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1. Introduction

Let G be a connected Lie group. (X, G) is a flow if X is a compact Haus-
dorff space with a jointly continuous group action by G. The flow (X, G) is
minimal if every orbit is dense or, equivalently, if X has no proper closed
non-empty invariant set.

We wish to capture two ideas about minimal sets. The first is that if
(X, G) is a minimal flow, then not only is each orbit dense, but also each
orbit actually winds around X in much the same way that a Kronecker line
on the torus winds around the torus. This fact is made precise and ex-
plained further in Theorem 2.1 and the discussion immediately following
it. As a consequence of this theorem, we obtain as Theorem 2.2 a statement
about equivariant maps of flows onto minimal flows, which generalizes the
main result of Chu and Geraghty in [2].

The second idea is that the space X of a minimal flow should have some
homogeneity property. A known result, due to A. A. Markoff [7], is that
if X is finite-dimensional, then X has the same dimension at each point.
The conjecture that X has a transitive set of homeomorphisms commuting
with G is shown to be false by enlarging the space of Floyd’s example [6]
and making it into a flow under the reals in the usual way. Instead, our
result is of a relative rather than an absolute nature. Namely, if 7 is an
equivariant mapping between minimal flows (X, G) and (Y, G), then under
suitable conditions X is the bundle space of a fiber bundle with base space
Y and with projection 7. Such a result is proved as Theorem 3.1 under the
assumption that everything is differentiable.

2. Relation of Orbits to Homotopy

Let (Y, G) be a flow with ¥ connected and locally arcwise connected, let
X be a covering space of Y, and let 7 be the projection. There is at most one
way of lifting the flow on Y to a jointly continuous group action of G on X
which commutes with 7, and if G is simply connected, there is at least one.
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The uniqueness is trivial, and the existence follows from the homotopy
lifting property for covering spaces.

THEOREM 2.1. Let G be a connected Lie group, let (Y, G) be a minimal flow
with Y (connected and) locally arcwise connected, and let X be a covering space
of Y with projection . Suppose the flow on Y lifts to a jointly continuous action of
G on X. If X is compact, then (X, G) is a minimal flow. If X is noncompact, then
every orbit of G on X is unbounded.

Proof. The argument for compact X appears on p. 27 of [1], and our
proof, given only in the noncompact case, is similar to that argument.
Suppose the theorem is false in the noncompact case. Let C be the compact
closure of a bounded orbit in X. € is invariant under G and must contain
a minimal closed invariant subset M. Then M is nowhere dense. In fact, M
intersected with the complement of the interior of M is a closed invariant
subset of M and so is empty or is all of M. The first alternative would mean
X =M or else X is disconnected. Since neither of these things is so, we con-
clude that the intersection is M and hence M is nowhere dense. Since 7 is a
local homeomorphism and M is compact nowhere dense, 7(M) is compact
and nowhere dense. The invariance of M then contradicts the fact that
(¥, ) is minimal, and the proof is complete.

Theorem 2.1 allows us to make the following description of the rela-
tionship between orbits of a minimal flow (¥, R), where R is the additive
group of reals, and the 1-dimensional simplicial homology of Y. Suppose
Y admits a finite triangulation. Call a 1-cycle on Y free if no multiple of it
bounds. Then each orbit of (¥, R) winds arbitrarily often around each free
I-cycle of ¥V, in a sense that we now make precise.

Choose any free l-cycle z of ¥, and let [z] be its homology class. Let ¢ be
any indivisible class in H,(Y) with ke = [z] for some k, in the integers Z,
and let h.: H,(Y) = Z be any homomorphism sending ¢ into | and sending
the other members of a basis for the free part of H,(Y) into 0. Let A:
(Y, y0) = H(Y) be factorization by the commutator subgroup, and let
K. C (Y, y5) be the kernel of the composition ki, ¢ h. Finally let p: X = Y
be a regular covering with a point x, such that p, (m(X, x,)) = K. Since
he © h is onto Z, the covering space X has Z as its group of deck transforma-
tions and X is noncompact.

Lift the flow (Y, R) to an action of R on X, and let T’ be the orbit through
xo. Find a compact set C C X containing x, with p(C) =Y and define, for
k=0,

where n acts as a deck transformation. B, is compact and U, B, = X. Theo-
rem 2.1 implies that the orbit 7" is contained in no B,. That is, T reaches
arbitrarily remote sheets of the covering X. In this sense the corresponding
orbit in (¥, R) wraps arbitrarily often around the cycle z.
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The next theorem generalizes the main result of [2]. The details of this
implication are given at the beginning of §4.

THEOREM 2.2. Let G be a connected Lie group, let (X, G) and (Y, G) be
Sflows with (Y, G) minimal, and let 7 be a continuous equivariant map of X onto 'Y
with m(xy) = yo. Suppose that X is compact, connected and locally arcuwise connected
and that Y is locally arcwise connected and semi-locally 1-connected. Then
e (m(X, x0)) has finite index in (Y, yo).

Proof. 1t suffices to prove the result for G simply connected, since the
hypotheses and conclusion are unchanged when G is replaced by its uni-
versal covering group and X and Y are considered as flows under the cover-
ing group.

With G simply connected, let p: Z — Y be a covering with a point z, in
7 such that p.(m(Z, z9)) = m(m (X, xp)). The flow (Y, G) lifts uniquely to a
jointly continuous action of G on Z. The condition on p« is such that
m: X — Y lifts to a unique continuous function #: X — Z that satisfies
#r(x,) = zy. and it is readily checked that 7 is equivariant. Z is compact if and
only if 7 4(m (X, xp)) has finite index in (Y, y,) and we may therefore as-
sume that Z is noncompact. Then 7 (X) is a compact subset of Z containing
the orbit of z, under G, and we have arrived at a conclusion contradicting
Theorem 2.1.

COROLLARY 2.3. Let G be a simply connected Lie group, let (X, G) and
(Y, G) be flows with (Y, G) minimal, and let 7 be a continuous equivariant map of
X onto Y with m(xo) = yo. Suppose that X is compact, connected and locally arcwise
connected and that Y is locally arcwise connected and semi-locally 1-connected. Then
there exist a minimal flow (Z, G), continuous equivariant maps : X = Z and
p:Z — Y. and a point z in Z such that the diagram

(X, G)

Z, G)
Y, G)

commutes, such that 7 .: m(X, xo) = m(Z, zo) is onto, and such that p is a covering
map (and hence py.: w(Z, zo) = (Y, yo) is one-to-one).

Proof. Let (Z, G), 7, and z, be as in the proof of Theorem 2.2. Since
e (mi(X. x,)) has finite index in ar, (Y, y,), Z is compact. By Theorem 2.1,
(Z, G) is minimal. The remaining statements follow easily from standard
facts about covering spaces.

COROLLARY 2.4. Let G be a connected Lie group, let (X, G) and (Y, G) be
flows with (Y, G) minimal, and let 7 be a continuous equivariant map of X onto'Y.
Suppose that X is compact, connected and locally arcwise connected and that ¥ is
locally arcwise connected and semi-locally 1-connected. Then as a map on singular
cohomology, w*: H'(Y) — H'(X) is one-to-one.

Proof: H'(W) = Hom (m (W), Z) if W =X or Y. Apply Theorem 2.2.
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3. Equivariant Maps of Differentiable Flows

We say that a flow (X, G) under the connected Lie group G is differentiable
if X is a compact connected C* manifold (without boundary) and if, for
each g in G, the map x — gx is a diffeomorphism of X.

THEOREM 3.1. Let (X, G) and (Y, G) be differentiable flows with (Y, G)
minimal, and let 7 be a differentiable equivariant map of X onto Y. Then X is the
bundle space of a differentiable fiber bundle with base space Y, projection m, and a
differentiable manifold (not necessarily connected) as fiber. Consequently dim Y <
dim X, and, if equality holds, then m: X — Y is a covering map.

Proof. Let C be the set of x in X for which the differential drr,. is not onto.
C is closed. Since 7 is equivariant,

ditge — dg’ﬂ‘u'} ° dfry ° (dg.r)_l ’

from which it follows that C is G-invariant. Since (¥, G) is minimal, 7(C) is
empty or 77(C) = Y. Sard’s Theorem precludes the second possibility, and
thus 77: X — Y is an onto map with dar,. onto for all x in X. The rest follows
from the proposition on p. 31 of [4].

In the differentiable case we can strengthen Corollary 2.3 as follows.

COROLLARY 3.2. Let (X, G) and (Y, G) be differentiable flows with (Y, G)
minimal, let G be simply connected, and let 7 be a differentiable equivariant map of
X onto Y. Then there exist a differentiable minimal flow (Z, G) and differentiable
equivariant maps 7: X —> Z and p: Z = Y such that p ° i =, p is a covering map,
and T is the projection in a differentiable fiber bundle with bundle space X, base
space Z, and a connected differentiable manifold as fiber.

Proof. Apply Corollary 2.3 and then Theorem 3.1.

4. Remarks

1. The Chu-Geraghty Theorem. The main theorem proved by Chu and
Geraghty in [2] is that if (X, R) is a minimal flow with X (connected and)
locally arcwise connected such that for any continuous f: X — S' the image
of m(X) under f is 0, then X is totally minimal. (Totally minimal means
that if the action by R on X is restricted to that of any subgroup ¢Z, then it
is still true that every orbit is dense. It is easy to see that (X, R) is totally
minimal if and only if (X, R) does not have any (S', R) as a quotient flow
with R acting on §' by rotations.)

If X is not totally minimal, there is a continuous equivariant map = of
(X, R) onto some (§', R), and Theorem 2.2 shows that 7, (7,(X)) has finite
index in an infinite cyclic group. The image under w . of m(X) is therefore
not 0, and we have arrived at a contradiction. Thus the Chu-Geraghty
Theorem follows from Theorem 2.2 with G =R and Y = §".

2. Ellis’s Generalization of the Chu-Geraghty Theorem. Ellis in Theorem 2
of [5] and its corollaries generalized the Chu-Geraghty theorem to other
pairs of groups than R and Z. Under suitable conditions, if (X, G) is a mini-
mal flow, Ellis concludes that 77,(X) # 0. When his group G is a connected
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Lie group, his corollaries are special cases of our Theorem 2.2 with (¥, G)
taken as certain compact homogeneous spaces of G.

3. Images of m and H,. Simple examples in Theorem 2.2 show that 7,
need not map ,(X) onto m,(¥) or H,(X) onto H,(Y). For instance, if ¥ = §'
and X is a double covering of Y by S' and R acts by rotations on each in
such a way that the projection 7 is equivariant, then 7, is not onto.

4. Another Version of Corollary 2.4. Many nontrivial examples of pairs
of flows (X, G) and (Y, &)= #(X, G) with (¥, G) minimal are such that ¥ satis-
fies the connectedness conditions of Corollary 2.4 but X does not. Among
the simplest of these is one for which X is a solenoid, Y is §', 7 is the usual
projection of X onto Y, and G is R acting by translation. Corollary 2.4 may
be modified to include these examples. (In the case of the solenoid, there
is a simple direct proof by duality for abelian groups.)

Specifically we may remove all connectedness restrictions on X and still con-
clude that w: H'(Y) — H'(X) is one-to-one, provided that we replace singular co-
homology with Cech cohomology.

For the proof we use the isomorphism of H'(Z) with 7(Z, §'), valid for
all paracompact spaces Z ([3], Theorem 8.1). Here m(Z, S') is the group of
homotopy classes of maps of Z into §'. We are thus required to show that
if /1 ¥ — §' is essential, then f o 7r: X = §' is essential. Assuming that f e 7
is inessential, we lift it to a map k from X to the universal covering space R
of S'. Fix x, in X and let y, = m(x,) and ry = k(x,). Construct the regular cover-
ing }"Aof Y corresponding to the kernel off*: (Y, yo) = m1(S! ,f(y(,)), choose
o in Y covering y,, and lift f to the unique continuous map f: ¥ = R satisfy-
ing f(3,) = rp. This lifting exists because r, = h(x,) covers f ° m(xo) = f(yo)-

Now let T C X be the orbit through x,, and let 7" be the orbit through
Yo covering 7(T). It is easy to show from the covering homotopy property
that k(T) = [(I But ¥ has image f, = Z for its group of deck transforma-
tions and so is noncompact. By Theorem 2.1, T is unbounded, that is, it
reaches arbitrarily remote sheets of K, Smcefls essent:dl fT) reaches arbi-
trarily remote sheets of R (covering S'). Thusf(T)— h(T) is unbounded, and
the lar ger set i(X) must be unbounded, in contradiction to the compact-
ness of X.

5. An Example for Theorem 3.1. Suppose that §* admits a differentiable
minimal action by R. Let us examine what the possible differentiable quo-
tient flows (¥, R) of (8%, R) are if the projection 7 of §* onto Y is required
to be differentiable. The claim is that either Y is one point or else Y is 3-di-
mensional and 7 is a covering map. In fact, (¥, R) must be minimal and
have Euler characteristic 0, and Theorem 3.1 thus shows that the only
other possibilities for ¥ are the circle, the 2-torus, and the Klein bottle;
since H' of each of these spaces is infinite, Corollary 2.4 shows they are not
possible quotients.

Hence if Y is nontrivial, 7r: $* — Y is a covering map. This fact suggests
that in order to construct a minimal flow on §?, it may not be possible to
build the flow from simpler ones, that it may be necessary to work with
S? directly.
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6. A Note about Dimensions in Theorem 3.1. The conclusion dim Y <
dim X in Theorem 3.1 follows without the differentiability of the action of
G as long as 7 is known to be differentiable since the image of a differ-
entiable map cannot have dimension greater than the dimension of the
domain. It would be interesting to know to what extent Theorem 3.1 is
valid if all the assumptions of differentiability are removed.
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