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1. INTRODUCTION 

One of the fruitful achievements of probability theory in recent years 
has been the recognition that two seemingly unrelated theories in physics-- 
one for Brownian motion and one for potentials-are mathematically 
equivalent. That is, the results of the two theories are in one-to-one corre- 
spondence and any proof of a result in one theory can be translated directly 
into a proof of the corresponding result in the other theory. Although this 
connection has been known to some mathematicians for a number of years, 
the details have not been collected in any one source, and an exposition 

seems in order. 
Historically the first theorem indicating any connection was discovered 

by Kakutani in 1944. It was known that if D is a sufficiently nice bounded 
domain in the plane, then to each point x in D there is a measure pz on the 
boundary of D such that for any continuous function f on the boundary 
the unique harmonic function in D with f as boundary values has the value 
J-f dpz at x. In potential theory it turns out that if K is a nice compact 
suhsct of M(D), then pZ(K) is the value at x of a potential which is one on 
K and whose charge has all its mass on K. It was Kakutani’s observation 
in [I 31 that p&K) is also equal to the probability that a Brownian motion 
particle started at x reaches K before hitting Bd(D) - K. Doob and Hunt 
in [4-6,9, lo] noticed other parallels between the subject of Brownian motion 
and the subject of potential theory and harmonic functions, and they extended 
Kakutani’s work. From their results it gradually became clear that in a 
certain sense Brownian motion and potential theory were really the same 
and that the key to the connection was in the potential operator and its 
inverse, the Laplacian. Later Hunt in [l I] exploited this connection by 
defining potential theories associated with a wide class of Markov processes. 

The connection can be shown in several ways and we shall consider only 
one of them. After briefly describing three-dimensional Brownian motion 
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and potential theory separately, we shall show that there is a natural way 
in terms of Rrownian motion of obtaining the operator mapping charges 
into potentials and that, conversely, from the potential operator it is possible 

to recover the family {P’} of transition operators which define Brownian 
motion. These facts will make it clear that in a technical sense the two theories 
are identical. In the last section WC shall discuss what minor modifications 

in the argument need to be made for dimensions greater than three and 
we shall see in what sense the correspondence fails in dimensions one and two. 

2. BROWWAX MOTION 

Brownian motion physically is the constant movement that microscopic 
particles undergo because of molecular bombardment when left alone in a 

liquid. The first step in setting up a probabilistic model for this movement 
is to rcplacc the known statistical cstimatcs of what happens to a large 
number of particles by a probability for what happens to one particle. We 
are then to require two things: 

(1) Pr [particlc started at II is in E at time t] = SE [1/(27~t)~/~] e-l”-~12/2f dy, 
where E is any Bore1 set in RJ and 1 u - y  ! is the Euclidean distance from 
u to y. WTe shall abbrcviatc the left side as Pr,,[xl E A’]. 

(2) If  t, < t, < **a < t,, , then {x1,, xtl - .x1,, . . . . xt, - x(*-J is a set 
of independent random variables and .Y,+~ - xl has the same distribution 
as xS -- U. That is, 

PrU[xt, E E, , . . . . (.q, - xf.-,) E En] = Pr,[x, ,E E,] * **a . Pr,,[x, ,,- xIII_i~ E,,] 

= Pr,,[xtl E E,]’ *a. ~WXtt,-t,l)-~ E &I- 

The abstract setup for Brownian motion is a measure space whose under- 
lying set is the set of functions with domain the l-axis for positive rational t 
and with range in R3, whose sigma-algebra will be specified shortly, and 
whose measure Pr, is to satisfy the two conditions above. Before sketching 
a construction of this measure, we shall state a few consequences of the 
two conditions. From (1) we have 

where p”(u, *) is the measure (27rt)-3/z exp( - 1 u - y  \2/2t)dy. With this 
notation, condition (2) implies that we must have 

Pr,,[x, E E, x, E F, . . . . X, E G, x1 E H] 
(1) 
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Equation (1) gives several definitions for Pr,[x, E E] and we must check 
that they are consistent. For example, we must check that 

Pr,[x, E R3, xt E E] = Pr,[r, E E] 

and 

Pr,,[X, E F, x1 E R3] = Pr,[x, E F]. 

Such identities can be verified by direct calculation. 
The consistency of these definitions implies that if Q is the set of all 

functions from the positive rational t-axis to R3 and if {xt, r rational} is 
the set of projections, then Pr, defines a finitely additive set function on the 

least algebra containing the cylinder sets of Q. By Kolmogorov’s Extension 
Theorem (see [3, pp. IO ff.]), Pr, is completely additive and extends to the 
generated sigma-algebra F. It can then be shown that the set of functions 
in fj which are uniformly continuous on every bounded time interval has 
measure one. For such points w we define 

x,(w) = lim X,(W) 
14 

7 rational 

and we define X((W) arbitrarily otherwise. The completion of the space 
(Q, F, Pr,) is the desired measure space: In it x;l(E) is measurable when E 
is a Bore1 set of R3, conditions (1) and (2) are satisfied, and almost all elements 

of Q are continuous. 
The details of this construction may be found in [3] or [14]. We do not 

give them here because we shall not use any facts about Pr, that are any 
deeper than Eq. (1). 

Brownian motion need not be started deterministically at position u. 

If  we start the particle according to probabilities assigned by a measure p 
on R3, then we have 

%[xt (5 El = j,. j,& e-‘u-y’*/2t dy d/L(u) = j,, jyu. dy) d/J(u). 

A similar expression holds for Pr,,[x, E E, . . . . zt EF]. 
I f  p is a finite signed Bore1 measure on R3, we define a measure pLpl by 

If the finite signed Bore1 measures on R3 are considered as a Banach space AZ 

under the norm i[ JL [I1 = p+(R3) $ p-(R”), then Pt is a continuous linear 
operator of norm one from M into itself. The effect of the operator P’ is 
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determined by the facts that Pt is linear and that for measures p 2 0 with 

p(P) -7 1, (f@)(E) = P ,[ 1 r x E E]. Moreover if ($‘l)~E denotes the measure 
whose value on the set F is (@)(E n F), then 

Pr,[s, E E, x, E F, . . . . x, E G, xt E H] = ((~~.(((pP~)x~)Z’-‘)x~ --)P’-8)(H). 

Consequently the formulation we have just given for Brownian motion 
determines and is determined by the family of operators {P’}. The family 
{P’} will bc called the set of transition operators for Brownian motion. It is 
what we shall use in Section 4 when we discuss the connection with potential 
theory. 

3. POTENTIAL THEORY 

In physics potential theory begins as a study of Coulomb’s law of attraction 
of electrical charges. This law states that every two charges in the universe 

attract (or repel) each other with a force whose direction is the line connecting 
them and whose magnitude is proportional to the magnitude of each of 
them and inversely proportional to the square of the distance between 
them. That is, 

where l t, is a constant depending on the units. As an aid in the study one 
introduces the notion of potential: The potential at a point x due to a charge q 
is the work (or energy) required to bring a unit charge from infinity to 
the point x. It can be shown that this potential is independent of the path 
along which the charge is brought to the point x and that its value is 

where x0 is the position of the charge and where the constant 112~ has been 
fixed after a certain choice of units. 

More generally one defines a charge distribution to be any finite signed 
measure on the Bore1 sets of H3. The potential at x due to the charge distribu- 
tion is again the work required to bring a unit charge from infinity to the 
point x. Since force (and hence work) are additive, the potential due to a 
charge distribution consisting of charges ql, . . . . qn at points x1, . . . . CT, is 
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Passing to the limit in an appropriate sense, we would expect the potential 
due to an arbitrary charge distribution p to be 

1 . 
J 

44Y) 
2x Ra IA-y! . 

We first check that such an expression is always well-defined, and then we 
shall define a potential to be any function of this form. 

LEMMA 3.1. If p is a charge distribution, then 

is finite everywhere except possibly on a set of Lebesgue measure zero. 

PROOF. It suffices to prove the lemma for the case p 2 0 since the general 
case follows by taking differences. Letting K,, denote the closed ball about 
the origin of radius n, we have 

The inside integral on the right is bounded by its value when y  -= 0, which 
is some finite number c. Thus the right side does not exceed cp(R3)/2a < 03, 
and g must be finite a.c. in I;, . Hence g is finite a.c. in H3. Q.E.D. 

DEFINITION 3.2. If  p is a charge distribution, then the function 

1 
I 

1 
% R3 Ix --yI 44) 

is called the potential of CL. The operator transforming a charge into its 
potential is called the potential operator. 

Potential theory is the class of theorems relating charges and potentials 
and quantities definable in terms of them. It includes the subject known 
in physics as electrostatics since the quantities commonly arising in electro- 
statics are all definable in terms of distances, charges, and potentials. It is 
readily verified, for instance, that capacity, energy, field, and force are all 
definable at least dimensionally in terms of distance, charge, and potential. 
As a further indication that the class of theorems relating charges and poten- 
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tials is large, we give four examples of how concepts may be defined explicitly 
(and not just dimensionally) in terms of distance, charge, and potential. 

1. The total charge of a charge distribution p is p(R3). The support of p 
is the complement of the union of all open sets li’ with the property that 
p vanishes on every measurable subset of U. 

2. \Ve can reasonably ask what the total amount of work required to 
assemble a charge distribution is if only an “infinitesimal” amount of charge 
is brought into position at one time. The way to compute this amount of 
work is to integrate the potential function against the charge distribution, 
provided the integral exists. Thus we define the energy of a charge distribution 
to be the integral of its potential with respect to the charge, provided the 
integral exists. 

3. I f  a total amount of charge q is put on a piece of conducting metal in 
R3, the charge will redistribute itself in such a way that the potential is a 
constant on the set where the metal is. The situation where the potential is 
constant on the metal is the one which minimizes energy among all charges p 
with total charge q and with support on the set where the metal is, and this 
situation is referred to as equilibrium. \Ve define an equilibrium potential 
for a compact set I:’ to be a potential which is 1 on E and which arises from 

a charge with support in E. An equilibrium set is a set which has an equilibrium 
potential. One can show that such a potential is unique and that the charge 
producing it is also unique. 

4. The capacity of a conductor in R3 is defined as the total amount of 
charge needed to produce a unit potential on the set where the conductor is. 
We thus define the capacity of any equilibrium set to be the total charge 
of the charge distribution which produces the equilibrium potential. 

We shall not need these auxiliary definitions or any theorems about 
potentials in the remaining sections, and we shall therefore not state the 
classical theorems in the subject. Such results can be found in [1] and [2]. 

4. CONNECTION BETWEEN THE THEORIES 

The essence of the connection between Brownian motion and potential 
theory is that the potential operator can be obtained in a simple way from 
the transition operators Pt for Brownian motion, a result we state as 
Theorem 4.1 (see [lo]). It is also true that the operators P can be obtained 
from the potential operator, and WC shall prove this fact afterward. We recall 
from Eq. (2) that a Radon-Nikodym derivative of pPl with respect to 
Lebesgue measure is JR3 (2rt)-3/z exp( - 1 x - y  j2/2t) +(y). We denote this 
function by (pP’)‘(x). 
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THEORE.M 4.1. If p is a charge, then the potential g of p satisfies 

for every x for which g(x) is defined. 

PROOF. We may assume that TV > 0 without loss of generality. Then 

JT(Pt)‘(x) dt = ,rp--& [JR3 e-lz-u!‘lzt dp(y)] dt 
0 

,I- 1 = - e-l~-vl*/*t dt dp(y). 
o (2&p’ 1 

I f  we make the change of variable on t which sends 1 x - y  1*/t into u2, 

the above expression becomes 

i x - y 1-l emu2jz du 1 dp(y). 

By monotone convergence 

Q.E.D. 

Formally, therefore, the potential operator is lim,.,, JiP1 dt. To show 
in the converse direction that potential theory is at least as strong as Brownian 
motion, what we shall do is recover Pt from the potential operator and 

some elementary properties of Pt. The argument is long and will be broken 
into several steps: 

(I) introduction of an operator Qf whose adjoint is P’ 
(2) development of the infinitesimal generator A 
(3) recovery of p” from A and some properties of 8” 
(4) definition of the inverse -G of A 
(5) identification of A and the Laplacian operator 
(6) use of G to recover A from the potential operator. 

First, we introduce 9’. Let Co be the Banach space of all continuous 
real-valued functions on R3 which vanish at infinity; we choose as usual 
(if 113D --- sup1 f(x)l. Every element of Co is uniformly continuous on R”, 
and the space of continuous linear functionals on Co is the set of finite 
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signed Bore1 measures. Norm convergence in C, is uniform convergence, 
and we shall use the notation “strong lim” to denote such convergence. 
Define Qr to be the restriction to Co of the adjoint of P; Qt is determined 
by the equation p(Q’f) = (pP)J 

PROPOSITION 4.2. Qt maps Co into Co and satisfies 

(QtfXY) = jR3 & e-12-ui’r2tf(x) dx. 

Moreover, Qt satisjies the ~following properties: 

(1) I;Q”ii = 1 

(2) p-t = QSQ’ 

(3) strong lim Q’f = f  
t10 

(4) strqntlim Q!“f = 0 

(5) I f f  5 0, then Qy > 0. 

PROOF. For every p, 

p(Q”f) = (p~t)f = jR3fcx) j,, (2+3~ +--ylg/2t ddy) dx 

R3 
(27rt)-3/* e--lz--yIei*tf(x) dx 1 dp(y). 

Hence (Q”f)(y) equals the integrand on the right side. Then (I) and (5) 
are obvious. 

Next we prove that Q” has range in Co , We have 

As y  --t y. , the right side tends to zero by Lebesgue’s Theorem, and hence 
Qtf is continuous. In addition, 

I Q”f(r)i G J (27~t)-~/* e-~z-~~‘/2t If(x)1 dx 
IXl>N 

+ IlflL j,,,,, (2ny/2 e-I=-VI’/21 &, 

The first term is small for large N since f vanishes at infinity. For fixed N 
the second term tends to zero as y  + 00. Hence Qy vanishes at infinity. 
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We still have to prove (2), (3), and (4). For (2) we have 

QRQtf(Z) = (276) 3;:! (2+3/z J-$jR3 cxp [ - 

X exp 
[ 

‘s -y’2 
- 

2r 1 f (4 dx dr 

= (2xs)-3i2 ('&4-3;2 j,, j,, exp [ _ ' y - kf + xs)@ + ')I* ] 
2st,/(s + f) 

x exp 
I 
- 2;s-lzf;] f(x) dy dx 

= (24s + t))-a:* j,, exp [ - ‘;‘,;++‘J] ftx) dx 

For (3) let l > 0 be given. Choose 6 > 0 so that supV: f(x + y) -f(y)/ < E 
for all x with 1 .r / < 6. Then 

:‘pf-fi:m G stp i (2~t)-~/* exp(- 1 x 12!2t)l f(x -C y) -- f(y)1 dx 
" Izlial2 

+ sup 
I 

(27~t)-“/~ exp(- 1 x i2/2t)j f(x + y) - f(y)1 dx 
Y ‘z,>8/2 

< E + 2 11 f Ilrn j,r,,s,z (27~t)-~/~ e-lz12~2L dx 
/ 

= 6 -- 2 1) f Ilrn ~,i,ss,21’,z (27r-3/2 e-‘r’2/2 dz. 

For small enough r, the right side is <2c. In (4) let c > 0 and choose M 
so that 1 f(x)] < E when x is outside the ball B =: {xl I x 1 < M}. Then 

< e i- sy Ilf I’= jr-,,lls-ul (277)-3’2 e-z’/2 dz 

< 6 + II f IL jt-,,2B (2~)~~‘~ cr2/* dz 

< 2~ for large t. Q.E.D. 

From now until after Proposition 4.13, we assume that {Q’} is any family 
of operators mapping C,, into C,, and satisfying statements (l), (2), and (3) 
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of Proposition 4.2. The procedure will be to introduce the infinitesimal 

generator il in terms of 0’ and then to show that Ql can be recovered from 
it in the presence of the three properties of Qt. This method originally 

was discovered indcpcndently by Yosida [15] and Hille [8]. 
The infinitesimal generator .4 of the family {Ql) is the operator 

Af = strong lim 
t10 ( 

defined on the vector subspace of all f  E Co for which the limit exists. 

LEMMA 4.3. If  f  is in the domain of A, then Q’f is in the domain of A 
and .4Qtf = Q”Af. 

PROOF. 

Qt(Af) :.= Qt (strong lim Onfhmf) 

= strong lim “(“) - ” by (1) and (2) for (2” 
h 

= A(Q’f). Q.E.D. 

LEMMA 4.4. If  f  is in the domain of A, then (Qy)‘(x), the derivative of 

Qlf(x) with respect to t, exists and is in Co , and the dqference quotients 
(Qt+“f(x) - Q’f(x))/h converge to it uniformly in x. Moreover (Qff)’ = QtAf. 

PROOF. For h > 0 we have by Lemma 4.3 and property (2) of {Qt} 

Q”Af = AQ”f y-7 strong lim Q"(Q"f) - Q'f = strong lim Q”“f - Q!"f , 
h10 h h10 h 

A similar result as h t 0 is enough to establish the lemma. Let h < 0 and 
put k = -h. Then 

II Q”+“f - Q’f 
h 

- Q’Af ii = 11 Q”-” ( QYk-f) - Q’(Af) 11 by (2) 

< ! Qkfh-f - Q”(Af) 11 

G !I Qkfh-f -Afil +!IAf-QkAf:I. 

by (1) 

The first term on the right tends to zero as k JO since f  E domain A, and 
the second term tends to zero by (3). Q.E.D. 

LEMMA 4.5. 
is defined. 

If  f  E Co , then Qy(x) is continuous in t and hence S,‘Q’f(x) dt 
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PROOF. We apply (3) twice and USC (1). I f  h I:- 0, 

1) Q-f - Q”flj < ;, Q’ // I! QAf -f ! < 11 Q*f -.-f j + 0. 

If  h = -k < 0, 

‘/ Q”.“f - Q!‘f’i < ‘! Q'-" 11 I( Q"f -f I < .I Qkf -f II + 0. Q.E.D. 

LEMMA 4.6. I f  f  E C,, , then so is J:Qtf dt. 

PROOF. First we prove continuity: 

( @(i(u + h) -f(y)) dl 1 < sup y  1 /;QYf(y + h) -f(y)) dti 

< I ’ I QW + h) -fWll dt 0 

i 
T 

< ‘if(y + h) -fW dt bY (1) ” 

= T IlfbJ + h) -f(r)ll, 

and the right side tends to zero as h -+ 0 by uniform continuity off. Next 
we prove that j’Q”fdt vanishes at infinity. Let l > 0. Choose by (3) a 
6 > 0 such that’if 0 < t < 6, then )I Q,“f -f ‘I <:I c. Then for every n and 
for 0 < f < 6, 

/I Qd+ff - Q”“fi, == 11 Qnd(Qff - f)ll < Ij Q”f - f  I/ < E. 

For each n such that nS < T, let Y,, be a real number such that if 1 y  / > Y,, , 
then I(Qndf)(y)I < E. Let Y be the maximum of the Y,‘s. Then 1 y  I > Y 

implies 1 Qtf(y)l < 2.~ for every f E [0, T] and hence I S,‘Qtf(y) df I < 2rT. 
Q.E.D. 

LEMMA 4.1. If f E Co , then 

Q”f ds = Qtf. 

PROOF. Let E > 0 and choose h > 0 by (3) so that Y < h implies 
IIQ’f -f II <E. Then 

<$ 
I 

t+h 

IIQY-QYllds 
t 

<; I 
:+A 
t IIQ”ff-fllds 

-=c 6. Q.E.D. 
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LEMMA 4.8. .4 is a closed operator. That is, zffn is a sequence of functions 

in the domain of A converging um~ormly to f and if Af,, converges uniformly, 
then f is in the domain of -4 and 

Af = strong lim Af,, . 

PROOF. Set g - strong lim Af,, . Since IjQ”(Af,,) - QLgjj < 11 Afn -g;l, 
QlAf,, converges in norm uniformly in t to Q’g as n + CO. Therefore for 
fixed h we have by I,emma 4.4 and by (1) 

ih Vg dt = strong lim 1” QlAf,, dt 
‘Ok 0 

; strong lim 
I 

l(Q%)’ dt 

=: strong lim (Qhfn - f,J :--- Qhf -f. 

Dividing by h, letting h 10, and applying Lemma 4.7, we obtain g .: Af. 

QED. 

LEMMA 4.9. For every f  E Co , s:Qydt is in the domain of A. Furthermore 

A (/:QW) = Q’f -f, 

PROOF. By (1) and (2) 

Q” (/:QYdt) ---- /:Qlfdt 1 

h = - j’Q”+tfdt - $ /‘Qydt 
h o 0 

1 
= -lTfhQffdt -;(-Qydt 

h h 

1 
= - lTthQffdt - ; J;QYdt. 

h T 

As h JO, the right side tends to QTf -f by Lemma 4.7. Q.E.D. 

LEMMA 4. IO. The domain of A is a dense subspace. 

PROOF. Let h,, JO and let f  be given. Set fn = h;’ s,““Vydt. Then 
f,, E domain -4 by I,emma 4.9 and strong lim fn = f  by Lemma 4.7. 

Q.E.D. 
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LEMMA 4.11. The limit 

R, j = stropclim 1’ eeAk Qtf dt 
+ 0 

exists for each /\ > 0 and for all Jo Co , and RA is a bounded linear operator 
from Co into Co of norm < 1 /A. 

PROOF. The limit exists because 

IS 
T’ 

I s 

T 

e-““Q”j dt < 
T T 

cAt I (?‘I! II jil dt < il j,l ce-Af dt + 0 as 7’ + CO, 

II Wli < 1: t+ llfl; dt = Ilflll~. Q.E.D. 

LEMMA 4.12. For each h > 0, RA = (X - A)-‘. 

PROOF. First we show A(Rb j) = hR, j -j if Jo domain R, ; that is, 
(A - A)Rd .:- I. We have 

'y RA j = i 1: e-At(Qh+t - St) j dt 

1 cc =- 
I h A 

e-Aft-h)Q!Lf dt - k [ e-AtQfj dt 

,y+h - 1 
=- 

I 

m .A 

h o 
e-htQtj dt - k 

J 
e-W-h)Q’f dt 

0 

+hR,j-jashJ0. 

Secondly we show that R,(Aj) = -j 7 AR, j if je domain (A -- A) = 
domain A; that is, R,,(/\ - A) is the identity on domain A. We have 

R,(Aj) = /r esAtQtAj = /r e+Qy)’ dt 

= e-AtQtj OD + ,j 
I s 

Oc e-“‘Qff dt = -j i- hR, j. Q.E.D. 
0 0 

PROPOSITION 4.13. The operator Qf, = cxp[thcl(h - A)-‘] is well- 
defined r?y the exponential’s power series for each /\ > 0, is bounded, and 
satisfies 

for all f E Co . 

stro;Llim exp[tXA(h - A)-l]j = Qlf (3) 
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PROOF. We have range (A - A)--’ -::: domain (A - A) = domain A, and 

thus A(h - A)-’ is defined everywhere on C’s . It satisfies 

.4(/\ - A)-’ :- (A -. h)(h -4)“ -{- h(X - A)-’ : h(il .-- A)-’ -- I, (4) 

and the operator on the right is bounded; hence Q: is defined and bounded. 
Its norm is 

11 exp[thA(h A)--‘] II /I exp[t(h”(h .- A) ’ -. Al)1 II 

< I+ I 2 ; [tA*(A A)-‘]” jJ 
m--=0 

< e-At ~$(xt)- = 1. 

For the rest of the proof it is sufficient to prove Eq. (3) for the dense subspace 
domain A (see Lemma 4.10). In fact, letj be given and choose jn E domain A 
with j = strong lim jn . Then 

II Q$f - Qfrll d IXQ: - Q”U -fn)li -L I! Q?:fn - Q% II (5) 
< 2 Ilf -A II + ‘lQ$n -Q% II. 

I f  we first choose n and then choose A, we can make the right side < e. 
We shall need two commutativity relations. If  j is in domain A, then 

hA(h - A) -tf = h(A - X)(X - A)-‘j .+ X*(h - A)-‘j 

= h(h - A)-‘(A - /I) j + X(h - A)-Vij = h(h - A)-‘Aj. (6) 

Since Q”Aj = AQ’j for Jo domain A (Lemma 4.3) and hence since 
(A - A)QL = Qt(h - A) on domain A, the relation range (A - A)-’ = 
domain (A - A) = domain A implies that 

(A -- A)-‘Q’ -= (h -- A)-‘[Q”(h -- A)]@ - A)-’ 

= (A - A)-‘[@ - A) Q”](X - A)-’ = Q’(X - A)-‘. (7) 

We use Eqs. (4) and (6) together as follows. For jrz domain A 

I! X(h - A)-‘f --j/I .y 11 A(h - A)-‘fl! = II (X - A)-1AjJ 

< II@ - A)-’ II II Ajll < A-’ II Ajll. 

409 12/z-I3 
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Hence I; h(X - :I)-*j -f,l --r 0 for f~ domain XI. The same argument as 
in Eq. (5) except with Q,t and Qf replaced by h(h -- .4)-l and I, respectively, 
shows that consequently ! X(h -. .q)--tf ---f 1’ --f 0 for all f E C’, . Applying 
this result to .4f for ,f~ domain -4, we have 

limAsup 1 /If - M(X .-- .4)-‘.fl : lim;up 1; Af - X(X - A)--‘(Af)l: 0. (8) 

Sow we can prove Eq. (3). By Eq. (6) the second step of the following 
calculation is justified: 

limfup l,Qy - exp[t/\(,\ - A)--‘]j;l 

: limAsup !!I: J: (exp[(t -- r)M(h - A)- ‘]Q’f) dr I 

-:: lim;up ,I.[: (exp[-]pAf - exp[-]Q’hA(X - A)-‘f) dr 11 

< lim,,sup j.;, exp[-111 11 pr ij i! Af hA(/\ A)-lf I\ dr 

:< lim,Tup t ” ilf .- hA(h - A)-‘f!l. 

The right side is zero by Eq. (8). Q.E.D. 

The content of Proposition 4.13 for the present purpose is that -4, the 
three formal properties of {Q1}, and the definition of A in terms of {Q’} 
completely determine {Qt}. 

For the fourth step in the recovery of {P”} from the potential operator, 
we introduce an operator G and prove that its inverse is ---4. We define 

Gf =:: stroF<lim frQydt 
+ ‘0 

on the subspace of all f in C;, for which the right side exists. 

PROPOSITION 4.14. Iff E domain A, then Af s domain G, and G(-Af)= f. 
Conversely, iff E domain G, then Gf E domain A, and (--A)Gf = f. 

PROOF. Let f E domain .4. By Lemma 4.4 

j-;Q’(-Af)dt = - j-:(Qtr,’ dt -- -Q’f + f. 

By conclusion (4) of Proposition 4.2, the right side cvnverges uniformly to 
f as T + co. Conversely, let f E domain G. Set g, = s, Q(f dt. By hypothesis 
g, converges in norm. Also by Lemma 4.9 

Ag, = A (/:QW) = QTf -f, 
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and the right side converges uniformly to --f by (4) of Proposition 4.2. 

Hence by Lemma 4.8, c;fe domain il and A(C;f) -..: -J Q.E.D. 
\Ve shall now identify .1 as a constant multiple of the Laplacian operator 

‘2 
y’” 3 & : 3- ..- __ 

/. ‘* 2Xz2 2x,2 

when each is restricted to a suitable domain. This result is due to Yosida [ 161. 

LEMMA 4.15. If  p,,If~ domain .q for mery t >, 0 und q :I(Qy) = (,)‘g, 
then f  E domain A and ‘3f g. 

PROOF. \Vc have strong lim,l, Q’f .: f  and strong lim,,, .-l(Qy) = g. 
Apply I,emma 4.8. Q.E.D. 

\Ve use the notation Lr to denote the space of all Lebesgue integrable 
functions on H3, and we denote ‘; f  j:, = s If(x)! d.r. 

LEMMA 4.16. IffEC,,nLl, then $Y~E domain .,I for f  > 0, and 

A(c) - J‘,, 4 ((2nf)-3!*e-‘“-ula12t)f(x) ds. (9) 

PROOF. W’e have to show that 

[(2n(t - h))-3/2e ,r-ri*:Z(t VA) _ (2&)- 3j2e-‘s- yI*;2t] f@) dx 

tends uniformly in y  to the right side of (9) as h JO. Set ~(s, s) = 
(2ns)- W* e-‘r!?/2n, and let R~(s, x) be the partial derivative of g with respect 
to s. Let E 3.:. 0. Restricted to the domain where s >. t/2, gS(s, x) is uniformly 
continuous in the two variables jointly. Choose 6 > 0 corresponding to 6. 
By the Mean Value Theorem if h < t/2 and h < 6, then there is a k with 
0 --:I k T:.. h --I 6 and 

, g(t + h, 4 -At, 4 
h -. gt(4 “)I = I gt(t + A, x) - Rt(4 4 < 6. 

Therefore for such h, 

1 - I [1 Fl R” 
g(t $- h, x - y)f(x) dx 

- dRN. x -- y)f(x) dx] - jRSgt(t, x - y)fW dx 1 

< 
I I 

g(t --h,x -Y) -R(f,X -Y) 

R3 h - Rt(4 x -VII If(4 A 

< E Ilf ‘II * Q.E.D. 
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I,et S be the set of testing functions of Schwartz; that is, the set of real- 
valued infinitely differentiable functions on R3 which, together with their 
partial derivatives of all orders, remain bounded when multiplied by any 
polynomial. WC have S C C0 r\ L1 . The Fourier transform is a one-one 
map of S onto itself. 

PR~POSI-I-ION 4.17. rlny function f E S is in the domain of A and satkjies 
Af = 2ry. 

PROOF. Hy direct calculation 

; pq- 3/2e-lz-~12/2t] _ 2(2,t)-3/2 [- $ .:_ i x 2,’ 12] 

Hence by Lemma 4.16 
= 2q(2Tt)-3/2e- Is-Yl*jet]. 

A(~tf)(r) = j 
R2 

2V2[(2nt)-3~2e-‘2-y”~2t] f(x) dx. 

Applying Green’s identity twice and using the fact that f  E S, we get 

A(QIf)(r) : jR3W- 3~~--!~--ul*la~yf(~) dx E Q”@vff)(y). 

The result then follows from Lemma 4.15. Q.E.D. 
Finally we use G to recover A from the potential operator. 

LEMMA 4.18. If f E CO n L’ , then f is in the domain of G and 

PROOF. Without loss of generality, let f 2 0. Then JrQffdt increases 
with T, so that by Dini’s Theorem the convergence is uniform if JrQtf dt 
is a continuous function vanishing at infinity. As in the cast of Theorem 4.1 
we find 

g(y) - ,;Q%Y) dt L-= & j,:, , xf($, , dx. 

For continuity we have for any 6 > 0 

1 g(y) - R(~“) =. & 1(R3fcy + x),;;cyo -’ x) dx ( 

G $2 iI/ Iim j,,,,, I x 1-1 dj 

1 * 

T 22 ,*,>a I If(u -i- 2) -f(yo i 41 dx. 
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Choose 6 so that the first term on the right side is < 4/2 and then choose y 
(by Lebesgue’s Theorem) close enough to y0 to make the second term 
< E/2. 

It remains to be proved that g(y) --f 0 as y --f cc. Choose R large enough 
so that (27~)-~R-~/lf& < c, and choose Y < R small enough so that 

(W’ lifllm I,,, Tr I x 1-l dx < c. 

Then choose K large enough so that 1 y 1 3 R implies 

For any such y, 1 g(y)/ < 3~. Q.E.D. 

LEMMA 4.19. If f E S, then the dzyferential equation 

(I-V)y =f 

has a solution in S. 

(10) 

PROOF. Let i be the Fourier transform off. Then fE S. If Y denotes the 
distance-from-the-origin function, then f/( 1 + Y*) is infinitely differentiable. 
By induction on the order of the derivative, we see that any polynomial 
times any derivative of it is bounded. Hence f/( 1 + I*) is in S. Its inverse 
Fourier transform is in S and is a solution of (10). 

THEOREM 4.20. The transition operators (P”} of Brownian motion are 
determined 6y the potential operator K in the following sense: Let KS be the 
restriction of K to the s&pace of signed measures whose densities exist and 

are in S. Then K, is one-one. Let -L be the operator which transforms a 
potential in range K, into the density of the corresponding charge in domain K, . 
There is a unique family of linear operators Qt : C,, -+ C, such that 

(1) ilQtll = 1 

(2) Qstt = QSQt 

(3) stro:lgolim Q”f = f forallfEC, 

(4) Lf = strong lirnQyf for all f c domainL. 
hl0 

The operator Pt is the ac$oint of Qt. 
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PROOF OF EXISTENCE. By Lemma 4.18, K, is a restriction of the com- 
position of two maps: one which sends a signed measure with density in S 
into its density function and the other one equal to G. Each of these maps 
is one-one (Proposition 4.14) and hence K, is one-one. By Proposition 4.14, 
L is a restriction of A. The operators p’ and P’ of Brownian motion then 
certainly satisfy the rest of the conditions. 

PROOF OF USIQUEKESS. Suppose there is another family 0” satisfying 
(1), (2), (3), and (4). Then its infinitesimal generator A is well-defined and 
is such that L is a restriction of A (by (4)) and that (A - A)-1 is a 
bounded operator defined on all of C,, (Lemmas 4.11 and 4.12). Hence 
(A - L)-l is a restriction of both (A A).-* and (A - 2)-l. But I, = 2V2 
on S by Proposition 4.17 and (2 --- 2C 2 l is defined on the dense subset S )- 
of Co by Lemma 4.19. Therefore for X = 2, (A -L)-’ is densely defined. 
Therefore (2 -- A)-1 -.: (2 --A) 1 and A : -: A. By Proposition 4.13, 
Q’ --_ 8’. Q.E.D. 

5. BROWNIAN MOTION AKD POTENTIAL THEORY IN n DIMENSIOSS 

Both Brownian motion and potential theory are often studied in other 
domains than all of R3, such JS all of Rn or some open set of R”. In this 
section we shall point out what parts of the preceding carry over to the 
n-dimensional theory, but we shall treat only the case where the underlying 
set is all of R’J. 

The n-dimensional Brownian motion transition operator Pt is defined by 

t@‘)(E) = j, [& j,. e--lr-~1s/2t C(y)] dx. 

The potential operator differs in appearance from dimension to dimension 
more than the Brownian motion operators do, but its kernel is still a constant 
multiple of the integral of 1 x I- (“-l); the potential g(x) of the signed measure 
p is defined by 

- jR,Ix-Y~4(y) in dimension 1 

2jR~Wx-y144y) in dimension 2 

C?l s R” , x -L ,n-2 dp(r) in dimension n > 3, 

where 
c, = 1/&r”‘T(‘/*(n - 2)). 
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In dimension n > 3, g(x) is necessarily finite a.e., but in dimensions 1 and 2 
we shall need to assume that g is finite a.e. 

In one or two dimensions a Brownian motion particle started at the origin 
returns to any neighborhood of the origin after any specified amount of 
time with probability one, but in three or more dimensions it returns with 
probability less than one. Thus the two cases differ sharply for Rrownian 
motion and the same thing may be expected for potential theory and for the 
connection between the theories. The fact that the potential kernels are 
unbounded at infinity in dimensions one and two is a clue to the situation. 

Indeed, all of the results of Section 4 are valid word-for-word in all 
dimensions n :: 3, except that an occasional constant must be changed. 
The formula 

g(x) .= p= j’(/.Jy (X) dt 
0 

of Theorem 4.1 is still the heart of the connection, and the theories are still 
equivalent. 

But the situation is different in dimensions 1 and 2. Proposition 5.1, whose 
proof is omitted, is what replaces Theorem 4.1, and it is not sufficient to 
demonstrate that the potential operator can be obtained in a natural way 
from the family (P}. It asserts that the exact analog of Theorem 4.1 holds 
for a charge precisely when its total charge is zero and its potential is finite a.e. 

PROPOSITION 5.1. In R* for n = 1 OY 2 let p be a signed measure, and 
suppose that 

I R’ 
I .I! --Y I 4/4(r) < 00 a.e. (Lebesgue) ifn = 1 

OY 

I R2 
/ log 1 x --Y I I 44(r) < ~13 a.e. if n = 2. 

?f PF) # 0, then 

!E J“ (@‘)‘(x) dt = + oo OY ---co a.e. 
0 

Ifp(R”) = 0, then 

g(x) = vz I’ (pP)‘(x) dt 
0 

exists a.e., is finite a.e., and satisjies 

if n=l 

if n=2. 
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In the converse direction most of the results of Section 4 are still valid 
after changes in certain constants. Everything from Proposition 4.2 through 
Proposition 4.17 goes over with little change. Lemma 4.19 is still valid, and 
only Lemma 4.18 and Theorem 4.20 break down. The result that replaces 
Lemma 4.18 is Proposition 5.2, and it is insufficient to prove directly any 
analog of Theorem 4.20, even for charges of total charge zero. 

PROPOSITION 5.2. In RQ for n = 1 or 2, let f  E C,, n L1. Suppose that 

s RI If(y)1 I x -Y I dy < 00 if n=l 

Or 

I R2 If(Y)1 11% I X-Y I Id’< 00 if n=2. 

Zf sRnf(y) dy = 0, then s,‘(Q”f)(x) dt tends pointwise to a finite limit 

g(x) = jr (Q”f)(x) dt as T + co. The function g is continuous and bounded 

(but possibly not in CO) and satisJies 

- f  R,f(Y)I x -Y I dY if n=l 

g(x) = 
2~R,fWWx-yldr if n=2. 
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