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10. Operator 9. 
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0. INTRODUCTION 

In the representation theory of a semisimple Lie group G, both the 
Bott-Borel-Weil Theorem [3] and Schmid’s proof [25, 26; see also I] of 
the Kostant-Langlands conjecture [17, 181 realize important classes of 
unitary representations as Dolbeault cohomology spaces of bundle-valued 
differential forms over a quotient of G. Because of formidable analytic 
problems, initial efforts to generalize this construction were largely unsuc- 
cessful. To get around the analytic difficulties, Zuckerman [37] introduced 
an algebraic analog of such representations based on a construction using 
derived functors. This construction has come to be known as cohomologi- 
cal induction and was developed more fully by Vogan [32]. There is by 
now a reasonable theory of cohomological induction. But even though 
some of the analytic problems have been solved by Schmid 1271 and 
by Hecht and Taylor [8], the corresponding Dolbeault cohomology 
representations remain poorly understood. 

In particular it is still only a conjecture [33, Conjecture 6.1 l] that the 
analytic and algebraic representations coincide. Beyond the work men- 
tioned above, a paper of Rawnsley, Schmid, and Wolf [23] implicitly 
handles some highest weight representations, and the papers [28] and 
[29] of Schmid and Wolf address a different special case of a natural 
generalization of the conjecture. But substantially no other cases have been 
settled. 

The present paper suggests a two-step approach to this conjecture when 
the inducing representation is one-dimensional. Under a dominance condi- 
tion the algebraic representation is irreducible and its parameters in the 
Langlands classification [13, Theorem 14.921 are known. The first step is 
to map the Langlands representation into cocycles for the Dolbeault 
cohomology spaces, thereby exhibiting the algebraic representation as a 
subquotient of the analytic representation. The second step is to give an 
upper bound for the multiplicities of the K-types (K being a maximal 
compact subgroup of G) of the Dolbeault cohomology representation by 
those of the algebraic representation, which are known explicitly. 
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Arguments of the kind suggested for the second step are known for 
the case of discrete series and may be found in Schmid [25] and 
Hotta-Parthasarathy [ 111. 

In this paper we address the first step, under an additional hypothesis 
given in the next paragraph. What we do is map certain Langlands 
quotient representations into spaces of cocycles for Dolbeault cohomology 
in such a way that the map into cohomology is nonzero. For this 
formulation of our results, it is not necessary to refer to cohomological 
induction at all. 

To describe our main results more precisely, we introduce some nota- 
tion. Let G be linear connected semisimple with complexification G”, let K 
be maximal compact with Cartan involution 0, let T be a torus in K, and 
let L be the centralizer of T in G. Our special additional hypothesis is that 
G and L have the same real rank. (This is the opposite extreme case from 
what happens for discrete series [25, 261, where L has real rank 0.) We 
denote Lie algebras of Lie groups by go, f,, t,, IO, etc., and their 
complexifications by g, f, t, 1, etc. 

The quotient G/L has a number of invariant complex structures, and we 
fix one obtained in the following way. Let q = 10 u be a B-stable parabolic 
subalgebra of g containing I [32, p. 2261. If Q denotes the analytic 
subgroup of G” with Lie algebra q, then G/L imbeds as an open subset of 
the complex manifold Cc/Q and inherits an invariant complex structure in 
which q/I E u is the antiholomorphic tangent space at the identity coset. 
A similar construction with q n f makes the quotient K/(L n K) into a 
compact complex submanifold of G/L. 

Let 4 be a one-dimensional representation of L, and let r # = l@ AtoP u. 
The complex line bundle G xL @ -t G/L, with L acting on C via r#, 
canonically becomes a holomorphic line bundle [30], and we let 
C',"(G/L, 5 ” ) be its space of smooth (0, m)-form sections, i.e., the space of 
smooth sections of G xL (C 0 (A\” u)*). Relative to the standard 

&Co-"(G/L, t#)-, C","'+l(G/L,t#)), 

the space of Dolbeault cohomology sections is 

H'*"'( G/L, r # ) = ker a/image 8. 

(0.1) 

The group G acts on everything on the left, and we obtain an 
untopologized group representation. 

Under a dominance condition on 5, one expects interesting cohomology 
to occur in degree s = dim. K/(L n K). The dominance condition can be 
described invariantly by requiring that 

H”WW n 0 t ’ I in K) Z 0. (0.2) 

(See (1.5) for a description in terms of dominance of weights.) 
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With the dominance condition in place, our main results are as follows: 
Theorem 6.1 associates to 5 a nonunitary principal series representation of 
G and an equivariant mapping Y of it into C”ys(G/L, <“). We prove that 
the image of Y lies in the kernel of 8 (Theorem 8.4) and, parenthetically, 
also in the kernel of a naturally defined 3’ operator (Theorem 9.4). By 
composing Y with a kind of nonholomorphic Penrose transform 9 (see 
[25], [35], and [2]) from H’,“(G/L, r”) to sections of a vector bundle 
over G/K, we prove that the image of Y, when viewed in H’,“(G/L, 4 # ), 
is not 0 (Corollary 10.4). 

We shall see in Theorem 10.3 that the composition 90 Y is the Szegii 
operator that has been studied in special cases in [S] and [21] and was 
introduced earlier in a different context [lS] for the realization of 
discrete series. 

The detailed proofs of our results are made more complicated by their 
generality. The reader may be helped by first understanding the extreme 
cases that rank G = rank K and that G is complex semisimple. 

In originally carrying out this research, Barchini and Knapp worked 
together, and Zierau worked independently. We arrived at substantially the 
same theorem at the same time and decided to extend it a little and publish 
it jointly. 

We are all indebted to D. A. Vogan for advice and assistance with this 
project. Our work has been assisted also by conversations with a number 
of other people, and we are happy to acknowledge their help: M. G. 
Eastwood, S. G. Gindikin, P. Lima Filho, M. K. Murray, and J. W. Rice. 

1. ROOTS AND ORDERINGS 

In this section we shall introduce notation that will allow us to work 
with H’,“(G/L, <#). Our underlying group G is assumed to be linear 
connected semisimple, with a complexilication Gc. Our standing 
assumption on L is that G and L have the same real rank. The linearity of 
G simplifies the notation but is not essential; we show in $12 how to 
dispense with it. 

We defined K, 8, T, L, Q, and various Lie algebras in the introduction. 
We write the Cartan decomposition of go relative to 0 as go = f, @ po. Our 
e-stable parabolic subalgebra of g is q = I @ u, with u the unipotent radical. 
With bar denoting the conjugation of g with respect to go, we have 
g = ii @ I @u. The group L is connected. 

Extend to to a maximal abelian subspace b, of f,, and let B = exp b,. 
The centralizer b. of 6, in go is of the form $,, = b, @ ah with a& c p. and 
is a maximally compact Cartan subalgebra of go. Let A = A(g, $) be the 
roots of g with respect to lj. The Cartan involution 0 acts on roots by + 1 
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on b and - 1 on a’. No root vanishes on b [ 13, p. 4201. Within the subset 
A, of roots vanishing on a’, we say that a root is compact or noncompact 
according as its root vector lies in f or p, and we write A, c and A, n for 
the sets of compact and noncompact roots within A,. Let r‘be the re‘stric- 
tion map from the dual @* to the dual b*. For members 0 of A,, it will be 
convenient to use the notation /I and r(p) interchangeably. 

Let d,= A(f, 6) be the roots of f with respect to 6, and let A, = A(p, 6) 
be the set of nonzero weights of p with respect to b. 

LEMMA 1.1. (a) The restriction map r carries A- de,, onto A,. The 
preimage of a member y of A, is either one member of As,C or two members 
b andOF of A-A,. 

(b) The restriction map r carries A -A,, onto A,,. AN members of A,, 
have multiplicity one. The preimage of a member y of A, is either one 
member of A,,, or two members fi and Og of A -A,. 

Proof. Let g=$+CsEd CE, be the root space decomposition of g. 
Then we have 

g= b+ c @E,+ C 
( 

UE, + ‘=,) 
YEAB,C {B,O~}rA-As > 

a’+ c @E,+ 1 
yeAa.. (LLQ?) GA - AB 

The two terms on the right side are contained in f and p, respectively, and 
hence must equal f and p. Thus r is onto as required. The rest will follow 
as soon as it is shown that roots fl and /?’ with r(p) = r(B’) have 8’ = /I or 
b’ = Ofi. We have 

(B+W,B’>=2 Ir(P)I’>O, 

from which it follows that (0, /?‘) > 0 or (e/3, /I’) > 0. Therefore either 
/?‘-/? or /I’-&? is 0 ( an d we are done), or one of these is a root vanishing 
on 6. But no root vanishes on 6. 

For the moment let A+ be any positive system for A such that 
BA+ = A+. We impose further conditions on A+ below. In view of 
Lemma 1.1, we get well defined positive sets AZ E AK and A,+ c A, by 
saying that r(p) is positive if and only if /I is positive. 

Since $, centralizes to, b. is contained in I,. Thus we can speak of sets 
of roots A(u, Q), A(u n f, b), and A(u n p, b), as well as similar sets for I and 
ii. The roots of ii are the negatives of the roots of u. In the choice of A+ 
to be made presently, we insist that d(u, IJ) E A +. The set A + then consists 
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of d(u, h) together with a choice of A+([, IJ). For any of these sets of roots, 
we let 6( .) be half the sum of the positive members. From Lemma 1.1 it 
follows that 

6(u f-7 f) + 6(u l-l p) = 6(u), (1.1) 

with 6(u) equal to 0 on a’. 

LEMMA 1.2. Let Q be the set of weights of a finite-dimensional represen- 
tation, let m, be the multiplicity of o in Q, and let I be a subset of 0. 
Suppose that a is a root such that y E f and a + y E Q imply a + y E I. Then 
<c YE t- my y, a > > 0. Strict inequality holds when B is the set of roots and a 
is in I and -a is not in I. 

Proof With s, denoting reflection in a, we have 

c m,y= C m,(y+s,y)+ C m,y+ C m,y. 
YCf- ytr Yef YEI;&Y$l- 

<Y.X><O <y,r>=O <r.m>=-0 

The inner product of a with the first two sums on the right is 0, and the 
inner product of a with the third sum is term-by-term positive. When 52 is 
the set of roots, if a E r and -a $ r, then a occurs in the third sum and 
gives a positive inner product. 

COROLLARY 1.3. If a is in A+, then 

If a is in Ai , then 

(d(unt),a) is 
=o tf aEA(lnf, b) 
>o tf aEA(unf, b) 

and 

<d(u n PI, a> is 
=o zf aEA(Inf, 6) 
20 zf a E A(u n f, 6). 

Remarks. See [32, p. 1241 for some of these. 

Proof This is immediate from Lemma 1.2. For the cases with equality 
the lemma is to be applied to both a and -a. 

For our given one-dimensional representation 5 of L, let A + v be the 
unique weight relative to h. Here I is the part on b, and v is the part on 
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a’. (Thus 1 is a discrete parameter, and v is a continuous parameter.) Since 
5 is one-dimensional, 1. + v is orthogonal to the roots of 1. The representa- 
tion [# = 5 @ AtoP u of L has weight (1, + 26(u)) + v; we write CT+ y for the 
space @ in which it acts. The holomorphic line bundle of interest is 

Gx,@,#,,m+GIL (1.2) 

with G/L as a complex manifold having u as antiholomorphic tangent 
space at the identity. The holomorphic bundle structure is exhibited in 
[30]. Meanwhile, K/(L n K) is a compact complex manifold having u n f 
as antiholomorphic tangent space at the identity, and the natural map 
K/(L n K) + G/L is one-one and holomorphic. The pullback of (1.2) is the 
holomorphic line bundle 

KX LnK CT+,,-KI(LnK). (1.3) 

Let s = dim. K/(L n K) = dim(u n f). 
The bundle-valued (0, m) forms for (1.2) are the smooth sections of 

Gx, (~,“,,O(A\“4*), 

where (.)* denotes dual. We write this space of sections variously as 
C',"(G/L, t#) or CO,“’ (G/L, eF+ ,). It is the same space as 

C”(G/L,@~+,@(l”\“u)*)={f:G-+C~+,O(~\”u)*ofclassC” 

If(xl)=(t#(I)-‘@Ad*(l)-‘)f(x)}. (1.4) 

An equivalent way of writing it is as the space of L-invariants 

(C”(G)OC,#,,O(A”U)*)~, 

with L acting on C”(G) in the last case by the right regular representation. 
For an invariant definition of the 8 operator (O.l), see Wells 
[35, Chapter I]; an explicit formula for it in terms of root vectors and their 
duals appears in Grifiths-Schmid [6]. We do not need the explicit 
formula. For handling Y we need only the facts that 8 is a map between 
the spaces (O.l), commutes with the left action of G, is given by a local 
expression (involving various derivatives on the right of the G variable, 
as well as operations on alternating tensors), and satisfies a’= 0. Let 
H',"(G/L, C,“,“) denote the cohomology in degree m. 

The dominance condition (0.2) on r translates into 

(A+26(unp),cc)>O forall crcA=, (1.5) 
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as an easy consequence of the Borel-Weil-Bott Theorem. This condition is 
implied by the more usual dominance condition 

(2, u> 20 forall aEd+, (1.6) 

as a consequence of Corollary 1.3. (Alternatively see [32, p. 3641.) 
When rank G = rank K, so that v is not present, the representations 

H’*“(G/L, Cf+ ,) are supposed to be analogs of the derived functor modules 
A,(1) defined in [ 141. The condition (1.6) ensures that A,(i) is irreducible. 
We do not need A,(1) in this paper, and it will be sufficient to assume 
(1.5). We assume (1.5) for the remainder of this paper. 

There is a formal adjoint a* to 

8: C”%m(G/L, CT+,,) 4 Co-+‘(G/L, @,“,J 

given by the operator 

a*: C’F~+ ‘(G/L, a=?- ,) + C”ym(G/L, @f- ,). (1.7) 

In more detail, let C be the Killing form of g. The Hermitian form 
(X, Y)=C(X, P) on g is G-invariant and induces an L-invariant 
Hermitian form ( ., . ), on (A’%)*. In turn this induces an L-invariant 
sesquilinear pairing 

(20X, w@ Y) =zW(X, Y), 

of Cr+“@ (A’%)* with a=,#_, 0 (A’%)*. Thus if f is in C”,m(G/L, CT+“) 
and g is in C’++l (G/L, C,“_,), (8f(x), g(x)) is a well defined scalar- 
valued function on G/L. We define a* by the expected formula 

.r,-, (f(x), a*dx)) di=jG,L @f(x), g(x)) dk 

with f running through the forms of compact support modulo L. 
Next we introduce normalized root vectors for A. Following [9, p. 1811, 

we choose root vectors E, so that the Killing form satisfies 

C(E,, E-J = 1 (1.8) 

and SO that E, - E_, and i(E, + E-,) lie in the compact form I,@ ip,. For 
roots in As, 

E,-E-, and i(E, + E-,) are in IO if CI E A,,, 

E, + E-, and i(E,- E-,) are in no if u E A,,,. 
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We define H, to be the member of h dual to c( under C. From (1.8) it 
follows that [E,, E-,] = H,. 

We recall that roots a and fi in d are said to be strongly orthogonal if 
fi # fcr and if neither c1+ /I nor CI - p is a root. In this case we write 
CI II /I. Strongly orthogonal implies orthogonal. 

Finally we give the remaining conditions to be satisfied by our positive 
system A+. So far, we have insisted that 8A+ = A+ and that A(u) E A +. 
We need A+ (I, h), and then A+ = A(u)u A+(I, h). Let us say that a 
positive system for A(I, h) and an ordered sequence a,, . . . . ‘A) from 
41, b) n 4, are compatible if 

(i) the ai are strongly orthogonal, 
(ii) at =cj= I R(E, + E -%,) has a, = a: @ ah maximal abelian in 

I,, n p,, (and therefore maximal abelian in no, since real rank G and real 
rank L are assumed equal), 

(iii) each aj is (positive and) simple in the subsystem of roots of 
A(l, h) n A, strongly orthogonal to 01,) . . . . IY,- r. 

Since any choice of A +(I, h) is generated by the A + simple roots that it 
contains (as a consequence of A(u) E A+), it follows that 

(iii’) each CQ is (positive and) simple in the subsystem of roots of A, 
strongly orthogonal to c(, , . . . . c+, . 

Our final condition on A + is that A + (1, h) be given along with a 
compatible sequence a,, . . . . CQ. It is not immediately evident that any such 
A + exists. However, when rank G = rank K, any choice of A + (1, b) has a 
compatible set c1i, . . . . aI, as a consequence of [15,94]. In $11, we show the 
existence of compatible A + (1, h) and {a,} in general. A feature of our 
construction in $11 is that a further desirable condition is satisfied (pL 
dominant for G, in the notation of 52). 

2. CAYLEY TRANSFORM 

Our choice of A + carried with it a choice of a maximal abelian subspace 
a, of p,, and a sequence of strongly orthogonal roots cc;, . . . . a1 in 
A(I, h) n A, used in defining a,. In terms of these roots, we can define a 
Cayley transform. 

For CCEA~,“, let EL = (J’?/lcll) E, and E’-,= (J$]al) Ed,. Then 

u, = exp $ (E’Y, - E&) 
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is a member of G’ that normalizes the el(2, C) corresponding to cc and 
interchanges the two standard Cartan subalgebras [13, pp. 417-4191. 
Specifically 

The different u,, commute, because of the strong orthogonality, and we 
put u = u,, . . . u,, and c = Ad(u). The map c: g -+ g is the Cayley transform. 
Let 

bG= i iRH,cb, 
j= 1 

6; = orthocomplement of 6: in bO. 

On b the formula for c is 

c(H) = H for HE b- @a’. 

Thus c( ib;) = a;l. So c carries h = b - 0 6” 0 a’ to a new Cartan subalgebra 
h’ = b - @ a” 0 a’, acting as the identity on b- @ a’ and carrying 6” to a”. 
Under the definition (cj?)(H)=p(cc’H), c carries d =d(g, h) to 
CA = A(g, JJ’). 

Since each 01~ is in d(I, h), c is in Ad(L”). Therefore c normalizes ii, 1, 
and u. Moreover, $’ = clj is in 1. 

We shall define a positive system (cd)+ for CA different from the image 
of A+ under c. Namely we list H,, , . . . . H,, as an ordered orthogonal basis 
of ib: and extend it to an orthogonal basis of ib:@ ah by adjoining 
elements at the end. We use this basis in lexicographic fashion to determine 
positivity for members of CA that do not vanish identically on a”@ a’. 
(Namely cfi is in (cd)+ if B(H,,) > 0, or if P(H,,) = 0 and P(H,,) > 0, etc.) 
For roots c/I supported on bb, we say that CD is in (cd)+ if /I is in A+. 
(It is not necessary for theoretical purposes to define (cd)+ quite so 
rigidly, but the above definition is convenient for computing examples with 
the aid of the formulas in [15, $51.) 

If /I E A, is orthogonal to aj, Lemma 5.4 of [ 15 J gives 

Ad(u = 
5 if pllol, 
+( [EL,, E,] - [E;,, EB]) if /I 1/1 aj, 

(2.1) 

where EL, = ($//a,l)E,. 
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LEMMA 2.1. Suppose ~JEA~ is orthogonal to aI, . . . . a[. Then fl fails to be 
strongly orthogonal to at most one ai. If/i’ 11 ai for all i, then /3 is in A,,, 
and c(Eg) = E,. If /? 1/1 a,, then p is in A,,, and 

c(Ea) = i(LG,, &I - [EL,, E,J). (2.2) 

Proof: Suppose /I 1/1 ai and /? 1/1 aj. Computing both sides of 

Ad(u,) Ad(u = Ad(u,) Ad(u,)El, 

by means of (2.1) we see that at least one of the four expressions p + ai + aj 
is a root. This root, together with /I and fl +ai, exhibits roots of three 
different lengths, contradiction. Thus fi J-/A- ai for at most one index i. 

If fi II q for all i, then c(EB)=EB by (2.1). If p were in AB,n, then 
E, + E-, would be a member of no outside a, commuting with a,, in 
contradiction to (ii) in $1. Thus /I is in Aa,. 

Finally suppose p 1/1 aj. Then c(EP) is given by (2.2), as a result of 
(2.1). If /I is in As,,, then c(Ep) is in p but not a. Since Ep commutes with 
6” and a’, c(E,) commutes with a, in contradiction to (ii) in $1. Thus fl is 
in A,,,. 

The Cayley transform allows us to define a minimal parabolic subgroup 
MAN. Let A=expa,, and let M be the centralizer of A in K. Then 
M= M,F with 

F= Mnexp iao, (2.3) 

by Lemma 9 of [24] and Lemmas 1 and 3 of [22]. We have A s L, and 
it follows that 

FcL, (2.4) 

since FsGnexpasGnexplrGnL”=L. 
The subalgebra I$, = b; 0 a, is a maximally noncompact Cartan 

subalgebra of Q,,, and we take the positive roots of CA = A(g, b’) to be 
those of (cd)+. This positive system has the property that a root that is 
not identically 0 on a has its positivity decided by its restriction to a. Hence 
we can consistently define positive restricted roots by saying that c/?[~ > 0 
if c/?\,#O and PE(cA)+. Then we define n, to be the sum of the root 
spaces in go for the positive restricted roots, ii, to be on,, and N and ~ 
to be the corresponding analytic subgroups. (The notation ii0 and w is 
traditional and does not refer to conjugation.) Then MAN is a minimal 
parabolic subgroup of G. Note that A s L implies L n MAN= 
(L n M) A(L n N). 
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For PEA, define Xp=c(EB). Let A- =(/?EA I /?lbfs+of=O}. The 
subalgebra b; is a Cartan subalgebra of nt,. The root system A(m, b - ) 
may be viewed as c(A-), the root space decomposition of m being 

m=b-@ c CX,. 
BEA- 

(2.5) 

Positivity for these roots is the same, whether obtained from A+ or from 
(cd)+. 

Let C, and Z:, be the sets of restricted roots for L and G, and let Zt 
and Zz be the subsets of positive elements. Define pr. and pG to be the half 
sums of the members of A’: and Zg, with multiplicities counted. We can 
regard pL and pc as members of h’* when necessary, by extending them so 
as to be 0 on b- *. In any event, pL and pG - pL are ZL dominant 
(the latter by Lemma 1.2, for example), and pG is Cg dominant. 

Our hypotheses do not force pL to be Z,+ dominant. This matter is of 
some significance when reinterpreting our results in terms of Langlands 
parameters, as in the introduction. In $11 when we show the existence of 
compatible A +(I, h) and CI, , . . . . a,, our construction leads to a situation in 
which pL is Cz dominant. 

3. PRINCIPAL SERIES PARAMETERS 

We use the a* element pL + v and an irreducible representation 0 of M 
defined below to form the nonunitary principal series representation 
indz,,(a@ePL+’ @ 1) of G. This is a representation in which G acts by the 
left regular representation in the space 

{f:G-, V”(f(xman)=a-(PL+PG+Y)~(m)-lf(~)}, (3.1) 

where V” is the space in which cr acts. Letting 

d(man) = a PI. + PC + ‘a(m), 

we shall find it convenient to refer to the space of smooth functions in (3.1) 
by C”(G/MAN, 8). 

Let p be an irreducible representation of K with highest weight 
1+ 24~ n p), acting in a space V’ and having q5 for a nonzero unit highest 
weight vector. 

PROPOSITION 3.1. The cyclic span of q5 in VP under M is irreducible 
under M. Namely 

580/107/2-6 
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(a) 4 is a highest weight vector under tn, with highest weight 

(b) Q is a one-dimensional subspace stable under the group L n K, 
which contains F. 

Warning. Contrast this result with the need for the addendum to [lS] 
because of the disconnectedness of M. 

Proof: Since M0 and F commute, (a) and (b) will prove the proposi- 
tion. Conclusion (b) follows from the fact that A + 26(u n p) is orthogonal 
to d(l n f, b), as a consequence of Corollary 1.3. 

To prove (a), again define X, = c(EB) for b E A. We need to prove, for 

Et+ “p-? 
that p(X,)(d)=O. Since A_ c A,, we can use Lemma 2.1. If 

a, or all i, then X, = E,, and p( EB)(q5) = 0 since 4 is highest for K. 
If j? l/l o(/, then X, is a linear combination of EBea, and E,, %,, and /I f aj 
are in A,,,. Since members of A,,, y ield members of A, (Lemma l.la), it 
is enough to see that p + a, and b- aj are positive. For /? + aj, the 
positivity is automatic. For fi - a,, it follows from (iii’) at the end of $1. 

We let c be the irreducible representation of M acting in the M-cyclic 
span V” of 4, and we let T be the one-dimensional representation of L n K 
acting in Cf$. 

4. SUBREPRESENTATIONS OF A"w 

In this section we define a subset S of A(u, h) by means of the positive 
system (cd)+. The set S has s members and hence defines a member Es of 
A”u. We shall see that E, generates an irreducible representation rc, of L, 
and we shall identify the parameters that characterize rc, . 

We let 

S= {YEA I cyl,bO}. 

In more detail we include in S all roots y of u for which cyl, is a negative 
restricted root, as well as all roots y of u for which cy vanishes on a. Let 
Yl, 727 ... be the members of S, and let Es = E,, A E,, A . . as a member of 
the exterior algebra of u. 

PROPOSITION 4.1. IS( =s, so that E, is in A”u. 

Proof: Again we let X, = c(EB) for fl E A, so that X, is a root vector for 
cfl ECA. Then 8X, is a root vector for @c/I), which has the same sign on 



INTERTWININGOPERATORS 315 

b- and the opposite sign on a. In all sums below, fi is to run through all 
members of d(u, h) that satisfy the indicated conditions. Since c is in 
Ad(Lc) and w = C CE,, we have 

0 ( c WqdX,) . CfllO<O > 

In the first sum on the right, Xfi is in nt and hence is in f. Therefore the 
first two sums contribute to u n f, and the third sum contributes to u n p. 
But 

u=(unf)@(unp), 

and therefore 

unf= c @X,0 1 qx,+exp, 
Cpla=O cpla<o 

and 

unp= C @(X,-8X,). 
C~JO<O 

(4.1) 

(4.2) 

In (4.1), the dimension of the left side is s, and the dimension of the right 
side is (S(. The result follows. 

Thus Es = E,, A ... A E,>. Motivated by the proof of Proposition 4.1, 
we put 

Xs=cE,=X,, A ... A XYf. 

PROPOSITION 4.2. The Ad(L) cyclic span of Es in A”u is an irreducible 
representation n, of L with Es as an extreme weight vector relative to the 
Cartan subalgebra tj. With respect to the system C& of positive restricted 
roots, Xs is a lowest restricted weight vector of x1, and its restricted weight 
is PL-PG. 

Proof: We show that Es is lowest relative to the positive system 
c-‘(cd)+ nd(1, fj) for 1 with respect to h. Thus suppose /?~d(l, h) has CD 
in -(cd)+. If y is in S, then cyl,<O. If p+y is a root, then c(/?+y)l,<O 
and p + y is in S. Hence (A, + y EY,) A ad(EB) E, = 0. Then it follows that 
ad(EB)(E,) = 0, and Es is lowest for the indicated system. 
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Applying c, we see that X, is lowest relative to the positive system 
(cd)+ n d(I, h’) for I with respect to h’. In particular, it is a lowest 
restricted weight vector. Its restricted weight is 

= -pc+pl,, 

as asserted. 

PROPOSITION 4.3. Let X, be a nonzero member of the one-dimensional 
subspace A”(u n f) of A”u. Relative to the natural Hermitian inner product 
on /\‘u, (X,, Xc> #O. 

Proof: Let yi, . . . . yt have cy,(,=O while y,+,, . . . . yS have cy,l,<O. Then 
(4.1) shows that we may take X, to be 

x,, * ... A x,, A (X,,+,+8X,,+,) A ... A (x,~++x,$). 

This has nonzero inner product with 

x, = x,, A . . . A xys, 

and the result follows. 

Let r, be an abstract copy of the representation of L n K with highest 
weight 26(u n 1) relative to b. Then r1 is one-dimensional, by Corollary 1.3, 
and A”(u A I) is a concrete realization of it. 

COROLLARY 4.4. The one-dimensional representation z1 of L n K occurs 
in 7~~ 1 L n K, necessarily with multiplicity one. 

Proof. Let x be the character of t i . Proposition 4.3 produces an X in 
the space of rri (X=X, actually) with (X, Xc) # 0. Then we have 
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Of (X Xc> = (x, x(k) AWP,) forall kELnK 

= s (X x(k) AW)X,) dk 
LnK 

= s (x(k) Ad(k)-’ X Xc> dk 
LnK 

= I (x(k) AW)X Xc> dk under k + k--l LnK 

Therefore JL n k X(k) Ad(k) X dk is a nonzero vector within the space of rci, 
and it is certainly of L n K type r, . It has multiplicity one by [13, p. 206, 
item (2)]. 

LEMMA 4.5, In a finite-dimensional representation R of a compact group 
x, suppose vO is cyclic under SC. If P, denotes the projection operator to 
the isotypic component of 2” type co, then PwvO is cyclic for that isotypic 
component. 

Proof: The most general u, by cyclicity, is u = C cjR(kj)v,. Then P, v = 
C cjP,R(kj)v, =C c,R(k,) PovO. Taking v in image P,, we see that Pwvo 
is cyclic within image P,. 

PROPOSITION 4.6. The lowest restricted weight space of n, is one- 
dimensional, and L n A4 acts in it by z, 1 L n ,,,, . 

ProoJ Let x be the character of T, , and let P,, be the projection of the 
space of n1 to the L n K isotypic component of type zi. Since L n M c 
LnK, we have, for mgLnM, 

and 

P,,(~,(m)X, - x(m)Xs) = 0. (4.3) 

By Proposition 4.2, v0 = zl(m) X, - x(m)X, is a lowest restricted weight 
vector for n,. Suppose v0 # 0. Since 

L=(LnK)A(Lnm) 

and since ?ri is irreducible under L, v0 is cyclic for rri ( Ln K. By Lemma 4.5, 
P,, v. is cyclic for the T, subspace, which is nonzero by Corollary 4.4. But 
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this cyclicity contradicts (4.3), and we conclude u0 = 0. Therefore CX, 
is an invariant subspace under L n M, necessarily of type r, . By [ 13, 
Lemma 9.121, CX, is the entire lowest restricted weight space. 

5. FINITE-DIMENSIONAL REPRESENTATION 7t OF L 

In $6, we introduce the operator Y from a nonunitary principal series 
representation of G into C’,“(G/L, Cf+ ,,). The functions on G in the image 
of Y have their values not in the whole space C,T+ ,@ (A”u)*, but in a sub- 
space that is irreducible under L. In the present section we shall construct 
this irreducible representation of L, calling it 7~. 

Within the dual u*, let {up} be the basis dual to {Xp, fl~d(u,h)}. 
Under the isomorphism (A”u)* z A”(u*), we may regard elements 
uol A ... A o~,~ as belonging to (A”u)*. With S= {r,, . . . . y,}, define 

us = co,, A . . A co),,. (5.1) 

Recall from 93 that z is a one-dimensional representation of L n K of 
weight I + 26(u n p). 

PROPOSITION 5.1. The L-cyclic span of 100, in 6Z;“,V@(/j\su)* is an 
irreducible representation II of L with 1 @us as a highest weight vector 
relative to (cd)+. The highest restricted weight of n relative to Zz is 
pc - pL + v, the highest restricted weight space is the one-dimensional space 
a=( 1 @us), and the representation of L n M in the highest restricted weight 
space is tlLnM. 

Proof: In passing from X, in A”u to 1 Ow, in CT+ ,@ (A\“u)*, we have 
taken the contragradient and then tensored with Cf+ y = @1+26(uj+V. So 
most of this proposition follows directly from Propositions 4.2 and 4.6. The 
highest restricted weight here is obtained by taking the negative of the 
lowest (pL - po) in Proposition 4.2 and adding the contribution from 
@ j,+zs(uj+ “, which comes from the part on a’, namely v. The same 
argument as for Proposition 4.6 shows that the L n M behavior on the 
highest restricted weight space is forced by the presence in n( L n K of the 
one-dimensional representation Cj. + zb(uJ @ Z, , with t , as in Corollary 4.4. 
The weight of this representation is 

(A + 26(u)) - 2&u n I), 

which equals A + 2&u n p) by ( 1.1 ), and hence this representation is of 
type r. 
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PROPOSITION 5.2. The representation indz, MAN(rI LnM OepG+” 0 1) of 
the nonunitary principal series of L has a unique irreducible subrepresentation 
x1, and this subrepresentation is finite-dimensional of type n. 

Proof: The uniqueness of the irreducible subrepresentation is part of 
the Langlands classification [19]; it is dual to [13, Theorem 7.241. The 
relevant observations are that pc is strictly dominant for C,+ and that the 
exponential of H, (the element of a’ dual to v) is in the noncompact part 
of the center of L. (This property of v is seen as follows. For every 
/?~d(I,h), we have (A+v,/?)=O and (A+v,eg)=O. Half the difference 
of these equations gives (v, p) = 0, from which the property follows.) 

Thus it is enough to see that a representation of type rc occurs as a sub- 
representation of the induced representation. This trick is a central idea of 
Lepowsky-Wallach [20]. We define an L-equivariant map q of the space 
V” of rc into a space of functions on L by 

(P(fJ)(~)=P(41)r1v) for 0 E V”, (5.2) 

p being the projection to the highest restricted weight space. Using 
Proposition 5.1, we readily check that cp(u)( .) satisfies the correct transfor- 
mation laws under L n MAR on the right so as to be in the space of the 
induced representation. This completes the proof. 

6. OPERATOR 9 

The finite-dimensional representation 7c of L and the highest weight vec- 
tor 10 oS allow us to define the operator Y as in the following theorem. 
Recall from 53 that V” E V‘ with 4 as a common highest weight vector. 

THEOREM 6.1. The operator Y given by 

(yf)(x)=lLnK <fW), 4) QNl 00s) dk (6.1) 

carries ind g,,(u @ eQL + ’ @ 1) continuously in G-equivariant fashion into 

ind,G(rr) c indz(@,Y, y @ (A”u)*). 

Proof: It is clear that the integral is convergent, Y is continuous and 
G-equivariant, and (Yf)(x) is in the space of n. We are to show that 

(Yf )(x4 = n(l)-’ ((Yf )(x)) for [EL. (6.2) 
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To do so, let us write g=rc(g)e H(n)n for the decomposition of g E G accord- 
ing to G = KAN. We shall apply the change of variables k + rc(f -‘k) to 
(6.1); then dk is replaced by e- 2pLH(‘m’k)dk, according to [ 13, (7.4)]. Since 

f(xflc(f~‘k))=e’P”+“+PG’H(I-‘k) .f(xk) (6.3 

by definition of the induced representation, and since 

rr(rc(l-‘k))(l @a,)= e-‘PC~PL+v)H(‘~‘k)?l(l- ‘k)(l 00~) (6.4 

by Proposition 5.1, we obtain 

(YfW) = jL,, (f(xfkh 9 > n(k)(lO 0s) dk 

= c (f(xhc(l-‘k), Q) rc(k(I-‘k))(l@os) e-2pLHf’m’k)dk LnK 

= 
s (f(xk), 4) d.-‘W 0~s) dk by (6.3) and (6.4) LnK 

= 4f)r’ (Yf)(x) 

as required. 

Although (6.1) is the only formula we need for Y, it is illuminating to 
see Y from a more general point of view. According to Proposition 5.2, the 
Langlands quotient mapping JL for L, defined in [ 13, Theorem 7.241, is an 
operator 

Therefore the induced mapping ind: JL is formally an operator 

ind’ JL. ind’ L . LnMAN(ZILnMOePGfv01)_tind~71’rind~71. (6.5) 

The domain of indF(JL) can be seen formally to contain as a subrepresen- 
tation 

(6.6) 

and as a further subrepresentation 

ind~,,(o@e”“+“@l). (6.7) 

Apart from isomorphisms, 9’ is just the restriction of indz JL to (6.7), 
as the next proposition shows. It was the recognition of (6.6) as a 
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subrepresentation of the domain of indz JL that led to the discovery of the 
explicit formula for Y. 

PROPOSITION 6.2. Let cp: x-+ 71’ be the L-equivalence of (5.2), let 
I: C( 10 0s) + Cd be the (L n M)-isomorphism given by I( 10 ws) = 4, and 
let P, be the orthogonal projection of V” on Cd. If f is in the space for 
indG,,,(a@ePL+“@ l), then 

r(~(~f(x))(l))=J'LIpP,(f(x~~)) dfi, (6.8) 

provided dti is normalized so that ILO N e-2PH(n)dii = 1. 

Proof: The formula for cp is 

cp(v)(~)=Im~sl-2 <n(l)-‘% 10~,)(10~.*), 

and the formula for P, is 

P,(u) = (4 4>4. 

The known invariance properties of Y and cp imply that 

I((P(~f(x))(l))=l((P(~f(xl))(l)) 

=41mw,l-2 (of, lO~,>(lO~s)) 

=l100,l-'(~f(x~), lc3o,>d. 

Substituting from (6.1) and making the change of variables that passes 
from L n K to (L n m) x (L n M), given in [13, (5.25)], we see that the 
above expression is 

=lmw,l-qnX ($k)(lO~s), 100,) P,(f(xlk))dk 

x P,(f(xlrc(E)m)) ecZpLH”)dm dii. 

The L n M integration goes away, and this expression collapses to (6.8) 
because 10 ws transforms under L n M according to z. 

7. INVARIANT DISTRIBUTIONS 

The proof that C? and 6* give 0 on the image of Y uses just invariance 
properties of these operators, not explicit formulas. Ultimately the effect of 



322 BARCHINI, KNAPP, AND ZIERAU 

the operators will be captured in terms of invariant distributions on spaces 
of smooth functions. We work abstractly with such distributions in this 
section and give a characterization of them that is related to results of 
Bruhat [4]. Lemma 7.1 is elementary, and its proof is omitted. 

LEMMA 7.1. There exists a closed submamfold Iv’ of n that contains 1 
and is dtffeomorphic to Euclidean space such that 157 = (L n m)m’ in the 
sense that multiplication (L n m) x 157’ -+ m is a dtffeomorphism onto. 

If V is a finite-dimensional complex vector space, a V-distribution on N 
is a continuous linear functional on the space C,&,,(N, V) of compactly 
supported smooth functions on X with values in V. Let U(n) be the 
universal enveloping algebra of nc. 

PROPOSITION 7.2. Let V be a finite-dimensional vector space, and let D 
be a V-distribution on iii that is left invariant under L n N and is supported 
on LnN. If{v,}~=, is a basis of V with dual basis {VT }y= , for V*, then D 
is of the form 

D(F)=,!, JL,, <(ujP)(x), v:> dx 

for suitable left invariant differential operators u, E U(n). 

Proof: Write m= (L n N)N’ as in Lemma 7.1. For f E C,“,,(Ln fl, V) 
and gE Cz,(m’, @), define f @ g in Cz,(N, V) by (f @ g)(x, y)= 
f(x) g(y). For fixed g, define 

D,(f) = WC3 8). 

Letting 9’ be the left regular representation by L n N, we have 

D,(Y(x,)f)=D(~(x,)f@g)=D(~(x,)(f@g)) 

=D(f@g)=D,(f) 

for X,,E L n N, by the hypothesis of invariance. By [4, p. 1233, D, is of the 
form 

D,(f)=jLrN (f(x), v,*> dx 

for some u,* in V*. 
Fix fO in C,mO,(LnN, @) with 1 L n N fO(x) dx # 0, and form the function 
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fO( .)u,. The expression g + D(f,( . )u, @ g) is a C-distribution on m’ and is 
given by 

Consequently g + (v,, v,*) is a distribution on m’. Since D is supported on 
L n IV, g + (v,, v,*) is supported at 1 in m. By [ 10, Theorem 2.3.41, 
(vj, v,*) = Djg( l), where D, is some linear combination of partial 
derivatives of various orders. Then we have 

W@g)= jLn, (f(x), v,*) dx 

=,Z, (IL, ~ (f(X), V,* > dx) (Vj, u,* > 

n 
= 

Z(J 
(f(Xh Vi*> dx Djdl) 

j=l L/TN > 

= i j _ <(fOD,g)(x, l), 0:) dx, 
j=, LnN 

which we can rewrite as 

= i j _ (~,(fOg)(x> 11, v,+> dx. 
j=, LnN 

By [ 10, Theorem 5.1.11, linear combinations of the functions f@ g are 
dense in Cz,(#, V). Thus the result follows. 

8. EFFECT OF 8 

Our objective in this section is to prove that 80 Y= 0. Let (6, I”‘) be 
the representation of MAN in (3.2). For this section we define E= 
@T+V@(A”“u)*, and we let @: Cm(G/MAN, 5) + E be the composition 
@ = e 0 8 0 9, where e is evaluation at 1. Here d 0 Y is G-equivariant, and e 
is L-equivariant; thus @ is L-equivariant. Also @ is continuous. 

The space Czm( R, I’“) is a representation space for iii under the left 
regular representation 9’. In addition, MA acts on Cg,(N, V”) by 

(muf)(fi) = cqma)f(a-lm-‘fima), 
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and the combined action of MAN is a representation of MAN. Let i be the 
natural inclusion 

i: C,Z,(N, V’) + C”(G/MAN, 5). 

Then i is R-equivariant, and one checks readily that it is MA-equivariant. 
We work with the transpose maps between continuous duals 

@“: E* + C=(G/MAN, 6)* 

and 

i”: C5(G/MAN, 6)* + C,“,,(N, Vu)*. 

Here Qtr is L-equivariant, and i” is MAN-equivariant. The action of L on 
E is fully reducible, and thus the same thing is true of E*. Hence E* is 
spanned by weight vectors under the action of exp I& = AB-, BP being the 
Cartan subgroup exp bb of L n M,. For any such vector e*, (@ 0 i)” (e*) 
is an AB- weight vector since (@ 0 i)” is (L n MA)-equivariant. If e* 
happens to be a lowest restricted weight vector for L (under the action of 
A), then e* is fixed by L n ji? In this case, (@ 0 i)‘r (e*) is fixed by L n N, 
too, since (@ 0 i)tr is (L n R)-equivariant. 

PROPOSITION 8.1. Suppose e* E E* is an AB- weight vector such that 
(@ 0 i)” (e*) # 0. If (@ 0 i)tr (e*) is fixed by L n m, then it is acted upon by 
A with a restricted weight of the form 

-(P~-P~+v)- C n,h n,>O. (8.1) 
a&?; 

Proof. The Vu-distribution (@ 0 i)” (e*) on R is acted upon trivially by 
L n m by hypothesis, and it is acted upon by AB- according to some 
weight, as a consequence of equivariance. For f in C,t,(R, Vu), we find 
that 

(i(f(xk)), 4) n(k)(lOw,) dk 

Here i(f(xk)) is well defined since x is close to the identity. Now 8 involves 
differentiations on the right of x and some manipulations with alternating 
tensors. Then x is put equal to 1. Hence the Vu-distribution in question is 
supported on L n R. By Proposition 7.2, there exist members vi* of (Vu)* 
and left-invariant differential operators ui in U(R) such that 

(~“i)“(e*)(f)=~~~rp((u,f)(x).~~)dx. 
i 
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Let us see the effect of UEA on our V-distribution. For use in 09, we 
carry along the effect also of m E B-. The effect of am E AB- is 

um((@oi)“(e*))(f)=(@~i)” (e*)(m-‘u-If) 

The integrand of (8.2) is, in obvious notation, 

= (m-‘a-‘f(xuj), UT) 

= (6(m-‘a-‘)f(umxujm-‘a-‘), II,*) 

=a ~(PL+v+pG)(o(m)~lf((umxm-‘u~‘)umujm~lu~l), vi*) 

=a -(pL+y+pG)(o(m)-l (Ad(um)uj)f(umxm~lu-l), u,*). 

Thus (8.2) is 

=c j/ (pL+Y+PG)(o(m)-’ (Ad(um)uj)f(umxm~la-l), 07) dx 
i 

=u -‘PG--pL+v)~j~nP (a(m)-’ (Ad(um)uj)f(x), u,*) dx, 
i 

(8.3) 

the latter equality following from the change of variables umxm-‘a-’ + x. 
In turn, since (@ 0 i)” (e*) is a weight vector, (8.3) must be an exponen- 
tiated weight (as a function of urn) times 

Now let us put m = 1. Since Ad(u) acts on U(n) by sums of negative 
restricted roots, comparison of (8.3) and (8.4) shows that the restricted 
weight is of the form in (8.1). 

PROPOSITION 8.2. The restricted weight of any member of E* is 

3 -(PO - PL. + v) + ao, 

where a, denotes the smallest member of CG+ in the lexicographic ordering. 

ProoJ The restricted weights of E* are the negatives of those of E, 
which in turn are the sum of v with the restricted weights of (A”+‘u)*, 
since a” acts trivially on @,T+ y and a’ acts by v. Hence the restricted weights 
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of E* are the sum of - v and the restricted weights of A” + ‘u. We are thus 
to prove that the restricted weights of A,‘+‘u are 2 -(pG-pL)+ CI~. 

A basis of restricted weight vectors is given by all monomials 
x,, A .” A X&+,, where VI3 . . . . B., + l > isasetofs+l membersofd(u,h). 
One such monomial is X, A X,, where tl is any member of d(u, h) with 
ccxl L1 = a,; Proposition 4.2 shows that this has restricted weight 
-(pc- pL) + (x0. To get a different weight vector, one must drop some 
members of S, replacing them by roots PEA(u, h) with c/?I, >O, or one 
must replace u by some other root B with c/I (I > 0. The results of each of 
these operations do not decrease the restricted weight. Therefore 
- (pc - pL) + cxO is the lowest restricted weight. 

LEMMA 8.3. (ch i)” = 0. 

ProoJ: Assuming the contrary, fix an L-invariant irreducible direct sum- 
mand of E* on which (@ 0 i)” is not 0, and let e* be a weight vector under 
AB- with lowest possible restricted weight such that (@ 0 i)” (e*) # 0. Then 
(@ 0 i)” (Xe* ) = 0 for all XE 1 n ii, since Xe* has lower restricted weight. 
Since (@ 0 i)” is (L n R))-equivariant, X( (@ 0 i)” (e*)) = 0. Thus L n m fixes 
(@oi)” (e*). By Proposition 8.1, the restricted weight of (@oi)” (e*) is of 
the form 

with all n, k 0. On the other hand, the A-equivariance of (@o i)” implies 
that the restricted weight of e* is of this form, too. But this conclusion 
contradicts Proposition 8.2, and the lemma follows. 

THEOREM 8.4. acY=O. 

Proof: Assuming the contrary, choose F in C”(G/MAN, 5) with 
&Y’(F) # 0. Say &Y(F)(x) # 0 for some x E G. Then 

@(Y(x)-’ F)=e~ao5“(S?(x)p’ F)=~oY(~(x)~’ F)(l) 

=9(x)-l(&‘F)(l)=&‘F(x)#O 

shows Qi # 0. Changing notation, let us suppose that F is a member of 
C”(G/MAN, 5) with Q(F) # 0. 

Let U be the open image of iir in GJMAN. As 1 varies through L n K, the 
open sets 1U cover the compact set of cosets in G/MAN corresponding to 
L n K. Let I, U, . . . . 1,U be a finite subcover of this compact set, and let U’ 
be the open complement of this compact set. Then U’, I, U, . . . . I,U is an 
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open cover of G/MAN. Let cp’, cp,, . . . . cp, be a C” partition of unity 
subordinate to this open cover, so that 

F=cp’F+ c q*F, 
,= I 

with each summand in Coo(G/MAN, 6). Since cp’F vanishes in a 
neighborhood of the image of L n K in G/MAN, @(cp’F) = 0. Thus 

and we may assume by renumbering that @(cpi F) # 0. Consequently 

O#Ad*(l,)-’ (@(cp,F))=@W(~,)-’ (cp,F)). 

Here JZ’(I,)-’ (cp, F) is compactly supported in U, and thus 
T(Ii)-’ (qp,F)=i(f) for some f~C’,mo~(N, V”). Thus @oi(f)#O, and 
@o i# 0. Since our continuous duals separate points, it follows that 
(43 0 i)*r # 0, in contradiction to Lemma 8.3. 

9. EFFECT OF 6* 

The operator a* was defined in (1.7) and just afterward, and we take it 
now to be an operator 

a*: C’,“(G/L, @,“,,) + Co+ ‘(G/L, CT+,). 

In this section we prove that a* 0 Y = 0. The proof has much in common 
with 98. But there is one additional twist: the analogs of Propositions 8.1 
and 8.2, as well as the way they are used, are more complicated. 

We define E=@~+;.@(AS-lu)*, and we let @: C”(G/MAN, a) -+ E be 
the composition @ = e 0 a* 0 9, where e is evaluation at 1. Here a* 0 Y is 
G-equivariant, and e is L-equivariant; thus @ is L-equivariant. Again @ is 
continuous. The inclusion mapping 

i: Cc&(n, Vu) -+ Cm(G/MAN, 6) 

is unchanged from 98 and is MAB-equivariant. 

PROPOSITION 9.1. Suppose e* E E* is an AB- weight vector such that 
(@ 0 i)” (e*) # 0. Zf (0 0 i)” (e*) is ji’xed by L n N, then it is acted upon by 
A with a restricted weight of the form 

-hT-PL+V)- c n,4 n,20. (9.1) 
rs‘?; 
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Moreover, if C n,cc = 0, then it is acted upon by B- with a weight of the 
f orm 

-I.-26(unp)+ C 
ysd+(m,b-) 

(9.2) 

ProoJ: We argue as in Proposition 8.1, replacing a by a*, and (9.1) 
follows. Now suppose C n,a = 0. From (8.4) we see that all the uI that 
make a contribution must be scalars ci. In (8.3) let us write v* for C cju,*, 
and let us put a = 1. The result is 

m((@oV (e*))(f) = j _ (dm)-’ (f(x)), u*> dx. 
LnN 

It follows that the BP weight in question is a weight of the conjugate 5. 
Now fl has highest weight A+ 26(u n p), according to Proposition 3.1, and 
thus 5 has lowest weight -A - 26(u n p). Thus the B- weight in question 
is of the form (9.2). 

I%OPOSITION 9.2, The restricted weight of any member of E* is 

3 -(PG-PL+V). (9.3) 

Any member of E* of restricted weight -(pc-pL + v) that is a weight 
vector under B- has weight 

C-J”-2~(~nP)-B,lI,- (9.4) 

for some &Ed’(m, b-). 

ProojI The proof of (9.3) is an easy adaptation of the proof of Proposi- 
tion 8.2. Equality in (9.3) for a weight vector under B- corresponds to 
having a monomial Xp, A . . A XflY_, involving all members b, of S with 
cfljjla < 0 and all but one member /I, of S with cflJa = 0. Let the missing 
root be /IO; fl,, is positive since it contributes to u. 

Since E* z (C,“, “)* 0 A”- ‘u, the corresponding weight for this 
monomial is the sum of the weight of 1 in (a=,#,,)* and weight(X,)-/3,. 
By Proposition 4.6, the restriction of this weight to b ~ is 

[ - (A + 26(u)) + 2d(u n f) - PO] 1 b-, 

and this is just (9.4), by (1.1). 

LEMMA 9.3. (@ 0 i)” = 0. 
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Proof We begin with e* as in Lemma 8.3 and again see that L n N 
fixes (@joi)” (e*). By Proposition 9.1, the restricted weight of (@o i)*’ (e*) 
is of the form 

with all n, 2 0, and by Proposition 9.2 the restricted weight is 
2 -bG-PL+v). Therefore the restricted weight is equal to 
-(pc-pL+ v). Proposition 9.1 says that its weight under B- is of 
the form 

-I.-26(unp)+ 1 m,y II bk’ 
(9.5) 

jlEd+(III,b-) 

while Proposition 9.2 says that its weight under B- is of the form 

C-J-24unp)-Po11,-. (9.6) 

Since (9.5) and (9.6) are incompatible, the lemma follows. 

THEOREM 9.4. a*oY=O. 

Proof This is derived from Lemma 9.3 in the same way that 
Theorem 8.4 is derived from Lemma 8.3. 

10. OPERATOR 9 

Our goal in this section is to prove that when Y is followed by the 
quotient map of cocycles into cohomology, the image is not zero. The tool 
for the proof is an operator .c?? that carries C’,“(G/L, Cf+J into 
C”(G/K, V‘) and annihilates coboundaries; thus 9 is well defined on 
H’,“(G/L, CT+,). This operator was introduced by Schmid [25] in the case 
that rank G = rank K and L is a maximal torus, and later it was developed 
further by Wells and Wolf [35]. When G/K is Hermitian and suitable 
compatibility conditions are satisfied by complex structures, it is an 
instance of the Penrose transform described in [2]. 

The operator B is defined in terms of an operator P that can be seen to 
implement the Bott-Borel-Weil isomorphism in the direction 

H’,“(K/(L n K), CT) z V‘, 

where C: is the space of the one-dimensional representation of L n K 
with weight A +26(u) and where p is as in $3. Namely let (di> be an 

580/107/Z-7 
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orthonormal basis of VP, and let WC be the complex conjugate of w,; 
We is thus a nonzero element of A”(ii n I)*. To di we make correspond an 
(s, 0) form for the dual line bundle over K/(L n K), namely a function 

‘pi: K --+ (a=,” )* @ /f\“(U n f)* 

transforming under L n K on the right according to (CT)* @A”(ii n I)*, 
by means of the definition 

cp,W) = (PL(kM di)&. (10.1) 

If F is in C’%“(K/(L n K), @n# ), so that F is a function 

F:K+@#@A\“(unf)* 

transforming under L n K on the right according to C# @ A”(u n f)*, then 
F@q, is a function 

F@ cp,: K + /j\“(f/(l n f))* 

right-invariant under L n K. Thus F@ ‘pi is a volume form on K/(L n K). 
We define 

P: C’*“(K/(L n K), @f ) -+ V” (10.2a) 

(10.2b) 

PROPOSITION 10.1. The operator P in (10.2) is independent of the 
orthonormal basis I$;, is K-equivariant, and annihilates the image of 

8,: C”~“p ‘(K/(L n K), CT) + C’,‘(K/(Ln K), a=,“). 

Proof. It is straightforward to verify that P is independent of {di} and 
is K-equivariant. Suppose F = a,f for some 

fE Co,“- ‘(K/(L n K), Cc,?). 

We shall use Stokes’ Theorem to prove that IKIcLnKJ (F@qi) = 0 for all i. 
Thus introduce the deRham d, and the operator aK with dK = aK + a,. 
(See [34, Chapter I].) Now f@q, is an (s, s- 1) form on K/(Ln K), and 
so aK of it is 0. By Stokes’ Theorem 
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In terms of operators aK on bundle-valued forms, the product rule for 8, 
gives 

o=J W(LnK) (FBV~)+ (-1)x-l JK,cLn,, (foa,qi). 

Referring to (lO.l), we see that the coefficient of 0, in ‘pi is holomorphic 
(since E,(p(k)@, c$~) =0 for NE AC), and thus dKcpi=O. The proposition 
follows. 

Let R: K/(L n K) -+ G/L be the holomorphic map induced by inclusion, 
and let 

R*: C’+(G/L, ‘JZ,“,,) -+ C”xm(K/(L n K), @p) 

be the pullback. This amounts to restricting functions in 

WGIL, a=,#,,@ (Amu)*) 

from G to K and projecting their values from (A’%)* to (A”(unf))*. 
Since R is holomorphic, 

aKOp=pOa. (10.3) 

For FE C’,“(G/L, CF+ ,), we define the G-equivariant operator 9 with 

9: C”x”(G/L, @,“,,) -+ C”(G/K, V”) (10.4a) 

by 
.9F(x) = P(R*(Y(x)-’ F)), (10.4b) 

where 9 is the left regular representation. Recall from $3 that V” c VP and 
that the unit vector 4 is a highest weight vector for each. 

PROPOSITION 10.2. B annihilates the image of a. 

Prooj We have 

9’(@)(x) = P(R*(Y(x)~’ 8f)) = P(R*@Y(x)-‘f)) 

= P(&(R*Y(x)-‘f)) by (10.3) 

=o by Proposition 10.1. 

THEOREM 10.3. There exist nonzero constants c, and c2 such that 

(pon)f(x) =cl J (fw), 4) ~c(kM dk= ~2 j /4k)(fb-k)) dk 
K K 

for all f E CT(GjMAN, 6) and all x E G. 
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Remark. The expression SK p(k)(f(xk)) dk is the Szego integral off, as 
used in [S], [21], and [1.5]. Thus the theorem gives a factorization of the 
Szego operator into 9’09’ under our standing equal real rank hypothesis. 

Proof. By G-equivariance we may take x = 1. Let c denote a nonzero 
constant whose value may change at each appearance. Then 

gyf(l) = f’(R*(yf)) 

=cP((Yf(.), 1 0~,)(100c)) with (.) in K 

=a j ;C 
(yf(k), 1 @e)(I.L(k)4> 4i)(lO~,O~c) 4; 

KILnK > 

=cc j 
,c 

(yf(k), l@u~>(~(k)d, 4i> dk 
> 

$i 
KILnK 

=C 
s 

Ak)(yf(kL 1 Oo.># dk. 
KILnK 

Now 

(yf(k), 1 Owz)4= j,,, (f&l), 4)(41)(1 @us), 1 Oo,)gl dl 

= s L n K (f&l), #)(I Ow,, n(l)-’ (1 Ow,))(b dl 

=C 
s 
LnK (fW),d) t(Wdt 

the last equality holding by Proposition 4.3. Substituting, we obtain 

g.'Yf(l)=jK,,nK-FInK (f&l ), 4 > Ak) ~(1) dl dk 

=c s (f(k), 4) AkMdk K 

in agreement with the first assertion of the theorem. 
For the second assertion, let us introduce, for each u E VW, the member 

f, of C”(G/MAN, a) given by 

f,(k) = P,Mk)-’ ~1, (10.5) 
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where P, is the orthogonal projection of VP on V”. Let { I)~} be an 
orthonormal basis of the subspace V”. For any UE P, we have 

= s K (f(k), d>(d, Ak)-’ 0) dk 

= I K (f(k), 4)(&f,(k)) dk 
= s K (f(k), d)(f,(kL 4) dk. 

For each m E M, this expression is 

= s K (f(kmL i>Udkm), 4) dk 

= s K (f(k), WM>(f,(k), o(mM> dk 

and therefore it is equal to the average 

= 
SI K M (f(k), 4W>(fM dmM> dm dk 

= -& jK (f(k), f,(k) > dk by Schur orthogonality 

=& jK (f(k), Pc&-’ 0) dk 

=&I, <Ak)f(k), v> dk. 

Since UE V” is arbitrary, 

and the theorem follows. 
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COROLLARY 10.4. The image qf Y is nonzero when regarded as in 
H’z”(G/L, CT+ ,,). 

Proof. Proposition 10.2 says that 9 descends to an operator on 
H’,“(G/L, @,“,“). It is therefore enough to prove that 80 Y #O. In fact, we 
show that gL?f#( 1) # 0, where f4 is the function in (10.5) with v = 4. 
According to Theorem 10.3, 

Thus 

11. EXISTENCE OF SPECIAL ORDERINGS 

In the course of defining d + in $1, we assumed that we were given a 
positive system for d(I, h) and an ordered sequence CI,, . . . . a, from 
AU,b) n 4, that were compatible in a sense defined at the end of $1. We 
address existence of compatible d + (I, h) and aI, . . . . a( in this section. 

Actually the existence by itself is easy to prove. First let us prove that 
there exists a strongly orthogonal sequence a,, . . . . a, in d(I, h) n A,,, with 
c: = i R(E, + E- %,) @ a; maximal abelian in I, n po. If G and K have equal 
rank, such a sequence a,, . . . . a, exists as a consequence of results of [ 15, $41 
applied to L in place of G. If G and K have unequal rank, let 1; be the cen- 
tralizer in I, of a;, and let l;l be the orthogonal complement of ab in 1; 
relative to the Killing form C of go. The corresponding analytic subgroup 
L” is reductive and has B as a compact Cartan subgroup. Moreover, the 
root system A(l”, 6) is just A(1 , h) n A,. This construction reduces matters 
to the equal rank case settled above. 

To complete the proof that compatibility can be achieved, we work with 
the sequence a,, . . . . a, just constructed (without renumbering it), and we 
construct a compatible A +(I, h). To do so, let H,,, . . . . H, be an orthogonal 
basis of ib; , and let H,,, . . . . H,, be an orthogonal basis of ah. We define 
A + (I, h) via the lexicographic ordering relative to the basis 

H, ,, . . . . HP,, Hz,, . ..> H,,, ff;,,, -..> H,( (11.1) 
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of ib0@ a;. Then the aj are positive, and it is easy to see that (iii) holds in 
$1. Moreover, 8 preserves positivity, since ah comes last. Hence d +(I, h) 
and a, , . . . . ~1, together have all the desired properties. 

This completes the proof that compatibility can be achieved. However, it 
is reasonable to demand more. The philosophy suggested in the introduc- 
tion was that Y, when regarded as a map into cohomology, should induce 
an isomorphism of the derived functor module A,(,?) with the cohomology. 
For this purpose, our parameters should be set up so that A,(A) is 
obviously a quotient of the domain of Y. Thus it is natural to demand that 
our nonunitary principal series representation have the real part of its A 
parameter pL + v dominant for CG, so that the Langlands theory [ 191 is 
applicable. Actually v is orthogonal to C,+, as we saw in the proof of 
Proposition 5.2, so that it is the C,+ dominance of pL that is at issue. The 
proposition below says that this dominance can be achieved along with 
everything else. 

PROPOSITION 11.1. Let GL~,..., a, be a strongly orthogonal sequence in 
AK 6) n A,,” with Cf=, R(E, + E-J@ ah maximal abelian in I, n pO. Then 
cz,, . . . . CC, can be renumbered in such a way that the new A+(I, Ij) and the 
renumbered a’s are still compatible and the renumbered u’s, together with a 
suitable basis of (a&)*, make pL dominant relative to Zz. 

Of course, any renumbering of c(i) . . . . tl, still results in a compatible 
A + (I, h) and sequence. Before coming to the proof that pL can be made 
.Zs-dominant, we introduce the renumbering and make a definition to 
simplify the notation. Let our given collection of 1 roots be {a}. Enumerate 
these roots inductively as follows: If c(~, . . . . ajp, have been defined, let aj be 
one of the remaining a’s for which 

c (81 a> (11.2) 
<p,ci1>= “’ = (fi,z,-,>=o 

<P.~)>O.B~dU,h) 

is a maximum. For /I E A(1, h), let /3, = (/I, aj). All sums that appear below 
are sums over all j? E A(1, h) with the indicated properties. 

LEMMA 11.2. For 1 GjGl-1, 

c Pj 2 C Bj+ 1. 

s, > 0 8,+1>0 
p,= =p ,-,= 0 p,= =p,=o 

Proof: All sums in this proof are over all /?E A(1, h) with /?, = . . . = 
/Iji- i = 0 and with the indicated properties. Let s,, denote the reflection in 
aj. We have 
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a:0 Pia C fij+l by maximality of ( 11.2) 
&+I 2-0 

= C ((B,a,j+I>+(sa,P,a,+I>)+ 1 Bj+I 

!$+I>0 P,,,I>O 
L$ > 0 P, = 0 

=2 C Bj+l+ C Pj+I 

P,,I>O P,+,>O 

0, > 0 P, = 0 

3 C Pj+l- 

/$+I>0 
8, = 0 

LEMMA 11.3. For 16 j<l, 

2(c-1PL.,Mj)= C 13,, 
L$ > 0 

B,=. =&,=O 

(11.3) 

so that (c-lpL,aj)k(c-‘pL,a,+l)for ldjdl-1. 

Proof: The second conclusion follows from (11.3) and Lemma 11.2. 
Thus we are to prove (11.3). We have 

W’p,= i 1 p mod a’* 
i=l /3r > 0 

j3,= =/j(-I=o 

and therefore 

2(C-'P,, aj)= i <lL aj> 

,=I Pt > 0 
jj,= =p ,-,= 0 

j- 1 

=c c t(P+s&aj>+ C <Pv aj>. 

i=l Bi>O P,> 0 
p,= =&,=O p,= =p,-i=o 

The first sum on the right is 0 term by term, and the lemma follows. 

Proof of Proposition 11.1. Once we have fully defined (cd)+, we are to 
prove that (c-‘p,, fi)aO for all b in c-‘(cd)+. This is automatic for 
fl E A(I, b) since pL is known to be Zl-dominant. Thus we may assume fl 
is in A(g, h) and is not in A(1, Ij). Also /3 is in c-‘(cd)‘. 

Let us write B =/I- + b,,, +/?,, in obvious notation. First we show 
Pb- #O. In fact, suppose p is in A(u, h) and fl,- =O. The Weyl group 
element s 2,, . . . . s,, leaves u stable, and so does 8. But the composition maps 
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/? to -/?, contradiction. So a E d(u, h) and pb- = 0 is impossible. Similarly 
BE d(ii, h) and /?,- =0 is impossible. Hence Pb- #O. 

If /I,,,, + /?,, = 0, then (e’p,, p) = 0. So we may assume a,,, + fl,, # 0. 
We show that p,,, = 0 or fi,, = 0. The vector [X,, 0X,] is in p and, if not 
0, is a root vector for c(2B,-), which corresponds to m. Since m n p = 0, we 
conclude that 2Bbm is not a root. Thus 

a- + BY + Bd, A- - Bw - Bd> 

is > 0. Suppose /?,,, # 0. Then 

(11.4) 

(B,- + Bw + B,,, P,- + Bw - B,, > 

must be strictly larger than (11.4) and hence must be > 0. It follows that 
the difference of the two members of the latter inner product is a root or 
is 0. But the difference cannot be a root, since no root vanishes on b. Thus 
it is 0, and J?,, = 0. We conclude that /I,,, = 0 or /?,, = 0. 

Suppose fi,, = 0, so that /? = fi,- + Bb,,. If (11.4) is > 0, then the difference 
of the two members of the inner product, namely 28,., is a root. We saw 
above that a root vanishing on b- has to be in d(I, h). Now /?,,, + /?,- are 
both positive for c-‘(cd)+, and hence so is 2/3,.. Since 28,. is in d(1, h), 
(cc’p,, 2&..) 30. Thus 

(cc& p> = +(c-lpL, 2&.,) 20. 

Therefore we may assume that (11.4) is 0. In this case, it follows that 

l&,.12= IM&12= 4 IPI’. (11.5) 

For such a 8, we can write 

p=c1a, + . . . + c,a, + p,. 

with ci= (p, ai)/lai12. From Parseval’s equality and (11.5) we obtain 

2=x 
4(A ai)* 

IPI’ bi12 ’ 
(11.6) 

It follows that at most two ci are nonzero. If just one ci is #O, then 
p,,, = ciai forces ci > 0, and we have 

(C’p,, 8) = ci(c-‘p., ai) >O. 

If two terms are nonzero, say ci and c, with i < j, then (11.6) forces 

fib., = iai + +a,. 
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Then 

and this is 20 by Lemma 11.3. 
We are left with the roots such that /IbS, = 0. To handle them, we need to 

specify the promised adjustment to the part of the basis (11.1) that lies in 
ah. Our renumbered H,, , . . . . H,,, followed by the elements H,,, . . . . H,, of 
(1 l.l), define one system of positive restricted roots for G, though not our 
final one. Let p0 be the (a’)* component of c-lpL for this system. If p,, # 0, 
let p1 = p0 and extend H,, to an orthogonal basis HP,, . . . . H,,, of a&; if 
p,,=O, let H pI, . . . . H,, be any orthogonal basis of a;. Then 

H a,, . . . . Ha,, H,,, . . . . HP,, H,,, . . . . H, 

defines our ultimate positive system c- ‘(c A) + and, by restriction, also 2:. 
The claim is that Zt is unchanged in passing to this new system. This 

is clear for roots nonvanishing on b”. For a root y that vanishes on b” but 
not a’, (y, pO) equals the inner product of y with c-’ of the old pL, and 
this is not 0. Thus the old sign of y forces the sign of (y, pO) to be the 
same, and this forces the new sign of y to be the same. Hence Z,+ is 
unchanged. 

Finally we can return to our roots fl with /I,,, =O. It follows from the 
previous paragraph that such roots have 

and Proposition 11.1 follows. 

12. NONLINEAR GROUPS 

The main results of this paper remain valid, with only notational 
changes, for nonlinear groups. Thus let G be connected semisimple with 
finite center, and let q: G + G be a covering homomorphism to a linear 
group. Form R maximal compact in G, T a torus in $ and z the 
centralizer in G of T. If K= q(R) and T= q(F), then L = q(z). Since z is 
a centralizer, it contains the center of G, and it follows that G/Z 2 G/L. 
Thus G/l becomes a complex manifold as a consequence of the linear case. 
From a one-dimensional representation 5 of z, we can build our 
holomorphic line bundle and spaces of differential forms by means of the 
results of Tirao and Wolf [30]. 

The hypothesis of linearity entered in only two places after the initial 
construction-in the use of the Cayley transform and in the control of the 
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disconnectedness of M. Inspection of the proofs shows that the Cayley 
transform could always be regarded as an operation on the Lie algebra, so 
that linearity was not needed for the applicability of the Cayley transform. 

Controlling fi is trickier. Since 2 and A are connected, we find that 
fi= q-‘(M). With F as in (2.3), define P= q-‘(F). Then F:E& since 
Ad(p) fixes the Lie algebra of A. The critical facts are that 

and that 

l@=I@,F (12.1) 

P&L. (12.2) 

The group F need no longer be abelian. 
To prove (12.1), let fi E & be given, and write q(c) = m,f with m, E M,, 

and f l F. Since ~(fi~)=M,, choose &,~ii?,, with ~(&J=m,. Then 
q(G;‘fi)=f, #zi,‘ti==f~F, and fi =&yas required. 

To prove (12.2), let f be in F Then ~(7) is in L by (2.4). Since ~(2) = L, 
choose 7~ 2 with ~(7) = q(y). Then #‘T) = 1, T-7= Z is in the center of 
G, and T= z exhibits f as a member of l. 

Thus (12.1) and (12.2) are valid for the nonlinear case, and the results 
of the paper extend without difficulty. 

Note added in proof: After the submission of this paper, we learned of 
the 1992 Harvard Ph. D. dissertation of H.-W. Wong, which proves the 
Vogan-Zuckerman conjecture of the introduction when the inducing 
representation is finite-dimensional. This hypothesis is satisfied in the case 
under discussion in our paper. Wong’s proof is an extension of the methods 
of 1271 and [8] and does not give explicit formulas. Since our work 
appears to be helpful in such problems as understanding the unitarity of 
these representations from an analytic standpoint, his work and ours may 
be regarded as complementing each other. 
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