only possibility for obtaining the correct in�nitesimal character. The target

in�nitesimal character is � + � = (0;�1; 3
2
; 1
2
), while the in�nitesimal character of

an induced representation with the linear functional c1�1 + c2�2 on a0 is

�
�
+ c1�1 + c2�2 = (1

4
; 1
4
; 1
4
; 1
4
) + (c2; c1;�c1;�c2)

= (1
4
+ c2;

1
4
+ c1;

1
4
� c1;

1
4
� c2):

Since c1 � c2 � 0, the largest entry in absolute value is 1
4
+ c1, and this must

match the largest entry in absolute value for (0;�1; 3
2
; 1
2
), namely 3

2
. Therefore

c1 =
5
4
. Then 1

4
� c1 = �1. We have used the two entries 3

2
and �1 of (0;�1; 3

2
; 1
2
).

The larger of the absolute values of the remaining two entries 0 and 1
2
must match

1
4
+ c2, and thus c2 =

1
4
. Thus � = 5

4
�1 +

1
4
�2, as required.

Conjectural Method for Obtaining Langlands Parameters. Let Aq(�) be

given in the setting of x2. The Langlands parameters are to be obtained recur-

sively. For the initial stage, let M0 = G, A0 = f1g, �0 = �, �0 = �, �0 = �.

Here dimA0 = 0 and �0 + �0 is dominant nonsingular relative to all simple roots

of M0 that are M0 compact. Suppose that M
j
, A

j
, �

j
, �

j
, and �

j
are given with

dimA
j
= j and with �

j
+ �

j
dominant nonsingular relative to all simple roots of

M
j
that are M

j
compact. There are now two cases:

(a) If h�
j
+ �

j
; �i � 0 for all simple roots of M

j
that are M

j
noncompact, the

recursive construction ends. De�ne M = M
j
, A = A

j
, �

�
= �

j
+ �

j
, and � = �

j
.

De�ne N so that � is dominant relative to N . ThenMAN , �
�
, and � are the cuspi-

dal parabolic subgroup, the in�nitesimal character of theM representation, and the

parameter on a0 of a set of Langlands parameters for the irreducible subquotient

of Aq(�) containing the K type � + 2�(u \ p).

(b) Otherwise let �
j+1 be a simple root of M

j
that is noncompact and has

h�
j
+ �

j
; �i < 0. Build A

j+1 with dimA
j+1 = j + 1 from A

j
by Cayley transform

relative to �
j+1 (cf. [Kn2, xVI.7]). LetMj+1 =

0Z
G
(A

j+1) in the notation of [HC2]

and [Kn2, p. 391]. The roots of M
j+1 may be identi�ed with the roots of M

j

orthogonal to �
j+1, and we let �

j+1 be half the sum of the positive roots. De�ne

�
j+1 + �

j+1 to be the projection of �
j
+ �

j
orthogonal to �

j+1, so that

�
j
+ �

j
= (�

j+1 + �
j+1) +

h�
j
+ �

j
; �

j+1i

j�
j+1j

2
�
j+1:
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Identifying �
j+1 with its Cayley transform, put

�
j+1 = �

j
�
h�

j
+ �

j
; �

j+1i

j�
j+1j

2
�
j+1;

so that

� + � = (�
j+1 + �

j+1) � �
j+1:

Then �
j+1+ �

j+1 is dominant nonsingular relative to all simple roots ofM
j+1 that

are M
j+1 compact, and the recursive construction continues.

We cannot prove the Conjectural Method completely. In the results that follow,

we shall carry out step (1) above in general (showing that there is no obstruction

to carrying out the method), and we shall carry out steps (2) and (3) in two cases:

when the induction terminates with j = 1 and with �1 + �1 dominant for �+ and

also when g0 = so(2m; 2n). From the proof of steps (2) and (3) for g0 = so(2m; 2n),

it will be apparent that the argument works for all classical g0.

Proposition 10. Let C
�

be a one-dimensional representation of L whose unique

weight � has the property that � = � + 2�(u \ p) is �+
K

dominant. Then the

Conjectural Method runs into no obstruction in �nding parameters MAN , �
�
, and

�.

Remark. The proof will give more information than is in the statement. This

information is of some use in handling steps (2) and (3) for Aq(�) in the setting

of x2, and it may be of some use in �nding Langlands parameters for more general

L
S
(F )'s.

Proof. In essence the argument will proceed by induction on j in the statement of

the Conjectural Method. However, in order to induct successfully, we shall enlarge

the set of situations under consideration. For the inductive step, suppose that G

is a reductive Lie group in the Harish-Chandra class with trivial split component,

and let k0, p0, and K be as usual. We assume rank G = rank K, and we let t0 � k0

be a compact Cartan subalgebra of g0. Fix a positive system �+ for �(g; t), and

de�ne �+
K

, �, and �
K

as usual. Let q = l � u be a parabolic subalgebra with �
L

built from the simple roots that are compact and with �(u) � �+, let � be an

analytically integral form on t that is dominant for �+
L

= �+ \�
L
, and suppose

that � = �+2�(u\p) is dominant for �+
K

. We make no assumption on the number

of noncompact simple roots.

If there is a noncompact simple root � with h�+�; �i < 0, �x such a root. Use �

to form a Cayley transform, writing t
� � a

� for the transformed version of t. Here

dima
� = 1. Form m from a

� as usual. We may identify �(m; t�) with the subset

of �(g; t� � a
�) orthogonal to �. In turn we may identify �(g; t� � a

�) with

�(g; t) via the Cayley transform. With these identi�cations in place, we de�ne

�+
M

= �+ \ �(m; t�). De�ne �+
M;K

, �
M
, and �

M;K
correspondingly. Form a

parabolic subalgebra q
M

= l
M
� u

M
of m in the same way that q is formed in g.

Thus l
M

is formed from the subset �
M;L

of �(m; t�) generated by the simple roots

of �+
M

whose root vectors are in k, and u
M

is formed from the subset �(u
M
) of all

the remaining members of �+
M

. De�ne a form �
M

on t
� by requiring that �

M
+�

M

is the orthogonal projection of � + � on the dual of t�. We shall prove that

(i) �
M

is analytically integral,
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(ii) �
M

= �
M

+ 2�
M
(u
M
\ p) is dominant for �+

M;K

, where 2�
M
(u
M
\ p) is the

sum of the members of �+
M

(u) with root vectors in p,

(iii) �
M

is dominant for �+
M;L

= �+
M

\�
M;L

.

This will prove the proposition.

Throughout the proofs of (i) through (iii), it is important to keep in mind what

happens to compactness and noncompactness of roots in passing from G to M .

The property of being compact or noncompact is retained by a root � in �(g; t)

that is strongly orthogonal to � when � is viewed in �(m; t�). But if � is orthog-

onal to � but not strongly orthogonal, then compactness and noncompactness are

interchanged in passing from �(g; t) to �(m; t�). See [Kn2, Proposition 6.72].

Let us prove (i). By de�nition �
M
+ �

M
is the restriction to t

� of �+ �. Now 2�

is the sum of 2�
M
, �, and the members of the two-element sets f�; s

�
�g of positive

roots other than � whose inner product with � is not 0. The sum for a pair f�; s
�
�g

has the same restriction to t
� as 2�. Thus � � �

M
has the same restriction to t

�

as the sum of a certain collection of roots and is therefore integral on t
�. Since �

is integral on t, it follows that �
M

is integral on t
�. This proves (i).

Next let us prove (ii). Since �
L
contains only compact roots, �(u\ p) equals �

n
,

the half sum of the positive noncompact roots. Similarly �
M
(u
M
\ p) equals �

M;n
,

the half sum of the positive noncompact roots in �+
M

. Then we have

�
M

= �
M

+ 2�
M
(u
M
\ p)

= (�
M

+ �
M
) + (2�

M;n
� �

M
)

= (�
M

+ �
M
) + (�

M
� 2�

M;K
)

and similarly

� = (� + �) + (� � 2�
K
):

Taking the inner product of both equations with � 2 �+
M

and subtracting, we

obtain

h�
M
; �i = h�; �i + h2(�

K
� �

M;K
)� (� � �

M
); �i:

The right side, by [Kn-Vo, Lemma 11.231], is

= h�; �i + hE(2�
K
)� 1

2
�; �i;

where E is the orthogonal projection on R�. The second inner product on the right

side is 0, and hence

h�
M
; �i = h�; �i:

When we specialize to � 2 �+
M;K

, there are two cases. If � is strongly orthogonal

to �, then � is in �+
K

and h�; �i � 0. Hence h�
M
; �i � 0. If � is orthogonal to �

but not strongly orthogonal, then � � � are in �+
K

and h�; � � �i � 0. Thus

h�
M
; �i = h�; �i = 1

2
(h�; � + �i+ h�; � � �i) � 0:

This proves (ii).

Finally let us prove (iii). If 
 is in �+
M;L

, then

h�
M
; 
i = h�

M
� 2�

M
(u
M
\ p); 
i = h�

M
; 
i;

and this is � 0 by (ii) since �+
M;L

� �+
M;K

. This completes the proof.
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Lemma 11. Let C
�
be a one-dimensional representation of L whose unique weight

� has the property that � = � + 2�(u \ p) is �+
K

dominant. Then the Conjectural

Method stops with j = 1 and with �1+�1 dominant for �+ if and only if the unique

noncompact simple root �0 has the property that

�
2

n
�

2h�+ �; �0i

j�0j2
< 0;

where n is the maximum value of 2jh�0; 
ij=j
j
2 over all simple roots 
 6= �0.

Proof. The condition that �1 + �1 is dominant for �+ is a condition on the simple

roots adjacent to �0 in the Dynkin diagram since h�1 + �1; �0i = 0 and since

h�1+ �1; 
i > 0 for 
 orthogonal to �0. Thus let 
 be a simple root adjacent to �0.

Since h�; 
i = 0, we have

2j
j�2h�1 + �1; 
i = 2j
j�2h�1 + �1; 
 �
h
;�0i

j�0j
2 �0i

= 2j
j�2h� + �; 
 �
h
;�0i

j�0j
2 �0i

=
2h�; 
i

j
j2
�

�
h
; �0i

j
j2

��
2h�+ �; �0i

j�0j2

�

= 1�
1

2

�
2h
; �0i

j
j2

��
2h�+ �; �0i

j�0j2

�
:

The right side is

� 1�
n

2

����2h�+ �; �0i

j�0j2

����
for all 
, and equality holds for some 
. This proves the lemma.

Proposition 12. Let C
�

be a one-dimensional representation of L whose unique

weight � has the property that � = �+2�(u\p) is �+
K

dominant. If the Conjectural

Method stops with j = 1 and with �1 + �1 dominant for �+, then the Conjectural

Method produces a triple (MAN;�
�
; �) with the property that (MAN;�; �) is a set

of Langlands parameters for Aq(�) for some � with in�nitesimal character �
�
.

Remarks.

1) The proof will e�ectively show what � is, as well.

2) In most situations as in x2, the unique noncompact simple root �0 has exactly

two neighbors 
1 and 
2 in the Dynkin diagram, both connected to �0 by single

lines. In this case, 
1 + �0 + 
2 is a noncompact simple root of M1 with

2h�1 + �1; 
1 + �0 + 
2i

j
1 + �0 + 
2j2
=

2h� + �; 
1 + �0 + 
2i

j�0j2
= 2 +

2h�+ �; �0i

j�0j2
:

If the Conjectural Method stops with j = 1, then this quantity is � 0, and hence

�2 �
2h�+�;�0i

j�0j
2 . By Lemma 11, �1 + �1 is dominant for �+. In other words, the

hypothesis \and with �1+�1 dominant for �+" may be dropped in most situations

of the kind in x2.

Proof. Since the Conjectural Method stops when j = 1, we have dimA = 1, �
�
=

�1+ �1, and � = �
h�+�;�0 i

j�0j
2 �0, where �0 is the unique noncompact simple root. Let

� be a discrete series or limit of discrete series representation ofM with in�nitesimal

character �
�
. The assumed dominance of �

�
means that we can use the minimalK

type formula (see [Kn1, (15.9)] and [Kn-Vo, xXI.11]) with the given �+ to compute
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the minimalK types of the series of representations induced from �. Such a minimal

K type �new has to be of the form

�new = �
�
+ (� � 1

2
�0)� 2�

K
+ �;

where � is a �ne K
r
type for the group G

r
corresponding to the sl(2;R) built from

�0. If �
n
denotes half the sum of the positive noncompact roots, then the above

expression is

= �+ � �
h�+�;�0i

j�0j
2 �0 + � � 1

2
�0 � 2�

K
+ �

= �+ 2�
n
�

h�+�;�0i

j�0j
2 �0 �

1
2
�0 + �

= ��
h�+�;�0i

j�0j
2 �0 �

1
2
�0 + �:

According to Lemma 11,
h�+�;�0i

j�0j
2 �0 is equal to �c�0 with 0 < c � 1. Therefore

� = 1
2
�0 +

h�+�;�0i

j�0j
2 �0

is a �ne K
r
type, and the corresponding �new equals �. Since the result is integral,

there exists a � leading to this �. Then it follows from [Kn1, Proposition 15.5] that

any irreducible admissible representation with minimal K type � is an irreducible

quotient of some indG
MAN

(�
e�
0


1) with Re �0 in the closed positiveWeyl chamber.

Since � + � is real, � 0 must be real. The equality

j�
�
j2 + j�0j2 = j�+ �j2 = j�1 + �1j

2 +
�� h�+�;�0i

j�0j
2 �0

��2
and the one-dimensionality of A imply that �0 = �, as required. Since � 6= 0,

condition (iv) is satis�ed in the de�nition of Langlands parameters. The other

conditions have already been veri�ed, and thus (MAN;�; �) is a set of Langlands

parameters for the irreducible subquotient of Aq(�) containing the K type �.

Proposition 13. Let C
�

be a one-dimensional representation of L whose unique

weight � has the property that � = �+2�(u\p) is �+
K

dominant. If g0 = so(2m; 2n)

with m > 1 and n > 1, then the Conjectural Method produces a triple (MAN;�
�
; �)

with the property that (MAN;�; �) is a set of Langlands parameters for Aq(�) for

some � with in�nitesimal character �
�
.

Remark. The proof will e�ectively show what � is, as well.

Proof. For g0 = so(2m; 2n) within the setting of x2, the root system has to be of

type D
m+n, and the unique noncompact simple root has to be �0 = e

m
� e

m+1 or

�0 = e
n
� e

n+1. There is no loss of generality in assuming that �0 = e
m
� e

m+1.

The compact roots are the ones involving only indices 1; : : : ;m or only indices

m+ 1; : : : ;m+ n. If we take

� = (a; : : : ; a; 0; : : :; 0) with a 2 1
2
Z;

then we have

� = (m + n � 1; : : : ; n; n� 1; : : : ; 0)

�+ � = (a+m + n� 1; : : : ; a+ n; n� 1; : : : ; 0)

�2�
K
= (�2(m � 1); : : : ;�2; 0;�2(n� 1); : : : ;�2; 0)

2�(u \ p) = (2n; : : : ; 2n; 0; : : : ; 0)

� = �+ 2�(u \ p) = (a+ 2n; : : : ; a+ 2n; 0; : : : ; 0):
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The condition that � be outside the weakly good range is that a < �1. The

condition that � be �+
K

dominant is that a � �2n.

In the Conjectural Method, the �rst roots whose inner products are tested with

�+ � can be e
m
� e

m+1, em�1 � e
m+2, and so on. Afterward the roots e

m
+ e

m+1,

e
m�1 + e

m+2, and so on can have their inner products tested. For the latter kind,

the inner products are all the same, namely a+ 2n� 1, and the proof divides into

cases according to the sign of this quantity.

Case I. a+ 2n� 1 � 0. For j � 0, we have

h�+ �; e
m�j � e

m+1+j i = (a + n+ j) � (n� 1� j) = a+ 2j + 1:

Let p be the largest integer with a + 2p + 1 < 0. By the assumption of Case I,

p � n�1. Put p0 = minfm�1; pg. The successive roots that arise in the Conjectural

Method are

e
m�j � e

m+j+1 for 0 � j � p0:

We are going to apply the minimalK type formula (see [Kn1, (15.9)] and [Kn-Vo,

xXI.11]) for the induced series from �, where � has in�nitesimal character �
�
.

To do so, we need a new positive system in which �
�
is dominant and the roots

e
m�j � e

m+j+1 with 0 � j � p0 are simple. We shall produce � and show that the

minimal K type �new of the induced series from � coincides with �, and then we

shall be able to complete Case I. The veri�cation of the equality �new = � breaks

into two subcases, p0 = p and p0 = m � 1.

Subcase Ia. p � m � 1, so that p0 = p. Since p is as large as possible, we

have a + 2p + 3 � 0. The indices f1; : : : ;m + ng break into three sets, namely

f1; : : : ;m � p � 1g, fm � p; : : : ;m + p + 1g, and fm + p + 2; : : : ;m + ng. The

�rst or the third set or both may be empty. For these three sets of indices, the

corresponding entries of �
�
are

a +m + n� 1 � � � a+ n+ p+ 1
1
2
(a+ 2n� 1) � � � 1

2
(a+ 2n� 1)

n � p� 2 � � � 0:

The desired ordering is the one that takes the �rst set of indices in its given ordering,

followed by the second set in the ordering

m;m+ 1;m� 1;m+ 2;m� 2;m+ 3; : : : ;m� j;m+ j + 1; : : : ;m� p;m+ p+ 1;

followed by the third set in its given ordering. Let us write � and �
K

for the

usual quantities in this ordering, and let us write �
r
and �

Kr
for the corresponding

quantities for the roots spanned by all e
m�j�em+j+1 with 0 � j � p. The minimal

K type formula says that the induced series from � (with � having in�nitesimal

character �
�
) has minimalK type

�new = �
�
+ (� � �

r
)� 2�

K
+ (� + 2�

Kr
)
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for a �ne K
r
type �. For the �rst and third sets of indices, we have

�
�
=

�
a +m + n� 1 � � � a+ n+ p + 1

n� p� 2 � � � 0

� � �
r
=

�
m + n� 1 � � � n + p+ 1

n� p� 2 � � � 0

�2�
K
=

�
�2(m � 1) � � � �2(p+ 1)

�2(n � p� 2) � � � 0

� + 2�
Kr

=

�
0 � � � 0

0 � � � 0:

Addition gives

�new =

�
a+ 2n � � � a+ 2n

0 � � � 0;

and therefore �new matches � in the �rst and third sets of indices.

In the second set of indices, we de�ne

� =

(
1
2
a+ p+ 1 in position m � j

�1
2
a� p� 1 in position m + j + 1:

Since

a + 2p+ 1 < 0 and a+ 2p+ 3 � 0;

the contribution to � from positions m� j and m+ j +1 is c(e
m�j � e

m+j+1) with

�1
2
� c < 1

2
. Therefore � is a �ne K

r
type. Then we have

�
�
=

(
1
2
(a+ 2n� 1) in position m� j

1
2
(a+ 2n� 1) in position m+ j + 1

� � �
r
=

(
n+ p� 2j � 1

2
in position m � j

n+ p� 1� 2j + 1
2

in position m + j + 1

�2�
K
=

(
�2(p � j) in position m � j

�2(n � j � 1) in position m + j + 1

�+ 2�
Kr

=

(
1
2
a+ p + 1 in position m� j

�1
2
a� p� 1 in position m+ j + 1:

Addition gives

�new =

(
a + 2n in position m � j

0 in position m + j + 1;

and therefore �new matches � in the second set of indices. Since �new is integral, �

gives rise to a well de�ned � with in�nitesimal character �
�
and the induced series

from � has � as minimalK type.

Subcase Ib. p > m�1, so that p0 = m�1. Since p � n�1, we must have m < n.

The indices break into two nonempty sets f1; : : : ; 2mg and f2m + 1; � � � ;m + ng.

For these two sets of indices, the corresponding entries of �
�
are

1
2
(a+ 2n� 1) � � � 1

2
(a+ 2n� 1)

n�m � 1 � � � 0:
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Here

n� p� 2 � 1
2
(a + 2n� 1) < n� p� 1:

Since p � m, �
�
is not dominant. The desired ordering is the one that takes the

�rst p � m + 1 indices from the block f2m + 1; : : : ;m + ng, followed by the set

f1; : : : ; 2mg in the ordering

m;m+ 1;m� 1;m+ 2;m� 2;m+ 3; : : : ;m� j;m + j + 1; : : : ; 1; 2m;

followed by the remaining indices from the block f2m+1; : : : ;m+ng. Let us write

� and �
K

for the usual quantities in this ordering, and let us write �
r
and �

Kr

for the corresponding quantities for the roots spanned by all e
m�j � e

m+j+1 with

0 � j � m � 1. We de�ne � in the same way as for Subcase Ia, and � is again a

�ne K
r
type. For the new �rst and third sets of indices, we have

�
�
=

�
n�m� 1 � � � n� p� 1

n� p � 2 � � � 0

� � �
r
=

�
n+m� 1 � � � n+ 2m� p� 1

n� p � 2 � � � 0

�2�
K
=

�
�2(n� 1) � � � �2(n+m� p� 1)

�2(n� p� 2) � � � 0

�+ 2�
Kr

=

�
0 � � � 0

0 � � � 0:

Addition gives

�new =

�
0 � � � 0

0 � � � 0;

and therefore �new matches � in the new �rst and third sets of indices.

Now we check the contribution from the indices f1; : : : ; 2mg. We have

�
�
=

(
1
2
(a+ 2n� 1) in position m� j

1
2
(a+ 2n� 1) in position m+ j + 1

� � �
r
=

(
n+ 2m� p� 2� 2j � 1

2
in position m � j

n+ 2m� p� 3� 2j + 1
2

in position m + j + 1

�2�
K
=

(
�2(m � 1� j) in position m� j

�2(n +m � p� 2� j) in position m+ j + 1

�+ 2�
Kr

=

(
1
2
a+ p + 1 in position m� j

�1
2
a� p� 1 in position m+ j + 1:

Addition gives

�new =

(
a + 2n in position m � j

0 in position m + j + 1;

and therefore �new matches � in the set of indices f1; : : : ; 2mg. Once again, since

�new is integral, � gives rise to a well de�ned � with in�nitesimal character �
�
and

the induced series from � has � as minimalK type.

This completes the construction of � in the two subcases of Case I, as well as

the proof that the induced series from � has � as minimal K type. To complete
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Case I, we need to verify that � is the Langlands A parameter. Let �0 be the actual

Langlands parameter, so that

� 0 =

8><
>:
c
j

in position m� j for 0 � j � p0

�c
j

in position m+ j + 1 for 0 � j � p0

0 in all other positions.

The Weyl group of A is transitive on the Weyl chambers for this situation, and

we may thus assume that c0 � c1 � � � � � c
p
0 . Then � + � and �

�
+ �0 must

agree, up to a member of the complex Weyl group. For indices outside the range

m � p0 � j � m + 1 + p0, the entries of � + � and �
�
+ �0 match exactly. Thus we

have only to consider indices in the range m � p0 � j � m + 1 + p0. For this range

of indices, the entries of �
�
are constant and positive. Thus we can determine c0

from the largest entry of � + � in absolute value, c1 from the next largest, and so

on. This argument shows that there is only one candidate for �0. Since � has the

property that �+ � = �
�
+ �, we must have �0 = �. Since � is in the open positive

Weyl chamber, condition (iv) in the de�nition of Langlands parameters is satis�ed.

Case II. a + 2n � 1 < 0, so that a = �2n + 1
2
or a = �2n. De�ne p0 =

minfm� 1; n� 1g. The successive roots that arise in the Conjectural Method are

e
m�j � e

m+j+1 for 0 � j � p0;

and �
�
is 0 in entries m� p0; : : : ;m+ p0+1. To apply the minimalK type formula

for the induced series from �, we need a positive system in which �
�
is dominant

and the Lie algebra generated by all simple roots (and their negatives) contributing

to all e
m�j � e

m+j+1 is split. We shall produce � and show that the minimal K

type �new of the induced series from � coincides with �, and then the argument is

completed as in Case I. The veri�cation of the equality �new = � breaks into two

subcases, n � m and n > m.

Subcase IIa. n � m, so that the successive roots are

e
m�n+1 � e

m�n+2; em�n+3 � e
m�n+4; : : : ; em+n�1 � e

m+n:

The indices f1; : : : ;m + ng break into two sets, namely f1; : : : ;m � ng and

fm� n+ 1; : : : ;m+ ng. The �rst set is empty if and only if n = m. For these two

sets of indices, the corresponding entries of �
�
are

a+m + n� 1 � � � a + 2m

0 � � � 0:

Here a+2m � a+2n � 0, and the desired ordering for the minimalK type formula

is the standard ordering. For the �rst set of indices, we have

�
�
= a+m+ n� 1 � � � a+m

� � �
r
= m + n� 1 � � � m

�2�
K
= �2(m � 1) � � � �2(m� n)

�+ 2�
Kr

= 0 � � � 0:

Addition gives

�new = a+ 2n � � � a + 2n;

and therefore �new matches � in the �rst set of indices.
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In the second set of indices, we de�ne

� =

(
a+ 2n in position m � j

0 in position m + j + 1

for 0 � j � n� 1. This K
r
type is trivial or is a spin representation on one factor

of K
r
. In either case it is �ne for so(n; n). For 0 � j � n� 1, we then have

�
�
=

(
0 in position m� j

0 in position m+ j + 1

� � �
r
=

(
0 in position m� j

0 in position m+ j + 1

�2�
K
=

(
�2j in position m � j

�2(n � j � 1) in position m + j + 1

� =

(
a + 2n in position m � j

0 in position m + j + 1:

2�
Kr

=

(
2j in position m� j

2(n� j � 1) in position m+ j + 1:

Addition shows for 0 � j � n� 1 that

�new =

(
a + 2n in position m � j

0 in position m + j + 1:

Thus �new = �. Since �new is integral, � gives rise to a well de�ned � with

in�nitesimal character �
�
and the induced series from � has � as minimalK type.

Subcase IIb. n > m, so that the successive roots are

e1 � e2; e3 � e4; : : : ; e2m�1 � e2m:

The indices f1; : : : ;m+ ng break into two nonempty sets, namely f1; : : : ; 2mg and

f2m+ 1; : : : ;m+ ng. For these two sets of indices, the corresponding entries of �
�

are

0 � � � 0

n�m� 1 � � � 0:

The desired ordering for the minimalK type formula takes the second set of indices

followed by the �rst. For the second set of indices, we have

�
�
= n�m � 1 � � � 0

� � �
r
= m+ n� 1 � � � 2m

�2�
K
= �2(n� 1) � � � �2m

�+ 2�
Kr

= 0 � � � 0:

Addition gives

�new = 0 � � � 0;

and therefore �new matches � in this set of indices.
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In the other set of indices, we de�ne

� =

(
a+ 2n in position m � j

0 in position m + j + 1

for 0 � j � m � 1. Here � is a �ne K
r
type for so(m;m). For 0 � j � m � 1, we

then have

�
�
=

(
0 in position m � j

0 in position m + j + 1

� � �
r
=

(
0 in position m � j

0 in position m + j + 1

�2�
K
=

(
�2j in position m� j

�2(m� j � 1) in position m+ j + 1

� =

(
a+ 2n in position m� j

0 in position m+ j + 1:

2�
Kr

=

(
2j in position m � j

2(m� j � 1) in position m + j + 1:

Addition gives

�new =

(
a+ 2n in position m � j

0 in position m + j + 1

for 0 � j � m � 1. Thus �new = �, and the proof is complete.
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