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NORMALIZING FACTORS, TEMPERED
REPRESENTATIONS, AND L-GROUPS

A. W. KNAPP* AND GREGG ZUCKERMAN*

Several lecturers have alluded to the intertwining operators associated with
principal series representations, particularly for SL(2, R). These operators and
their normalizations play a role in the trace formula, in reducibility questions for
principal series, and in the construction of an inner product that exhibits certain
representations as unitary. We shall review the development of these operators
and their normalizations in the context of a linear real reductive group G (as
defined in Wallach’s lectures) whose identity component has compact center.

We shall be especially interested in the application to reducibility questions for
unitary principal series and other continuous series of representations coming from
parabolic subgroups, since the answers to these questions lead to a classification of
irreducible tempered representations and thereby complement the Langlands
classification [12]. The answers concerning reducibility are reviewed in §2 in terms
of three easy-to-calculate finite groups, denoted W, W', and R.

In lectures during 1975-76, the authors mentioned how, in some special cases,
the groups W, W', R, initially defined in terms of roots, could be defined in terms
of co-roots. Building on this presentation, Langlands [14] was able to redefine these
groups in general in terms of the L-group. We present his definitions, along with
an example, in §3. In §4 we summarize earlier work [8], [9] that leads from the
R-group to the classification of irreducible tempered representations.

1. Intertwining operators and normalizing factors. In the group G, fix a maximal
compact subgroup K and Cartan involution §. To each parabolic subgroup P, we
associate the Langlands decomposition P = MAN with MA (-stable and with
M a linear real reductive group whose identity component has compact center. To
the pair (&, v), where & is an irreducible unitary representation of M and v is a com-
plex-valued linear functional on the Lie algebra a of A, we associate the repre-
sentation Up(£, v, x), with x in G, given by

(1.1) Up(&, v) = indfan(§ ® e ® 1).

We adopt the convention that G acts on the left in the induced representation. A
member / of the representation space satisfies

f(xman) = exp( — (v + pp) log a) &(m)~! f(x),
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where pp is the usual half-sum of restricted roots associated with P. If P = P is
minimal parabolic, these representations comprise the nonunitary principal series.
In formula (1.1), we have assumed that & is an irreducible unitary representation
of M, but we shall allow also that & is a nonunitary principal series representation
of M, provided we are not working with formulas involving adjoints of operators.

For SL(2, R), one can restrict the functions in the representation space for the
nonunitary principal series to the lower triangular group N = 0N = {(. 9)} and
realize the representations in spaces of functions on R. The representations be-
come

x = c ) i,

P2 @Qf) = | - bx + d| 1 f( =

= sgn(—bx + d)| — bx + d|—1—ﬁf(%) Then

if g = (¢4). Kunze and Stein [10] showed that the operator

(1.22) a f(J_fr;[_Iv_}cdy fomen
(1.2b) - J' 4 Lsgﬂ)l_gﬁﬁzg_@_dy for 2%,

intertwines 2% with 22—t when it is convergent, namely for Re { > 0. Later [11] they
found a formula in the induced picture, namely

f— j‘ﬁf(gwﬁ) dn, where w = (_? {1))

This is the composition of two operators, f — [,q flgn) dn and a relatively trivial
translation operator by w. The first operator intertwines the representation induced
from P = MAN with the one induced from P = MAN and the same data on MA.

In the general case, let P, = MAN,; and P, = MAN, be two parabolics with
the same M A, and define

(1.3) A(Py: Py E:0) f(%) = _[ﬁ e da.
Formally
(1.4) UPg(Ea D,g)A(Pg: Pl . E: 1)) = A(Pz: P1 . E: ‘V)UPl(E’ V‘g)‘

In general, the integral (1.3) will not converge but will be defined by analytic
continuation. To accomplish this analytic continuation, we need the representa-
tions to occur in a single space, as v varies. This space is obtained by restricting the
functions to K. Say & operates in the space H¢. We consider functions f: K — H¢
satisfying f(km) = &(m)~! f(k) for ke K, me M [} K. Under the action by g, we
replace f(k) by f(g~'k) and restrict back to K. Thus we are led to define

(1.5)  UkE,v,8) flk) = exp( — (pp + v) H(g7'k)) §(u(e7 k)7 f(x(g™1k)),

where x decomposes within G = KMAN as x(x)u(x)e? *n.
The analytic continuation of (1.3) is accomplished in three stages. In the first
stage the essence of the argument can be seen by continuing (1.2a) if fis smooth
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and compactly supported. Since f has compact support, we can integrate over a
finite interval. Expand f(x — y) about y = 0 in a finite Taylor series with remaind-
er. Each of the main terms can then be integrated explicitly and continues mero-
morphically to the whole plane. The error term is integrable for Re{ > — n — 1
if n is the order of the Taylor series. Hence the integral continues meromorphically
to the whole plane.

In Schiffmann [15] and in [6], it is shown that this style of argument yields a
meromorphic continuation of (1.3) if P; and P, are minimal parabolic and 4 is
one-dimensional. In the second stage, for minimal parabelics with dim 4 > 1,
Schiffmann shows how to decompose N; (] N into a product of subgroups and to
write (1.3) as an iterated integral; the analytic continuation is essentially then
reduced to the case dim 4 = 1.

The third and final stage of the analytic continuation was obtained independent-
ly by Wallach [17] and in [7]. We can use Casselman’s subrepresentation theorem
to imbed £ as an (m, K (] M) module in a nonunitary principal series representa-
tion of M. It follows from the double induction theorem that (1.1) is a subrepre-
sentation of a nonunitary principal series and (1.3) is a restriction of an intertwin-
ing operator for the nonunitary principal series. Then (1.3) has an analytic continua-
tion for K-finite £, and (1.4) holds if g is replaced by a member of K or of the Lie
algebra g of G. Moreover, with Haar measures normalized suitably, we obtain

(1.6) A(Py: P1:&:v)* = A(P1: Py & — )
for & unitary, if the adjoint is defined K-space by K-space, and
A(Py: Py: &) = R(w™1) A(wPow1: wPiw™1: wE: wy) R(w),

where R(w) denotes right translation by an element w in K representing a member
of the Weyl group W(a).

These operators tend to have poles at many interesting values of ». We introduce
scalar normalizing factors—in part to eliminate some of these poles, in part to
make the operators unitary for y imaginary, and in part to make the operators
behave nicely under composition. The normalizing factors are not unique, and
different choices are useful for different purposes.

Again the construction is in several stages. We impose the condition that & have
a real infinitesimal character. Matters are based on the following lemma [6, p. 544},
proved using Weierstrass canonical products.

LemMa L.1. If 9(z) is a meromorphic function in the plane such that
(i) »(z) is real on the real axis,
(ii) 9(z) = O on the imaginary axis,
(iii) n(z) = p(—z) for all z,
then there exists a meromorphic function y(z) in the plane such that y(z) =
1(—=2)r(2z) and y(z) is real for real z.

The first stage of the construction deals with P = MAN a minimal parabolic
and G of real rank one (dim A = 1). In this case A(P:P:£:v) A(P:P:&:v) is a self-
intertwining operator for Up(&, v). It is a result due to Bruhat [3] that, for y nonzero
imaginary, the unitary representation Up(£, v) is irreducible. It follows readily that

(1.7) AP: P:&:v)A(P: P:&:v) = 5(P: P: &I
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withy = zpp meromorphic and scalar valued for z in C. One checks that
(i) p(P:P:§:v)isreal for v real.
(i) p(P:P:&:v) = 0foryimaginary.
(iii) p(P:P:&:v) = y(P:P:§: —v)forally.
(iv) p(P:P:&:v)depends only on the class of ¢ and if ¢ is an automorphism of
G leaving K and P stable, y(P: P:&?:v) = 7(P: P:§&:v). Then we can apply the
lemma to obtain y(P: P:£:v) and to define normalized operators by

SA(P:P:&:y) = p(P:P:§:v) L A(P: P:§:v).
The normalized operators satisfy
A(P:P:E:y) A(P:P:Eww) =1
and
A(P:P:E:y)* = o (P:P:&:—D).
These two relations together imply .o/ is unitary for v imaginary.
The second stage is to handle a minimal parabolic for general G. Use Schiff-
mann’s decomposition of a general intertwining operator into operators that are

essentially rank one operators, and use the product of the normalizing factors as
normalizing factor for the given operator. Then one proves the relation
(1.8) A(Ps:Py:E:v) = of(Py:Py:§:v) A(Py: Py:Eiy).

The third stage is to handle a general parabolic P = MAN withdim 4 = 1. We
again use the trick of imbedding ¢ as a subrepresentation of a nonunitary principal
series representation of M. If we combine this trick with formula (1.8) for minimal
parabolics, we are led to the conclusion that (1.7) holds for our P withdim 4 = 1
and that 7 has the same properties as before. Again we apply the lemma to obtain
a normalizing factor 7, and we set &/ = 4.

The final stage is for a general parabolic with G general and is handled in the
same way as with a minimal parabolic and G general. If the ’s are chosen com-
patibly, the result is as follows [7, p. 2460].

THEOREM 1.2. The normalized intertwining operators satisfy
(i) L(P3:Py:E:v) = A(P3:Py:&iv) A (PpiPyiiy).
(i) /(Py:Py:&:0)* = o(Py:Py:§;—D), K-space by K-space.
(iii) &Z(Pq: Py:&:v)is unitary for v imaginary.
(iv) If w in K represents a member of the Weyl group W(a), then
oA (Py: Py:E:v) = R(w™) Z(wPyw i wP w1 wg: wy)R(w).
For w in K representing a member of W(a), let
A p(w, E,v) = RW)Z(wIPw: P:&1y).

From (i) and (iv) we obtain the cocycle relation

(1.9) o p(Wywa, §,v) = o p(Wy, Wa, wov) s/ p(W2, §, )
From (ii) we find that
(1.10) Lp(w, &, v)* = Ap(w 1w, — wi)

and hence that o7 p(w, &, ) is unitary for v imaginary. The intertwining relation is
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(l I l) UP(WG'J wy, g)-—#P(wa ‘E'J 1") — *&P{w’ E" v)UP(E$ v!g)

for gin K or in g.

For application to adelic situations, a more specific normalization is needed.
At almost all places the representation has a K-fixed vector, and the infinite tensor
product of local normalized intertwining operators will be defined only if the local
operator fixes the K-fixed vector. This condition determines the normalizing fac-
tor. For example, with P, and P, minimal parabolic and & = 1, we are led to
normalize (1.3) by taking

7(Py: Py E:1v) = j exp( — (op + v) H (%) dn,
N[Nz

which can be computed in terms of Harish-Chandra’s c-functions. Schiffmann
pursued this idea further at an early stage in his work leading to [15]. Langlands was
led to conjecture [13, p. 282] in general that a valid normalization is obtained by
using the quotient of two L-functions:

(1.12) F(Py: Py: E:9) = L(O, ppyip, o )/ L(L, fpy, o 9).

Here ¢ is the homomorphism of the Weil group of R into the L-group “(MA) of
MA corresponding to & ® e¥, and fp, p, is the contragredient of the representation
of L(MA) on the Lie algebra of LN, [ £N,. Arthur [1] proved that (1.12) is a valid
normalization if the Haar measures are normalized suitably.

2. The R-group, a first formulation. Fix a discrete series representation & of M,
and consider the corresponding continuous series representation Up(§, v) with v
imaginary. In [7], it is stated how the problem of determining the algebra €(¢, v)
of operators that commute with Up(&, v) can be reduced to algebraic problems
involving certain finite groups.

Fix y. Let W be the subgroup of elements s in W(a) that fix v and the class of &.
If w is a representative in K of an s in W, then one can define &(w) in such a way
that & extends to a representation of the smallest group containing M and w; the
definition of &(w) is unique up to a scalar factor equal to a root of unity. Then
&(w) o7 p(w, &, ) is independent of the representative w, and we can write

2.1) &(s) Zp(s,€,v)

for it. One sees from (1.11) that the unitary operator (2.1) intertwines Up(§, v) with
itself. The essence of the next theorem is due to Harish-Chandra [4].

THEOREM 2.1. The operators (2.1), for s in W, span the commuting algebra €(&, v).
Despite formula (1.9), it does not follow that the map
(2.2) se W — &(s)Zp(s, &, V)

is a homomorphism into unitary operators; the &(s) factors need to be chosen com-
patibly, and there may a priori be an obstruction to making such a choice. How-
ever, the map (2.1) is at least a homomorphism into the projective unitary group.
Let W' be its kernel.

THEOREM 2.2. The group W' is the Weyl group of a root system A’ contained in the
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set of roots of (g, a); consequently W = W'R is a semidirect product if R is defined
as the subgroup of W leaving stable the positive roots in A'. The image of the map (2.2)
consists of linearly independent operators; consequently the dimension of €(&, v)
equals the order of R.

It turns out that the elements of R are characterized in W as those elements for
which the normalizing factor of (2.1) is holomorphic at y. Thus W' and R are inti-
mately connected with the functions 5(Py: Py : £:v) defined by

A(Py: Py:E:v)A(Py: PriEiy) = p(Py: Py:€v)l.

In turn, these functions can be connected by analytic methods with the Plancherel
measures of subgroups of G; these measures have been determined by Harish-
Chandra. Consequently we can describe 4’ very concretely, as follows.

Adjoin to a a compact Cartan subalgebra of the Lie algebra m of .#, and denote
a typical root by 3. Let A be the Harish-Chandra parameter for the discrete series &.
Let o be an a-root and suppose 2¢ is not an a-root. If @ has even multiplicity and
2¢ is not an a-root, define

o)) =5H <A + v, B).

la=a

If @ has odd multiplicity, define

Ue.ara®) = (V) =(ﬂngm QA+, ﬁ))fe‘a(v}.

where f; o(v) = tan (z{v, a) /|a|?) or cot (z{v, a) [| @ [?) according as
E(Tar) ey _(_ 1)2<p“,cr>f|a;2] or +(_ 1)2<pa,ar)f|a|?1.

Here « is a real root and there is a corresponding homomorphism of SL(2, R) into
G, and 7, denotes the image of — 1.
Now we can characterize /' as

4" = {rootse of a| s is in Wand p; .(v) = 0},
where &, denotes the reflection corresponding to a. As before,

R = {pe W|pa > 0 for every a > 0in 4'}.
Then we have the following result [5], [8].

THEOREM 2.3. (a) R is a finite direct sum of 2-element groups Z,.

(b) For s in R the operators &(s) can be selected so that the mapping (2.2) is a
homomorphism into unitary operators; consequently the algebra %(&, v) is commuta-
tive.

(c) There exists a set of positive orthogonal real roots # = {aj, ..., a,} such
that (i) the only roots in the span of # are the + a;; (ii) eachr in R is of the form

Saj, e+ Say 3 and (iii) each a; occurs in the decomposition of some r in R.
1 "

3. The R-group, a second formulation. An admissible representation of G is
tempered if its K-finite matrix coefficients are in L2+¢(G) for every e > 0. It is known
that every irreducible tempered representation is a summand in some representa-
tion of the type considered in §2, induced from discrete series on M and a unitary
character on 4. The R group can be used to decompose these induced representa-



NORMALIZING FACTORS AND L-GROUPS 99

tions and give a classification of the irreducible tempered representations. We re-
turn to this point in §4.

For now, we want to consider /¥, W', and R from a different point of view. We
begin with some motivation in the case that G is split and our parabolic is minimal.
Then M is finite abelian and is generated by the elements 7, that are the images of
(73_9) in the SL(2, R)’s that correspond to each root. Here £ is a character of M,
and we assume y = 0. Let the root system be 4. It is a simple matter to see that
4" = {ae 4| &(y,) = 1}. The elements 7, transform under Weyl group elements
differently from what one might expect. The correct rule is

Sﬁra'sﬂ_l = T’F‘ = Ta?-lﬂ'z(ﬁ,nf,‘.*’laiz_

As a result, 4’ need not be closed under addition within the set of all roots. It is in
the co-root system that there is closure under addition. The co-root of & isaV =
2a/{a, a), and 4"V isclosed under addition within 4V. We introduce a kind of dual
“group G~, not the L-group just yet. G~ is a connected real group with a compact
Cartan subgroup and root system 4V, arranged so that the roots of 4"V are compact
and the others are noncompact; it is to have a centerless complexification Gz, a
Lie algebra g~,and a Cartan decomposition g~ =t~ @ ip™. Elements of W’ lead
to elements in the Weyl group of £~, with representatives in G~. Elements of W lead
to elements in the Weyl group of gz that leave the compact roots stable, hence
normalize £7 and £~ @ ip™, hence normalize £~ and p™ and therefore g~. It follows
that R injects onto the quotient Norm x(q)/G~. This style of argument can be
pushed to yield a proof that R = }}Z, in this case.

Langlands [14] built on these ideas and gave a formulation in general of W, W',
and R in terms of the L-group. We use the notation of Borel [2] approximately and
will follow the L-group constructions given by Langlands [12] when we need them.

First let us see what the above example has to do with the L-group. Of course,
L@GO is just Gg, up to coverings. The character ¢ is specified by giving £(y,), and r,
behaves like the (character associated to the) co-root @¥. To know ¥ on & for each
aV is to know & as an element of the dual torus 270, There is a corresponding homo-
morphism ¢ of the Weil group into G given by ¢(z) = 1 for ze C* and ¢(z) =
& x ge LT; here ¢ is the trivial outer automorphism of £G9, trivial since G is
split. The elements of the Weyl group that centralize the image {1, & x ¢} of ¢ are
those of W; this statement motivates Theorem 3.1 below. The roots whose root
vectors are centralized by the image of ¢ are those in J'; this statement motivates
Theorem 3.3 below. The observation above that Ris isomorphic to Normg}(g)/G™
could have been stated in terms of K~ and then motivates Theorem 3.4 below.

We pass to the general case. Fix a minimal parabolic Py = My4,N, in G, and let T
be a Cartan subgroup of G containing 4;. Let LG x {1, g} be the L-group of G, with
its maximal torus £7° and Borel subgroup LB° The “standard relevant parabolics”
LP, in the sense of [2], correspond to the standard parabolics P 2 P, of G. Let
L(MA) be the Levi component of £P. According to [12], the classes of L-indistin-
guishable irreducible admissible representations of G correspond to conjugacy
classes (suitably defined) of certain kinds of homomorphisms ¢ of the Weil group
into LG. A representation is tempered if and only if the image of ¢ is bounded. It
comes from the series of §2 for P if, after conjugation, ¢ has image in the Levi
component £(MA) of £P but not in any smaller such Levi component. We may and
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shall assume that o(C*) = LT and ¢(z) is in the normalizer of £70. We shall give
an example of these notions at the end of this section, illustrating the three theorems
below.

Fix a summand in a representation Up(&, v). The corresponding ¢ goes with a
whole L-class of representations in G. Since the image of ¢ is in 2(MA), the L-class
consists of those representations obtained by inducing from a single L-class for M 4.
The latter class corresponds with the map ¢M4 obtained by regarding ¢ as having
image in £(MA), and it is characterized by the data v, the central character of &,
and the infinitesimal character of &. But the definitions of W, W', and R depend
only on y, the central character of &, and the infinitesimal character of §&. Thus the
question arises how to define W, W', and R in terms of ¢ directly.

[Digression. A simple consequence of the discussion above and a lemma due to
D. Shelstad is that the cardinalities of R and the L-classes corresponding to ¢ and
M4 are related by the formula

| L-class for p| = | R| | L-class for pM4|.

In fact, the representations in the L-class for ¢ are all the irreducible constituents
of all representations Up(&', v) with & ® v in the L-class for p¥4. The R-group for
all these Up(&’, v) is the same as &' varies. Moreover, Shelstad’s lemma says that
Up(&1, v) and Up(&,, v) are disjoint if & ® v and §; @ v are L-equivalent but not
equivalent. The formula follows.]

Let S = Cent(Image ¢), the centralizer being taken in £GY, and let S° be the
identity component of S and 8 its Lie algebra.

The Weyl group W(a) imbeds in the Weyl group of (-:G°, ©T°). Namely any ele-
ment of W(a) has a representative that normalizes the Cartan subalgebra of m and
preserves positive roots of nt; in this way an element of W(a) leads to a unique
member of the Weyl group of (~G?, £79). With this identification in mind, we have
the following result.

THEOREM 3.1 (LANGLANDS). W = (Norm(£7%) 1) S)/(LT° (| S). the normalizer
being taken in LGP,

We denote the lattices that are given as part of the L-group data by L and L":

L = Hom (T, C*) = Hom (C*, £T9),

LV = Hom (“T%, C~) = Hom (C*, Ty).
These are in duality as follows: If 1 is in L = Hom(C*, T and AV is in LY =
Hom(LT0, C*), then 3" © A is a power of z in C*, and {4, 1/ denotes this power.
The homomorphism ¢ on C*, with values in ©70, can be written symbolically as
(3.1) ¢(z) = z¢2> = z¢Y(22),
where pand y arein L ® Cand p — yisin L. Formula (3.1) means that

WMp(z)) = 2442 (z2)

forall A" in LY.

The condition that the image of ¢ lies in no proper parabolic within P means
that ¢(r) a¥ = — @ exactly for the roots of £(MA) and that (g,a") # 0 for all
roots of L(MA). (See Lemma 3.3 and the paragraph before Lemma 3.1 in [12].)
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Let Lt be the Lie algebra of £7 and decompose £t into the + 1 and — 1 eigenspaces
for p(z) as Lt = LtT @ Lt~

LEMMA 3.2 (LANGLANDS). The Lie algebra Lt*, which lies in 8, is a Cartan sub-
algebra of 3.

Proor. If X is in 8, then the condition that X¢¢ = X meansthat X is the sum of
a member of £t and a sum Y of root vectors. Moreover, ¥ must centralize p(C*).
If ¥= XX, then

ZY‘, = Y= Yo = Z 2B (zZ)a Y
Hence each aV with Y, # O satisfies (g, a¥) = (v, V) = 0. Thus
Beibtt ki X o CXait

oty V=4, aVi=0
We are to prove that Lt* is maximal abelian in 8. It is enough to see that no X,
with (g, a¥) = (v, a¥) = 0 centralizes Lt*, i.e., that no such ¢V vanishes on Lt*.
However, (u, a¥) = 0 implies aV is not a root of “(MA4), as we noted above, and
then ¢(z) ¥ # — aV. Thus &V does not vanish on £t*.

THEOREM 3.3 (LANGLANDS). The group W' is canonically isomorphic with the Weyl
group of (8, Lth).

THEOREM 3.4 (LANGLANDS). Suppose G is semisimple and simply-connected. Then
the group F = (LT° (N S)/ (ET° ] S9) injects into S|SY, and the quotient is isomor-
phic to the R group. Moreover, F = {1} if G is a split group and P is a minimal
parabolic.

ExamPLE. Let G be SU(2, 1), which we conjugate for convenience by

2-1/2 0 2-1s2

—2-1/2 (0 2-172

€r+ﬂ?
T = e %0 .
el m.

The Borel subgroup B we use is the upper triangular group. The group G is quasi-
split but not split, and the L-group £G is

LG = LG® x Z, = PGL(3,C) x {10},

so as to be able to take

where ¢ is a particular realization of the nontrivial outer automorphism of
PGL(3, C). Specifically £7° is the diagonal group. T is “T° x {1, ¢}, and £B?
is the upper triangular group. We are led to the standard simple co-roots and use
standard root vectors in PGL(3, C); the root vectors for the simple co-roots are

010 000
Xlz(OOO) and X3=(00 l),

000 000
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and we require X7 = X, X¢ = X;. Explicitly the action of ¢ on £G? is x? =

wo(xtr) 1wy, where
Qi 1
wp = (0 —1 0),
1 00

and ¢ = 1. On the Lie algebra Lt, we have diag(c;, ¢, ¢3)? = (—¢3, — 3, —c1).
We assume that the homomorphism ¢ maps C* into £70 and maps ¢ into w x g,
where w is in Norm(£70). Up to conjugation of ¢, there are two possibilities for
w as a member of Norm(-70)/£T0, namely the cosets of 1 and wy. In either case,
¢(r) yields an involution of Lt, with + 1 and — I eigenspaces [t = L+ @ Lt~ If
[w] = [wo), then Lt = 0 and we are led to discrete series. We shall be interested in
the contrary case [w] = [1]. Say w = xV with xV in £79 The action of ¢(zr) on
diagonal matrices £77 is in this case the same as the action of .
We write members of L = Hom(7,, C*) by abbreviating
A(diag(z, z7lw1, w)) = zawb
as
A = a[z] + b[w].
Here {[z], [w]} is a basis of L. Let {d,, 0, denote the dual basis of LV =
Hom(:T9, C%). If
(3.2) AV(diag(ay, az, az) mod center) = (a,/a) (a3/az)?,
then
AY = co, + da,.

The action of ¢(z) on L7 yields an action on LY and then one on L, by duality,
namely

(alz] + Bw)P® = — b[z] — alw].

Let ¢(z) be as in (3.1), for z in C*. Since z = zzz ! is in the Weil group, we
obtain ¢(z) = ¢(z)#?, and then (3.1) implies y = u#®.(Here the action of ¢(z) on
L ® C occurs only in the L part.)

Write

i1 = ¢i[z] + cx[w]  with ¢}, ¢; in C;

v = = —cz] — ¢i[wl
The condition that ¢ — v be in L says that ¢; + ¢, is in Z. From p. 27 of [12], we
see that the character of T that is to provide data for a principal series representa-
tion is in this case

ell = el H+ol2 — St i
If H = diag(t + i6. —2if, t—i0), we are led to the character
diag(efe:‘ﬂj e_zfﬂ, e.‘—x‘&) =y ef(€1—f2) el‘ﬂ(frﬂ"z)‘

If Re(c; — ¢3) > 0, we are led to nontempered representations. We shall spe-
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cialize to the principal series with ¢; — ¢, = 0, which corresponds to ¢ on the
M part and trivial on the A part, by taking x = n[z]/2 + n[w]/2. These principal
series representations are reducible (splitting into two parts) if and only if » is even
and # 0. To see what ¢(z) is, we realize 70 as

LT0 = diag(a,,as, a3) mod center.

Apply (3.2) to the element ¢(z) with ¢ = 1, d = 0, and then with ¢ = 0,d = 1.
Then

(a1/az)(z) = 8.9(z) = 24 9%(zz)%

= @ (z2)m0P = zn”zin

and
(as/az)(z) = 27/ |z|".
Hence
zflzl» 0 0 \1/3
p2)=| 0 (z/|z|m? O ) mod center,
0 0 2|zl

in the sense that if the cube roots are extracted compatibly, their ambiguity dis-
appears when we pass to PGL(3, C).

To compute the image of ¢ completely, there is one more step—to determine
@(r) = xV x g. We must have ¢(r)2 = ¢(—1), and we conclude (xV)(xV)? =
¢o(—1). We can take

p il | if nis even,

I

diag(i, 1, —i) ifnisodd.

Now we can compute the groups S and S° that are the subjects of the theorems
of this section. There are three distinct cases for the image of ¢, corresponding to
n = 0, n odd, and n nonzero even. The pattern of the computation is to compute
S, = Cent ¢(C*), which is connected, being the centralizer of a torus, and then to
compute the centralizer of ¢(z) in S;. The idea is to work as much as possible on
the Lie algebra level. For n = 0 and n odd, we use a trick to obtain"S; S'is con-
tained in the normalizer in £GY of 8, and & is found to be 8((2, C). Since 8((2, C) has
no outer automorphisms, S must conjugate S° by inner automorphisms. Then it
is easy to see that S = S0. The results are as follows.

ab 0

n=0: §=(c0 b), S = 89,
0c¢c —a
G0N S h

n odd: 53=(00 0), 8= 80,
c0 —a

a0 O
neven # 0: Q:(OO O), S = 80 % {1, wy}.
00
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These results are compatible with the theorems of this section and the facts that
n=0orodd: W' =2, R={1},
neven # 0: w'={1}, R=2,.

4. Trreducible tempered representations. We continue to investigate the repre-
sentations Up(&, v) discussed in §2. Here £ is a discrete series representation of M
and y is imaginary on . We need a parametrization for the discrete series, and we
use Harish-Chandra’s. Let 7— be a compact Cartan subgroup of M, let t~ be its
Lie algebra, and let Z,, be the center of M. Each discrete series representation of
M is determined by a nonsingular linear form A on it~ and a character y on Zy,.
The form A satisfies the integrality condition that A — p (with p equal to half the
sum of the positive roots of M in some order) lifts to a character e*? on 7, and
A and y satisfy the compatibility condition that e*¢ and y agree on their common
domain. We write & = &(1, C, y), where C is the unique Weyl chamber of it~ with
respect to which 2 is dominant. Two such &’s are equivalent if and only if y = ¥’
and there is some w in the Weyl group W(T—, M) = Norm,(7~)/Centy (T ") with
wA = AandwC = C'.

Representations that are “limits of discrete series” are discussed in [18]. We
can parametrize them in the same fashion, writing & = &(A, C, ), except that A
is allowed to be singular and there is more than one choice of C that makes 4
dominant. These representations are irreducible or zero, and the criterion for
equivalence of nonzero ones is the same as for discrete series.

A basic representation is an induced representation Up(E(2, C, x), »), with
&(4, C, y) a limit of discrete series on M. If 2 is nonsingular, so that & is in the dis-
crete series, then we say that the basic representation is induced from discrete
series. A basic representation Up(£(4, C, ), v), has nondegenerate data if for each
root o of (1, t), {4,y = 0 implies that s, is not in W(7—: M). A representation
induced from discrete series automatically has nondegenerate data.

Nondegeneracy accomplishes several things. For one thing, it eliminates the 0
representation from consideration. For a second thing, it assigns a definite par-
abolic to the data for a basic representation. For example, in SL*(2, R), there is a
single limit of discrete series representation, and it imbeds as a full principal
series. The nondegeneracy assumption requires that this representation be viewed
in the principal series. In general, it requires that a basic representation be attached
to as small a parabolic as possible. A third thing that nondegeneracy accomplishes
is to allow the whole discussion of W, W', 4’, and R in §2 to extend to basic re-
presentations with nondegenerate data. The theorem from [8], [9] is as follows.

THEOREM 4.1. (a) A basic representation with nondegenerate data is necessarily
tempered, and it is irreducible if and only if its R-group is trivial.

(b) Two irreducible basic representations Up(§(4, C, %), v) and Up.(§(4', C, 1) V')
with nondegenerate data are equivalent if and only if there is an element w in G
carrying MtoM', Ato A’ ttot’, and (4, C. y, v) to (A5 €0 v

(c) Every irreducible tempered representation is basic and can be written with
nondegenerate data.

The R-group can be used to point to those basic representations with non-
degenerate data that are needed to exhibit the reducibility of a representation



NORMALIZING FACTORS AND L-GROUPS 105

induced from discrete series. The constituents of a given representation induced
from discrete series, or even of all induced from an L-class of discrete series, are
L-indistinguishable. A precise description of how this reducibility may be read off
from the data, from the R-group, and from the set of orthogonal roots in Theorem
2.3(c) is given in [8].
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