INTERTWINING OPERATORS FOR SL(n, R)

A. W. Knapp® and E. M. Stein®

In 1947 Bargmann [1] derived the list of the irreducible unitary repre-
sentations of the group G = SL(2,R) of real two-by-two matrices of
determinant one. For the most part, he grouped these into three series —
the principal series,! the discrete series,? and the complementary series. !
He showed that only the first two series are needed for the analysis of
Lz(G) and gave a number of formulas that can be interpreted [7] as the
Plancherel formula for G. The principal series representations were
realized in L? of the circle, and he observed that one representation of
that form was reducible, with the others irreducible. The inner product for
the complementary series was more subtle, and exhibiting it amounted to
the proof of the existence of complementary series.

Similar results — the Plancherel formula, an irreducibility criterion for
principal series, and conditions for existence of complementary series —
are now known for a wide class of groups. We shall give in this paper a
survey of these results in the context of G = SL(n,R), the group of real
n-by-n matrices of determinant one. Our survey is intended as an illustra-
tion of the use of an analytical tool, the theory of intertwining operators.
The intertwining operators, developed in [10, 12-15, 18] give complete in-

formation about reducibility of principal series and provide an inner product

*Preparation of this paper was supported by grants from the National Science
Foundation and the Institute for Advanced Study.

lBargmann used the term ‘‘continuous series outside the exceptional interval’’
for the principal series. ‘““The exceptional interval’’ refers to the complementary
series.

2Discrete series now refers to irreducible representations whose matrix coeffi-
cients are square integrable. Bargmann allowed as well two other representations
in his ‘‘discrete series.’’
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giving existence of some complementary series. It is not known whether
the list of complementary series they produce is complete. For the
Plancherel formula, which was proved by Harish-Chandra in a long series
of papers ending with [8, 9], the intertwining operators make the Plancherel
measure more explicit.

Our program will be to develop the intertwining operators for SL(2,R),
combine these operators suitably to handle a special case in SL(n, R),
and then use the special case to handle the general case. Finally, we
shall turn our attention to the three problems we have mentioned, obtain-
ing explicit results for each. A last section of the paper contains com-
ments about a wider class of groups than SL(n,R).

We should caution that a number of results about SL(n, R) can be
obtained by various methods that have a different scope. Typical illus-
trations of these approaches are the attacks on the irreducibility question
by Gelfand and Graev [3], Zelobenko [22], and Wallach [20]. For the most

part, we shall avoid these other methods.

1. Operators for SL(2,R)

For G = SL(2,R), the principal series is indexed by a two-element
set and a real parameter, so by pairs (4, it) with t in R. We give three
realizations.

In the noncompact picture, the Hilbert space is L2R). If g= (2 z)
and if f is in L2(R), the representations U(+,it,-) and U(—,it,-)
are given by

U(+, it, @) f(x) = |_bmd1-1-1tf(m<‘c

—bx+d

U(—, it, g) f(x) = sgn(—bx+d)|—bx+dl~ -ltf(ax’;d)

All of these are unitary, and all are irreducible except U(-,0,:), which

is reducible and splits into two inequivalent irreducible pieces.
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For the induced picture, we introduce the subgroups

M:(E 0)’ A:(r 0 1)’ N:(l y), V=(1 0), K:( cos @ sinﬁ)’
0 ¢ () fem 0 1 % il —sin @ cos@

where e=+1 and r>0. Fix (#,it). Let the two characters of the two-
element group M be defined by o (m)=1 and o_(m)=¢ if m= (E 0).

= €
The space of the induced representation is

{f:G - C| f(x man) = r_l_itoi(m)_lf(x)} ;

Since every g in G decomposes as g = kan, according to the Iwasawa
decomposition,® f is determined by its restriction to K. The norm on f

is taken as
£ = €1l

and the representation is U(g) f(x) = f(g_lx). Restriction from G to V
provides a mapping that shows the induced picture and the noncompact
picture are equi\.ralf':nt.4

In the compact picture, the induced picture is merely restricted to K.
The space is the space of L2 functions on K with f(km) = o (m)~ (k)
and with the L2 norm. The space is independent of t, and the formula
for the group action makes sense with it replaced by a complex parameter
z, except that the representations U(%,z,-) are not necessarily unitary.
As z varies, the operators U(*, z, g) act in the same space and vary
analytically in z. We speak of the nonunitary principal series.

The other irreducible unitary representations occurring in the Plancherel
formula are those of the discrete series, denoted D} and Do with n> 2.
We shall not write down their exact form, but give certain facts about them.

(D D;GB D_" is a subrepresentation of U(+,n-1,:) if n is even and

of U(—,n-1,-) if n is odd. (This imbedding is done rigorously

3Gram-Schmidt decomposition in this group.

4This equivalence is a scalar multiple of a unitary operator if the measure on
V is taken as Lebesgue measure dx.
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in the compact picture and is understood as just an imbedding of
the infinitesimal action of G on those Hilbert space elements
that transform under K within a finite-dimensional subspace. It
is not a unitary imbedding.)

(2) When we try to extend representations from SL(2,R) to SLi(Z,R)S
without enlarging the space, say be defining U(é _(1)) , we can
extend the principal series but not individual discrete series. How-
ever, we can extend D = D‘l*_'lﬂ? D;. The representations D of
SLi(Z,R) comprise the discrete series of SLi(Q, R).

Now we can state the Plancherel formula for G. If U(g) is an irre-

ducible representation and F is a sufficiently nice function on G, let
U(F) = [ F(2)U(g)dg. Then

IFIZ = S, d,IDE@®IZs + IDFEES)

n=2

(=] 00

+f 1|U(+,it,F)I1f{Sp+(it)dt+f lIU(—.it,F)[|EISp_(it)dt,

where HS denotes Hilbert-Schmidt norm and }dn, p+(it)dt, p_(it)dt] is
the Plancherel measure. To give the Plancherel measure, we fix a normali-
zation of Haar measure on G. Namely write

cosf, sin 61 eS 0 cos 62 sin 02

g = )
. _s .
—511161 cos(; 0 e —sm62 cosfl,

with 0< 60, < 27, 0< 6, < 2n, 0< s <. Then

dg - Z;_z (€25 —e25)d9, ds df,

SThe group of 2-by-2 real matrices of determinant o= e
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is a Haar measure. The number d_ can be computed from the formula [6]

+
d;t = |1f|i_4f (D (@)1, £)]* dg
G

with the aid of the explicit form of Di, and the result is that d, = %—(n—l).
We shall return to p, and p_ presently.

We come to the intertwining operators. It follows from Bargmann’s
classification that U(%,it,-) is equivalent with U(#, —it, ). Formally

the operator given in the induced picture by

Alw, *, it) f(x) = f f(xwv)dv ,

v

0 1
-1 0

implements this equivalence. However, this integral is divergent, and it

with w= ( ) and f in the space of the induced representation,6

is necessary to proceed with care. To see the problem, one can compute
A(w, *,it) in the noncompact picture. After a change of variables, the
formula is

: B & f(x—y) ciy
Alw,+,it) (%) = £ Ft—

A(w,-—,it)f(x):f f(_fo")flg—;’tﬁ’E!.
i ly

=
These integrals are convergent if it is replaced by z and if Re z > 0.
Thus the idea is to work with the nonunitary principal series and do an
analytic continuation to get the intertwining operator. In order to avoid
technical problems, it is helpful to work in the compact picture, carrying

over the formal operator from the induced picture.

6We use the normalization that dv is Lebesgue measure. See footnote 4.
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THEOREM 1. In the compact picture, A(w,*,z)f is convergent for { in
C™ if Re z> 0 and extends to a meromorphic function in the z-plane
whose only singularities are at most simple poles at the nonpositive

integers. Moreover,
U(t; —Z, -)A(W, t: Z) = A(W,i, Z)U(i, z, )

as an identity of meromorphic functions. On trigonometric polynomials
A(w,+,2)* = Aw™1,+,Z) . (1.1

Formally the operator A(w,+, it) is just fractional integration of

order it. In terms of Fourier transforms’ on the line, it is well known that

(Aw, +,it)£) €) = y, (€7 ,

where
1

y,@ - T(3)/ G (r58)

See [19, p. 73]. Since A(w™l,+,it) = A(w, +,it), we expect that
A(w™1,+, —it) A(w, +, it) is the multiple v, (=it)y (it) of the identity
operator. Similarly we expect that A(w_l, —, —it) A(w, —, it) is the

multiple y_(—it)y_(it) of the identity, where
1

@ = D))

Simplifying the products of gamma functions and justifying matters by

using the compact picture, we arrive at the following result.

~ oo :
?Here the Fourier transform is given by f(f) = f emeff(x) dx.
—OO
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THEOREM 2. [n the compact picture
Aw™1,t,—2)A(w, +,2) = n,.(2)]
as identities of meromorphic functions, where

7,(2) = 27iz~! coth(—rmiz/2)
and
n_(2) = 2niz~! tanh (—riz/2) .

For future reference we note also that
T 152
@y ECzp=ie S 1.2

The connection between intertwining operators and the Plancherel
measure is given by the following theorem, which is of a general nature

and will have an analog in SL(n, R).
THEOREM 3. p4(it) = ‘1 qi{it)_l for real t. Consequently

p, (it) = gl—t tanh (7 t/2)
p_(it) = %—t coth(r t/2) .

This theorem can be proved in two steps, first by relating nt(z) with
the asymptotic behavior of certain entry functions of U(+,z,-) and second
by relating the asymptotic behavior with the Plancherel measure.

These intertwining operators will be combined in various ways in our
discussion of SL(n,R). We introduce normalized operators, partly as a

bookkeeping device, defining

@(w,t, Z) = yt(z)_lA(w,t,z) .
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The identity (1.1), in combination with Theorem 2 and the fact that Vi( z)
= yi(z), implies that

(i) Qw1+, -2)@(w,t,2)=1
(i) Qw,=*,2)*=Qw™ 1,4 %)

(iii) @(w,i,z) is unitary for z imaginary.

We have mentioned that only U(—,0,-) is reducible among the
U(#,it,-). For z=0, @(w,*,0) is unitary and intertwines U(%+,0, ")
with itself. In the case of o @(w, +,0) is scalar, whereas in the case
of o, &(w, —,0) is exactly the Hilbert transform and is not scalar. In
short, the intertwining operators we have constructed account for the only

reducibility that occurs. A similar fact will hold for SL(n, R).

2. Some parabolic subgroups in SL(n, R)

Following Gelfand and Graev [3], we introduce [n/2] + 1 series of
representations in G = SL(n,R), with several realizations for each. The
intertwining operators will exhibit the equivalence of the several realiza-
tions. Each series will consist of representations induced from a generalized
upper triangular subgroup, and we begin by defining the appropriate subgroups.

The parameter that points to the appropriate series will be called k,
with 0< k< [n/2]. Choose [ sothat 2k + f{=n. Let

[ —
=

o

— o
E *
*
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Members of M have k two-by-two blocks, each with determinant +1,

down the diagonal, followed by { diagonal entries €)1 1 En €qual to

n
+1. Members of N are the sum of the identity and matrices strictly upper

triangular relative to M. Let V = N' and let K be SO(n), the rotation
subgroup.

Let a, be the vector space of diagonal matrices of trace 0, and let

e be the linear functional on up that picks out the jt]'l diagonal entry.

For 1<j<k, let :
fj = j(ezj—1+ezj) :

Let a,, be the subspace of a; on which all the fj are 0, and let a

be the subspace for which ezjlil(H) = e2j(H) for 1< j<k. Then ap =
ay @®a. Define Ap, Ay, and A to be the groups of exponentials of
matrices in ap, Qs and a, respectively. For example,
|
I
0
Tk
A= I
g 2k+1
'n

Then M and A normalize N and members of M and A commute with
each other. Hence MAN is a group. The group MA is the group of all
elements that commute with each element of A.

The groups that arise in the case k=0, we shall single out by
attaching subscripts p.g This convention defines Mp, Np’ and Vp'
and it redefines Ap consistently. Put Ny = Np N M. Note that NP=NI\IM

and that M is the product of M  and the identity component M, of M.

p

8’].“iua subscript p is a vestige of the German J in the Cartan decomposition

g=*tep.
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The groups MAN are the basic groups we are concerned with, but we

also want some variants of them, and we shall use the linear functionals

f., 1<i<k, and e 2k+1< j< n, todefine these variants. To begin

ir
with, each nonzero difference of two of these linear functionals is called

a root, or root of a, and we associate a subgroup of N or V to each.

th

Let E‘ij be the matrix that is 1 in the i-j entry and 0 elsewhere.

Define subgroups by

Nf_[ = I+RE2

+ RE
i~ 1

i1 o 2i,2j—1 + REgj_1 25 + REyj 5

Nfl_'ej = I+ REZi—l,j + RE2i,]

Nei_fj =TI+ REi,Zj—l + RE].,Q]

Nei“ejz I+ RE‘,ij
If L is aroot, the dimension of N, is called the multiplicity of L. We
associate a variant of N to each of the (k+/)! enumerations of the k+/
linear functionals f;, 1< i<k, and e, 2k+1< j< n. Fix such an
enumeration, and adopt the convention that a functional minus a functional
farther along in the list is a positive root. The remaining roots are the

negative roots. With N; defined above when L is a root, let

No= [T N -

L =root
L>0

(If the functionals are enumerated in the original order, NG is N. If they
are in reverse order, N, is V. There are (k+[)! — 2 other possibilities.)
We shall be concerned with all the groups MAN, constructed this way.?
Write V, for N(t)r.

gThese are some of the subgroups of G that are called parabolic in the
literature, In fact, these are exactly all the parabolic subgroups with reductive
part MA.
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3. Formal Intertwining Operators

Fix one of the groups P, = MAN, constructed in the previous section.
The series of representations of G that goes with P, is parametrized by
(£,)), where

¢ = irreducible discrete series representation of M on Hilbert

space H‘f

A= e‘}‘L = character of A, not necessarily unitary.

Here we can regard A as a complex-valued real-linear functional on a.

To describe & more explicitly, let m in M be written as
= e M €y 95 7€)

where the mj’s are the SLi(Z, R) blocks comprising the top part of M.

Then!?
&(m) =( 11 sj) Dy (m;)@ @Dy (my) . 3.1)

certain j

Let p(a) be the positive number by which Lebesgue measure on N is
multiplied when N, is conjugated by A, so that p is a certain positive
character of A. (If ile is the set of positive roots defining N, and n;
is the multiplicity (1,2 or 4) of Lj, then pu = exp (anLj).)

In the induced picture the space for the representation Upo(f,,\, -) is

{£:G - HE|f(x many) = u(a)™ % A@)~ 2ém) ! ()}

with norm
T

where Haar measure for K has total mass one. The group action is
Up €, 0)f(x) = g7 ) .
0

The representation is unitary if A is unitary.

1c‘]i:cp.zzaticm (3.1) gives an irreducible f if n > 2k. However, if n = 2k, §
is the sum of two inequivalent discrete series. An exact parametrization of the
irreducible &’s will be given in Section 6.
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The compact picture is the restriction of the induced picture to K,
and the noncompact picture is the restriction of the induced picture to Vo-
Gelfand and Graev [3] describe the noncompact picture more explicitly.

Let P, = MAN; and P, = MAN, with the same MA. For f in the

space of U ,A,+) in the induced picture, we consider
P.
1

A(P, : P, (EN(x) = f f(xv)dv ,

VIﬂN2

where dv is Lebesgue measure (Haar measure) in the coordinates on
Vi N N,. As with SL(2,R), there are convergence problems, but at least

on a formal level we have

UP2(§,)\,-)A(P2 ‘P iEiA) = AR, P &N Up (€A, -

4. Special case, k=10

In this section we assume that k = 0, and we drop the subscripts p
to simplify notation. M is now finite abelian of order 209=1 " The irreduci-
ble representations of M are one-dimensional, and we use ¢ for a typi-
cal one (instead of &).

One special feature of this situation is that the n! possible choices
for N, are all conjugate within G. In fact, let M" be the normalizer of
A in K. Members of M° have one *1 in each row and column, and 0’s
elsewhere. A member of M" conjugates an ND to an N;, leaving N
stable if and only if it is in M. The group M/M is the full symmetric
group on n letters and permutes the N,’s simply transitively. It acts

also by permuting the e;’s, and the permutation that maps N, to N is

1

exactly the one that restores the ordering of the e;’s to the natural one.
Thus let P = MAN and let P =MAN) = w~'Pw with w in M. We
investigate A(PD :P:o:)). This operator is not given by a convolution

integral in the noncompact picture as it stands. However, let us introduce
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R(w) f(x) = f(xw); R(w) intertwines Up (0,4, -) with Up(wa, wA, ),

0
where wo(m) = o(w~!mw), wA(a) = A(w 'aw). Thus we expect

Ap(w,0,A) = Rw)A(F,:P:o:})

to intertwine Up (g, A, ) with Up(wo, wA, -), and this operator is given

by a convolution integral in the noncompact picture. 0 0 -1
For example, in SL(3,R) with ¢ trivialand w=| 0 -1 0],
-1 0 O

we pass to the noncompact picture and make a change of variables to find

f on V maps to the function of vy eV given by

1

= & xlz'_1+51| _1+52f 2 g .
|z| xy—2z| Vol x x dy dz .
Y MBS0 IS z vy 1

This is essentially a convolution, but the singularity of the kernel is not
limited to a single point. On the face of it, the problem of analytic con-
tinuation of this integral would seem to be much harder than the problem
in SL(2,R).

However, even in SL(n,R), the problem reduces to the case of
SL(2,R). First, if w as a permutation is a consecutive transposition
(i i+1), the operator Ap(w,0,A) is an SL(Z2,R) operator in disguise. To
understand matters, we write out Ap(w, o,)\)f(vo) in the noncompact

2 s

picture,11 decomposing v, as a product v, = Vova, where v, is 0 in
the (i+1, i)th entry and vy is 0 in all off-diagonal entries but the

(i+1, i)th. If we regard v‘E] as fixed, then the operator is an SL(2, R)
operator for the imbedded subgroup in the ith and (i+1)3t rows and
columns. The ¢ and A for the subgroup are obtained by restriction.
Consequently the operators corresponding to consecutive transpositions

admit analytic continuations. For general w, decompose the permutation

11'1'0 pursue matters rigorously, one uses also the compact picture.
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as a product of consecutive transpositions in as short a fashion as possi-
ble and take the composition of the corresponding operators.'2 For
normalizing factors y we can use the corresponding product of SL(2,R)
factors. Put @P = y‘lAP. The result is that A is given unambiguously
by a convergent integral for certain A = e*’s and extends to a meromor-
phic function for A in C" 1. Also @ is unambiguously defined, is

meromorphic, and has the following properties.

THEOREM 4.
(i)  Up(wo,wA, -)ﬁp(w, o,A) = &p(w, o,A)Up(o,A, -)
(ii) @P(wlwz, o,A) = ('fp(wl, W0, wz?\)ﬂp(wz, o,A)
(iii) @p(w,0,A)* = Ap(w™!, wo, wA~1)

(iv) &P(w,o,z\) is unitary if A is unitary.

5. General Case, k Arbitrary

Return to the case of general k and to the notation of Sections 2-3.
Fix k and MA. It can happen that two choices of N, are not conjugate
within G, and consequently the intertwining operator A(P2 Py 21X
cannot be transformed into a convolution operator (in the noncompact
picture) in any evident way. A typical example occurs with SL(3,R), k=1,
when Pl = MAN and P, = MAV. The H‘f-valued function f on V = R?
is transformed as follows: If the image is evaluated at (é }1{) with x

in R?, the value is

2 & f dv .

tr

_3 .z [|lax-v|™ %(I+xvtr) 0 1 0
f | L+x-v]
0 sgn (1+x-v) v 1

veR?

This is not a convolution; in addition, the singularity of the kernel is one-
dimensional, and for any v £ 0, the behavior of the integrand in x

depends on the asymptotic behavior of &(m) as m - eo.

12Thi.s; scheme for reducing the problem has a long history, beginning with
Gelfand and Neumark |4, Chapter IIIi Ik[w s developed further by Kunze and
Stein [15 and completed by Schiffmann 181
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Despite these complications, there is a simple trick by which we can
handle such integrals. The two key facts are (1) the imbedding of discrete
series of SLi(Q, R) in the nonunitary principal series and (2) the double
induction formula for representations (induction in stages).

Recall from (3.1) that &(m) is built from various discrete series

Dy .(mj) of SLi(Z, R). Now M is essentially a direct sum of copies of
J

SLi{2, R) and it follows from the imbedding of discrete series for SL(2,R)
and SLt(Q, R) that & imbeds in

W = ind (a@:\Mﬁl) :

MPAMNM ™M

where Ay = Ap nM, Ny,-= Np N M, and

b=

k
Ay = 2 (N;=1)(ep5_1 — €5 -
=X

th

Moreover, if my; denotes the diagonal matrix with —1 in the i~ and
jth diagonal entries and +1 in the other diagonal entries, then
Nj .
U(ij—l,Zj) = (_1) £ lfjgk
o(mij)I""f(mij)’ k< i< )< .
Since € C w, the double induction formula says that
ind (Eeiel) C ind ind (0®KM®1)®)L®1)
MANOTG MANOTG MPAMNM ™M
= ind ind (e Ay ®1)el)
MAN( G (M_(AyA)NyNg) T MAN

"
MpAp(No)p G
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where (No)p = NyN,. Therefore Upo(f, A,-) is imbedded in the representa-
tion UMpAp(NO)p(G' /\M®’\» -), which is one of the representations of the
special case k = 0 considered in Section 4.

Correspondingly the intertwining operator A(P, :P, :£:A), which is
given formally by an integral over V; M N,, can be identified with a re-

striction of the special case intertwining operator
A 2 g
(MpAp(Nz)p MpAp(Nl)p i Ay®A) ,
which is given formally by an integral over
tr
(Nz)p n (Nz)p = VuVy n NyN, =V, n N,

Thus the convergence and analytic continuation of the formal intertwining
operator in the case of general k is reduced to the case k= 0. L

It is a consequence of formula (1.2) that we can normalize
A(P,:P,:£:)) by the same factor as the corresponding operator with

k=0 and arrive at the following conclusion, in which @ = y—lA.

THEOREM 5.

@) Upz(f,)t,-)@(Pzzplzg:z\)=@(P2:P1:5:A)UP1(§,A,-)

@) PP A = QB R E IR B o E0N)

@DAPP A =P P £

Sometimes it happens that N, and N, are conjugate. Let M" be

M times the normalizer of A in K, and let w be in M" N K. Suppose
P = MAN and P, = MAN, = w~1Pw. Then we can define

13'1'}115 reduction works if f transforms within a finite-dimensional space
under K. To make sense of part (i) of Theorem 5, we should multiply UP and
UP on each side by the projection on such a subspace.

2
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Ap(w,&,0) = RW)A(Py: P:£:A)

&p(w,f, A) = R(w)@(l:'@: P:£:0)

as in Section 4. Then &P(w,f,/\) intertwines Up(f,)t, -) and
UP(wf, wA, -), and we obtain a result similar in form to Theorem 4, but

with o replaced by &.

6. Plancherel Formula
From the work of Romm [17] and Harish-Chandra [9, Theorem 11], the
Plancherel formula for G = SL(n, R) takes the following general form:

[n/Z]
IF2= S S @@ f IUE, A, Pl3gre (A, 6.1
)

k=0&of M

where the outside sum index is the number of two-by-two blocks in M, &
is an irreducible discrete series representation of M with formal degree
d(&), e is a function on the complexification of the dual a” of a, and
Lebesgue measure dA on a’ is-suitably normalized. We deal with the
problem of making this formula totally explicit. The formulas of [9] would
reduce this problem for SL(n,R) to the cases n=2, 3, and 4. The
theory of intertwining operators, coupled with the results of [9], reduces
the problem for SL(n,R) immediately to the case n= 2.

Fix k. The first step is to parametrize the discrete series of M. Let
M, be the identity component of M, and let M* be the product of M,
and the center of M. If & is an irreducible discrete series of M, then
the restriction of & to M” is a sum fl‘B---EBfJ- of irreducible representa-
tions, and M/M” permutes the classes of the §i’s without fixed points.
Therefore é' is an induced representation, in fact is induced from any of
the fi’s. Now ¢&; is still irreducible on My, which is the direct sum of

k copies of SL(2,R), and so is determined by a tuple (N;,--,Ny) of
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SL(2,R) parameters!® (with each 1Nj| > 2), together with the restriction
of Ei to the center of M. Thus &; (and hence ¢) is determined by the

data
(Nl,"‘,Nk) and f(m2k+1 j) for 2k+2£j’§1’l‘

For 2k+2 < j< n, define

+1 i Emyy )= 1

-1 if f(m2k+1,j) = =I.

The quotient M/M” determines whether two sets of data lead to equiva-
lent &’s, and we arrive at the following criteria: If k< n/2, two sets
of data lead to equivalent £’s if and only if the tuples of sj’s are
identical and the tuples of Nj 's differ only by sign changes. If k= n/2,
two sets of data lead to equivalent &’s if and only if the tuples of Nj 's
differ by an even number of sign changes.

Apart from a normalization that we shall consider later, the numbers
d(£) are the products of the corresponding numbers for the SL(2,R)’s.

If £ has data (N5 N Soksqr 't Sp)s then

k
d(¢) = Const x H (1Nj| -1) .

i=1

To get at kg, we combine (1) Harish-Chandra’s theory that relates
asymptotics with the Plancherel measure and (2) identities that relate the
intertwining operators with asymptotics. The result is Theorem 6 below.

By Theorem 5
A@PE AR P £ eh) = gy (W

for a complex-valued meromorphic function Mp,&-

14Lei: us agree to associate the parameter Nj to D; and the parameter
— = j
Nj to DNj.



INTERTWINING OPERATORS FOR SL(n, R) 257
THEOREkm 6. If M has k two-by-two blocks, then
g (A) = Const(k)qp_gﬁﬁ)_l

for an explicitly given constant depending on k and the normalization of

Haar measure.

The bookkeeping necessary to compute 7 has been done by the
P p’é'

normalizing factors for the intertwining operators. Let & be imbedded in

A
ind (o®e Meol) .

MPAMNM M

The normalizing factors for the operators in the definition of Np,& are
the same as for suitable operators when k = 0, and these in turn are
products of SL(2,R) factors. The product expansion for the normalizing
factors yields a product expansion for p,& in terms of ., and n_,

and the result is
. 2(A +.-'\M,ei—e')
]
p,& \) = I I Hg(mij) —, (6.2)

2
i< 1ei_ei|

where H means that the factors corresponding to (i, j) = (2i" -1, 2i")
with i’ < k are omitted. The factors on the right side are of the form
q+(z) and n_(z) and are given in Theorem 2.

We can be more explicit. We know that

k
—%Elmpngkﬁ%ﬁ.

Let
- INjl -1
and

k n
A = 2 Ai(e2i—1+92i)+ E AJej

=1 i=2k+1
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We do not know ¢ completely but know that & (m) = o(m)l for m in the
center of M. Direct computation, even with this incomplete knowledge,
shows that all the tanh and coth factors arising from the n,’s and
n_’s cancel unless 2k<i<j.!®

We can now combine these computations with Theorems 6 and 2,
obtaining the Plancherel measure except for a factor depending on k. Let

Sokiq = +1. Then

k

d(f)ﬂ‘f(m) =cp H Nj H {(%(N; ~N3)2 + (Ai—:\j)2) (i— (N3 + NJf)z

§=1 i<j<k

i (Ai—!\j)z)}

1 552 2 tanh
i<k 2k<i<j
i>2k
(6.3)
with tanh if s;s:=+1 and coth if s.s.= —1.

1] 17]
To write down cj, we have to specify normalizations for Haar mea-

sures. On G = K(exp ap) Np, we use as a Haar measure

2p p(H)

dg = e dk dH dn ,

where

dk = on K has total mass one

dH on a, is Lebesgue measure when a_ has norm the square root

p
of the sum of the squares of the entries

dn on Np is Lebesgue measure in the coordinates

g in G is decomposed as g = k(expH)n in KApr

pp on a, is half the sum of the positive roots defining Np‘

lsThe cancellation occurs root-by-root. That is, it occurs in lots of 4 when
i< j< 2k and in lots of 2 when i<2k<j.
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To fix dA in the Plancherel formula, we normalize dH on a to be
Lebesgue measure when a is equipped with norm the square root of the
sum of the squares of the entries. Then we normalize dA on the dual a’

so that

f(0) = f f A gydH) dA  for £ in CZ_(a) .
a/

a

The constants contributing to c) are the constant of Theorem 6, the
constant contributing to d(£), and the coefficients 27 that were dropped
each time the factor 7, or 7_ appears in 7p & From Theorem 11 of

LR

[9] relating the Plancherel measure to ‘‘c-functions’’ and from Theorem 3

of [13] relating ‘‘c-functions’’ to intertwining operators, we find that the

constant of Theorem 6 is

Const (k) = (k!€!)~! f e~2PHM gy |

v

where p is half the sum of the positive roots defining N. (This is
different from Pp if k#0.) This integral is computed in [2] and [5]. If

e(z) = n_%l"(%) /o5 -

then
2 s+ [2<2p—p_,€:—€:>
feuzpl-l(v) dv = pz(0"—n)-k H o Pl

29

flei-—ej[z
v

with ]___[ as in formula (6.2).

In the expression for d(¢), Haar measure for SLi(Z, R) is to be
normalized in the same fashion as Haar measure for SL(n, R), and this is
different from the normalization in Section 1. The representation & of M

is induced from a representation 50 of the subgroup M*, and
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k
d¢o) = @rv) ™ [T w; .

i=1

To pass to M, we write M = M*F as a semidirect product with M*
normal. Each element of F has order 2. The normalized Haar measure
of M, restricted to M", is |F|™! times the normalized Haar measure
of M?. We find that

d¢) = |F|d¢&y) -

Here

ok it “k<n/o
|F| =
k-1 ¢ k_n/2.

Thus the contribution to ¢y from d(£) is

VD)%  if k<n/2
|Fl@nv2)yk =
Lav® i k=n2.

Finally, Theorem 2 says that a factor (27)™! must be included in i
for each n, or n_ that appears in 7y & and there are %(nz—n)—k
such factors.

We conclude that
1 if k< n/2

Cl = —(®-n)/2 x Q=2 2@k (n=21)1)~
if k= 11/2

b=

* c

» [2<2p—p,, e:—€:>
i< |ei_eil
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7. Reducibility Criterion

For each k with 0< k< [n/2], we shall use intertwining operators
to decide which of the representations Up(£,A,:) of G = SL(n,R) are
reducible when A is unitary. From the work of Gelfand and Graev [3], it
follows that UpL(£,A,:) splits into at most two irreducible pieces, neces-
sarily inequivalent. With a little extra work, one can decide when this
splitting actually occurs. However, we shall not follow this approach,
but shall use the general framework of intertwining operators.

Fix k. As in Section 5, let M° be M times the normalizer of A in
K. The quotient W(a) = M/M is called the Weyl group of a. It operates
on the class of & and on A. Namely if w is in M"NK, put

wé(m) = &wlmw) and wA(a) = A(wlaw) .

The wA and the class [wé] of wé depend only on the coset of w in
M”/M. The group W(a) is easily computed and can be regarded as all
permutations of the f;, 1< i<k, times all permutations of the e
2k< j< n.

Suppose [w&]=[£]. Then it is possible to extend & to a representa-

jr

tion of the smallest group containing M and w, with the extended repre-
sentation acting on the same space. That is, we can define &(w). This

b oot of unity if j is

definition is unique up to a scalar equal to a jt
the least positive integer such that wl isin M.

In this case the operator f(w)(fp(w,{-', A) satisfies
Up(fl W‘\-; )f(w)@:p(wf 6!)‘) = g(W)&P(W,é—, }‘-) Up(é:’)‘-, ') &

If also wA = A, then the operator f(w)@P(w,f,)t) commutes with
Up(£, ), ) and will exhibit Up(£,A,-) as reducible if the operator is not
scalar and if A is unitary. The operator f{w)&p(w,f,l) depends only
on the coset [w] of w in M/M.

It is easy to determine whether [w&]=[£]. Let us enlarge the

parameter set of [£] to include s,y ., = 1, writing it as
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(Nl it Nkl 52k+11"'!5n) ]

and let us admit
Ny s Ny =Spp0077 =Sp)

as a further equivalence. Then w acts as a permutation of the N,’s and
of the sj’s, and [wé€]=[£] if and only if the final parameter set is
equivalent with the original one.

For each [w] in W(a), one can show that the normalizing factor for
AP(w,f,h) is nowhere vanishing for A unitary. Let W‘f,;\o be the sub-
group of W(a) of elements [w] such that [wé]=[£] and WA = Ag-

Then we have the following result [14].

THEOREM 7. Let A, be unitary. The operators f(w)ﬁp(w,f,)\o) with

w in ‘Wé_- A such that the normalizing factor for AP(W,f,,\) is regular
)

at A =\, form a basis for the vector space of bounded linear operators

commuting with Up(f,}\o, .

Theorem 7 indicates a computation that will decide the reducibility
question, since the normalizing factors ultimately are products of SL(2,R)
normalizing factors. If [w] is Wé-,)\o and w does not act as the identity
permutation on the indices 1,-:+,k, it is not hard to see that the normal-
izing factor fails to be regular. Thus we may assume w acts only on the
Sj’s. For simplicity, assume A = 1. If [w] is written as a product of
consecutive transpositions in as short a fashion as possible, each factor
in the corresponding decomposition of &P(w,f, 1) will be the identity or
a Hilbert transform, and the condition of Theorem 7 is that all the factors
be Hilbert transforms. One can then work out that w must map the

parameter set
Ny, Nig» Sogqq07°5 Sp)

into

(Nl’.“'Nk’ F52k+11"'1 _Sn) .
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THEOREM 8. Let & have parameter set
(Nl’”" Nk; 52k+1,"':5n)

and let )‘O be unitary. If there exists a permutation p £ 1 of indices
2k+1,---,n such that 9(52k+1""’5n) = (=Sopp10 s —s,) and pA, = Ao
then UL(&€,M, ") is reducible and splits into two inequivalent irreducible
pieces. Otherwise UP((E,AO,-) is irreducible. In particular, reducibility
can occur only if £ =n — 2k is even and does occur when [ is even and

positive if ¢ and A, are suitably chosen.

8. Complementary series

The K-finite vectors for UP(f,A-, .) are the members f of the repre-
sentation space such that the span of Up(cf,)\, K)f is finite-dimensional.
Such vectors are dense in the representation space.

Informally Up(g, eA, -) is in the complementary series if A is not
purely imaginary and if there exists an inner product on the space of
K-finite vectors that makes Up(f, eA, -) unitary. The difficulty with this
definition is that UP(E, eA, x) need not leave stable the space of K-finite
vectors. We can repair the difficulty by using the infinitesimal representa-
tion of Up(£, eA, .), i.e., the corresponding representation of the Lie
algebra. Thus we say Up(f, eA, .) is in the complementary series if
there exists an inner product <-,-> on the K-finite vectors with respect

to which the infinitesimal representation is skew-Hermitian, i.e.,
<ULE, N X0 g> = —<f,ULE N, x>
P » € ’ g e ’ P ) e, g

for X in the Lie algebra.

If we assume that <f,g>= (Lf,g) for an operator L and the usual
L2 inner product (-,-) and if we take into account the identity
Up(f, eA, =X = UP(E, E_K, X), then we find the condition is that L be

positive definite Hermitian and satisfy
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Up@ e, 0L = LU ¢ N, ) .

This equation is satisfied if L is a suitable intertwining operator and A
is related suitably to —A. Namely, if w is in KNM, if [wf]=[£],
and if wA = —A, this equation holds with

L = éw)@p(w, ¢, e .

Moreover, this L is Hermitian if w, as a permutation, has order two. So
a sufficient condition for complementary series is that this L be positive
definite.

A technique for showing that L is positive definite is described in
detail in [11] and [12]. The idea is that a continuous family of nonsingular
Hermitian operators on a finite-dimensional space is everywhere positive
definite if it is somewhere positive definite. We shall introduce assump-
tions that make L equal to the identity (which is positive definite) at
A = 0. Because of the relations that intertwining operators satisfy, non-
singularity must persist until &p has a pole at A or —A. Information
about the poles of &P ultimately is largely a question about SL(2,R).

In order to make maximum use of this technique, we must find all per-
mutations [w] of order two such that [wé]=[£] and f(w)@p(w,f, 1) is
scalar. From [14] one knows each such permutation is a product of trans-
positions with the same property. For such a transposition [w], one can
prove that f(w)ﬁp(w,f, 1) is scalar if and only if Sw(j) = Sj for
2k < j<n if & has parameters (Ny, ) Ny,Sppeq 070 Sp)- Putting these
facts together and making the necessary computations, we arrive at the

following result.

THEOREM 9. Let & have parameter set (Ngy s Niy S5907° 98-
Suppose [w] is a permutation of order two such that [w€] = [£] and
Sw(j) = Sj for 2k < j< n. Then every complex A that is not purely

Imaginary and satisfies
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G wA=-A

(ii) |Re <—AJ—°32§ < 1 for every root a of a of the form a = f; — f,
<a,a> 1 J

<A,a

> 1
< = e
(iii) [Rem[ 3 for every root a of a of the form a = e €

is such that UP((f, eA, -) is in the complementary series.

9. Wider Class of Groups

Most of the results mentioned in this paper for SL(n,R) have generali-
zations to connected real semisimple Lie groups of matrices. The role of
SL(2,R) in Section 1 is played by groups of real-rank one. Convergence
for the intertwining integrals was handled by [15], analytic continuation
was obtained independently in [18] and [12], and the normalization was
done in [12]. The group that generalizes V is not always abelian, and
the Fourier transform is not an appropriate togl; instead, the normalizing
factors are constructed by means of Weierstrass canonical products.

For the general group, the representations that appear in the Plancherel
formula are induced from parabolic subgroups MAN. The representations
of MAN are assumed to be discrete series on M and unitary characters
on A. In particular, MAN plays no role unless M has discrete series
representations. The Plancherel formula is announced in [8] and [9].

The case k=0 in SL(n,R) corresponds to the case of a minimal
parabolic subgroup, in which M is compact. Schiffmann [18] realized
that the intertwining operators in this case satisfied some relations even
before normalization and exhibited them as compositions of real-rank-one
operators. The normalization is done in [12].

The theory for the nonminimal parabolics is in [13] and [14]. The re-
duction to the case of minimal parabolics is in [13]. See also [21]. In the
general case, theorems about reducibility appear in [14] and [10], and a
theorem about complementary series appears in [14]. In the general case,
the problem of deciding which intertwining operators are scalar and which
are linearly independent is less transparent, but is solved by a detailed

study of the group Wf N
o
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