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212 A. W. Knapp

In this paper we shall study some special features of those symmetric
spaces of noncompact type that are complex manifolds in a natural way.
After discussing the case of the disk, we give Harish-Chandra’s realization
of all such spaces as bounded symmetric domains in C", homogeneous
under a connected group G, and we reproduce Harish-Chandra’s construc-
tion of some irreducible infinite-dimensional group representations of G by
means of this realization. Finally we show how the Hardy H? theory of
the disk generalizes to yield further irreducible representations of G and
to show that certain standard induced representations of G are reducible.
A list of the material in each section follows.

1. Discrete series for SU(1,1). Bargmann [/] classified the infinite-
dimensional representations of SU(1,1). The theorems mentioned at the
beginning of this chapter were proved by him and then put in a more
general setting by Harish-Chandra [2].

2. Bounded symmetric domains: examples, role of the center of K,
structure of roots, Harish-Chandra decomposition. Much of this material
appears in [ 3, pp. 354, 304-322], where it is treated from the point of view
of differential geometry. The structure of the roots and the Harish-Chandra
decomposition appear originally in [2, pp. 750, 756-761, 4, 590].

3. Holomorphic discrete series: definition, the “constant function,”
nonvanishing theorem, square-integrability, examples. See [2, pp. 6-13,
598-612].

4. Limits of homomorphic discrete series: case of SU(1,1), a more
general setting, statements of theorems. See [4].

5. Notes and references.

1. Discrete Series for SU(1,1)

G = SU(1,1) = {(; i) o> - |B]? = 11(.

The members of this group act as analytic automorphisms of the disk
Q = {|z| < 1} under z > zg = @z + B)/(Bz + o). [Here (z9)h = z(gh).]
The discrete series for G occurs in two parts:

Let

(1) nz=2,
#, = {F(z) analytic in Q, [|F||? = [o|F(2)|* (1 — |2|*)" ?dx dy < oo},
U(8)F(z) = (Bz + ®)™" F((@z + p)/(Bz + o))
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This part will be called the holomorphic discrete series.

(2) The same, except that conjugates of the functions in M, are used
and % involves (fz + o) "

Some properties of #, and %, in the first case are the following:

(1) o, is a Hilbert space, i.e., the analytic functions in
LXQ, (1 — |z|?)" 2 dx dy)

form a closed subspace.

(2) , is a representation, i.c., U,gh) = U,\9)%,(h) and %, (e) = I.

(3) %, is unitary, i.e., each %,(g) is a linear isometry onto. (The proof
consists of a change of variables, which uses the invariance of
(1 — |21*)~2 dx dy under z - zg.)

(4) , is strongly continuous, i.e., lim,_ [|%,(9)f — f|| = O for each f
in .

(5) #, is irreducible, i.e., there are no nontrivial closed invariant sub-
spaces in .

(6) %, is square integrable, i.c., I@.(9) ¢, $)|* dg < o for some
¢ € . In the presence of (1)~(5), this implies that I (9), Y|P dg <
for all ¢, y € #°, and that (#,, ,) is unitarily equivalent with a closed
subspace of L*(G) with right translation as the operation.

We shall now describe the Harish-Chandra realization of the holo-

morphic discrete series for this G. Let SL(2,C) be the group of 2-by-2 com-
plex matrices of determinant 1 and let B be the lower triangular subgroup

e

Lemma. Every element of the set BG < SL(2,C) has a unique decompo-
sition as a product

1 0\/y O otz .
(” |)(6 v")(o 1)’ =COEE i R )
L)

and every matrix (*) is in BG.

" ; = 30Ny SONENIE
Indication of Proof. Since B = i [ IS a group,
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existence of the decomposition follows from the identity

G 2)=G )G )00 )

The lemma suggests that we give BG the structure of a complex manifold
by giving it the product structure. Now SL(2,C) has its own complex
structure, and the next lemma gives the connection.

Lemma. BG is an open subset of SL(2,C), and its product complex
structure obtained from (*) is the same as what it inherits from SL(2,C).
In particular, right translation by g € G is a holomorphic automorphism of
BG.

The second statement in the lemma can be verified directly, without
reference to the complex structure on SL(2,C).
To construct the representation, let # = 2 be an integer and let &, be the

: : S0 E
holomorphic character of B given by g,,( s 1) = a™". Let
¢ a

[ () F(x) is holomorphic on BG
F (i) F(bx) = ¢(b)F(x) for beB, xeBG ,

l i) |F|? =I[‘|F(g)|2 dg < o J

U (9)F(x) = F(xg).
If F satisfies (i), so does U,(g)F by the lemma above; thus it is clear that
U,(g) preserves H, and is unitary.
We shall give a correspondence between #, and H, and show thatitis a

unitary equivalence if the Haar measure dg is normalized suitably. Given
F(C, v, z) € H,, define f(z) on the disk Q by

f(2) = FQ, 1, z).
For the inverse, if f(z) € 3¢, is given, put

F(, v, 2) = y"f(2).

Then F satisfies (i) and (ii) at least. To see that the correspondence F <> f
is an isometry, we note that it is possible to normalize dg in such a way that
for any reasonable Ay(z) on Q the function i(g) = hy(0g) satisfies

H, =

n

n?

f h(g) dg =.[ ho(z)(1—|z|) "2 dx dy.  (**)
G 0
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o

Let Fe H,, g = _ '{f . Then
B &

F(g) = F(Blo, o, pla) = a™"F(O, 1, Blo) = o~ "f(Blo) = o2 ~"(0g)

since o= (az + B)/(Bz + ) for z = 0. Thus |F(g)|* = |o] 27| f(0g)|>.
Since || — B> = 1,1 — |0g|*> = |#|~2 and

[F@)|* = (1 — |0g]?)|f(0g)|>.
If we put hg(z) = (1 — |z|>)"| f(2)|? and h(g) = |F(9)|? in (**), we obtain

Il = | 1Fof do - [ 1r@pa ~ -z acay - g

%

and it follows that the correspondence is unitary.
To see that F«<> f commutes with the group actions, we compute that

U9F(2) = F(C’sv(ﬁz + a),%z).

Thus

05 = sl o R bl
U,,(g)}‘((),],..) T (B" == ':':) F(O,I,BZ TE {I)

&z + f
Bz + «

= (Bz + Df)_"f( ) = U(9)f(2),

and F+ fis a unitary equivalence.

2. Bounded Symmetric Domains

2.1 Examples

These are examples of domains Q in C" of the form G/K, where G is non-
compact semisimple and K is maximal compact in G, such that G operates
holomorphically on Q. These domains were classified by Cartan, and we
use his numbering.

I. Letm <nand Q= {Ze M, (O)I, — Z*Z > 0).
Here M,,, refers to all n-by-m matrices, 1, is the identity of size m, and
“> 0” means “is positive definite.” Let
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N _l JAEAR0N s L - LON)
G = SU(n, m) = ]_ge SL(n + m, C}!g o0 = g = 5 I

K = S(U(n) x U(m)) = {(: 3)].4 e U(n), D € U(m), det = I}.

The condition for g to be in G is that g preserve the Hermitian quadratic
form |z,2 + - - - + |z)* = |za41]* = * © * — |zasm|?- G operates holo-
morphically on Q by

n m

A B\»
- e —] - =
gZ = (AZ + B) (CZ + D) e = (C D)m

[To see that (CZ + D)™ ' is defined and g(Q) = Q, write

Z
(AZ +B)*(AZ + B) — (CZ + D)*(CZ + D) = (Z* I,,,)g*(é _2)9(1 )

I 0\(z
= (Z* ‘rf"]({} —!‘)(!m)

A
Let (CZ + D)v = 0. Unless v = 0, we have
0 < 0¥ (AZ + B)*(AZ + B)v = v¥(Z*Z — L) < 0,
a contradiction. So (CZ + D)~ ! exists and
(4Z)*(9Z) — I = (CZ + D)"'*(Z*Z — I,) (CZ + D)~* < 0.

Thus g(Q2) = Q.

The isotropy subgroup at Z = 0 is K. One can show that G operates
transitively on ©, and thus Q@ = G/K. The Lie algebra of G is obtained
from the definition of G and is

_[a b ey - xel
g_l 5 d Eﬁ[(II+J?T,C)|H— a*,d = —d ;

It is possible to show that G is the identity component of the group of all
holomorphic automorphisms of Q. This fact holds much more generally
than for this Q, and its proof is concealed in the proof of the first lemma in
Section 2.3.
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I. Q={ZeM,©O|l,-—2Z2*Z>0,Z = —Z%. Let

G = SO*(2n) = {9 € SU(”“’)I“?:(? é)g a (? é)}

K = {(’; ;) |4 e U(n)}.

Then G acts in the same way as in type I, preserving Q. The action is
transitive with K the isotropy subgroup at 0. G has Lie algebra

A g e

M. Q= {zeC"||z'z]* — 2z*z + 1 < 0, |2'z|> — 1 < 0}. The group
G = SO(n,2) has a transitive holomorphic action on Q with isotropy sub-
group K = SO(n) x SO(2).

IV. Q={ZeM,(O)|l,—Z*Z>0,Z = Z"}. Let

()50 7% 0 I
G=Spn,R)={ge SU(M,M)[Q’(_Jlr 0)9 = (—I 0)},

k={(5 F)evol.

(This is not the standard realization of Sp(n, R) but is conjugate to it.)
Then G acts in the same way as in type I, preserving Q. The action is
transitive with K the isotropy subgroup at 0. G has Lie algebra

0={(5 )le=—ans =¥}

In addition to domains of types I to IV, there are two exceptional do-
mains, and we can form products of any of these domains. In each case,
we can verify that dim(center K) > 0. During the rest of this chapter, we
shall be concerned with the following problems.

ProBLEM 1. Characterize those pairs (G, K) such that G/K admits an
invariant complex structure. The answer for G simple will be that the
dimension of the center of K is positive.

ProBLEM 2. When G/K has an invariant complex structure, exhibit
G/K as a bounded domain in C" in a group-theoretic way.
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2.2 Almost Complex Manifolds

Let M be a C*-manifold, M, the tangent space at p. A map p - J, €
End(M,) is an almost complex structure on M if

(i) J;= —Iforallp,
(ii) JX is a smooth vector field whenever X is.

In this case, (M, J) is an almost complex manifold.

EXAMPLE. M = complex manifold of dimension m with charts (U,, ¢,),
where ¢, : U, = C". M, has a basis

e R
axl p, ay! p"‘., 6""xm p. aym p’

defined relative to (U,, ¢,). Put

i) d d )
I =il= 2 e (e
(ax i)p (6}) !')p, (@y i)ﬂ (('}x f) n‘

Then (J%)? = —I. One can check that J*=J? if pe U, n U;. Thus
J, = J* = J"is independent of the coordinates and the result J is an almost
complex structure on M.

Let (M, J) and (M', J') be almost complex manifolds, ® : M — M’
differentiable. We say @ is almost complex if

d®, o J, = Jgp e dd, for pe M, (*)

i.e., if @ infinitesimally carries J into J'.

ExaMpLE. Let M and M’ be complex manifolds, ® : M — M’. Then
® is holomorphic if and only if ® is almost complex. In fact, @ is holo-
morphic if and only if ® is holomorphic in each variable (see Bochner-
Martin, p. 33), if and only if @ satisfies the Cauchy-Riemann equations in
each variable, if and only if @ satisfies (¥).

2.3 Cartan Decomposition

Let
G = connected semisimple Lie group with finite center,
K = maximal compact subgroup,
g, I = corresponding Lie algebras,
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B(X, Y) = Tr(ad X ad Y) = Killing form, and
p = It relative to B.
Then g = T @ p is a Cartan decomposition of g, in that

(1) Bis negative definite on f, positive definite on p,

@ [Efcst[Eplep[p.plst

(3) themap K x p — G given by (k, X) — kexp X is a diffeomorphism
onto G.

The tangent space (G/K).x is naturally identified with p in such a way
that dL, = Ad(k)|,. dL, being the differential at eK of left translation by k.
Suppose G/K is Hermitian, i.e., has an invariant complex structure. Form
the corresponding almost complex structure, and let J be the structure on
(G/K),x <> p. Since left translation by k € K is holomorphic, it is almost
complex. That is,

deonjode’

where dL, = Ad(k)|p. Thus if G/K is Hermitian, then there is a J € Aut(p)
with J?> = —7Tand with J Ad(k)|, = Ad(k)|,J for k € K.

Theorem. If G/K is Hermitian and if J is the associated automorphism
of p, then

(i) there exists V e center(f) such that ad V|p =

@) if V=V, 4+ -+ V,eq, + - - + g, is the decomposition
according to the simple components of g, then V; € center(f;) and (ad
Vi)?|,, = —1. Consequently ¥, defines a G-invariant almost complex
structure on G;/K;.

Remarks. (i) is immediate from (i) since the g; are ideals. (i) will be
proved after the lemma below, which does not depend on Hermitian
structures. The lemma contains the fact that G is the full connected com-
ponent of the group of automorphisms of G/K. J-i. Hano remarked that
if there were not independent interest in the lemma, then one could give a
shorter proof of the theorem by using the fact that every derivation of g
is inner.

Lemma. Suppose g has no compact factor. Let C be a K-invariant
inner product on p and let
(i) CMX,Y)+ C(X,MY)=0
(ii) [M’ ad[’Y’ Y]|P] o~ ad[MX’ Y:”p }
+ad[X,MY]

r ={M5End p

X, Yep
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Then I’ is a Lie subalgebra of End p and the mapping t — ' given by X —
ad X/, is an isomorphism onto.

Proof. Closure under brackets is straightforward. Also f maps into T’
because (i) is just the f-invariance of C and (ii) is just the Jacobi identity
for an element of t and two elements of p. The map is one—one because
{xe f1 ad X|u = 0} is easily seen to be an ideal in g, and g was assumed to
have no compact factor.

We are to show the map is onto. Since it is one-one, we can regard
g = [ + p as a subspace of the vector space g’ = ' + p. Make g’ into a
Lie algebra with g as a subalgebra by defining

X ¥ —adlx, Y], for X, Y ep,
T, X=X, Tlae=T(&X) ‘forTel Xecp
[ = ST s for S, T e¥.

(Here [ -, ],y is clearly skew, and the Jacobi identity is trivial for three
vectors unless two of them are in p, the other in I'. In this case, the identity
follows from (ii).) Since T = [p, p], the proof will be complete if we show
that [p, p] = T'.

Let SO(p) be the rotation group on p relative to C, so(p) the Lie
algebra. Then I’ € so(p). Choose an SO(p)-invariant inner product on
so(p), restrict it to ', and extend it by means of C to be defined on all of
g’. The result is that g’ possesses a f'-invariant inner product. If 3 = center
g’, then 3 n I’ = O since I’ = End p. From these two facts, it follows that
the Killing form B of g’ is negative definite on " (cf. [3, p. 123]).

Since [F',¥] < Yand [T, p] < pand [p, p] = ¥, " and p are orthogonal
with respect to B. From this fact and the fact that B is negative definite on
t’, it follows that

#={Xed|BX,Y)=0 forall Yeg’),

which is an ideal in g, is contained in p. Thus ,# is an ideal in g contained
in p, and therefore # = 0. Consequently B is nondegenerate on p.

Let v be the orthogonal complement relative to B of [p, p] in t'. Fix T
in v and let X and Y be arbitrary in p. Then

B([T, X], Y) = B(T, [X, Y]) = 0.

By the nondegeneracy on p, 7(X) = [7, X] = 0 for all X. Thus 7= 0,
v = 0, and [p, p] = I'. This proves the lemma.
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Proof of (i) in theorem. Without loss of generality, we can assume g
has no compact factor. Put C(X, Y) = B(X, Y) + B(JX,JY)for X, Yep.
Then Cis a K-invariant inner product and J satisfies (i) in the definition of
1’ in the lemma. In view of the lemma, the proof will be complete if we show
that J satisfies

[/, ad[X, Y]|, = ad[JX, Y]|, + ad[X, JY]|,

for X, Y€ p. The left side is 0 since J commutes with ad f|,. Complexify
f, p, and C. Then the right side is a restriction of

—Im ad[X — iJX, Y — iJY],

where J(X — iJX) = (X — iJX), J(Y — iJY) = i(Y — iJY). Changing
notation, we see that it is enough to prove that ad[ X, Y]L,L- =0ifJX =
iXand JY = iY. Now

C(X, Y) = C(JX, CY) = C(X, iY) = —C(X, Y),
so that
(X, Y) = 0.
Let Z € p€ and T e p€ be arbitrary. Then
c([z, T],X1.Y) = 0
since J([[Z.T],X]) = i[[Z.T],X]. On the other hand,
D(X,Y,Z,T) = C([X,Y],Z].T)

is a quadrilinear form on p€ that
(i) isskew in X and Y,
(ii) is skew in Z and 7 (a small verification required here), and
(iii) satisfies the Jacobi identity in X, ¥, and Z.

By Lemma 12.4 in [3, pp. 68-69],

A[fx.Y1Z]7) = C([2,7].X].Y),

and we have seen that the right side is 0. Now C is nondegenerate, being
the complexification of an inner product, and thus [[ X, Y],Z] = 0 for all
Z e p©. That is, ad[ X, Y][,c = 0. The proof of the theorem is complete.

At the moment we settle for a weak converse, which will be used in the
next section.
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Proposition. If G is simple and ¢ = center (f) # 0, then G/K has an
invariant almost complex structure.

Lemma 1. fis a maximal subalgebra of g.

Proof. Since g is simple, ad f acts irreducibly on p. (Namely, if
[t.p,] = v, and p, < p, then [p,p,] + p, is an ideal in g.) f s =fisa
subalgebra of g, then s =f + (s np). If Xesn p with X # 0, then
iterated brackets of members of T with X span p. So s~ p = p and
s =g.

Corollary. K is a maximal Lie subgroup of G.
Proof. Ttis known that no other Lie subgroup of G has f as Lie algebra.

Lemma 2. If Xec with X # 0, then the centralizer Z (X) equals . If
x € Adg(center K) with x # e, then Z,4 ¢(x) = AdK.

Proof. Z,(X) =21 and Z(X) is a subalgebra. Since g is semisimple,
Z,(X) # g. By Lemma 1, Z (X) = . The second statement is similar.

Proof of Proposition. The identity component of Adg(center K) is a
torus and thus contains an element Ad(j) of order 4. By Lemma 2, Ad K
= Zaac(Ad j?). Ad(j?) has +1 as eigenvalues and is +1 on f. Since
Zaao(Ad j*) = Ad K, Ad(j*) = —1 on p. Thus Ad(j)|, provides the
required automorphism of (G/K),. Translation of this by G gives the al-
most complex structure at the other points of G/K.

2.4 Compact Cartan Subgroups and Roots

In this section and the next, we sharpen the proposition of Section 2.3
to produce a complex structure on G/K and to exhibit G/K as a bounded
domain in C,. In order not to complicate the notation, we assume that G
is simple, rather than just semisimple. We therefore assume

g = simple Lie algebra,

f = maximal compact subalgebra,

G o K, corresponding subgroups, G having finite center,
¢ = center (f) # 0,
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b = maximal Abelian subalgebra of f, and
T~ = exp b, a subgroup.

Il

Proposition. 6 is a maximal Abelian subalgebra in g, and ad b is
fully reducible on g% 7~ is a (compact) torus, and 7~ is maximal Abelian
in G.

Proof. By Lemma 2, Z(h) < Z,(c) = t. So Z,(h) = Z(h) = b, and b
is maximal Abelian in g. Next, ad | is skew relative to the positive definite
form By(X, ¥Y) = —B(X,0Y)(where 0 = l onfand # = —1 on p)and is
therefore fully reducible. Since b is maximal Abelian in f, 7~ = T~ ; thus
T~ is compact and is a torus. By Corollary 2.7 of [ 3, p. 247],7~ is maximal
Abelian in K.

To see that 7~ is maximal Abelian in G, let z = k exp X € Zy(T ) with
ke K, Xep. We want X = 0. We have k(exp X)™! = 0ze Z4(T "), and
thus exp 2X = (0z~ ")z e Z4(T ™). That is, h(exp 2X)h™' = exp 2X for
heT™. Hence exp(Ad(h)2X) = exp 2X, and Ad(h)2X = 2X because exp
is one-one on p. Consequently [h, X] =0 and XeZ(h) =b. Since
Xep, Xebnp =0. Thus T~ is maximal Abelian in G.

It follows from the proposition that §€ is a Cartan subalgebra of g€.
Form roots in the usual way: If o € (h)’, let
9, = {X e g|[H,X] = «(H)X for all He b}

and call « a roor if g, # 0. Let T be the set of nonzero roots. Then g¢ =
b + Y,rq,. If x € Z, it is known that —a € X, that dimeg, = 1, and that
1 is purely imaginary on b. Since [f, T] < fand [, p] = p, we have

[h5, ] =t  and  [BSpf] <= pS

If weX, it follows from the one-dimensionality of g, that g, < ¢ or
a, < pS. We call « compact or noncompact accordingly. We have € =

hc o Za compact ga Ell"ld pC = Z: noncompact g.z'
Example. Let g = sv(m,n) as in 2.1. Then g% = sl(m + n, C) and

i o] {0 2)

If b is chosen as the subalgebra of diagonal matrices in g, then h° consists
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of all diagonal matrices of trace 0. If e; denotes evaluation of the ith
diagonal entry, the roots are e; — e, i # j. With a = e; — ¢, g, = CE;;,
where E;; is | in the /-jth entry and O elsewhere. The compact roots
e; — e; are thus the ones for which both i/ and j are < m or both i and j

are = m + 1.

Proposition. If o € X, the following are equivalent:
(i) o is compact,

(i1) o vanishes on ¢,

(iii) o vanishes on some H # 0 in c.

Proof. Let Hec < b with H # 0. Then a(H) = 0<[H, X,] =0
for X,eqg, <> X,eZ,(H) = 1° <> o is compact. The right side of this
chain is independent of H, and the proposition follows.

Corollary. dimc¢ = 1.

Proof. Let o be any noncompact root. Such exist since p # 0. By the
proposition, 0 = dim(¢ N ker o) = dim ¢ — 1 since « is a linear functional.

Corollary. G/K admits only two invariant complex structures.

Proof. In view of the previous corollary and of the theorem in 2.3,
there are at most two possibilities for J. J determines the complex structure
since an almost complex mapping between complex manifolds is holo-
morphic.

All roots are real on the real vector space il). By choosing an ordered
basis for il), we can order the roots by saying that « is positive if it is
positive on the first basis vector on which it is nonzero. Choose a good
ordering, in that every noncompact positive root is larger than every com-
pact root. (For instance, take a vector in ¢ as the first basis vector and
appeal to the proposition.) Let

+ _ S .
P n Z gx 3 p o= L ga 2
x>0 a< 0
& noncompact & noncompact

In the example sv(m, n), it is possible to choose a good ordering in
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such a way that the positive roots are e; — e; with i < j. Then

e e[ 9}

Proposition. p“=p" @ p~, [, p*]cp*, [ p Jcp, and p*
and p~ are Abelian subspaces.

Proof. Clearly p* =p* @ p~. Let o, B, and o + f be in £ with o
compact and f noncompact. Then [g,, g;] < 8,+, and p and o + f are
both positive or both negative. Summing on o and f§, we obtain [fc, il
ptand [f% p ] cp .

The idea in the proof that p* and p~ are Abelian is that they are the
eigenspaces of the automorphism J of p€ that was considered in 2.3. How-
ever, we are given the existence of the center ¢, not of J, and J must be
constructed. Thus by the proposition in 2.3, choose J € Aut p with J? =
—I'so that J commutes with Ad K. The proof of the theorem in 2.3 shows
that J = ad V]p for some V' e ¢. Suppose for definiteness that the positive
noncompact roots are positive on —iV. If « > 0 is noncompact and
Xeg,, then —ia(V) > 0 and

JX = (ad V)X = V)X = (=i «(V)) (iX).

Since J* = —1, J has eigenvalues +i, and it follows that JX = iX. If
f > 0 is noncompact and Ye gy, then JY = iY and the proof of the
theorem in 2.3 shows that ad [X, Y]|,c = 0. Since g has no compact
factor, [X, Y] = 0. Summing on « and f, we see that [p*, p*] = 0.
Similarly [p~, p~] = 0.

Corollary (oF PrROOF). All noncompact positive roots agree on c.

Proof. —io(V) = 1 for all positive noncompact roots.

2.5 Harish-Chandra Decomposition

We retain the notation of 2.4 but assume further that G is a matrix
group. Define

b=0"+ Yag,

a=0
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C

g

Il

complexified algebra of matrices (g being an algebra
of matrices),

G€ = analytic subgroup of matrices with Lie algebra g€, and
P, K€, P*, B = subgroups of G€ corresponding to p , % p*, b.

Each of these groups has a natural complex structure consistent with
multiplication by i in g€ It is not hard to see that exp is a diffeomorphism
on p* and p~ and hence that P* and P~ are holomorphically isomorphic
with C" for a suitable n.

Theorem. Multiplication P~ x K€ x P* — G® is one-one, holo-
morphic, and regular (with the image open in G€), BG is open in G, and
there exists a bounded open subset Q@ = P* such that

BG = P~ KG = P K“Q.

Interpretation. G acts on Q by holomorphic automorphisms under the
definition (w)g = p*(wg), for we Q and g € G, where p*( - ) refers to the
P* component of an element of P~ K°P*. The formula P~ K°G = P~ KQ
shows the action is transitive. For the isotropy subgroup at 1 € Q, we ask
when p*(lg) = 1 or g € P~ KC. Thus the isotropy subgroup is G N P=KE.
On the Lie algebra level, one verifies that g n (p~ + f€) = f, and it follows
that G » P~ K® = K since no other Lie subgroup of G has T as Lie algebra.
Thus Q = K\G, Q is a bounded domain in C", and G operates holomor-
nhically. The theorem therefore completes the solution of the two
problems at the end of 2.1.

For the proof of the theorem we shall use some further notation:

=Yg n =Yg H=i,
x<0 x>0
X

NZ, T* = analytic subgroups of G® with Lie algebras n_, ™.
Then Bi= NETHTS.

Lemmal. P K°nP* = {1} and K°P* n P~ = {1}.

Proof. Let ye P"KSn P*. Since ye P"KS, Ad(y»)p~ < p~. Choose
Yep' sothaty = exp Y. Write ¥ = Y X,, X, # 0in g,, where the sum
is over positive noncompact o. If ¥ # 0, let o, be the smallest o so that
¢, # 0. Then [Y,X_, | = ¢u[XaoX -s,] mod 1, and so

] — do.
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AdW)X_,, = X _;, + ¢, [ X, X Jmod n?,
AdX_,, = ¢, [X,,X_, Jmod (m} + p).
Thus Ad(y)X_,, ¢ p~, contradiction. So ¥ = 0 and P~ K€ A P+ — {1}.
The other identity is proved similarly.
Lemma2. (n + h")ng=0.

Reference. Corollary, [2, p. 2].

Lemma3. Letg =10, @b,, and let G, H,, and H, be corresponding
analytic subgroups. Then multiplication H; x H, > G is everywhere
regular.

Reference. Lemma 5.2, [3, p. 235].
Lemma 4. BG is open in G€.
Proof. BG = N.T'T™G=(N;T*)G and (nJ +Hh*)ng=0 by
Lemma 2. Also dimgg® = dimg(n; + b*) + dimgg because
dimgg® = dimgg + dimeg® = dimgg + dimen. + dimenf + dimch©
= dimgg + dimgn; + dimgh” = dimgg + dimg(n + §*).
Sog =m; +H") @ g. and the result follows from Lemma 3.

Lemma 5. Multiplication P~ x K€ x P* - G is one-one, holo-
morphic, and regular.

Proof. 1t is clearly holomorphic, and it is regular by two applications of
Lemma 3. By Lemma 1, (P"K) n P* = {1}. Since P~ n (K°P*) = {1},
P~ A K= {1}. Thus 1 has only one preimage. But Pikiq: = prksg,
implies (p; 'p,) (k ks ') (ka(q195 ks ') = 1 and hence Pi =Pa ky =k,
and ¢, = gq,.

An Iwasawa decomposition G = KA,N is developed from a maximal
Abelian subspace a, of p. Then G = KAK also, though not uniquely, We
shall construct an a, with special properties.
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Lemma 6. There exist positive noncompact roots 7y, .. ., ¥s such that
¥i.,C(X,, + X_,) is a maximal Abelian subspace of p©.

Reference. [3, pp. 314-315].

The Killing form is nondegenerate on h®, and we can use this form by
duality to define {«, p) for o, fe (H€)'. If o is a nonzero root, then one can
show that (o, &) > 0. According to [3, p. 220], it is possible to choose
vectors X, € g, in such a way that

X, — X_,et + ip, i(X, + X_p et + ip,
B(X,, X _,) = 2/<at,0). &)
This normalization is arranged to connect g¢ with sI(2, C). Namely if

i 0 0 1 0 0
H=(0 —1)’X:(0 0)’ Y:(l 0)° thepadl @ SIS

+ CY and the bracket relations are [H, X] = 2X, [H, Y] = -2V,
[X, Y] = H. The normalization (*) is arranged so that the mapping

Hios (X Kl o X g i X,
extends to an isomorphism of sl(2, C) into a that carries so(1,1) into g

and RH into h™.

Corollary. Under the normalization (*), the positive noncompact
roots 7, . . . , y; of Lemma 6 are such that

Ay = 2 R(X'ra it X—}'r)

i=1

is a maximal Abelian subspace of p.

Proof. X, + X_,,€p®ni~'(f+ip)=p. So a = p. The rest follows
from Lemma 6.

Lemma 7. Let L be a Lie group with Lie algebra sl(2, C) = CH +
CX + CY as above. Then

exp t(X + Y) = exp(tanh 7)Y exp(log(cosh 1) )VH exp(tanh 1) X.



Bounded Symmetric Domains and Holomorphic Discrete Series 229

Proof. Since SL(2, C) is simply connected, it is enough to verify this
identity there, where it is the special case of the identity

o ﬁ)_(l 0)(a 0 ) 1 ﬁ,r’oc)
B & \Bl« 1J\0 «"'J\0 1
with & = cosh 7 and f§ = sinh ¢.

Corollary. 1fZ = }:_t(X,, + X_,) € a,, then
exp Z = exp Y, exp Hy exp X,
with

Yo = Y(tanh )X _,, Hy = Y(log cosh 1)[X,,X _, ], X, = Y (tanh 1)X,,.

Proof.  Apply Lemma 7, using the commutativity of X, and X, for
i % j.

In the corollary, we have Y,ep~, Hyeh* =t and X,ep™. The
corollary therefore gives explicitly the imbedding of the group 4, = exp
ayin P KSP".

Lemma8. BG < P K°G = P K°P*.

Proof. Since b < p~ + €, we have B = P™KS, and it is enough to
prove G < P"K“P*. Since G = KA,K and K normalizes P~ and P*, it is
enough to show 4, = P~ K“P*. But this follows from the corollary above.

Proof of Theorem. Let by =0+ Y,., g, By the corresponding

@ compact
analytic subgroup. By is known to be closed, and K is compact; thus

ByK is closed. On the other hand, BgK is open in K€ by the same kind of
argument as in Lemma 4. Thus K€ = BgK. Therefore
P K°G = BK‘G = B ByKG = BG.

That is, BG = P~ K°G and so BG = P~ K°Q with Q < P*. Since BG is
open in G¢, Q is open in P*.

We are to show that Q is bounded, i.e., that p* (G) is bounded. Choose
a K-invariant inner product on p*. Since G = KA,K with K normalizing
P~ and P*, we see that we are to prove that [log p*(A4,)| is bounded. In
view of the corollary to Lemma 7,
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]

ltog p*(exp X 6X,, + X_,)| = [Stanh )X, < ¥[X,,

and the right side is bounded independently of the ¢;. This proves the
theorem.

3. Holomorphic Discrete Series

3.1 Construction of Representations

Throughout this chapter, we retain the notation of 2.5. We begin by
summarizing some properties of irreducible unitary representations of the
compact group K. Let t be such a representation (necessarily finite-dimen-
sional) on a complex vector space V. Since the subgroup 7~ of K is
Abelian, V is the orthogonal direct sum of subspaces on which each
member of (7 ~) operates as a scalar. If these subspaces are chosen as
large as possible, they are called the weight spaces for t. For the cor-
responding representation of f, each member of t(h) operates as a scalar
on each weight space. If the weight space is held fixed and the member of
b is allowed to vary, the scalar value of the member of z(h) defines a com-
plex-valued linear functional on b. The corresponding complex-linear
functionals on §€ are called the weights of t. Since 7 is unitary, the weights
are imaginary on b, and hence real on h* = ih. We have already defined
an ordering on (h*)’, and we can therefore speak of the highest weight of
7, which is the largest weight in this ordering.

Some known properties of the highest weight A of 7 are as follows:

(1) A is integral, i.e., E,(h) = exp A(log h) is a well-defined character
of T€ = exp b°.

(2) A is dominant with respect to 1, i.e., <A, oy = 0 for all positive
compact roots o.

(3) The weight space for the weight A has complex dimension one.

(4) 7 is determined up to unitary equivalence by A.

Conversely every integral linear form on h€, dominant with respect to f,
is the highest weight of some irreducible unitary representation of K.

Let A be an integral form on € dominant with respect to f, and let ¢,
be the associated character of 7€. We have B = N_ T, and we cxtend &,
to a holomorphic character of B by setting &,(n) = 1 for ne N_. Define
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(i) F holomorphic on BG
I(A) = I :BG » C
@) [F (ii) F(bx) = &(b)F(x) for be B, x € BG ,

H(A) = {Fe r| [F? =j IF(@)| dg < 00},
3 G

UA(9)F(x) = F(xg)  for FeI(A), geG, x e BG.

Then U, (g) preserves both I'(A) and H(A). These definitions are com-

pletely analogous to the ones discussed in Section 1 for G = SU(1,1).
The main result is as follows:

Theorem (HARISH-CHANDRA). If A is an integral form on h¢ dominant
with respect to f, then H(A) is a Hilbert space, and U is a continuous
unitary representation on it. If furthermore

A+pay <0  (p=1Yp)

A>0

for every noncompact positive root «, then H(A) is nonzero, U is irreduc-
ible, and the matrix coefficients of U are square integrable.

ExampLE oF SU(1,1). Here

i 0 a 0
= ; Bt =
b (o —:'O) J (0 —a)
a 0 a 0 a 0
A(O —a): —na, oc(o —a)= 2a, p = 1o, ‘0(0 _a)= a.

A integral means n is an integer; A is automatically dominant with respect
to [ since the only positive root « is noncompact. Let

1 0 1 0
/\1(0 _I)=c1, A2=(0 _[)=cz.

Then (A, A,)> = ce,c, for a certain constant ¢ > 0. Thus
A+ p, o) =c(—n+ 1)2,

and Harish-Chandra’s condition ¢A + p, &) < 0 is the condition # > 1.
Therefore

o ith nz=2
My o1 = wi n=2
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In this example, when the representations are viewed as operating on
functions on the disk. the constant function plays a special role, in that
the mean value property is expressed in terms of it. That is, we have

:)—le\ Kf(ez"'?z) df = f(0),

0

which we rewrite as

| 2 s ] eum 0
Ef e "U,,(O e,-ﬂ)f(z} do = (0),

0

and we can regard the right side as equal to f(0)1(z), where 1(z) is the con-
stant function. Passing to Harish-Chandra’s realization by putting
F(, v, z) = y~"f(2), we obtain

] "2n ei{l 0 .9_"7 0
EJ 0 F((O e—iﬂ) = (0 g'-g)) df = F(l}@f/"(x}, x € BG,

where /,((, 7, z) = 7" is the extension of the constant function. We begin
the discussion of general G by defining the analog of i, and by giving the
analog of this mean value property.

Recall that BG = P"K°Q < P*K P*. Let u(x) be the middle (or K€)
component of the member x of P”KP*. Let 7 be an irreducible unitary
representation of K, and extend t holomorphically to K€ (by passing from
K to T to € to K©). Let ¢, be a highest weight vector for 7, and suppose
[lpall = 1. Define

Ua () = @A) )Pa 4)  for xeP KP*.
Lemma. The restriction to BG of i, is in T'(A).

Proof. 1, is holomorphic, being the composition of the holomorphic
maps x € P~ KP* — u(x)e K, k € K¢ — t,(k) e GL(n, C), g € GL(n,C) >
(g¢,.¢,)- To see that it transforms appropriately under B on the left, let
be B and x € BG. Write b = p k€ with p~ € P~ and k€ K n B ; then
u(bx) = p(kCx) = k u(x) since K normalizes P~. Thus

Y a(bx) = (Tp(1(bX) Y, Pa) = (TA)TA((X) s A)-

Let i =idpsthy iy ¢, be an orthonormal system of weight vectors ar-
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ranged in order so that the corresponding weights decrease, and write

TA(u(x)) = Ef'_f(ﬁj

and k€ = hn with he T® = exp b and ne N n KC. Then the matrix of
Ta(n) can be seen to be lower triangular in the basis {¢;}, with ones on the
diagonal, and so

TAKO) A () Ps = TA(N)TA(M)Y e,

w(e1da + X d;g,]
e éalh)py+ _Ezdjé,\j(h)@.

Thus

Yabx) = ¢ Ex(R) = Eo(h) (TA(1(X) )pasPr) = EA(MYA(X) = EBIWA(X)
since &,(p7) = E\(n) = 1.

Main Lemma. For every Fin I'(A),

-[ F(hxh™") dh = F(I)\(x).

The main lemma gives the generalization of the mean value property.
We shall give the idea of the proofin 3.3.

Note that the members of I'(A) are determined by their values on G.
Since the functions in T'(A) are continuous, ||F| = 0 implies F = 0.

Proposition. |F(1)| < ||y, =" || F| for all Fe H(A).

Proof. We can assume F(1) # 0. Applying the main lemma to F and
recalling that T~ < B, we have

.[ F(xh)¢(h) dh :J F(h™'xh) dh = F(1)5(x).
i T-

Thus

IE|? = J.G]F(x]Fdx = J{_|F(x.’1}f,\{h}|2¢.-'x forall heT~
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]

= f _|F(th|2 dh dx

Je

v

|J F(xh)EA(h) dh|* dx by the Schwarz inequality
G JT=

= | [FOP? [Ya()|* dx
G

o

= [FOO* [yl
Corollary. H(A) # 0if and only if .| < oo.

Proof. 1If ||l < oo, then Y€ H(A). If [y, = oo, then the proposition
shows that U,(g)F(1) = 0 for all g € G and Fe H(A). Hence F = 0.

Corollary. To each compact set E = BG corresponds a constant
Cg < oo such that

|F(x)| £ CelIFl
for all Fe H(A) and x € E.

This is a simple consequence of the proposition since | U,(g)F| = | F|
and since |F(bx)| = |EA(b)| |F(x)|.

Corollary. H(A) is complete.

Proof. Norm convergence in H(A) implies uniform convergence on
compact sets of BG, by the previous corollary. This shows that H(A) is
identified with a closed subspace of L*(G). Hence H(A) is complete.

Clearly U, is a unitary representation. It is continuous because (H(A),
U,) is isomorphic with a subspace of L*(G), and right translation is contin-
uous in L*(G).

3.2 Properties of the Representations

Proposition. If H(A) # 0, then U, is irreducible.

Proof. Let H = H(A) be a nonzero closed invariant subspace, and let
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F'# 0 be in H. After applying some U,(g), we can assume that F(1) # 0.
The limit of a linear combination of translates of F given by

[ ExYUL(WF dh

is again in . But the main lemma shows that this is F(1){/,. Thus i, is
in H. If H* # 0 also, then y, isin H*, which is a contradiction. Hence
H=0o0r H =0.

In the previous section we showed that H(A) # 0 if and only if [[{/,]| <
co. We now turn to the evaluation of |if, || In ay, it is possible to choose a
closed cone ag that is a fundamental domain for the action of Ad(K) in
the following sense: Any point of a, is conjugate by some member of K to
a member of ag, and no two points of the interior of a; are conjugate to

0 ¢ 0 t
each other. (In SU(1,1), a, ={(r O)’ te R}, and ag ={(1 0), = 0}.

Let Ag = exp a5, da = Haar measure on A,. Then G = KAg K. By
[3, pp. 381-382], there is a continuous function D(a) = 0 on A¢ such that

dx = D(a) dk, da dk, under x =k, ak,.
Lemma. ||i,[? = d;z.f Tr(tx(u(a))’D(a) da where d, is the degree
43
of 7,.

Proof. Again choose an orthonormal basis of weight vectors by = @y,
¢2, ..., ¢, If vis in the representation space of 7, then

[ st at = gz
K
[This is a consequence of the Schur orthogonality relations

j (Tn(k]¢;s¢j) (TA(k)Gbi':qu') dk = d; 5jj' dy'. ]
K

Since u(k' a k) = k'u (a)k, we have

I¥al* = f iaol? ax =J Ak m(@)K)$pp2)|*D(a) dk’ da di

= dy 'j . |eatu@rea(k)e)|*Dia) dk da by (*).
Ap % K
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Write t5(k)¢; = Y. ;1 (k)¢ ; and put i = 1. Then

Il

dx j Y ea(@) . tai(@) )T (ke (k)D(a) dk da

K j1

[Wall®

= dy? e Z“T*’\(“(“) )r,bj”z D(a)da.

o J

In the corollary to Lemma 7 of Section 2.5, we saw that u(a) € T*. There-
fore 7,(u(a) ) is diagonal and self-adjoint. The lemma follows.

The evaluation of the integral in the statement of the lemma is com-
plicated and will be omitted. In Section 2.3, we shall look at the integral
more closely in two special cases as illustrations. We shall need the con-
dition <A + p, &> < 0 for o positive and noncompact, in order to get a
finite answer.

Proposition. If [i/,]| < oo, then (Up(x)¥a. %) = YA [¥4]%

Remark. Thus when [,]| < oo, U, has a square integrable matrix
coefficient and is therefore square integrable.

Proof. Apply the main lemma to U,(»){/, and get
J WaChxh™'y) dh = YrA(y)Ya(x).
s

Then

Y a)|Wal? =f YA AP A(x)dx = J J YA A(hxh™"y) dh dx
G Tt

G

=j‘ j YA A(hxh ™" y) dx dh =j f WA COWA(xy)dx dh
T =G T G

= (U)W aA),

the next-to-last equality holding after the change of variables x — /7~ Lxh
since Y \(h~ ' xh) = P ,(x).
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3.3 Comments about the Main Lemma and |[¢ . |

Main Lemma. For every £ in I'(A),

j F(hxh™") dh = FQW\(x).
"

Idea of Proof. The idea is to show near x = 1 that the left side is F(1)
times a power series in x that is independent of F. The power series is
evaluated as the series for y,(x) by putting F = ,. Then since both sides
are holomorphic on BG and equal in a neighborhood of 1, they are equal
everywhere. Thus for X € g€ and g € BG, let

Xflg) = d/dt f(g exp 1X)|,=o.

Since F'is real analytic on BG, we can expand F in a power series about
1 € G€ (cf. [3, p. 95]):

= 1o
Flexp X) = 3 -5 (X" F) (1),
Conjugate by ke T~ and integrate, letting L-S denote the left hand side:

L-S =Y i,({f Ad(h) X" dh}F) (1).
nz0 M- T
Choose a basis {X,, ..., X,} of g®overC,write X = 2, X; + -* + z. X,,
and expand the integral into a sum of integrals of monomials. In this
expansion, the various z;’s factor out because X is complex-linear when
applied to a holomorphic function. The integral of each monomial is 7~ -
invariant. If {X,, ..., X,} is chosen with the first vectors in n}, the next
ones in h¢, and the last ones in n_, then the integral of a monomial is 0
unless the monomial itself was 7'~ -invariant. In the monomial, the n_
vectors can be put at the right end, and any monomial that does have
vectors in n_ present contributes 0 to L-S since F is constant on N_. It
follows that after the integration, the only nonzero terms come from
monomials with all vectors in h€. Such monomials have F as eigenfunction
since 7¢ < B, and consequently the value of these terms is F(1) times an
expression independent of F. The lemma follows.
I?

In computing ||, | “, we are to look at the integral

f Tr (e(1(@))2)D(a) da.

o
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First consider SU(1,1). Here we know from Lemma 7 in 2.5 that
cosh t sinh ¢ cosh ¢ 0
a= and p(a) = . From 3.1, we have

sinh t cosh t 0 (cosh 1)~!
o 0
o (0 il o~ " and one can show that D(a) = sinh 2¢, up to a con-

stant factor. The integral is

© sinh ¢ dt 1
—2p e o .
L (cosh t)™*" sinh 2t dt = zj(cosh S e if n>1.

The condition » > 1 agrees with Harish-Chandra’s condition

A+ p,a < 0.
Next consider Sp(2, R). As in 2.1, we have

2 2
sp(2,R) = (‘i ?)2 a=—a* b=1"
b ajz
and
o T
B 0 a - = L] T {} _a, L] Q 3 .
Choose
i, ¢,
-} i0, c _ [
= —i0, : 3= —c,
—i0, —C

If ¢, denotes evaluation of the ith diagonal entry of a member of b€, then
the roots are

e —e;i#j, compact,

+(e; + e;), i <j,  noncompact.
The positive roots can be taken as
ey — e 2e,, e, + €3, 2e;.

Choose g, to be the real matrices
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! ("'1 )
t
‘) =1, H, + t,H,.

By the Corollary to Lemma 7 in 2.5,

cosh t,
cosh 1,
(cosh t,)~*
(cosh t,)!

wexp(tHy + 1,H,)) =

Let A = —me, — ne,. Here p = 2e¢, + e, and so
A+p=—(m-—2e — (n— le,.

A integral says m and » are integers. A dominant with respect to f says
(A, e; —ey» = 0orn=m. (A + p, o) < 0 for o positive noncompact says

A+ p,2e)> <0 and A+ p,2,><0
or
m>2 and n> 1.

Since n > m, Harish-Chandra’s condition is m > 2. K is the 2-by-2
unitary group, and one computes easily that if a = exp(¢t,H; + t,H,),
then Tr(t,(u(a))?) equals

(cosh t; cosh t,)™™" " cosh 1\ 7" e coshig, \=2™
o 2 coshiz, cosh t, :

with the exponents decreasing one at a time. Also

D(a) = sinh 2t, sinh 2¢, sinh(#, + #,) sinh (¢, — 1,),
and the integral in question is
oo ty
j f Tr(ea(u(a) ) D(a) dt, dt,;.
11=0J12=0

When n > m, it is easy to see that this is finite if and only if m > 2, but it
is not so easy to evaluate the integral. In [2, pp. 598-612], Harish-Chandra
does the evaluation in the general case we have been considering.
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4. Limits of Holomorphic Discrete Series

4.1 Case of SU(1,1)

Recall from Section 1 the two formulations of holomorphic discrete
series for G = SU(1,1). Let n = 2 be an integer. In Bargmann’s formula-
tion
(i) f analyticin Q= {|z1 < 1}

G £z =.[ |f@P0 = |z 2 dxdy < o
Q

o e

a 0
In Harish-Chandra’s formulation, put é,,( 7 |) — e
e =g

Hy=1f

1| Ri

ULPf(z) = (Bz + rx]_"f(

=
]

f

(i) F holomorphic on BG = P™K‘Q
(i)  F(bx) = ¢ (b)F(x), be B, xe BG

(
=~ 1
[ i) ||F|? =j |F(9)|> dg <
G
U,(g) F(x) = F(xg).
The unitary equivalance is given by
fz) = F(0,1,2), F(L.y.2) = v " f(2).

We shall now consider the limiting case n = 1. Without some adjust-
ment, the norm for n = 1 will lead to a null Hilbert space. But with the
norm

(2 = lim(n — I)L|f(z)12(1 — |2p=2 dx dy,

one finds that

0

2x
If]7 = lim EJ |f(re®)|? do,
ril
and the space #, becomes the Hardy space H*(Q) defined by

H*Q) = {f

2
analytic in Q, supJ |f(re")|* dO < oo}.
k<l 10
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This space is not 0, since all polynomials are in it. To each function f in
A ,, one can associate a boundary function f(e") e L?(circle) and the
formula for the norm becomes

2
IfIF = ‘j | f(re®)|? do.
0

This norm on J# ,, together with the group action %,(g), gives an irreduc-
ible unitary representation of G.

There is another representation of interest here, with Hilbert space all
of L?*(circle) and with action given by

Be’ + o

710
V(@) = (B + o) J(uﬁ)

This representation is of interest because it is unitarily equivalent to a
member of what Bargmann called the principal continuous series. The
principal series of SU(1,1) consists of representations of SU(1,1) induced
from the one-dimensional unitary representations of the closed subgroup

MA*N = + (cosh t — ixe' sinht — f‘xe').

sinh t 4+ ixe' cosht + ixe'

(This group is conjugate within SL(2, C) to the group of real upper
triangular matrices. A precise definition of induced representation will
not be needed here; it suffices to know at present that there is a construc-
tion that associates a unitary representation of G in a natural way to a
unitary representation of a closed subgroup.) The one-dimensional repre-
sentations in question are of two kinds:

+(as above) — e'*, 2 eR fixed,
+(as above) — +e™, 4 € R fixed.

¥°(g) is equivalent with the induced representation of the second kind (in
which the sign + is retained) with A = 0. The imbedding H* < L* com-
mutes with the action of SU(1,1) and exhibits ¥'(g) as reducible. That
this is an exceptional situation is indicated by the fact that all other mem-
bers of the principal series of SU(1,1) are irreducible.

We shall consider the representation (#,, %,) in the context of the
Harish-Chandra decomposition. (The imbedding H* < L? can also be
treated in this context.) We take F holomorphic on BG, transforming
under B according to £,. The norm of F({, y, z) is to be roughly the norm of
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F(0, 1, ¢), and so we suppose that Fis holomorphic in a neighborhood of
the closure of BG. Put

= \@’Q \.-@,’2 = [ _— e 0 1 iy it
] (-\_.-'Z-fz Sop R e AEDSEQ L)

(AR T
—a/212 J[2[2/\00 & N2 0 N2 o
1 2 2
Tl by
= o
0 (—)!

Thus u,k € P~ K°Q = BG, and we have

5 = 2i0

Since

2n 27
|F(u,k)|* dk = L |f(e*))? do = 1 |f(e)|? do,
K T o Tlo

we can define
IF1? = I a

and take the completion of the space of functions of finite norm as H,.
U,(g) is a right translation by g, and (#,, %) is unitarily equivalent with
(H,, U,). Our intention in the next section is to generalize this construc-
tion and the imbedding H* < L2.

4.2 General Case

We continue to use the notation of Section 2.5. In particular, G is a
simple Lie group with G = G€, and center f is not 0.

Let A be an integral form on h® dominant with respect to f. Harish-
Chandra’s condition for nonvanishing H(A) was <A + p, o) < 0 for all
positive noncompact o, and we shall consider the limiting case of this con-
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dition in this section. One can show that the following three conditions are
equivalent:

(i) <A + p, o < 0 for all positive noncompact o with equality for
some ¢,

(i) <A + p, ay» = O for the largest root ay, and ¢(A + p, ) < 0 for
all other positive noncompact «, and

(iii) <A + p, og» = O for the largest root o,.

Suppose that A satisfies these equivalent conditions.

We shall define shortly an element u, € G and a closed subgroup
M, = G. Let

(i)  F holomorphic in a neighborhood of BG
I(A) = | /) F(bx) = E\(b)F(x) for b e B, x € BG

QOGN

M5

|F(u,mk)2 dm dk
x K

Un(9)F(x) = F(xg) for Fel,(A), geG, xeBG.

Here |F|| will make sense because we shall have Bu,G = BG. Also
[F| = 0 will imply F = 0. Thus we define

H(A) = completion of I',(A).

Theorem 1. If A is an integral form on §, dominant with respect to f,
and if {A + p, a» = 0 for the largest root «,, then U, extends to a contin-
uous unitary representation on H(A), H(A)is not 0, and U, is irreducible.

We shall define »; and M, while we establish notation for Theorem 2,
which concerns the reducibility of certain induced representations. Though
we shall give most of the definitions for general G, we shall concentrate on
the examples SU(1,1) and Sp(2, R). Recall the earlier discussion of Sp(2, R)
in Section 3.3. Our definitions are set forth in the following table.

Item General SU(L,1) Sp(2,R)
c 0 C'c

be (see 2.4) ( ) o 5
0 —c :
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Compact roots > 0 (see 2.4) none

Noncompact roots > 0 (see 2.4) 2e,

P 1Zp €
=0
o largest root 2e,
A - —ne,
A+.p =0 — n=1
/2 1212
uy EXPE(X:O = X—zo)( N %J{z b .2.}!2
\—~/2/2 /2/2,
(see after 2.5,
Lemma 6)
at ROE X ) (0 ')
\t 0,
m (e N Z(a™) 0
M, corresponding group 1
M, commutator subgroup of M, 1
M ZilatyM ( Lol )
{a™)
«( 0 0 i,
‘cosh t sinh )
At expat ( ; )
\sinh t cosh 1
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€ — €3
2e, e, + ey, 2e,

2e; + e,

2e,

—me,—ne,, n = m

m=2,nz=m
2,!_ ( f2/2 0

-'_ ;2{2 0\

; .'

/2f2 O)

(t 0\
0 [.{) (}J
't 0)
lo o
000
0a0
000 O
0bh 0
1000

0a0f
0010

o> O

, @ imaginary

—a

, det =

0B 0 &
M, = M, = SU(1,1)

+10 00
0o 0p

L) (0 2 0]
0f 0a
cosht0 sinh 0
()l 0 0
sinh t 0 cosht0
0 0 0 1
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; X [l —ix —ix\ a 3-dimensional
N something | ;
Lix | + ix/ nilpotent group
0
a” Z(a™) 0 ¢ 0 , ¢ imaginary

—Cf

Consider Sp(2, R). Then a~ is a compact Cartan subalgebra in m, and
/\|n_ — —ne,, n > 2. Consequently Al,- gives rise to a holomorphic
discrete series representation w, of SU(1,1). M is generated by mg and —1.
Extend w, to M by puttingw, (—1) = &,(— 1) = (=1)"1. Then w, is a
square-integrable representation of M.

In the general case, it is possible to proceed similarly. M is semisimple
and turns out to have holomorphic discrete series. From one of these, we
can construct a special square-integrable representation w, of M.

Now let

V., = induced rep. (w, ® 1 @ 1).

MATNIG
Harish-Chandra has proved that most representations of the form

induced rep. (0®1 ®1). o square-integrable, y unitary character of 4™,
MA* N1 G

are irreducible. However we have

Theorem 2. Under the above assumptions, U, is unitarily equivalent
with a proper subrepresentation of V,, and consequently ¥ is reducible.

5. Notes

1. The representations (#,, %,) were constructed by Bargmann [/],
and the six listed properties were proved by him.

2.1. The bounded symmetric domains were classified by E. Cartan. See
[3] for a bibliography of the relevant papers, and see [3, pp. 339-355], for
the classification of noncompact symmetric spaces. Bounded symmetric
domains are discussed in detail in the book by L. K. Hua, Harmonic Analy-
sis of Functions of Several Complex Variables in the Classical Domains.

2.2. This summary is taken from [3, pp. 281-285]. See those pages for
more details.
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2.3. This material is in [3] in a geometric form. For the lemma, see
[3. pp. 183-186, 194-197]. For the theorem and the proposition, see [3,
pp. 305, 311].

2.4. Most of the results of this section are contained in [3,pp.312-314].
See also [2, pp. 750, 756-761]; our ordering on the roots is such that the
totally positive roots in Harish-Chandra’s sense are exactly the noncom-
pact positive roots.

2.5.  Harish-Chandra’s realization of Q is given in [2, pp. 2-5, 589—
591] and is reproduced in [3, pp. 314-321].

3.1. The idea of defining representation in spaces of holomorphic
functions on BG has its origin in the Borel-Weil Theorem, which gives such
a realization for all irreducible representations of a compact group; in this
case BG = G, and there are no serious technical problems. Harish-
Chandra defined corresponding representations in [4, pp. 6, 15], and he
developed the basic properties in [2, pp. 6-19]. The main lemma appears
in Lemmas 6 and 14.

3.2-3. Irreducibility is proved in [2, pp. 19-20], the computation of
[ AlI* appears in [2, pp. 598-609], and the square-integrability is given in
[2, pp. 30, 612].

4. Bargmann [/] observed the identity between the limiting norm of
the discrete series for SU(1,1) and the norm of the Hardy class in the disk.
The results of this chapter appear in [4].
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