DETERMINATION OF
INTERTWINING OPERATORS

A. W. KNAPP*

The subject is representations of the principal series and complementary series.
Let G=KAN be a connected semisimple Lie group of matrices, and let MAN be
a minimal parabolic subgroup, where M is the centralizer of 4 in K. If ¢ is an
irreducible unitary representation of M and Z is a unitary character of 4, then

U(o, A)= ind (man— Ai(a)a(m))
MANTG
is a representation of the principal series. The principal series is one of the series
contributing to the Plancherel formula and corresponds to a Cartan subgroup
as noncompact as possible. The principal series with o=1 was investigated by
Kostant [5], who proved that U(1, 2) is irreducible. However, U(a, 4) need not
be irreducible in general.

It is still possible to define U(o, ) as a nonunitary representation on a Hilbert
space when A is nonunitary. We say U(o, 4) is in the complementary series if
there is an invariant inner product on the C* vectors that is continuous in the
C™ topology.

We consider two problems: (1) Find the dimension and algebra structure of
the commuting ring C(c, A) of U(c, A) when 4 is unitary; (2) produce complemen-
tary series. At this point we could state our solutions to these problems, but we
prefer first to motivate the results by introducing the intertwining operators. The
development of these operators was begun by Kunze and Stein [6], continued by
Schiffmann [8] and to an extent by Helgason [2], and completed by Knapp and
Stein [3].
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Let M’ be the normalizer of 4 in K and let W=M'/M. If w is in M', we
write [w] for the coset wM in W. The group M’ operates on A and ¢ by con-
jugation of the 4 or M variable by w™ . The class of wo depends only on [w]. Let

W, ,={weW |wo~c and wi=41}.

Bruhat [1] obtained the results for the principal series that

(1) dimC(o, )<|W,_ ;| (and so=1 for almost all ),

(2) U(o, 4) is unitarily equivalent with U(wa, wl).

The intertwining operator that implements (2) is, by (1), unique up to a scalar for
almost all 4. By [3] such operators .« (w, o, 4) can be chosen so that the following
hold:

(i) U(wa, wi) o (w,0, )= (w,a, 1) Ula, 4).

(ii) o/ (w, o, A) is unitary and in its action on smooth functions varies real-
analytically in 4.

(i) o (wyw,, 0, )= (W, w0, wyk) o (w,, 0, 1).

(iv) o/ (w, EcE™', A))=Es/ (w,0, ) E™*.

(v) If [w] is the reflection relative to a simple restricted root o and if g, is
the real-rank-one algebra generated by n, and 0n,, then .o/ (w, 6. 4) is essentially
oA (W, O‘|Ml, i|,,n). [Here M, and A4, denote the M and A4 subgroups for the group
corresponding to g,. The representation o|,, is a multiple of a single irreducible
representation of M,, and consequently there is no difficulty in defining the oper-
ator .o/,. |

If wo=0¢ and wi=4, (i) says .« (w, o, 1) is in C(a, 4). More generally suppose
wo ~¢ and wi=A. Then it is possible to extend o to a representation of the group
generated by M and w. So o(w) is defined; it is unique up to a root of unity. In
this case, (i) and (iv) show that o (w) .7 (w, 6, 4) is in C(o, A). This operator depends
only on [w] and we may write o([w]) &/ ([w]. o, 4) instead. Then

span {o(p) & (p,o, A) | peW, ,} =Cl(a, A).

The following unpublished theorem was proved in other notation by Harish-
Chandra and translated into this notation by Wallach; it is given here with
Harish-Chandra’s permission.

THEOREM. span {a(p) (p, 0, ) | pe W, ;}=C(a, 4).
In view of the theorem it is of interest to determine a linear basis of the left
side of the equality, in particular to determine which operators are scalar. Another

reason for wanting this information is given by the next theorem [3].

THEOREM. Let p be an element of order 2 in W, . If a(p) </ (p. 0. 1) is scalar,
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then _U (0, 2) is in the complementary series for all 1 sufficiently close to 1 such that
pi=4i"". “Sufficiently close” depends on G but not o or p.

We shall now describe C(o, 4). Let 4 be the set of restricted roots and let
A'={aed |p,eW, ;anda(p,) A (p,. 0. 2)=cl}.

From [3] one knows thata(p,) <7 (p,. 0. 4) is scalar if and only if the real-rank-one

Plancherel density satisfies p,y,_ (4|4,) =0, and so it is an easy matter to determine

the members of 4'. Now A’ is a root system, and we let W, ;< W,_ , be its Weyl
group. Let

R, ,={peW, ;| pa>0foralla>0in 4'}.

THEOREM. (i) W, , is the semidirect product W, ;=W ,R, , with W ; nor-
mal. The operators a(w) o/ (w, a, A) are scalar exactly for w in W, , and they are
linearly independent for w in R,_,. Consequently, the operators for R, , are a basis for
C(o. ) and

dimC(o, A)=|R,,.

(i) For win W let p} (1) be the product of p, ., (4
that o2 is not in A and wo is <0. Then

dim C(a, A)=|{we W, ; | py (4)#0}|.

(i) R, ;=Y Z, with the number of summands <dim A.

4,) over all a>0 in A such

In the theorem, part (i) is elementary and self-proving, and (ii) comes out of
the proof of (i). Part (i) shows that the subgroup of W, , corresponding to trivial
operators is a Weyl group: consequently the elements p in the theorem about
complementary series are all given by commuting products of reflections relative
to A’ and are easy to determine. Part (iii) is the part that is hard to prove, and
it is the one that gives insight into the nature of R, ;. Despite property (iii) of
o (w, o, 1), this result falls short of saying that C(e, 1) is commutative. saying
only that is commutative modulo + signs. It seems possible to analyze this matter
further and use the methods of proof of (iii) to prove commutativity of C(a, 4),
but such a proof has yet to be carried out."

We shall discuss one aspect of the proof of (iii). First, to prove (iii) for A= 4,
it suffices to prove (iii) for A=1. Then the basic idea is that R, , can be under-

! (Footnote added January. 1973.) The proof of the commutativity of C(s. 4) has now been carried
out. The algebra structure of C(g, 4) is as follows: The ambiguous signs of a(w) for win R, ; can be
chosen so that the operators o (w) < (w. 7. 2) for win R, , form both a group isomorphic to ¥ Z, and a
linear basis of C(g, 4).
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stood provided ¢ is moved to some “standard position.” By such a device the
proof for general G is reduced to the case that G is split over R, and then this
case is considered separately. To simplify the exposition we shall not deal with
general G here but will content ourselves with two cases.

Case 1. We assume that, for each simple « in 4, g, is not isomorphic with
s/(2, R). This condition implies that M is connected. It is satisfied, for example,
if G is complex semisimple or if G is simple and twice some restricted root is again
a restricted root. For complex G, the whole principal series is irreducible, by [7]
and [11], and there is a corresponding simple computation that one can do to
show, without the irreducibility theorem, that all the o (w) .7 (w. o, 4) are scalar.
The idea in Case | will be to imbed into G as much of the complex case as
possible to show that most of the operators are scalar.

Let h =m be a maximal abelian subspace, so that a+§ is a Cartan subalgebra
of g and b is a Cartan subalgebra of m. The roots of (g€, (a+b)€) are real on a
and imaginary on l). The restricted roots are the restrictions to a of the roots, and
the roots of (m€, h©) are the restrictions to h€ of the roots that vanish on a. We
may assume that the ordering on the roots is chosen so that the a part is more
significant than the [ part.

We say that o in 4 is essential if neither o nor 2« is a root when extended to be 0
on b. Otherwise « is inessential. The name refers to the possibilities for how the
Weyl group reflection p, can be extended to by'; essential restricted roots cannot act
trivially on b'. Specifically, if « is inessential. there is w in M’ so that [w]=p,and
Ad(w)=1 on i'. If o is essential and a+ f are roots (with f in /'), there is w in
M’ so that [w]=p, and Ad(w)=p; on ily'.

In the complex case every restricted root is essential. Quite generally the idea
is that essential restricted roots lead to trivial intertwining operators, and we intend
to discard these by imbedding into i)’ the part of a’ corresponding to the essential
restricted roots. Let

m, = {essential simple restricted roots},
a,=span of r, in a’,
W,=subgroup of W generated by the p, for z in 7,
IMBEDDING LEMMA. [1 is possible to choose B in i)' corresponding to each o in

T, s0 that o+ is a root, so that pg preserves the set of positive roots of m, and so that
the linear extension of the mapping given by o — J(a)=p is an isometry of a, into ify’.

Fix J as in the lemma and let W, be the set of simple reflections in W. J defines
a map of W, into the orthogonal group O(ih’) as follows: If « is in 7,, map p,
into p,,. If o is in n—m,, map p, into the identity.



DETERMINATION OF INTERTWINING OPERATORS 267

THEOREM. The mapping of W into O(ily') defined by J extends to a group
homomorphism of W into O(ih'). The resulting action of W on ity has the properties
that

(a) for win W,, Jw=wJ on a,,

(b) for win W, if'y is a positive root of m, so is wy,

(c) for win W, if ¢ has highest weight A, then wo has highest weight wA (and
so o ~wa if and only if A=wA).

The map J is not unique, but (c) in the theorem shows that the action of W
on /b’ is canonical.

We say A in i’ is dominant if (A, Ju)=0 for all « in =,. It is a simple
exercise with the theorem to show that ¢ is conjugate under W to a representation
of M whose highest weight is dominant. Now if ¢ is replaced by pa for some p in
M', the whole situation for o, intertwining operators and all, is conjugated to
the situation for po. Thus it is enough to prove that R, ;=) Z, under the
assumption that the highest weight A of ¢ is dominant. With this observation, we
proceed as follows: Let

S={weW |w=1onib'}.

Then § is normal in W and W= W,S, as a semidirect product. Moreover, W_
=(W, ,nW,) S.If Aisdominant, W, | n W, is generated by the simple reflections
that it contains. [In fact, an easy induction reduces this statement to showing that
ifwisin W, , n W, and wo.<0 for some o in ,, then p, A= A. This last equality
follows from the chain 0<{A, ad=<¢w A, 0> ={A, wa) <0, which uses the
dominance of A twice.] By means of properties (iii) and (v) of the .&/ operators,
we can therefore reduce the operators for W, ; n W, to operators for a real-rank-
one group whose simple restricted root is essential. Such a group is a cover of the
Lorentz group SO(odd, 1), and the whole principal series for such a group is
irreducible, by [3]. Consequently all the operators corresponding to W, ; n W,
are scalar. Thus all the operators for R, , are already represented by members of
S, except for scalar factors. Under our assumption on G, S is ) Z,, and it
follows easily that R, ; =) Z,.

An interesting special case occurs when every o in 4 is essential. Wallach has
pointed out that this is exactly the case that G has only one conjugacy class of
Cartan subgroups. For such a group, W= W, and so S={1} and R, ;={1}. The
principal series is therefore irreducible. This result was obtained earlier by Wallach
in an unpublished work (cf. [10]).

Case 2. We assume that G is simple and is split over R. Then a is a Cartan
subalgebra and M is a finite abelian group. Each g, is isomorphic with s/(2, R),
and we let y, be the image of (7§_9) under the corresponding map of SL(2, R)
into G. Then y, is in M and y2=1. The y,’s for ¢ simple generate M.
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Thus o is determined by its values on the y,’s, and ¢ assumes only the values
+1. It is easy to check that

A'={Bed |o(y)=+1}.

We assume that o is not identically 1. In this case we say ¢ is dominant if s (y,) = — 1
for exactly one simple ¢, say e=¢,. Every o # 1 can be conjugated by W so as to be
dominant, and we shall assume that ¢ is dominant from now on.

It is an easy matter to see that the simple roots of A’ consist of the ¢; (for i #k)
and at most one other root, say «. The root o exists if and only if there is a
root >0 such that o(ys)= +1 and {f, &> <0 for i#k. In this case « is the least
such f. This fact makes it easy to determine A’ explicitly in examples.

If « does not exist, a short argument shows that R, , is {1} or Z,. If « does
exist, W, | is a Weyl group of the same rank as W, and it follows that R, ; must
be small. In fact, it need not have | or 2 elements, but it is always )’ Z,. Of the two
proofs of this statement at present, one is by classification and one is not. The one
by classification is shorter.
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