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REPRESENTATIONS OF GL,(R) AND GL,(C)

A. W. KNAPP

1. SLy(R). We shall give lists of the irreducible finite-dimensional representa-
tions, the irreducible unitary representations, and the nonunitary principal series.
Then we discuss reducibility questions, asymptotic expansions, and the Langlands
classification, Let g = (¢ %) be a typical element of G = SL,(R).

Irreducible finite-dimensional representations. %,, n = 0, an integer.

Space = { f polynomial on R of degree n},
F @ (x) = (bx + d)'f((ax + o)/(bx + d)).

Finite-dimensional representations of G are fully reducible.

Unitary representations. The irreducible unitary representations were classified
by Bargmann [1]. We give realizations in function spaces on the line or upper half-
plane. Realizations on the circle or disc are possible also.

(1) Discrete series 2;; and %, n = 2.

Space for @; = {fanalyiic for Im z > 0| | f]2 = J‘J.]f(z)lﬁy”—2 dxdy < 00},

Imz>0

ot o = az +c¢
D) = (bz + d) = f( 92 EC),

The space for Z; is not 0 because (z + i)~ is in it. The representation &, is
obtained by using complex conjugates. All these representations are irreducible,
unitary, and square-integrable. The square-integrability (of a matrix coefficient)
will be shown below.

(2) Principal series 2*v and 2, ve R.

Space for 2*iv = L%R),

Pi(Q)f(x) = |bx + d["1iof((ax + o)/(bx + d)) if +,
= sgn(bx + d)|bx + d|""=iof((ax + o)/(bx + d)) if —.

These representations are all unitary, and all but 2.0 are irreducible. Equivalences
Phiv = gtoiv and Pv = @2 are implemented by analytic continuations of
intertwining operators that we give below. 22+ is really the induced representation
Ind§ 4 n(c ® e @ 1) with G acting by right translation and with the functions
restricted to N = (1 9). Here MAN is the upper triangular group, ¢ is trivial or
signum on M ={ + I}, and the character of 4 is

(6"0) ot
g
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(3) Complementary series %, 0 < s < 1.

Space for ¢ ={/: R~ C| |72 = | (7 LUl _ )

e = o=

e ax + ¢
GE) =lbx + d /(L)
These are irreducible unitary. They arise from certain nonunitary principal series
(see below) by redefining the inner product.

(4) Others. There is the trivial representation, and there are two “limits of dis-
crete series,” 27 and 7. The group action with 27 and @7 is like that in discrete
series, but the norm is different. We have the relation 20 =~ 9 @ 27.

Nonunitary principal series. #*t, [ eC.

Space = L2 (R, (1 + x2)Retdx)

P f(x) = |bx + d71%f((ax + ¢)/(bx + d)) if ks
sgn(bx + d)lbx + d|"1f((ax + o)/(bx + d)) if —.

I

Reducibility. We can see some reducibility in 22%.¢ on a formal level by specializ-
ing the parameter { and by passing from z in the upper half-plane to x on the real
axis. We obtain the following continuous inclusions:

F, € @T—0tD if p even,
c @ ~wth  if podd, n = 0;

9y ® 2, € Pt if n even,
c @1 ifnodd, n = 1.

There is no other reducibility. The quotient by an % is the sum of two £’s, and
vice versa.
Asymptotics. Let k, be the rotation

([0

The maximal compact subgroup K = {k,} is abelian, and its irreducible represen-
tations are one-dimensional, k; — ™ with m an integer, We have

3
G = KATK with A+ = {a, =(8 99’ ),t = 0}
and Haar measure is of the form dg = e sinh 2t dk, dky dt if g = kyak,. Let U(g)
be an admissible representation of G, and let ¢; and ¢, transform under K accord-
ing to k; — &™? and k; — ™. Then

(U(2) p1, p2) = (Ulkgaky)ps, p2) = exp(i(myb’ + my0)) (U(a)pr, ¢z).

Thus to test whether a matrix coefficient is in some L? class on G, it is enough to
test (U(a,)¢1, ¢2) and use the measure sinh 2t dr, ¢ = 0.
EXAMPLE. Z;(k,)(z + i)™ = e"(z + i)~ Then
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(@i(a)z + i)™ (z + i)™)

o J' I elx + iy + DIletx — i(ety + 1)]-7yn2 dx dy.
Imz=0

By residues the right side is
=C“I:e—n:(y v e e—Zt)l—eryn—Z d}’,

and this in turn, after the change of variables y = y'(1 + e %), is = c,(cosh #)~".
Then

[ I dg = ces | “(cosh 12 sinh 2¢ a,
G

which is finite for » > 1. Thus this matrix coefficient is square-integrable on G.
A theorem in functional analysis due to Godement [3] implies that all matrix coef-
ficients are square-integrable on G.

In the example, we could see the matrix coefficient was square-integrable by
computation. There is a general technique, due to Harish-Chandra, for getting at
the behavior of matrix coefficients by means of differential equations. Let

G 0) 01 00
h=(o -1) =(00} 7=(10)
be a basis for the Lie algebra of G. The Casimir operator ) = 1h? + ef + fe is
a member of the universal enveloping algebra. For SLy(R), 2 generates the center
of the universal enveloping algebra. (For larger groups, it must be replaced in this
discussion by the whole center of the universal enveloping algebra.) It acts as a
scalar on each representation in our lists, hence on each matrix coefficient. Take
a matrix coefficient whose two K-dependences are according to known characters
of K, and regard the matrix coefficient as an unknown function. Then the equation
Q(coeflicient) = e(coefficient) leads to a second order ordinary differential equa-
tion on A*, with ¢ as independent variable. The classical substitution is s = cosh ¢,
and the resulting differential equation has three singularities, all regular; we are
interested in the behavior at s = co. (If the “known characters” of K are trivial,
this is Legendre’s equation.) This substitution does not generalize well, and Harish-
Chandra’s treatment of this equation amounts to making the substitution z = ¢~
instead. The resulting differential equation has four singularities, all regular, and
we expand about z = 0, using standard regular-singular-point theory. The result
is that

(== o0
coefficient(a,) = e~ 1103 ¢ o2t 4 g~ (-0t o 2nt
n=0 n=0

except when ( is an integer, in which case there may be factors of ¢ that arise from
factors log z in the solution. If one of the leading terms vanishes, the whole cor-
responding infinite sum vanishes.

The eigenvalue of Q determines , and in particular the matrix coefficients of
2*% Jead to the expansion with { present. From this expansion, we can read off
L#-integrability conditions, since we are to integrate for # = 0 the pth power against
sinh 2¢ dr, which is comparable with e2‘dt. We see that 2+.v has coeflicients in
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L%+¢(G) for every e> 0, but not in L%(G). Discrete series @+ with n = 2 have one
sum absent, in order to have coefficients in L%(G). Representations with coefficients
in L% for every e> 0 are said to be tempered. The tempered representations are
2*iv and g, with n = 1. Notice how in general the two leading terms give some
information about where imbeddings occur as subrepresentations in the nounitary
principal series; Wallach dealt with this point in his lectures.

Langlands classification. For general G, Langlands parametrizes the irreducible
admissible representations by triples (P, =, v), where P = MAN is a standard
parabolic, 7 is (the class of) an irreducible tempered representation of M, and v is
a complex-valued linear functional on the Lie algebra of 4 with real part in the
open positive Weyl chamber. The Langlands representation Ju(z, v) is the unique
irreducible quotient of Ind%(z ® e ® 1). In our case, P = (§ %) is minimal para-
bolic, or P = G.

Case P minimal. There are two (one-dimensional) representations of M = {+17},
and the functional y enters as the complex number { with Re £ > 0; the character
of A is a, = exp(v log a;) = exp({t¢). The Langlands list then includes the unique
irreducible quotient of 2+ for each { with Re { > 0.

Case P = G. Here p is irrelevant, and M = G. We simply get the irreducible
tempered representations of G. The Langlands classification itself does not address
the question of what these are, though one of the theorems implies for our G that
they are subrepresentations of discrete series or unitary principal series.

Intertwining operators. The Langlands classification theorem describes the uni-
que irreducible quotient more precisely than we have done. Kunze and Stein [4]
showed in 1960 that the operator

I e S ady +.C
I f_oc = for 2+.&,

= J‘“’ sgn(x — Wy (0 pc
—  |x — y[ ¢ Y

intertwines 2% with 2%, Note that the integral is convergent only if Re { > 0.
Later [5] they found a formula in the induced picture, namely f — [ f(Aiwlg) da,
where N = (19) and w = (9}). This is the composition of two operators,
f—=Ix flng) dn and a relatively trivial translation operator by w~!. Define
A(P: P 7 :v)f(x) = [y f(ix) dn. Under the Langlands conditions on v, this in-
tegral is convergent if /'is K-finite. The theorem is that

Jp(w, v) = Ind¥(z ® e ® 1)/ker A(P: P: 7:v) =~ Image A(P: P: 7: v).

2. Other groups.

GLy(R). To pass from SLy(R) to the group SL%(R) of matrices of determinant
+ 1, we first induce the representations of SLy(R). The 22’s and s split into two
equivalent pieces, and the 2’s yield irreducibles on SL§(R) that restrict back to
9" @ 2~ on SLy(R). This construction gives us the representations of SL3(R).
Then to pass to GLy(R), we paste on a character of the group R(§ ).

SLy(C). This group has finite-dimensional representations given by two integer
parameters; the representations can be realized in spaces of polynomials in z and
Z on C. The group has no discrete series. We have
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e {0 e a=(520)

so that the nonunitary principal series is parametrized by an integer n (for M) and
a complex number { (for 4); by restriction of functions to N = (} 9), we can
realize these representations in spaces of functions on C. See [2] for more detail.
The unitary principal series is all irreducible and provides the only tempered irre-
ducibles, and parameters (1, iv) and (—n, —iv) lead to equivalent representations.
The Langlands classification points to the Langlands quotients of the nonunitary
principal series with Re { > 0 and to the irreducible tempered representations.

GL,(C). To an irreducible representation of SLy(C), we paste on a character of
C*(}9) that agrees with the representation on (73 _9). In this way we obtain all
irreducible representations of GL,(C).
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