CLASSIFICATION THEOREMS FOR REPRESENTATIONS

OF SEMISIMPLE LIE GROUPS
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Let G be a connected linear real semisimple Lie group with maxi-
mal compact subgroup K . We shall discuss progress on three classification pro-

blems for irreducible representations of G :

a) Irreducible quasisimple representations. A representation of the Lie alge-

bra 3 of G is quasisimple if it is finitely-generated over the universal envelo-
ping algebra, if the action of K is well-defined and every vector is K-finite,
and if the representation has an infinitesimal character, Such representations
have global characters, defined as distributions on C:om(G] . The irreducible
quasisimple representations have been classified by Langlands [14] , modulo a

classification of the irreducible tempered representations,

b) Irreducible tempered representations, A tempered representation is one

whose global character extends to Harish-Chandra ! s Schwartz space [ 3] on G,
The authors gave a classification of the irreducible tempered representations in

[ 11 ] . The present paper includes a more intrinsic classification, based on a
criterion for equivalence of two irreducible tempered representations. (See

Theorem 4, )

c) lIrreducible unitary representations. Progress in classifying the irredu-

cible unitary representations is limited, We shall give in §4 a theorem that at
least tells what the problem is, (See Theorem 7.) Then we show how the theo-
rem relates to the knownexamples,Finally in §5 we give a technique for fitting

known unitary representations into a classification.

It turns out, for irreducible representations, that tempered implies

unitary and unitary implies quasisimple, We now consider the three classifica-

* Supported by the National Science Foundation. The first author was suppor-
ted also by the Institute for Advanced Study,
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tions in turn,

1. The Langlands classification

Following [ 14 ] , we first construct a list of the irreducible quasisimple

representations, There are three parameters :

(a) a parabolic subgroup P = MAN containing a fixed minimal parabo-

lic subgroup Po .

{(b) an equivalence class of irreducible tempered representations of M,

with 11 as a representative, and

(c) a complex-valued linear functional \.!A on the Lie algebra ﬂ{, of A

such that Re Va is strictly in the positive Weyl| chamber,

We construct the Langlands representation .JP(-rr:\)A} as a particular non-
zero irreducible quotient of the quasisimple representation.

Vv

(m®e ™)

) N C
up{rr.vAJ = indyaN 1=

where the induced representation is defined in such a way that G acts on the
left and that the representation is unitary if \JA is imaginary. If AlP: P:ﬂ:\)A}

i i ini Y] — : i -
is the intertwining operator from Llp[rr A] to L.IP[TT vAJ given by a conver

gent integral on K-finite functions as

A{E’:P:ﬂ:\JA)f(x} =i f(xn)dn ,
N

then we define
up{'rr:vA}/kernel A(P:P:m:v,)

Jplrr:vA}

[}

image AIE‘:P:T[:\)A} .

Théoréme 1, (Langlands [14]).
The representations Jp{n:vAJ are irreducible quasisimple, are infinite-

simally inequivalent, and exhaust the irreducible guasisimple representa-

tions of G .
Thus, unless P =G, Jp(n:\;A} is nontempered,

= . - . 1=yl
If we do not insist that P contain P then \Jp(n.vA] and Jg,, (' : v A}

0 3
are infinitesimally equivalent if and only if there is an element g of G carry-
ing P to P!, m to ' (up to equivalence), and v to le . In any event, the

theorem explicitly reduces the classification of irreducible quasisimple repre-



140

sentations of semisimple groups to the class!fication of irreducible tempered

representations of a certain class of reductive groups,

2, Irreducible tempered representations

The group M need not be connected or semisimple, but it falls into a class
of groups to which the theories of [ 14] and [11] apply. Motivated by Theo-
rem 1 , we nowregard M asthe total group in question and write G for it,

We examine tempered representations of G ,

Examples. Suppose MAN is a parabolic subgroup in G such that
M has a compact Cartan subgroup T . (Such a parabolic subgroup is called
cuspidal.) In this case, and only in this case, M possesses discrete series
representations. By results of Harish-Chandra, such a representation is deter-—
mined by a nonsingular linear form on it , where 4 is the Lie algebra of T,

and a character 7 on the center Z , of M, (The conditions on A and 1 are

M

A-p

that A -p be integral ant that e agree with 11 on T n ZM, and two pairs

(A,n) and (A!,7') of parameters lead to equivalent discrete series if and only

if n=7m! and A is equivaient to )A! under the Weyl group W(T:M), )

We can write @M[)\ ,C,mn) for the character, where C is the (unique) Weyl
chamber of i¥ with respect to which A is dominant. For v imaginary on 0‘.,

set
eMAa,c,m,v) = Mo ,c,n1eeY .
Then
8 = indﬁAN@MAU\,C,n,v}

is tempered and is the character of a unitary representation, which we say is

induced from discrete series, This representation is quasisimple but is not ne-

cessarily irreducible,

Theorem 2 (Trombi Elﬁ] , Langlands [14] , Harish-Chandra) .

Every irreducible tempered representation is infinitesimally equivalent with

a constituent of some representation induced from discrete series,

More examples, In the definition of @M(}\ ,C,mn) it is possible to
allow ) to become singular but still dominantwith respect to C , and the result
is still a unitary character, The formula for the character is of the same general

nature as for discrete series characters except that » has become a singular
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parameter ,C is now nonunique, and distinct C'!'s may give different characters.,
The more general kind of representation of M, with L regular or singular, is
called a limit of discrete series., See [22] . If V is imaginary, we can again

G
NAMAN

Again @ is tempered and is the character of a unitary quasisimple representa—

form @A (A ,c,n,v) and @ =i oM (x,c,m,v) .

tion, which we call a basic representation.

The same basic character may arise from completely different sets

of data, or it may even be 0 ., The ambiguity arises already when we consider

+
SL (2,R) and the group SL=(2,R) of real 2-by-2 matrices of determinant
+1 . In G = SL(2,R), consider the principal series character with M-para-
GI 0
meter -+ e.] and with A-parameter 0 , This decomposes as the

0 82

sum of limits of discrete series characters
G G
@ (0, +,san)+@8" (0, -,sgn) ,

and there is no ambiguity. However, if we passto G = SL¥(2 yR), we find

that the principal series character for the same M and A parameters is equal

to @JG(O,+, sgn) and also to @G(O, —-,sgn). So in SLi(Z,RJ a basic character

can arise from data attached to two totally different parabolic subgroups, This
1 0
degeneracy arises because of the existence of the element ( 0 ,1) in SLi'(Z,IR};

this element is a representative of the nontrivial element of the Weyl group of the
COoS X sin x
- 5in x cos x :

compact Cartan subgroup l
Another degeneracy occurs if a basic character is 0 . In fact,
@M[)\,C,nl is 0 if and only if L is singular with respect to a C-simple compact
root o of [‘?)?C,-ECJ . (See [a] for a proof of the "if!! direction.) Again the dege-
neracy arises because reflection in the root o exists as a member of the Weyl
group W(T:M)
We say that the data @MAIK,C,T],\)) for a basic character are non-
degenerate if, for each root q of [?Y,!C,tcl with <A,a> = 0, the reflection
Po, is not in the Weyl group W(T:M) .

As noted in [‘Il] , any degeneracy allows us to rewrite a nonzero ba-
sic character in terms of a more noncompact Cartan subgroup of G , Consequent-

ly each nonzero basic character can be gi ven in terms of nondegenerate data,
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Our new classification of irreducible tempered representations will
be given in terms of basic characters with nondegenerate data. The classifica-
tion results from our having an irreducibility criterion, an equivalence criterion,

and a completeness theorem.,

Irreducibility is given in terms of the R-group, which is described

fully in [1 l] . We give the flavor of the definition here without recalling the

details.
Let 8 = TndiAN @ DS (A»,C,n,v] be induced from nondegenerate data,
and let

W@m = fweWiAze) | @)Y =My

be the stability subgroup within the Weyl group of A ., Let

A = {a useful root of (3,0‘,} | M (v) =0} .
8 ,a

Here Wuseful" is defined in [6], and U is the Plancherel factor described

in [11] and built from a maximal parabolic subgroup within a subgroup of G

that is defined in terms of o . Then A! is a root system, W MA leaves A!
stable, and the Weyl group W (A!') of A! is contained in W @I' A - It follows
®

that if we define R by

R = {weW@MA | wa >0 for @ >0 in A'} ,

then W

ma  SPlits as a semidirect product W = W(A'JR with W(A")
8

gMA
normal,
From the results of [ 11 ], we can read off an irreducibility crite-

rion and completeness theorem,

MA

Theorem 3. Let B = ind:;.‘lANe {L,C,n,Vv) be induced from nondegenerate

data, Then ® is the sum of exactly |R | irreducible basic characters,

and these are distinct . Moreover, the R-group tells how to write 8 as

the sum of irreducible basic characters with nondegenerate data.

Consequently

(i ] ® isirreducible ifandonlyif |[R| =1 , and
(ii) every irreducible tempered character is basic (and can be written with

nondegenerate data ) .
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The classification results by combining Theorem 3 with the follo-

wing equivalence criterion,

Theorem 4., For two basic characters with nondegenerate data, an equality

G Mt Al

indy arn® (A1,cr,nt,vt)

indo A @Y (A, C,m,v)

holds if and only if there is an element w in G carrying M to M!, A to

A‘!t to t'a and {}‘-,C,T'[,V}t_o Uk'ac':'ﬂ',“’} .
3. Irreducible quasisimple representations,

We can now insert the information provided in § 2 in the Langlands re-
sult, Theorem 1 , to obtain a new listing of irreducible quasisimple representa-
tions, After all, Theorem 1 gives a classification in terms of induction from
tempered representations, and §2 shows that a tempered representation is it—
self induced, By the double induction formula, one expects a classification of
irreducible quasisimple representations in terms of induction from a cuspidal
parabolic subgroup MAN , with a limit of discrete series on M and a parame-

ter v on OL with Rev in the closure of the positive Weyl chamber,

We shall formulate such a result more precisely as Theorem 5 ,
It has two features worth noting : (1) Under the isomorphism given by the
double induction formula, the kernels of appropriate intertwining operators
correspond, so that the Langlands quotient representation can be defined
without reference to the intermediate parabolic subgroup . (2) The equivalen-
ces in Theorem 4 with tempered representations come from mapping MA to
M!'A! | whereas the equivalences in Theorem 1 come from mapping MAN to
MUATN! : when the two stages of induction are combined, the equivalence con-
dition can be expected to become messy, In fact, we shall not write down a com-
bined equivalence theorem in general, contenting ourselves with completeness
and irreducibility in the general case and an equivalence theorem in a special

case,

In order to formulate these results precisely, we need notation
that corresponds to the decomposition of the induction in stages into the two

individual stages, Let v be a parameter on Ml with Re v dominant, and let



£ be a limit of discrete series on M with nondegenerate data . Put

OL* P EULZIReR\;'_'Bg i

al1 =0L~;;0L ey
N, = ZpOL)

Ny = ‘72;_;7?

U %em*e'n *GaT* :

Then M 1 <] 0!, 1 & n is a parabolic subalgebra with corresponding parabolic

1

subgroup M‘I Al N say . The Langlands parameters are the group Ml A1 NI .

'I ?
the tempered representation

My
T o= mdMA*N*{%@ew(Ha.*H

provided 1 is irreducible)} , and the linear functional Vv !0‘!,1 5

A member of the representation space of inds‘

AN, (T@exp (v]o,)
Y gl

is a function on G whose value at x in G is a certain kind of function on M.| A
The map sending F to F(. ) (1) exhibits the equivalence of

. G

!ndM1 AN, (m@exp (v | 0'-1 ) )
with

e

mdMAN{I';EBexp V)

and carries the intertwining operator A (M, A, ﬁ1 tMy AN ey | 0[,1 ) to
A(MAN, N, : MAN N, $E:v) (3.2)

Finally we must ensure that 1 is irreducible, The condition trans-

lates as follows : If

A' = {a useful root of (9,0L) lpuv=v and g a(v]=0} :
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then W I(A!') is contained in

W§ i {WEW(A:GHWE:g and wv =V}

The condition for the irreducibility of 1 is that 1W§ v/W[ﬂ‘ )= .
)
See the discussion that predeces Theorem 3 .

Fix a minimal parabolic subgroup Po . A data point is a triple
(P,E,v) such that

(i) P =MAN is a cuspidal parabolic subgroup containing Po
(ii) E 1is alimit of discrete series on M with nondegenerate data

(iii) v is a linear functional on the Lie algebra M of A with Rev in the

closure of the positive Weyl| chamber

(iv) lwg,v/wrml =1

The representation associated to the data point (P,E,V) is the quotient of

.
iIndy AN {E@expv) by the kernel of the operator (3, 2), where 7 % and N,

are defined in (3, 1) .

Theorem 5. The representations associated with data points (P ,E,V]) are

all irreducible, and they exhaust the irreducible quasisimple representa—

tions.

To get an equivalence theorem, we investigate conditions under
which two data points lead to the same Langlands parameters, The result will
have a simple formulation only under an additional assumption, To indicate the
problem, we make no special assumption yet, With F'o fixed and

F".| - M] AI N] containing PO , let 17 be tempered on MI . According to

Theorem 4, 17 determines a Cartan subgroup of M] up to conjugacy, Choose

a parabolic subgroup MA*N* of M1 containing the minimal parabolic
F’0 n M‘.I and associated to the Cartan subgroup determined by . It would be
nice if any two choises of MA*N* were conjugate, but this need not be so,

(See Example 3 at the end of the section) . Let us assume that the Cartan sub-

group of MI iS as noncompact as possible. Then it follows that Mé\*N* is
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=i - : 4 -
minimal and MA*N* PO nM, . That is , MA* an N* are unique .

Tracking down the ambiguity from Theorem 4 when MA = MIA! , we arrive at

the following equivalence theorem,

Theorem 6 . If PO = MO Ao N'O is a fixed minimal parabolic subgroup, then

the representations associated with data points (Py,8,u) and (Pg,El,V! )

are infinitesimally equivalent if and only if there is an element w in W(AO:G}

such that wEg T El and wv =v! .

Remark., If G has only one conjugacy class of Cartan subgroups,
then only Po can occur as the first item in a data point, and Theorem 6 the-
refore gives all infinitesimal equivalences for the representations associated
with data points, Moreover, condition {iv) in the definition of data point is

redundant, as was first shown by Wallach in unpublished work (cf. [19]) .

Examples:
(1) G complex semisimple. Theorems 5 and 6, interpreted in the light of

the remark, in this case are due to Zelobenko [20,21 ] . An exposition of these
results is given by Duflo [ 1] .

(2) G of real -rank one. The parabolic in Theorem 5 can always be PO ’
and it can be G itself if rank G = rank K . In the latter case we are led to
limits of discrete series with nondegenerate data, with equivalences given as

in Theorem 4 ., When the parabolic is P, = MOAONO , E is a finite—dimensio-

nal representation of the compact group MO and v is zp with Rez =z 0.
The irreducibility condition, given as (iv) in the definition of data point, ex-
cludes points with wEg = E and z =0, where w is the nontrivial element of

w (AO T A Up (E:0) is reducible. All other points with Re z 2 0 are
0

retained, and Theorem 6 says that (£,iy) and (wg, —-iy ] lead to infinitesi-
mally equivalent representations and there are no other equivalences,
(3) G=SL(4,R) as an example with a complicated equivalence between

data points. Let PO be the upper triangular subgroup, and let
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In the description preceding Theorem 6, M1 is SL-(3,R). We can arrange
that a tempered representation 1 on M1 leads to a Cartan subgroup with one
compact dimension and one noncompact dimension, In this case, !\."A*N* can

be chosen as either

R B 0

s 0 or 0 A4

00 .0 0l oy e 0

0 00 0 00

and the corresponding groups P = MAN are

. . EE S e

oo . . and = -
o fe(n S e I 0 00 .,

which are not conjugate in G ., Data points corresponding to these two choices
of P can lead to infinitesimally equivalent representations, and the correspon-
ding mapping on the data will partly conjugate only the (£ ,v ) and partly affect
the whole triple (P,E,v] .,

4, Irreducible unitary representations,

Classification of the irreducible unitary representations amounts

to deciding which LLanglands representations are infinitesimally unitary.

Theorem 7 . J(m:v,) Is infinitesimally unitary if and only if

(i) formal symmetry conditions hold : there exists w in K normalizing

the
S = ~ L
0L with wPw~ =P, wrm =1, and WV, = -V, , and

(ii ) the Hermitian intertwining operator

=n(w}R(w)A(F:P:va} " s )

where R(w) is right translation by w , is positive or neaative semidefinite,
Remark , For Theorem 7 in the case of complex G, see Duflo[z].

Proof ., Weshall show below that the representations
' B s i e Sl < ,
Jp[n.\;A.x ) and Jp(n.—vA.x} are infinitesimally equivalent., (Take the

adjoint here to be defined just on K-finite vectors) . If Jp{n:vAJ is infinite—
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simally unitary, then dp(ﬂ:\)A: x_1 }* and Jp(n:vA: x) are infinitesimally

equivalent , Hence

Jp(ﬂ:vA:x} and JE,[rr:-vA:xl

are infinitesimally equivalent, By Theorem 1, condition (i) must hold, Since
w exists and Wi = T , the operator B given in (4. 1) is defined, B is Her-

mitian and satisfies

Up, (- A]B=Bup(ﬂ:vA} . (4. 2)
(Cf. [10] and [8], Lemma 62.) Define a Hermitian form on the space of
up(n:\JA} by

<u,v> = (Bu,v) , . (4.3)
LK)

A simple computation that is indicated in [ 7] shows that

up{n:vA:xl* = Uglmiv,:-X) (4. 4)

on the Lie algebra level, and (4, 2) and (4, 4) imply that
cup{n:vA:X}u,v> + {u,up{ﬁ:vA:X}v>=0 (4.5])

Since the kernel of A{E’:P:n:\JA] is equal to the kernel of B, <., .>
descends to a Hermitian form on the space for o (*rr:\JA] , and (4. 5) holdsfor
JP[-rr:\)A] . Now JP(W:\JA} is assumed infinitesimally unitary, and we let
<< .,,.>> be an invariant Hermitian inner product. Then

<u,v> = <<ly,v>>
for a Hermitian operator L that is a self-intertwining operator for Jp[ﬁ: \.’AJ' :

by (4.5). Since .JP{TT:VA} is irreducible, L is scalar.

Say L =cl with ¢ real and #0 . Then
<<u,v>> = ¢ <U,v> = c_‘(Bu,v} 5

=1 - - 1 B
and ¢ B must be positive semidefinite,
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Conversely if (i} and (ii) hold with B positive semidefinite, we define
an inner product by (4. 3}, and .JF,{Tr:\JAJ is infinitesimally unitary by (4. 5)
for JP[rr:vA! .
To complete the proof, we are to show that Jp{ﬁ:vA:-X J* and

JE,(Tr:-—\_)A:X] are infinitesimally equivalent . Let
Vo= (ker‘A(E’:F’:n:vAHl = image A{E’:F’:TT:\)A}* = image A(P:E’:n:—GA} 2

(The last equality is given in [9] .) Let E be the orthogonal projection (rela-
. 2 .
tive to L(K )} on WV . Then Jp(w.vA.X] acts in V as Eup(n.\)A.X}E.

By (4.4), Il v : =X )% actsin V as

A

. . K= i £
Eup(ﬂ.vA.-x} E = Eup[ﬂ.—vA.X}E

Now A[P:Is:rr:—;A} is a linear isomorphism from Vo= (ker*Al[F’:I_=':TT:—:)"‘3‘Hl
onto V = EmageA[F’:E‘:ﬁ:—\TAJ . Therefore dp('rr:\;A=—>(]* pulls back from
\VV to a unique operator S(X) on G satisfying
. . ¥ A= g Pl
Jp(n.vA.-x," A(P:Pim:—v,) =A(P:iP:im:-v,)S(X).
(4.6)

The left side of (4, 6) is

Eup(rr:—vA:X}EA[P:P:n:—\JA}

Eup(‘ﬁ:—;A:X}A(P:E’:ﬂ:—:)A}E (E=pr‘cjection on G)

EA[P:E‘:'IT:—;A}UE[TI‘:—GA:X}E by [9]

A{F’:P:Tr:—vA}EU};(n:—vA:X]E

We conclude that

S(X)

I
m
C

14
-

<
3

Thus the linear isomorphism A(P:P:T: -;A,'l from U to VWV exhibits the
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required infinitesimal equivalence. The proof of Theorem 7 is complete,

Corollary, Let P be minimal and let pA be half the sum of the positive
0L -roots, repeated with multiplicities, If Re VA ~P IS dominant, then

o, i i i i i i i i V =
Jp(ﬂ.vA} cannot be infinitesimally unitary unless 711 is trivial and A TBA -

Proof. Let B be as in (4. 1) . The same computation as in Lemma 56 of
[8] shows that

-1
(v,-pallogalw k)
Bk} =Je A A

m(w)m(m (W™ k) ) f (kgk ) dk
K

apart from a positive constant depending on normalizations of Haar measures,
Here NNAM is dense in G and we are decomposing elements in the dense

setas g =;na[g]m[9]
If Jp(rr:\.lA} is unitary, then Theorem 7 and the considerations in the

proof of Proposition 45 of [ 8] show that one of

-1
(V,-pllogalw k) 3
el B A miw)mimiw k)) (4.6)
is a positive definite function on K ,

If ) is the highest o -weight of a finite—-dimensional irreducible repre-

sentation oy of G, if co}\ is a unit highest weight vector, and if F-')L is the

projection on the A weight space, then

et logalg) _ Py m (aoy | (4.7)

and the left side thereby extends to a continuous function on all of G .
Hence it follows from our hypothesis on Re VA that the function (4. 6) is

bounded, as well as positive definite, Therefore it is continuous and its absolu-
te value attains its maximum at the identity of K . However, the value at the

identity will be 0 by (4, 7) unless vA-—pA is imaginary. In this case, the

function will be discontinuous at the identity unless v, =

A pA and =1



Examples.

(1) G=SLI(3,c). The classification in this case is due to Tsuchikawa [17].
To obtain it from the results here, we use Theorem 7 . If P =G, we are led to
the unitary principal series, If P is a maximal proper parabolic subgroup, con-
dition (i) fails in Theorem 7 and we obtain no unitary representations, Thus
the only interesting case is that P is minimal parabolic. Take P to be the
upper triangular group. In order for (i) to hold, the character £ of M must

be fixed by the transposition (1 3} and v must be of the form

v=a[e1—93J+bI(e1—2e2+e3J (4.,2)
with a and b real. The condition that Re v be in the positive Weyl chamber
implies a > 0., Thevalues 0 <a <1 and b arbitrary give unitary repre-
sentations (the complementary series if 0 <a < 1) by Theorem 9 of [8] y
and a < 2 is necessary for a unitary representation by the corollary to
Theorem 7 . Since A{E: P:E:v) is easily seen to be nonsingular for
1<a<2 andfor a=2 if b ;5 0 , it follows that for given £ there are on-

ly three possibilities on the interval 1 < a < 2:

when 1 < a < 2
JP(E:\J) unitary when a=2 and b=20
for no values of a and b .
For a =2, the only possibility for a unitary representation is the trivial repre-

sentation, by the corollary to Theorem 7, and we are led to the following classi-

fication:
Unitary principal series

Complementary series : & fixed by (1 3) and
v of the form (4, 2) with 0 <a < 1

End of complementary series : € fixed by (1 3) and
v of the form (4. 2) with a=1

Trivial representation: € =1 and v of the form (4. 2) with
a=2, b=0.

It will follow from the style of argument in § 5 that the end of the complementary
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series is also obtained by inducing with MA = GL (2, C ), using the trivial re-

presentation on M and a unitary character on A .

(2) G=5Sp(2,Cc) and G = complex G2 . Duflo [2] has given a classifica-

tion in these cases starting from his version of Theorem 7 for complex groups.

(3) G=SL(3,R). The classification in this case is due to Vahutinskii [ 18]

It can be obtained also by computations similar to those in Example 1 .

(4) G =Spin(n, 1) and G=SU(n,1). The classification for Spin(n, 1},

the universal cover of SO(n, 1), is due to Hirai [5] . The classification
for SU(n,1) is substantially due to Kraljevi¢ [ 13] . In view of Theorems 7
and 3, the Langlands representations for P = G are the limits of discrete se-
ries and the irreducible unitary principal series, For P minimal, we are led
by Theorem 7 to data points (§,v ] with w§;§ and v =2z with 0 <z <1,
The question of when (ii ) holds is settled in [ 8] the answer being that
=2 < Zo where z is the critical abscissa given in [8] . Thus the clas-
sification is

Limits of discrete series

Irreducible members of unitary principal series

Complementary series: wE =& and v=20 , 0 <z < z_

End of-complementary series : wE =& and v = Zp Lz 20,

Note that z = 0 unless (P ,£,0) satisfies the irreducibility condition (iv)
in the definition of data point. Note also that the trivial representation is the

end of the complementary series for € trivial.

5, Effect of induction on Langlands representations

A number of exceptional unitary representations arise as induced represen-
tations with a nontempered unitary representation on M ., We shall give a theo-
rem for locating some of these in the Langlands classification. Actually the
proof is more useful than the statement of the theorem, since the proof will often
apply when the statement does not, We shall illustrate the technique by locating
in the Langlands classification the exceptional representations of SL (4,C)
produced by Stein [ 15] .
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Theorem 8, Let P = MAN be a parabolic subgroup, and let w be an irreduci-
ble representation of M with Langlands parameters (M*A“NM,U ,)\MJ .

Let L be a linear functional on QL such that <Re ) ,a > > 0 for all posi-
tive Q{ -coots o . Choose an orderingon (L +0L,, So that Re () +)\M}

is dominant, and let N)L be the nilpotent aroup built from the positive roots
If & is sufficiently small, then m N IndﬁAN(wQ exp )\ ) Iis icreducible

and its Lanaglands paremeters are IM*(AAMiNX,G,?tH\MJ ;

BEroof : In writing down intertwining operators and induced representations,
we shall drop the reductive factors in the parabolic subgroups. The induced re-

presentation

.M
U, (o:A..) = ind (a®exp A,,)
NM M M*AMNM M

maps onto

=M
W< ind — (o®exph,,) (55t
M*AMNM M

under the Langlands map

f—fA[NM:NM:U:?\MJ'f : )

Here f is a suitable kind of function on M with values in H° . the relevant
induction in stages formula is
(a®exp (A, +1 )] (5.2a)

. G
= ind
A NN M*(AMAJ(NMNJ

= ind (o®exp X, )® expr]. (5.2b)

faAN[i“dmA N
WAMNM

A function in the representation space of (5, 2b) carries G to the representa-

tion space of incM . (0®exp A,,). To F(g), regarded as a function on
M*AMNM M

M , we can apply the operator A[NM:NM:G:XM) , obtaining a member of the

space for w, by (5. 1), By examining the integral formulas in [9] , we see
that
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[AMNy:Ny:o:x,) (Flg))](m)
= [AINN:Ny N:o:h +1) (F() (1) )] (gm) . (5.3)

Equations (5.3) and (5. 1) allow us to interpret A(NM:NM:U:)\M} as a

mapping that exhibits ™ N as a quotient of UX NN * Under this interpre-
] ]
M

tation, the intertwining relations in [ 9] and [ 10] show that we have the

following commutative diagram, apart form scalar factors (including poles !) :

A(NMN:NX:G:}LM-?H A[NM:NM:U:XMJ

u i) -

AN, Ao NN dIr

A(NR:NX:G:XM+K} A(NMN:NMN:G:}\M+A] ACN: Nzwsh)
v A[NM:NM:U:RM) W
u = T =
AN N > T, N
A(I\MN:NMN:G:}LM+7\) 1

= "ﬁ“'“\'!}\:I\ll\-ﬂ'ii\i:G:)\I'\a'l*'}\;l 17 Inclusion from (5., 1)¥

U = < U == < =

AN, € LLNN S N

We shall prove for small ) that

(i) A{NMN:NX:U:)\M+M and A[N}\-:NMN:U:)\M"'}L] are isomorphisms, and

(ii) A(N:N:w:A) isan isomorphism.

First we show that (i) and (ii) prove the theorem. In fact, the
vertical map at the left is a Langlands map, and the image is irreducible,

By (i ) the image in UX ’NMN is irreducible, and hence the image in T]‘}\ ,Rl

at the lower right is irreducible. However, as we go from top left to bottom
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right first along the top and then down the right, each map is onto - by (i),

by (5.3) and (5.1) and by [ii) . Thus the image in n)\’ﬁ is all of Tr)\,-lil'

and m 5 is irreducible, By (ii), M N is irreducible . Also TN is

isomorphic with n)\ Nt which we have seen is isomorphic with the Langlands
]

quotient, Hence 11 has the required Langlands parameters,

AN
To prove that the appropriate operators are isomorphisms, we visualize

decomposing each of them as a minimal product, as in §1 of [ IO] . Then for

the operator A(NMN : NX:U:AM+U it is enough to prove that <g ,A >#0

\ and negative for NMN .

( The point is that this condition produces a nontrivial dependence on ) for

for all (0L +01-MJ - roots g that are positive for N

each operator in the minimal product, and each operator depends only on one
complex variable <a ,) >. The poles of the operator are isolated, and the
regularity follows for A(NMN:NJ\ :U:RM+M . The same argument applies to

A{N)\ 3 NMN:U:RM+}\} to show it is regular. The product of these two opera-

tors is a scalar factor, and the scalar is not 0 for small % by a third applica-
tion of the minimal product decomposition, These facts prove

A[NMN:N)t :U:XM+)\.) is an isomorphism. )

We shall show that <a,\ > #0 if o is positive for N, and negative

N
for NMN . Write o =ag+a; Wwith LT defined on QL and o defined on aM'

The condition that ¢ be positive for Ny means that
<a,x+xM> >0, (5. 4)

The condition that ¢ be negative for NMN means that og <0 opr O = (0]

and o‘,I{O 2 e inthag

<g,A> <0 (5. 5a)
or

<a,A>=0 and {a,AM> <00 % (5. 5b)

If (5.5a) holds, then <ag ,A> #0, as required. If (5.5b) holds, we ob-
tain a contradiction to (5, 4) ., Hence <g,\ > #0 .,
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}\:NMN:U:?\M

<a,h>#0 when o is positive for ﬁMﬁ and negative for !_\-.I)\ . Then o is

For the operator A (N +) ), itis enough to prove

positive for N?\ and negative for NMN , and we are reduced to the case of the
previous paragraph.

Finally for A(N:N:w:)), it is enough to prove <o ,A>#0 when g
is an 0l -root positive for N and negative for N . This means that
<ao,h> >0 holds, and so <a,A>#0 ., The proof of Theorem
8 is complete,

Example: SL(4,Cc). Let I-'-‘0 = MOAONO be the minimal parabeolic con-

sisting of upper triangular matrices, We consider certain Langlands parameters
(F’0 R s
In order for v to be in the positive Weyl chamber and for (i) to hold in

Theorem 7, we must have

vV =ule ~-e,)+vie,-e ) +wile -e -e;te ) (57, 6:)

B 3 1 2 3 4

with u>wv>0 and w real. The parameters that lead to p in the Corollary
to Theorem 7 are u=3, v=1, w=0, The complementary series occurs for
u<1, according to [ 12] or Theorem 9 of |: 8] , and the parameters with

u=1 lead also to unitary representations (by a passage to the limit in (ii ) of

Theorem 7)) .

Let P = MAN be given by

=t = A AL
EEAT AL &5
OO FUN,

and consider the representations

m, = irxd(3

s MAN{I@expt(el-(—e

2= €3~ 94))

with 0 <t<1., In[ 15] Stein showed that these representations are infinite-
simally unitary. MNow the trivial representation of this M is not tempered but

has Langlands parameters (1, (eI -ezj + {93—e£‘1 ) . One checks that the

proof of Theorem 8 remains valid for 0<t <1 . Consequently T, has Lang-

t
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lands parameters

(IS s(e' -ez+e3-e‘q_+t(t:.-,| +e2-e3-e4jj}
with s a member of the Weyl group chosen to make s(—] dominant,
The relevant element s is the transposition (2 3), and the Langlands para-

meters are :
fals; (l+tl(e1 =e,) + (1—(}(&2—331}

These parameters are the special case of (5, 6] with u=1+t, v=1_-1t,
and w =0, Inparticular, these parameters have u>1 and are outside the
critical strip where the complementary series occur, Thus, Steinls exceptional
unitary representations form a one-parameter family that extends from the edge

of the three-parameter complementary series,
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