INDEFINITE INTERTWINING OPERATORS II *
M. W. BALDONI - SILVA and A. W. KNAPP**

For an irreducible admissible representation of a semisimple Lie group,
there is at most one invariant Hermitian form (up to scalar multiples), hence
only one way the representation has a chance of being unitary. When such
a representation is realized concretely by means of the Langlands classifica-
tion [14, 13], this Hermitian form is given by an explicit intertwining opera-
tor [8]. Showing this operator is indefinite proves the representation cannot
be unitary.

In [1] we introduced a technique for showing this operator is indefinite
without actually computing the operator. The technique is based on an old
idea that has been used extensively by Klimyk, often in collaboration with
Gavrilik, for particular classical groups (see, e.g., [5]). It takes advantage
of the intertwining property of the operator to relate the behavior on
one subspace to that on another.

The scope of [1] was repeatedly limited by a certain multiplicity-one
assumption. We are now able to drop this assumption, and consequently
we can obtain significant generalizations of our earlier theorems.

The plan of the paper is as follows. In §1 we recall the technique of [1]
and show how to modify it to eliminate the multiplicity-one assumption.
In §2 we announce some general theorems that apply the modified techni-
que. While all the results of [1] concerned representations constructed from
maximal parabolic subgroups of semisimple groups, the new results give
information about representations constructed from many nonmaximal
parabolic subgroups. The proofs of these results are too long to include
now and will be given elsewhere.

To illustrate the power of our theorems, we state in §3 and prove in
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5 luglio 1984 dal Prof. A.W. Knapp.
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§8§4 -6 a complete classification of the irreducible unitary representations
of the groups SU(p, 2) of complex matrices of determinant one that preserve
a Hermitian form with p plus signs and 2 minus signs. In addition to our
theorems, this classification makes use of the techniques and results of [9],
irreducibility theorems of Speh and Vogan [16], results of Jakobsen [4] and
Enright-Howe-Wallach [2] on unitary representations that have highest
weight vectors, and a powerful theorem of Vogan [19] on preservation of
unitarity under cohomological induction. For the most part, the application
of our theorems works equally well for SU(p, q), as we shall see during the
argument.

We shall assume throughout the paper that our semisimple group has a
compact Cartan subgroup and that all noncompact roots are short. We have
preliminary results to indicate that both these assumptions are unimportant,
and we shall report on this matter on a later occazion.

1. BACKGROUND AND TECHNIQUE

Let G be a linear connected semisimple Lie group, let K be a maximal
compact subgroup. and let S = MAN be a parabolic subgroup whose sub-
group M possesses discrete series representations. We denote by U(S. o,»)
= U(S, o, v, - ) the induced representation

(1.1) UGS, 0,v)=ind{ (0 @€’ @),

where o is a discrete series or limit of discrete series representation of M on
a space V7 and v is a complex-valued linear functional on the Lie algebra
aof A. In (1.1.), the induction is normalized or «unitary» induction and G
is to act on the left. The space in which these representations act may be
regarded as a space of F°-valued square integrable functions on K that is
independent of ».

When Re v is in the open positive Weyl chamber relative to N (or when
Rev is on the edge of the chamber and an additional condition listed in
[12] is satisfied), U(S, o,») has a unique irreducible quotient J(S, g, v),
the Langlands quotient. It is known [14, 13, 8] that these representations
J(S, 0,v) exhaust the candidates for irreducible unitary representations,
even when o is limited to be nondegenerate in the sense of [13]. Moreover,
it is enough to decide which of them with » real-valued can be made unitary.

We assume that G has a compact Cartan subgroup B (with Lie algebrah)
and that all noncompact roots are short. Under just the first of these assump-
tions, there exists an element wg in K normalizing A such that Ad (wa) acts
as — 1 ona. This element has w0 = o for all 0 and w v = —7 for all real-
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-valued v. When » satisfies the conditions that make J(S, 0, v) exist uniquely,
then [13] shows that the existence of w in K normalizing A such that
Ad (w 2)|a =1, wo =0, and wv = —7 is equivalent with the existence of
a nonzero invariant Hermitian form on the K-finite vectors of J(S, o,v).
This form lifts to U(S, o, »). Apart from one difficulty when Re v'is on
the edge of the positive Weyl chamber, this form is necessarily given on
K-finite vectors by a multiple of the form

(1.2) (f.8)=(c(Ww)A4(w, 0,v)f, 82407

where o(w)AS(w, o,v) is the convergent integral intertwining operator
defined explicitly in equations (0.1) and (0.2) of [10]. The difficulty is
that the integral operator can have poles when Rev is on the edge of
the Weyl chamber, and the operator requires normalization to be well
defined. After it is so normalized, it intertwines U(S, o,v) and U(S, o, wp)
and depends holomorphically on » for Re » in the closure of the positive
Weyl chamber. For v satisfying wy = —7, the result is that J(S, a,») can
be made unitary if and only if the normalized version of (1.2) is semidefinite,
if and only if the normalized operator is semidefinite.

As we have said, it is enough to consider real-valued ». Then Wor =—7,
and the above considerations apply. We seek conditions on the real-valued
parameter » so that the normalized operator corresponding to W, is inde-
finite.

We begin as in [1]. To normalize the operator, we first fix a minimal
K-type 7, of U(v)= U(S, 0,v) with highest weight A in (ib)), ie., an
irreducible representation of K that occurs in U(v) |x and is minimal in
the sense of Vogan [17]. The intertwining operator is scalar on the Ty
subspace since T is known to have multiplicity one in U(v) and since K
acts by translations, and we normalize the intertwining operator so as to
be the identity on this K-type for all v. Let T(») be the normalized operator.
Then T'(») is known to be real analytic for » in the closure of the positive
Weyl chamber. Since T(») is positive definite on the T, Subspace, it will
follow that J(S, o,v) is not unitary whenever we can produce a K-type
7, such that 7'(¢) fails to be positive semidefinite on the T, Subspace.

We recall the technique of [1]. The intertwining identity satisfied by
T(v)is

(1.3) U=v,.X)T() =Tw) Uy, X) for X e g€,

where g is the Lie algebra of G. Let 7, be an irreducible representation of
1

K and define P, to be the projection of the induced space to the Ty

A 1

subspace:
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(1.4) P, J (ko) = dAl[ Xx,(K) f(k~ k) dk.
K

Here (:l__,‘l is the degree of TA], and xnl is the character. Also if & is any

scalar-valued function on K and w is an integral form on b, we let A
be the — w Fourier component of 4 under the action of B on the right:

h(k), =fh’(kb) £ (b) db,
B

where £  is the character of B corresponding to w.
Fix fo in the induced space to be a nonzero highest weight vector for
the minimal K-type 7,, fix w integral on b, and let u be in the representa-

tion space V° of o. Let Tap: e , T, be representations of K, let X, ..., X
be in g€, and form E
(1.5) a(v, k)= ((P:\n U(v, Xn)P),\N_1 - .PA]U(V. XD k), w,

the inner product being taken in V. If 7, has multiplicity one in U(»),
n
then T(v) acts as a scalar, say ¢(»), on the 7, subspace. Since T'(v) com-
n

mutes with each P, , it follows from (1.3) that
c(v)PAn U, Jox’ﬂ}PA72 4 -"P;\] U, X)) 5, :Pf‘n U(-v, Xﬂ)PAn_] -"PAI U(=»,X) L

Evaluating at k, taking the inner product with u, and projecting by w, we
obtain

(1.6) c(w) =al(—v, Kfalv, k),

provided the denominator is not identically zero. The expression a(v, k) does
not involve the intertwining operator, and we can conclude that J(S, o, ») is
not unitary whenever the right side of (1.6) can be shown to be negative.

This was the technique in [1], and we now modify it. Without assuming

7, is of multiplicity one, define
n

F(p)=( T{v)PA” U, X")PAH_] o .PA] U@, X)f,

B U(V’XH)PAH o .P‘,\1 U(V’Xll‘%)ﬁ(x,‘

Certainly J(S, o, v) fails to be unitary if F(») is negative. We use (1.3) to
commute T(¥) in so as to act on fyand then go away. Next we use the
adjoint relation

U, X)* = U(—v, —X)
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to move all the operators to the left member of the inner product. Then
we have

FO)= @B U(=v,—XDP, ...F

An

UC=n DR, .. B Vv XN 1)

—1U(_ v, _X")Pf‘n

LK)’

Let f be the left member of this inner product. Then [isin the 7, subspace
of the induced space. Moreover, if we define Pf to be the projection of f
according to the weight A, namely

Pf(k)=[f(b"1k)fﬁ(b) db,
B

then Pf is a weight vector of weight A in the 7, subspace. Since the minimal
K-type 7, has multiplicity one, Pf must be a multiple of f. Evaluating the
multiple by means of an inner product, we obtain

Pr=|4I2Fe) £

If v denotes a nonzero highest weight vector in an abstract representation
space V" of K of type 7, then f) is necessarily of the form

(1.7) fok) = A, (k) ',

for a unique operator 4 in HomKﬁM(V"‘, V9. Under natural conditions
that we shall impose on MAN and the positive system of roots, there exists
a special element u in V° with A*uy = v,.1 Define

b(v, k) =(P, U, i’_l)PAI B UG X)B

A
1.8 "
fi UG XY, ... B, UG, X) 0, up, .

(Notice that b(v, k) is a special case of the expression a(v, k) as defined in
(1.5)) On the one hand,

bw,by) =£,(b) b(v, 1)

for b, in B because we are taking the — A component in (1.8). Hence the
equality

! To be quite precise we must work with o# and M# as defined in §2 below and
take A in HumeM#(V’\, V'o%). This point is a small one for now, and we shall ignore

it until §2.
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<jf(b61k)£_,\(b0) dby 1ty ) =(—I}”fb{— v, b3 k), (by) db,
B 2 B

reducesat k = 1 to
(Bf(1), up), = (= 1)'b(=», 1).
On the other hand, Pf = | f, |"2F(») £, says
(PF(1), up, = | f 17 2F )1, ugd = | f | 2F @) Avg ug) = | £ 2F@) | v, |-

Thus F(») is a positive multiple of (—=1)"b(—», 1). We conclude that J(S, o, v)
cannot be made unitary if (— 1)"b(— v, 1) is negative.

2. GENERAL THEOREMS

In this section we shall give a lemma and four theorems for calculating
b(v, k) in (1.8) in a number of situations. The first two theorems are intended
for use in an inductive calculation, proceeding one step and two steps at
a time, respectively. The third theorem could perhaps be stated in an induc-
tive framework as well, but we prefer to state it more narrowly now. These
three results together are what are needed from our technique, apart from
theorems in [1], to classify the irreducible unitary representations of
SU(p, 2).

The final result in this section is of a different nature; it gives identities
for simplifying the formulas produced by the first three theorems. Its
significance will be explained in remarks at the end of the section.

We begin by fixing the orderings that we shall use. Let A = “'_\.(gl,f ,b%) be
the set of roots of g, and let Ay and A be the subsets of compact and non-
compact roots. If @ is a root, we normalize H_ in b€ and the root vectors
X{k and X__ as in [11]; for @ noncompact, this normalization is such that the
a Cayley transform & has &(X,_ + X_ ) = 2.

Fix a nonempty ordered set a;, ..., of noncompact roots that are
superorthogonal in the sense that no nontrivial linear combination of the
& is a root. Define

I
= RX +X L
a ; X, +X_,)

and use the lexicographic ordering from the ordered basis

Yoot e o s X e
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to define a notion of positivity. Using this a and this notion of positivity,
we can construct a parabolic subgroup MAN in the usual way, and MAN
will be cuspidal in the sense that rank M = rank (KN M). This kind of
parabolic subgroup will not be the most general cuspidal parabolic subgroup
in G, even after account is taken of the usual equivalences. For example,
a minimal parabolic subgroup of SO(4,4) is not of this kind. The most
general cuspidal parabolic subgroup would arise if the noncompact roots
&p .., 0 were assumed merely to be strongly orthogonal (no o oy in
A).

Let p be half the sum, with multiplicities counted, of the roots of (g,a)
that are positive relative to N.

Let b_ be the common kernel of the aj's inh. Then b_ is a compact
Cartan subalgebra of the Lie algebra m of M, and

&_={7€A|71af for all j}

may be regarded as the root system of (m® b%). It is known that our given
discrete series or limit ¢ of M is induced from a discrete series or limit o ¥ of
the subgroup M* = Mo ZM, the product of the identity component and
the center of M. Moreover, Lemma 2.1c of [13] implies that o® is determi-
ned by its Harish-Chandra parameter (Ays (A_)*) and its scalar value on each
element 'y“j = exp -.-era!_ of Z,. (Here we use the superorthogonality of
the af’s}.
Let X be the minimal (K N M ¥)-type of o given on b~ by

N=No=p. LD s

where p_ .and p_  are the respective half sums of the positive M-compact
and M-noncompact roots of A_. Following the procedure of [6], we intro-
duce a positive system A* containing (A )™ such that each o is simple for
AY. (Again we use the superorthogonality). If we set A =AY N Ag . then
[6] says that highest weights of the minimal K-types of U(v) = U(S, o, v) are
given by all AKT dominant expressions of the form

L (2p,, )
(2.1) AERS B e, o
2 7
i=1 ]“f|

Here py is half the sum of the members of A}, and u is given by E}f’z 151 %

1
with each 5 equal to + 3 a; or 0, depending on the value of 0 *(y, ). More-
7

over, at least one choice of the system of signs in u gives a A!; dominant A.
We fix such a choice of 4 and hence A.
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It is clear that A|,_=A, and the proof of the minimal K-type formula
shows that a highest weight vector for 7, is highest of type 7, for KN M,
and that the value of TA{')fa_) on a highest weight vector is the same as the

scalar value of a#(ya). If vy is a highest weight vector of 7, and 4 is a
7
member of HomKﬁM#( i 7°™), then it follows that Ay, is a multiple of

a \ highest weight vector uin 7% and that A*u is a multiple of v;,.
By double induction we identify U(») with

= G # v
(2.2) mdM#AN(o ee’'el),

and then we can identify the function fc of 81 with a function whose values
are in V7, rather than V°. We define 4 in HomKnM#(V", V"#) by (1.7),

and we normalize i, by the requirement
# —
A*uy=v,.

If u' is any integral form on b, we denote by (#')” the dominant integral
form on b to which u' is conjugate by the Weyl group of A,. Let p be the
— 1 eigenspace of the Cartan involution of g, and let «L1» refer to strong
orthogonality of roots.

LEMMA 2.1. Let ' be an integral form on b, and let § be a noncompact
root. Let A' = (¢')" and A" = (' + B)”. If v’ is a nonzero vector of weight
u' in 7,., then the projection

Y = EA»(U ® Xﬁ)

' . T v
ofve X in7, ep" to the 7, subspace is nonzero.

THEOREM 2.2. Fix an index r with 1 <r <, an integral form 4’ on b,
and a choice of a sign . Let A’ = (1) and A" = (¢’ + &))" Fix a nonzero
vector v’ of weight p' in Tty and for each », let B(r) be a member of
Homng’*(VA” V"#). Let f, be the member of the induced space given by

fi(k) = B@) 7, (k)" V',
Suppose that

(a) the only weight in 7, of the form p o + a; or o, —o; s u' itself,
(b) there exists a system A, C A generated by A™ simple roots such that
(i) o, ....0qareindy, and A, has real rank exactly [.
(ii) A" — A is an integral linear combination of roots in AEE

Let v” be the nonzero vector E,.(v'® X, ). Then
N T,
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i

= v
(1,0 ()~ 10", v") 4 (7, (k) 1w

EUC X0 g, o 608w,

3

where

2Au, o)
d@) =@ +9)X, +X__ )+ —_]_|_2_ =
r r o
3

—2#{BEN,|BLLay, ... o i B—(a)EA; W, B—(a))>0).

REMARKS. Assumption (b) is satisfied with Ay = A if MAN is a minimal
parabolic subgroup. The assumption should be regarded as an extension to the
current setting of the condition in Theorem 1 of [1] that the § * or 6~ subgroup
have real rank one. In fact, Theorem 1 of [1]is a special case of the present the-
orem if we substitute for d(v) from the equality (a) = (c) in Theorem 2.5 below.

Theorem 2.2 says that the » dependence in b(v, k) as defined in (1.8)
under suitable circumstances is a product of linear factors d(v), each coming
from a single step of the action of g€ on the representation space. A simple
way in which these circumstances can fail is when the theorem is to be
applied twice, first to pass from (u')” to (4’ + oz) and then to pass from
(' + o) to (u' + (I8, o cv} ; assumption (a) will fail at the second step if
u' + @, is conjugate to u' + &, by the Weyl group of Ay . Theorem 2.3
addresses this situation, giving a formula for the combined effect of the
two steps.

THEOREM 2.3. Fix roots ta, and +o with r#s and with the two
choices of sign not necessarﬂy the same, and fix an integral form p’ on b.
Suppose that u' + o and p'+ o, are conjugate by the Weyl group of AP
Let A'=()", A"=@' +oz) {.u ta)’, and A"=(@'ta ta)"
Fix a nonzero vector v’ of we;gh! i in 7,» and for each v, let B(V) be a
member of HomKﬁM#(V“, yo* ). Let fl be the member of the induced

space given by
£K) = B@)7, (k).
Suppose that

(a) the only weight in 7,, obtainable by adding or subtracting some & from
Mt oru'#ais ' itself,

(b) the only we:ghts in 7, obtainable from ' + @, + « by adding or sub-
tracting some a are M +a and p' + a,
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(c) there exists a system A, CA generated by AT simple roots such that
(i) @, ..., arein A, ., and A, has real rank exactly [
(ii) A'— A is an integral linear combination of roots in AL
(iii) A" — A is an integral linear combination of roots in Dy

Let v" be the nonzero vector E .. (E,.(v' ® X, ) ®X, ). Then
e L3

BoUG, X, VB U X, )0, 1,
(Tl\m(k)_ 1 AT Um)

e, |* £ k), ug),
= (d,(») d;(») + d,() d,(»)) ———— ,
(1 (k) 10, ')

':urta‘r

16
where
2, ta)
dl(v) =(v+ J6)(XCk 4 X_‘r )+ —
5 &

e |?

—2#{BEn,|BLLay, ..., a_;B—(2a)EA M ta,B—(xa))> 0}
d,®) =@ +P)X, +X_ )+
r f

—2#{Ben,|Bllay,...,a

r—

pB—(a)€EA (M ta,B—(xa))> 0}

2, £ o)
M= +PX, +X_ )+ —"
¥ r |ar]2
—2#{Bep,|BLllay,....a _;;B—(ta)EA K, B—(xa,))> 0}
2, +a)
4,0 = 0 +PIX, +X_, )+ e
5

—2#{EN,|BLLay,...,a ;B—(2a) €A, B— (£ a))> 0}.

Presumably Theorems 2.2 and 2.3 are the special cases m = 1 and m = 2
of some single theorem about taking m steps by m distinct ocj's, with all m
of the (u' +afj)'s conjugate. Such a result would be helpful in handling
SU(p, q) with g > 2, but for SU(p, 2) the two theorems above are sufficient.

Our third theorem deals with the effect of failing to take the second
step in Theorem 2.3 but instead returning to the starting point. We allow
a situation somewhat more general than just conjugacy of ,u'iocr with
u' o+ o, because the more general situation arises in SU(p, 2). We do not
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see well enough how this kind of result might be useful in an inductive
calculation and therefore make only the calculation required for (1.8),
with fz} as starting function.

THEOREM 2.4. Fix roots ta and +o with r#s5 and with the two
choices of sign not necessarily the same. Let A' = (A + @ )", and suppose
that A + « is a weight of multiplicity one in 7,:- Suppose that

(a) the only weights in 7, of the form A +o; or A—a; are A+a and

/
A+ o,
(b) there exists C > 0 such that the nonzero vector
V" = E:’\(E.’\'{UO S X: “‘r) exX_ (+ ar))
satisfies
v" = CE, (B, (vy® X, a:s) eX a:})’
(c) whenever § in A, is such that § 11 Qs o0 _g, B+ () EA, and

A —Bis a weight of 7., then (A, B + (2 o)) =0,

(d) there exists a system A C A generated by A" simple roots such that
() ay,...,q arein 4y, and A, has real rank exactly /
(ii) A" — A is an integral linear combination of roots in Dy

Then
(P, U, X_(Nr)}PA—U(P, X, ar}ﬂ](k}. Ugdp

o |*

X, +X_)?—chH+C WX, +X_ )2 —cHNr, ()", u",

where

_ 2(A, 2 )
=X, +X_ )+ ———

2
e |

—2#{Ben,|BLllay, ... a_;B—(xa)EA;A,B—(:a,))>0)
and where c_ is defined similarly.

THEOREM 2.5. For any integral form u', the following two expressions
are equal:

(a) p(X, +X__ )+
L 1
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—2#{Ben, [BLLey,....0 1B—(xa) €AW, B~ (+&))> 0}
2 + (2 o), )

2
JO‘;‘|

(b) - [E(X‘,;_ + X_aj) =

—2#{Ben,|Bllay, ..., 0 B+ (a)EN; (' +(xa), B +(x;))>0}].

Moreover, if u'is the parameter A of the minimal K-type, then both these
expressions are equal to

24, = a}.)

(c) 1+
[a;"z

+2#{Beny |BLLey,...,a ;B (2a)EA;(A,B— (+a,))=0).

REMARKS. The equality of (a) and (b) is a simple matter, but the equality
of these two expressions with (c) uses the minimal K-type formula and
various identities to relate p's. The significance of the result is as follows:
When (1.8) is calculated by iteration, one should expect each pair X; and
X to lead to one occurrence of (a) and one occurrence of (b). Wlth care
these expressions can then be related to (c), which is a local expression in
the sense of involving only simple roots that are close to (A o, in the
Dynkin diagram of A™. Expression (c) allows the possibility of matching
estimates for nonunitanty of representations related by cohomological
induction.

3. CLASSIFICATION FOR SU(p, 2)

In this section we shall state results that, in the light of [8], give a classifi-
cation of the irreducible unitary representations of SU(p, 2) for p = 3.
A number of the intermediate results are valid for all SU(p,q),p>=q, and
we begin by establishing notation in this more general context.

In SU(p, q) with p = q, K consists of matrices with nonzero entries only
in the upper left p-by-p block and lower right g-by-g block. We take
B to be the diagonal subgroup and let e; denote evaluation of the i™" diagonal
entry of a member of k. For 1 <i <gq, define

(3.1) l‘xi=eqr+f'_mep+q'+]—|f'

For each I with 1 </<¢q, we can construct as in §2 a parabolic subgroup
MAN from the superorthogonal set «,..., of noncompact roots. Together
with G itself, these g parabolic subgroups are the only ones needed for
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classification. According to the results collected in [8], the classification
is reduced to a routine bookkeeping question if one knows which represen-
tations J(MAN, 0,v) can be made unitary when MAN is as above, ¢ is a
discrete series or nondegenerate limit of discrete series, and v is a real-valued
parameter in the positive Weyl chamber such that J(MAN, o, v) is defined.
All the representations attached to G itself are unitary, and we are left
with the proper parabolic subgroups.

In the case of the maximal parabolic subgroup (I = 1), we can answer
the unitarity question for all the groups SU(p, q).

THEOREM 3.1. In SU(p,q) let S=MAN be the maximal parabolic
subgroup built from {e,}. Fix a discrete series or nondegenerate limit of
discrete series ¢ on M, and let notation and orderings be as in § 2. Define

2(m, @)

vy =1+ W +2#{B€A, |B—0, €A and (A,f—a) =0}
o
1
2p, o) :
Vo = 1—|—|2—- +2#{BEA, |B+a €A and (A, B +a)=0}.
o
1

If v is real-valued, then J(S, 0, v) is unitary for
0 <r-*(1t"kl -+ X_a]) < min {vg, va}
and is not unitary for

min {vg“, va} < ”(Xa] + X““‘l}'

REMARK. There is nothing special about @, in Theorem 3.1. This root
may be replaced everywhere by another noncompact root (such as another
aj) as long as the positive system A" satisfies the conditions required by

[6].

Let us now specialize to ¢ = 2. The remaining case is that /= 2 and
MAN is minimal parabolic. To state the result concisely, we use the notion
of «basic case» as defined in [9]. Fix the representation o of M, and let
?\D be its infinitesimal character. Let ({a],az}, A", X, p) be a compatible
format for A,, in the sense of [9]. and let Ay o be the basic case for this
format. Then §4 of [9] associates to A, a subgroup L of G = SU(p, 2)
with complexified Lie algebra 1€ built from b and all BEA with
<?\0—?\b‘0\ﬁ> = 0, as well as a format for L and a parameter ?\é that is the
basic case for this format of L. Let 0% be the corresponding representation
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of the M of L. The roor system
(3.2) AL ={BeA|Mg—N, 1, B)=10}

of L contains {e,, &, } automatically, and thus » makes sense on the a subalge-
bra of .

THEOREM 3.2. In G = SU(p, 2) let S = MAN be the minimal parabolic
subgroup built from {a,, a,} Fix an irreducible representation o of the
compact group M, and let notation and orderings be as in §2. Choose a
compatible format and construct the subgroup L. For real-valued » the
Langlands quotient J(S, @, v) for G is unitary if and only if the Langlands
quotient J(S N L, o, ») for L is unitary.

Theorem 3.2 reduces matters to the basic cases that can arise from
SU(p, 2). The subalgebra [, apart from abelian and compact factors (which
play a trivial role), is necessarily of one of the forms su(p’, 1) @su(p”, 1)
or su(p’, 2). The irreducible unitary representations of SU(p', 1) are well
known; for the basic cases, the results are assembled on p. 128 of [9]. For
SU(p', 2), there are a number of basic cases given in §6 below that lead
to no unitarity. The remaining basic cases 2 are given by

p'—2 4

w

= ei(m:‘} + )

e'¥

it

with [m|<p'—1 and |n|<p'— 1. Since complex conjugation is an outer
automorphism of SU(p', 2) fixing A and sending (m, n) to (—m, —n), it
is enough to understand m = n. Theorem 2.1 of [9] lists the unitary points
exactly, except for one ambiguous v for each o havingm =nand|m|<p'-2
or having 0 >m>n=>=—(p' —2). For these ambiguous », it is remarked
that preliminary calculations by Vogan and Wallach indicated that the

2 The paper [8] inaccurately gives the impression that the only basic cases are these
interesting ones.
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corresponding representations are unitary. In fact, the calculations can be
carried through with the help of the work of Jakobsen [4] or Enright-
Howe -Wallach [2], and the representations in question are indeed unitary.

4. PROOF OF THEOREM 3.1

In this section we let S =MAN be the maximal parabolic subgroup of
SU(p, q) built from one noncompact root, and we shall prove the formula
for unitary points that is asserted in Theorem 3.1. Except when p=gq = 1,
the group M is connected, and thus the nondegeneracy condition on o
is the assumption that the parameter A, is not orthogonal to any compact
root of A_.

The assumption of nondegeneracy is vital in the theorem, as the following
example shows. When G = SU(3, 2), there is a degenerate o that is essential-
ly the 0" spherical principal series of SU(2, 1). The smaller ofvg and v is
4, whereas the correct cut-off for unitarity is 2. What is happening is that
the line of » parameters for this case imbeds as the x-axis in the two-dimen-
sional picture for the minimal parabolic subgroup of G and the trivial repre-
sentation of the corresponding M. There are no unitary points on the x-axis
beyond the point 2, but there is a unitary point in the plane (corresponding
to the trivial representation of G) whose x coordinate is 4.

Theorem 3.1 was known already in some cases. When o is a discrete
series representation of M, the result is given as Theorem 7 of [1]. If also
g = 2, then an equivalent form of the result was given as Proposition 9.1 of
[9]. The idea of the proof of Theorem 3.1 is to obtain the smaller of v0+
and v, as a cut-off for unitarity by applying Theorem 2.2 to the passage
A= (A+ a,)” = A (or equivalently by using Theorems 1, 3, and 4 of [1]).
To prove unitarity out as far as min{vé’, v, }, we use the results of Speh-
Vogan [16] 3 to prove irreducibility of U(S, o, ») for v in the open interval
in question, and then the Hermitian form must have constant signature in
the open interval; irreducibility at » = 0 forces the form to be definite in
the open interval and therefore semidefinite in the closed interval.

For any single o, the above style of proof amounts to a routine compu-
tation. The difficulty is to do the bookkeeping necessary to handle all o
simultaneously without an uncontrolled proliferation into special situations.
For this purpose we shall use the notion of basic cases introduced in [9]

3 Occasionally we need a slight generalization of the results of [16], such as when o is
not actually a discrete series representation. For such generalizations, see pages 408 and
545 of [18] and §4 of [19].
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and reviewed above in §3. The passage from G to L in the theory of basic
cases preserves vJ and v, as well as the conditions needed to apply Theorem
2.2 to this situation, and the first part of the proof (the nonunitarity) is
thereby reduced to the group L and a basic case oL on the M group of L.
But even with this reduction, the bookkeeping is still complicated, because
there are many basic cases. Thus we shall single out some basic cases as
«specialy, and we shall prove that we can pass successfully between L
and a special basic case of a subgroup L'. The possible situations in L' are
quite limited, and we can handle them directly. For the second part of
the proof (the unitarity, as a consequence of irreducibility), we handle
L' directly and then use the Speh-Vogan theory to pass directly to G
without L as an intermediate step.

We tumn to the details. We begin with two general lemmas that are valid
without assuming G = SU(p, ). In the context of §4 of [9], fix a format
({a L AT, %, 1) and a compatible A,- Construct AL as in (3.2) above (or as
in §4 of [9]), and let u, p(u), x ,and p(un p®) be defined as in §4 of [9].

LEMMA 4.1. Let AL be a subsystem of AL that is generated by simple
roots and contains the roots %, form the corresponding reductive subalge
bra L' of g, and let L' be the associated analytic subgroup. Define u’ to be
the sum of the root spaces ofg for the positive roots not in ALV . Let xE
be defined from u’ the way x% is defined from u. Put

(4.1) A =2 —p(n)

and

(4.2) AL = A —2p(u' N p").

Then x% and ?\L consistently define %', and ({cx} At ALY xE ) is a

compatible format The minimal (K N L')-type parameter associated to ol
and this format is AL". The parameter ?\é‘ is a basic case for this format.

REMARKS. The lemma is proved in the same way as for Proposition 4.1
and 4.2 of [9]. Only notional changes are required.

To prove the nonunitarity in Theorem 3.1, we shall use Theorems 1, 3,
and 4 of [1]. For the next lemma, we work in the context of a maximal
parabolic subgroup obtained from a general G satisfying our hypotheses.
Let the parabolic subgroup be built from the noncompact root a. Let
Dy be the subsystem of A, of Lompact roots orthogonal to A, and let
Wy k.. be its Weyl group. Choose s* and s~ in Wy k.1 SO that 6" = st and
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6~ =5 (—a) are dominant for Ag 1 - Our assumption that all noncompact
roots are short implies that (A + oc):' =A+8%and(A—a)"=A+ 6 .The
8% group of G is the semisimple subgroup corresponding to the subsystem
of A generated by all simple roots needed for the expansion of § * and a.
The 8~ group of G is defined similarly.

LEMMA 4.2. (a) If B is in A and B —ais in A and (8 —a, A) = 0, then
Bisin the 8§ * subgroup.

(b) If Bis in A and B+« is in A and (B +a, A) = 0, then f is in the
6~ subgroup.

PROOF. For (a), let Yo=PB—a. Then Yo is in Ag , and the reflection
s?u carries & to f. Hence A + f is conjugate to A + ¢, and it follows that

A + B is a weight of T, +5+- Hence

8t —B=(A+8)—(A+B) =) nn1.

+
'yt':‘ﬂk

Then the equation §* =g+ X n_y forces B to be in the span of the simple
roots needed for the expansion of §*. This proves (a), and (b) is proved
similarly.

Let us return to G = SU(p, q) and write « for @,. Twice a noncompact
root in SU(p, g) is not in the span of the compact roots. Thus we can
conclude from Theorems 3, 4b, and 4d of [1] that (A + &) has multicity
one in the induced representation whenever the §* subgroup has real rank
one. Similarly (A —a) ~ has multiplicity one whenever the 6~ subgroup
has real rank one. Bringing in Theorem 1 of [1], we see that there are no
unitary points beyond v; whenever the §* subgroup has real rank one,
and there are no unitary points beyond vy whenever the 6~ subgroup has
real rank one. To complete the proof of nonunitarity, it is therefore enough
to prove the following lemma.

LEMMA 43. In G = SU(p, q),

(a) vg' <, implies the § * subgroup has real rank one,

(b) vy < VJ implies the 6~ subgroup has real rank one,

(€) VJ = v, implies that either the § * subgroup or the 8~ subgroup has
real rank one.

To begin the proof of the lemma, we construct the standard L and AL as
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above. According to §4 of [1] (or Lemma 6.2 below), Dy, is contained in
AL, and thus 8%, 8§, and all the roots that contribute to the formulas for
v, and v, arein A%, By (4.2) if we compute vy and v, and the §° subgroups
within AL for the parameter AL, we get the same answer as within A for the
parameter A,. Moreover 7\(‘;“ is a basic case. Since A, is a nondegenerate
parameter, (3.2) shows ?\c‘;‘ is nondegenerate. Changing notation and discard-
ing irrelevant simple factors, we see that we may assume in Lemma 4.3 that
A, is a basic case, still nondegenerate. '

To continue, we require tools for calculating 8" and &~ for basic cases.
First we determine A, itself. If f is a simple root, then 2(\, B/ |8 |2 is given
by one of the following. according to Corollary 2.3 of [7]:

0Oy forlfi=a
1 for B 1 aandpf compact

0 for B 1« and f noncompact

1 1

3 1 for B adjacent to « and compact, when g = — = a, 0, 5 «

1 . 1 1

5 ,0 for @ adjacent to « and noncompact, when pu = — 5 a, 0, —2- «.

Next, we give a different formula for A by specializing (4.13) of [9]:

1
(43) A=Rgtp—2ptu—= o

where p is half the sum of the members of A™. Using this formula, we can
assemble some conditions for a compact root to be in A, . The proofs
are routine computations, and we omit them:

1) If v is compact and A™ simple, then A 1.

2) If B is noncompact, A" simple, and adjacent to « in the Dynkin diagram,
then A LB + o

F) UL 31, Yp-vos Yy @ aTE consecutive A* simple roots in the Dynkin dia-
gram, if ﬁl is noncompact, if each Y is compact, and if r =1, then

1

ALB+7+...+7, +a)ifand only if r =1 and,u=—?0:.

4) If B, ¥y ---»7,, B, @ are consecutive AT simple roots in the Dynkin
diagram, if §, and B are noncomact, if each v; 1s compact, and if r = 0,

1
then Ai(ﬁl+71+...+7r+ﬁ) if and only if =0 and pu= 5—05.

S)lE ,81, Yypiovins Mes B are consecutive A’ simple roots in the Dynkin
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diagram, if B, and B are noncompact and not adjacent to a, if each of
is compact, and if r > 1, then Byt Y, + B is not orthogonal
to A.

Finally since ?\0 is nondegenerate, we have the following additional condi-
tion:

6) If ;‘31 and 8 are noncompact A" simple roots that are not adjacent to «,
then B, and B are not adjacent. [In fact, otherwise ﬁl + B would be a
compact root orthogonal to )\O.]

We shall say that a basic case is special if the only noncompact simple
roots are « and possibly some roots adjacent to « in the Dynkin diagram.

LEMMA 4.4. In SU(p, q) in a special basic case, ”(; <v; implies the §*
subgroup has real rank one, and vy Qvg' implies the 6~ subgroup has real
rank one. Moreover, U(») is irreducible for v(Xa + X__) in the half-open
interval [0, min{v ", »7}).

PROOF. First we prove the statements about the 6% and 6~ subgroups.
If a is at one end of the Dynkin diagram or if e is away from both ends
and its two adjacent simple roots are of opposite type (compact or noncom-
pact), then the whole group is of real rank one. Hence so are the 8+ and
6~ subgroups. Thus suppose « is away from both ends and the two adjacent
simple roots are of the same type. Possibly by reflecting everything in a,
we may assume that the adjacent simple roots are both noncompact. Let
us relabel the consecutive simple roots as €, —e, €,—e, ..., putting
a=e¢,—e, . Theniis the first index in one component of A; andi7 + 1
is the last index in the other component. Hence 8§ ¥ = . On the other hand,
to compute 6, we reflect matters in &. Then — & becomes a simple root,
and its neighbors are compact. By condition (1) above, 8~ is the largest
root of this system, hence the largest root of A*. The 6 * group is thus of
real rank one, and the 8~ group is not (since a has noncompact neighbors
on both sides). To compute v{;‘ and vy, let B, and B, be the noncompact
neighbors of a. Then we find

2{u, ) 5
v =1+ +2-0<
; |af?
2(u, o)
vy =1— + 2#{B,. B,} = 4.
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Hence va” <v, as required. This completes the proof of the first statement
of the lemma.

For the second statement of the lemma, we may assume that A is not of
real rank one, since the case of SU(n, 1) can be handled by routine compari-
son of the formulas for v0+ and vy with the known length of the complemen-
tary series. Again, possibly by reflecting in &, we may assume that there
are two noncompact simple roots adjacent to «. In view of our computa-
tions above, we are to check that the induced representation is irreducible
for 0<v(X,+X_)<I+2u )| o|% By Proposition 6.1 of Speh-

: . ; 1
Vogan [16], the only possible difficulty is at O when u = 7 Q.

We check this case separately. Let AL be the SU(2, 1) system generated
by a and one of the adjacent (noncompact) simple roots. Form P\é'" by

1
Lemma 4.1. This is the basic case for u = E «, by that lemma. According

to our table of basic cases, )\é*" is orthogonal to the simple roots of AL Since
the 0" spherical principal series of SU(2, 1) is irreducible, the Speh-Vogan
theory says we have irreducibility in G if Aj+ v has inner product = 0 with
the roots of u for our value of », namely » = 0. Our positive system AT was
chosen with )\0 dominant, and hence the condition is satisfied. Thus we have
the required irreducibility in G, and Lemma 4.4 is completely proved.

Remembering that we have reduced Lemma 4.3 to nondegenerate basic
cases, we now associate to our format for L = G a subsystem AL that is a
special basic case. Namely the simple roots of AL are the compact simple
roots of A, the root @, and the simple roots adjacent to o. (Only the compo-
nent of @ in AL will play a role in our argument, and this corresponds to
the group SU(p',q') to which we shall apply Lemma 4.4). We have 7
and & subgroups of G and corresponcling 8/ and 8 subgroups of L
Similarly we have parameters ¥ 7 and vy for G and correspondmg parameters
vf, and v, for L'. Equation (4 2) 1mphes that the 5+. subgroup of L'
contained in the 8% subgroup of G and that v, <v+ Similar statements

apply to 6~ and v, .

LEMMA 4.5.

(a) Suppose that »;' <vj. Then the 8+ subgroup of G equals the &,
subgroup of L' and is of real rank one. Moreover vg = VEJ-

(b) Suppose that v, . <. Then the 8~ subgroup of G equals the &,
subgroup of L and is of real rank one. Moreover, vy = V..

(¢) Suppose that v . = v . Then at least one of the 8" and §  subgroups
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is unchanged in passing from L' to G and is of real rank one. The correspon-
ding v parameter also is unchanged in passing from L' to G.

PROOF. Taking into account the effect of reflection in «, we may assume
that vf. <v,.. We divide matters into cases depending on the nature of the
simple roots adjacent to a in AL

First suppose that « is at one end of the Dynkin diagram of AL and the
adjacent root is compact. Then the Dynkin diagram of A still has « at the
end. By condition (1), 5; is the largest root in AL, By conditions (5) and
(6), 8. =8". Thus the §* subgroup of G equals the 8/ subgroup of L'
and is of real rank one. Moreover, uar = v, by Lemma 4.2a.

Next suppose that « is at one end of the Dynkin diagram of AL and the
adjacent root is noncompact, say f. Then the Dynkin diagram of A still has
a at one end, and if there are additional roots at the other end, the first new
one is noncompact, say B;. The root 8, is just e. For §* to fail to be «,
the compact root B+ ... + B, must be orthogonal to A. By condition (4)
this can happen only if there are no simple roots between § and B, and

1 ;
also p = 5 «. In this case AF has only the simple roots & and 8, and we readily

compute that vf. = v, = 2. Thus we are in the situation of (c) in the present
lemma. Using conditions (5) and (6), we see that 6';. =6~ =f. In either
case, we obtain the conclusion of (a) or (c) in the lemma by applying Lemma
4.2a.

Next suppose that « has two simple roots adjacent to it, a noncompact
one  and a compact one . Then 5;1 =a+9+...+7,, where ¥ is the
last root in the Dynkin diagram of AL, by condition (1). Moreover, §*
cannot involve further roots on the same side of « as 7, by conditions (5)
and (6). Thus the only way that 5; = 8" can fail is for « to be conjugated
by a member of AX,J‘ on the f side of « in the diagram. In this case, condi-

o 1
tion (4) implies that u = E) a and that there is a noncompact simple root

B, (in A) adjacent to § on the opposite side from e. Then

while
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Hence we have v}, < V_E'., in contradiction to assumption.

Finally suppose that o has two simple roots adjacent to it, both of the
same kind, compact or noncompact. Since we are assuming vf. <v,,lemma
4.4 says that the 5; subgroup is of real rank one. By condition (1) the two
simple roots adjacent to « must be noncompact. Let us call them B and

1
B,- We have 8 = a. For §* to fail to be o, we must have 4= = a, and

there must be a noncompact simple root B, # « adjacent to § or B,. say to
B. So we have consecutive simple roots B, B, o, ,62 in the Dynkin diagram

1
of A, and pu= 5 a. Put vy =8, + B +a+p, Then vy is a compact root of

m, and (?\U, v)= 0. Thus A, is degenerate, in contradiction to assumption.
This proves Lemma 4.5.

PROOF OF LEMMA 4.3. We can match the cases of Lemma 4.5 with the
resulting inequalities for v0+ and v, . In part (a) of Lemma 4.5, we have
VJ <vg. In part (b) we have vy <v6ﬂ In part (c) we have either v(;' <vgy
with the 87 subgroup of real rank one or v, <v, with the &~ subgroup
of real rank one.

Now suppose we are in (a) of Lemma 4.3. Since vg <, the correspon-
ding case of Lemma 4.5 is either (a) or the first half of (c). In either situa-
tion, the 8 subgroup is asserted to be of real rank one. The other conclu-
sions of Lemma 4.3 follow similarly.

This proves the nonunitarity half of Theorem 3.1. We come now to the
unitarity half. Our parameter A, for G is no longer assumed to be a basic
case. However, we have defined A¥C A and an associated basic case ?\é‘
for it, and we have defined AL g/_\."‘ and a special basic case 7\5‘ = {?\é’}"‘
for that. It is enough to prove that the induced representation U(») of G
is irreducible for 0 <w»(X_ +X_ ) < min{vg,v;}. By Proposition 6.1 of
[16], it is enough to prove the irreducibility for

o<<wv(X, +X_) <min{rs, vy }—2.
By Lemma 4.5, it is enough to prove the irreducibility for

(4.4) o<sv(X, +X_) <min{v}., vy }— 2.

We shall apply the Speh-Vogan theory 4 to the passage from L' to G. We

4 See footnote 3.
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have to check irreducibility on the L' level, and we have to check that
?\0 + » has inner product = 0 with the roots defining u'.

The irreducibility on the L' level is established in Lemma 4.4. Thus we
have only to prove that

(4.5) MNy+2,8>0 for Bent—ar

whenever v satisfies (4.4). When L' has real rank > 1, we have seen that the
right side of (4.4) is at most 0. Then (4.5) follows (for v = 0) from the
A" dominance of \;. Thus we may assume that L' has real rank one.

Label the simple roots of AT as e —e, e, —ey . ket iand j be the
first and last indices corresponding to the component of « in AL and let

o be € —€ .1 In (4.5), ?\0 is A* dominant, and we can regard » as

1
5 v(Xa + X_O)OI if we suppress notation that refers to the Cayley transform.
Thus we have only to check that

1
N\ BY= 5 min {»/., vy }—1

forp=e, — e, withr <iand forf = € 41 — € Withj<s.

The worst possible cases are f=¢; ; —e¢, (if index i —1 exists) and
Di= €re1 €41 (if index j+ 1 exists). Any simple roots in AL that are
adjacent to « are included in AL Hence if i — 1 exists, then either i <k
or (Ng,€;_;—€)> O‘b.ﬂ’ e;_,—¢). Similarly if j+ 1 exists, then either
k+1 <f°r<7\0?e§+1"ef+ ])>(7\b‘u,ek+l—ej+1>.

Suppose i — 1 exists. If i <k, then f = ¢, _, — ¢, satisfies

L
2(:\0; 6) = 2(R01 ef _ek) < 2<Rb,0’ ef _ek> = 2<R0 ’ei "_—ek)

|8]? |8]? 8] 8]
by (4.1). If e, _, —e, is compact, then the right side of this expression is

1 2, @)
(k—i——l)+—(]+ 2)
2 ||

Il

1 ( 2{p, a) )
— |1+ +2(k—0)|—1
2 |cz12

v

WV
b | =

Sl

= E min{v},, v;. }— 1,
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as required. We argue similarly with v, if e, , —e¢; is noncompact.
If i =k, then we have said that <7\0, € _q —ek)><7\b.0, €y —ek). Thus
B=e;,_,—e,satisfies
20 B 24N, o B
2 2
8] |8

Meanwhile one of vg. and % is at most 2, depending on whether
e

+lizzls

k41— €4 is noncompact or compact. So again we have

2 B 1 (v \
— > — min{v;, ¥;. }— 1.
L Seadh =a

This handles = €_1—€p and = €+1 841 is handled similarly. This
completes the second half of the proof of Theorem 3.1.

5. PREPARATION FOR THEOREM 3.2

Before beginning the proof of Theorem 3.2, we shall interpret Theorems
2.2, 2.3 and 2.4 for G=SU(p, gq) in the way that we shall want to apply
them. We continue to assume p =g and to allow general g, because this
level of generality more clearly shows the role of the key hypothesesin the
theorems of §2. We shall work with the minimal parabolic subgroup of G,
but this is not an essential point. Thus our parabolic subgroup is to be built
from the superorthogonal set Qpoees @ with &, defined as in (3.1). All
the roots have the same length, which we shall denote simply by |«/|. Fix
the representation ¢ of M, determine A" as usual, and fix a parameter u
and the corresponding minimal K-type 7, for the induced representations
S o)

If we expand A in terms of the linear functionals €, We can regard A as
a (p + q)-tuple of integers, unique up to addition of a constant. The forms
A +a and A + « are conjugate if and only if the entries of A correspond-
ing to o, and o in the upper left p-by-p block are equal and the entries
corresponding to &, and «_ in the lower right g-by-gq block are equal. In
this case we say o, and o are conjugate modulo A. If at least one of these
two equalities holds, we say «, and o are partially conjugate modulo A.
(Beware: Partial conjugacy is not necessarily transitive)

We are using a norm || on 7b' and shall want to use two parts of such
a norm in proofs in this section. For this purpose we (temporarily) adjust
matters so that [a]z = 2 for all roots a. Now let u' in ih" correspond to

(ai, R Y ST ,ap+q). In our normalization
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ptq pta \?
|u'|?=)" af—(p+q)“(z a}-) ;
i=1 j=1
We define |u |} and |u'|2 by
2LaN =g e ;
= j=i
N e 9
et £
j=p+1 i=p+1

Liet (el 1> and (-, -), be the corresponding inner products. The rele-
vance of these definitions is as follows: If u' is a weight of 7,., then |u'|<
<[A'|, [#];<|A"|;, and |u'|,<|A'|, Moreover, all three norms are
preserved by the action of the Weyl group of Ag.

LEMMA 5.1. Let S be a subset of {1,...,q}, and let » and s be two
distinct indices not in S. Then A +{§S o, + o —a  is not a weight of

(A+ Zoa.
ieS it
PROOF. Let j(i)=q +i and k(i)=p+q +1—i be the two indices
attached to a,in(3.1), and let A = (al, s ,ap+q). Then
2 2
-~ 2
5D [A+) a+a-o| - [A+) ol =20,-a,) +|a -,
iesS 1 iesS 1
and
2 2
(5.2) |A +Z o +a —al —fA +Z o =—2(akm—ak(s))+[ar-as[2.
iES 2 =5 P

If the form in question is a weight, then both (5.1) and (5.2) are < 0. From
the first of these inequalities, we obtain Qi(5)= G- Thus €~ &> 0 since
A s AE dominant. From the second of these inequalities, we similarly obtain

€ ™ Cks) > 0. Then
(5.3) & = (€ —€j) + &, + (€ —€4()

exhibits @  as a nontrivial sum of positive roots, in contradiction to the
simplicity of .
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LEMMA 5.2. If o, and « are not partially conjugate modulo A, then
(Ao, —a ), and (A, o, —a ), are nonzero and of opposite sign.

PROOF. Let j(i)=¢q +i, k(i)=p+q+1—i, and A=(a,, ... ,qp_l_q).
Then (A, o, — o )1 =iy — ) and (A, o — ofg)2 = Q) — Y These
two expressions are nonzero because of the assumed failure of partial conju-
gacy. Suppose they are both negative. Then the [_\; dominance of A implies
T and Cer) — Cr(s) AT€ both positive roots, and (5.3) contradicts
the simplicity of «. Similarly if both expressions are positive, we obtain

a contradiction to the simplicity of c,.

THEOREM 5.3. In SU(p, q) for the minimal parabolic subgroup, let A be
the parameter of the minimal K-type of the induced representation. Suppose
that {ami, ..., 0, }isan ordered subset of {o, . . . ,ocq} such that

n

(a) each paira,, and«, is partially conjugate modulo A
i j
(b) (A, ) <(A, @, V< < LA @)
(¢) foreachi with 1 <i<n and eachjnotin {ml, g f either
() (A, @, ) <(A, &) or
(ii) o, and o; are not partially conjugate modulo A.
[}

Define

Ado +...+a for 0<k<n

A+aml+...+am2n_k for n<k<2n.

Then, for a certain nonzero constant ¢,

M —1
x U(v, qu”) 5 .fi].U(V,X% l)}a(k), Up

(BU@,X_, 1)%7 R X_mmn)Ppg

= (7, (k) vy, vy) x

n e )
xl—l [(V+5}(Xam_+x— e L

i=1 i am!‘ |0£|2
—2#{ﬁeﬂnlﬁl-a]t s ’amf—l;ﬁ_amiea; (“I'_l’ﬁ_am‘-)>0}:|
2n 2(#1-—].’&!11 )
X v+ p)X +X ) — In+ 1—i
ﬂ |: Cmogn+1—i Mom1-i |a:):|2

i=n+1



Infinite Intertwining Operators II 27

= | - ;
2HBED, |BLey, . ”’a’"znﬂ—f l’ﬁ+am:n+1—fEA’
By _pp B+ Fman + l—i)> 0}}
PROOF. We apply Theorem 2.2 recursively, using
Pp;_,U(v, X&mi)js_l(k) for 0<i<n
LK) =
PP;U(P,X_%MH_!_)fi_](k) for n<i<2n
and
E#F(u'._]@X%f} for 0<i<n
v, =
Ep_(vf_IQX_ ) for n<i<2n.
L Mon+1-i

Lemma 2.1 guarantees that the vectors v, are nonzero, and hypothesis (b) in
Theorem 2.2 is trivially satisfied. The only thing that needs checking is that
hypothesis (a) is satisfied in Theorem 2.2.

The proof of (a) consists of two parts. In the first part we are to show
that the only weight in Ty 0<i<n—1, of the form p, + By o ta is
H; itself. We can rule out + o since ozmHl +a}. is not a sum of compact

roots. We can rule out - for _.r’qé{ml. A .,mHl}by Lemma 5.1. Thus

consider j = m, with k <i + 1. Then we have.
|’u!‘ =+ Qr'Ir::'i-

iy 2
+]-—amk[2—1pf| _2<ﬂf‘amf+l_amk)+2]al

= = 2
=2A+a, +...+o,,q, a, )+ 2|«

=2({A, o — o

My o)
By assumption (b) in the present theorem, this quantity is >0, and thus

M+ o, -—ocmk cannot be a weight for k <i + 1. This handles the first
i+1
part of (a) in Theorem 2.2.

In the second part of the proofor (a) in Theorem 2.2, we are to show that the
only weight in 'rp;, n<i<2n, of the form ‘”i—“mz”_,- + is p; itself.
We can rule out — o since —oa, - is not a sum of compact roots.

2n—i
For + s withj =m; and k> 2n —i, we have
|y —a, -+ajlg_|uf|2=2<”j’aj_am Y+ 2|l
(54} 2n—1i 2n=i
=N, o - 3

Mon—i
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By assumption (b) in the present theorem, this quantity is > 0, and thus
M, —amzn s - a’mk cannot be a weight for k > 2n —i.

For + @ with j€{m,, ... ,m}, we apply assumption (c). If (i) holds
for o, and o, then (5.4) shows u. —« + a. cannot be a weight.

2n—i / g Mon—i /
If (ii) holds, then we recalculate (5.4) using (-, -)I and (-, -)2. If;u:. -—ocm2 | +oaj.
n-=i

is a weitht, then the right side must be <0 for both inner products, in
contradiction to Lemma 5.2. .

Finally for + a; with j=m, and k <2n—i, we shall use assumption

(a). We have

|#; — o amki%_|“r’lf=2(pi’amk_am2n_{)l+2|a|§

(5.5) Man—i
H+2|al]

:2(A,amk—oz n—i

Mo
and similarly for [ : |§ Assumption (a) implies that the first term on the right
side of (5.5) vanishes either for | - |} or for | - |3. The right side of (5.5) or the
corresponding relation for | : |§ is then >0 for this norm, and hence
M —amzn_i + amk cannot be a weight for k < 2n —i. The proof of Theorem
5.3 is complete.

REMARKS. A variant of Theorem 5.3 allows all @; to be replaced every-
where in the statement and proof by — Q;; the formulas in assumptions (b)
and (c, i) are to read

A—a, )<, —ep, )<...<(A,—a, )
n
and
(A, — GM;') < (A, —aj)‘
We shall make use of both the original statement and the variant.
COROLLARY 5.4. In SU(p, 2) for the minimal parabolic, let A be the
parameter of the minimal K-type. Suppose that @, and «, are not partially

conjugate modulo A.
(a) Foru, = A + a, and for suitable nonzero c,

BU@,X_)EUE, X, ) o), ug), = er, () v, vp)

2u, @)
|of?

2
x X, +X—ﬂ1)2_ [l + +2#{BEA, |-, EA A, B—a)= O}J ‘

Moreover, a similar conclusion is valid if «, is replaced by —«.
(b) For,ui =A+ o, and for suitable nonzero c,
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BU@X_)EUE, X, ) fy(K), ug), = (1, (k) 'vg, vp)

AUNCY 2
WX, +X )2'[”_”#{ﬁEA:Iﬁi%ﬁ—“zefﬁ*“"ﬁ'“?:m :
5 & |::rc|2

X

Moreover, a similar conclusion is valid if @, is replaced by — a,.

PROOF. The corollary results by applying Theorem 5.3 or its variant to
one of the subsets {a, }and {@,} and by substituting from Theorem 2.5.

COROLLARY 5.5. In SU(p, 2) for the minimal parabolic, let A be the
parameter of the minimal K-type. Suppose that @, and o, are partially
conjugate modulo A, that (A,ep_l —ep>= 0, and that (A,al}<<!\,a2).
Then

(a) for u; = A + &, and for suitable nonzero c,

P U®, X, )P, Uw, X, ) fy(k), ug), = (7, () vy, vp)

2, a,)
a2

X

2
»(X, +X_ )2~ [1+ +2#{;36:):[:SwalEA,(A,ﬁ—oc1>=0}] (
1 1

(b) for #, = A —a, and for suitable nonzero ¢,
BU@, X )DPUW X_ ) fik), ugh, = etry (k) Tug, vp)

i C2M, @
V(JQZ+X_%J —[1 - ap

X

e ey

2
+2#{B€A,,"Iﬁml,ﬁwzea,(/\,ﬁw?):o}] :

(c) for K= A —a, for By = A —0l =0, and for suitable nonzero ¢,
(P, U(v, X%)fll,b’(v, X‘*I)PPEU{V’ X_GI)&TU{V, X_uz)}:}(k), Ugd

= e(r, (k) vy, vy)

A, @) i
X;V()g2+X_a2}3— = ap +2#{ﬁEA:|5L&l,ﬁ+ﬂ’2€ﬂ.,(/\.,ﬁ+%)=0}]%
(e}

2{u, o))
a|?

x:v(}(&] +X_ﬁ])2 - [] = +2#{BeA; | B+ €A, (A, B+ a)=0}
2
—2#{BEN,|B+a, €N BLay,(A,B +a1>=0}:| {

PROOF. For (a), we apply Theorem 5.3 to the subset {e,} and then
substitute from Theorem 2.5. For (b), we proceed similarly, using the
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variant of Theorem 5.3 and the subset {a,}. In (¢), we apply the variant of
Theorem 5.3 to the subset {ocz. al}‘ In this case the application of Theorem
2.5 is routine for the terms involving D(XQQ*I—X__%) but involves a few
extra steps for the terms involving V(Xa] + X—al) and uses the hypothesis
(A, e ep) = 0. We omit the details.

THEOREM 5.6. In SU(p, 2) for the minimal parabolic, let A be the
parameter of the minimal K-type. Suppose that ¢« and o, are conjugate
modulo A. For u; = A — o, for g, = A —o; —a,, and for suitable nonzero
(3

BU, X, )G, X )P UG, X_ B UG, X_) 100, up),
=e(r, (k) vy, vy)

v(X +X )-

—ay

X

A, @) " ?
[ 5 +2#{{36A,,|5l%,6+%ea,<A,ﬁ+ag=0}] t

2(u, o)

x,u(xal +X~al)2_[l_ +2#BeA; |B+a, €A, (A,B+a)=0}

2
—#{BeN,|B+a €N BLay,(AB +a1)=0}] f

PROOF. We apply Theorem 2.3 twice. The first time we use p' = A,
o, =—a, and ta = —a, The second time we use p' v—A—al— 2
to, =y, and ta = a,. The verifications of assumptions (a) and (b) are
as in Theorem 5.3, and assumptzon (c) is trivially satisfied. In each applica-
tion of Theorem 2.3, we have dl(V) = d4(v). We factor these out and sub-
stitute for them from Theorem 2.5. However, dz(v) and d3(v) are not equal,
and it is necessary to identify their difference in order to apply Theorem
2.5. This calculation is similar to the one we omitted at the end of the
proof of Corollary 5.5.

THEOREM 5.7. In SU(p, 2) for the minimal parabolic, let A be the
parameter of the minimal K-type. Suppose that (A, e - ep)= 0. Let
= (A —0a,)7, and suppose that A —a, is a weight of 7,.. For a certain

nonzero constant c,
BU®, X, B U®, X_, ) oK), ugh, = ci1, (k) 1oy, vg)
(X, +X_, )2 -cf]+CI(X, +X_ )P —cll),

where
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2{A, e —e )
(5.6 C= "|”[2 BT
o
2(p, ap)
¢ =1— +2#{BEN; [+ €A (A B+a) =0},
laf?

2(u, @) g
=1 —W +2#{BEA; [BLlay, B+, €A (A, B +ay)=0}.

PROOF. We shall apply Theorem 2.4 with + o =—a and to, =—a,.
Assumptions (a) and (b) in that theorem are automatic. Let us verify (c).
We are given € A, with B 1 o, and — o, € A such that A —f is a weight
of 7,.. Since Bla, and B—o, €A, Bis of the form € —e,,  Withj<p—1.
Hence

(5.7) A B—ay))= (A, B—a,),.
Since A — B is a weight of 7, .,
(5.8) OQM_"HH_'A‘HIf: A, B—ay),.

The hypothesis (A, €p_1 —-ep> = 0 implies 2(1\,051)1 = 2{A, @,),. Substitu-
ting this fact into (5.8) and (5.7), we see that (A, 8 —,) > 0. This proves
assumption (c).

Next let us see that A — @, has multiplicity one in 7, In fact, the equality
(A, & i ep) =0 means that |A -az]f =|A —a, [f, so that the SU(p)
part of A —a, is extreme in the SU(p) part of 7. Hence only the SU(2)
part of A —a, can contribute to the multiplicity of A —a,, and in SU(2)
the multiplicities are all one.

Finally we check assumption (b). We are to show that

(5.9) ENE @@ X )X, )= CE,(E, @0 X_, )0 X,)

with C as in (5.6). The fact that the constant in (5.6) is =1 follows from
the assumption that A — @, is a weight of 7,

OQIA_OHE_M_%[%: 2N, @y —ay), = 2A, €r+2 " €pi1)

Let us sketch the calculation of (5.9) under the assumption that
€p+ 2~ €p, 1 18 Positive (which happens automatically unless C = 1).

Define C by (5.6). Write Xﬁ as an abbreviation for Xef_e;_. And let s be
a representative within the SU(2) subgroup built from €p_1 —epofthe Weyl

group reflection s, _, . We write s(—) for the group operation of s,
=17
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dropping mention of the representation. The equality (A, e

forces sv, = v,. Thus

e —ep) =0
i E,(E,(v,® X_a]) ® X‘*l) =sE,(E,.(v, ®X'°1) ® X‘*l}
= EA(EA'(UO ® sX_o‘]) ® sXa])‘

Meanwhile we take the identity

(c- I)EA(EA‘ (UO < SX—aI)SXal) = Xp +2,p+ lXp +1,p+ ZEA(EA’(UG o SX—ul) ? Xal) 4

expand the right side as a sum of four terms (two of which vanish), and
rearrange the result, using (5.10), to obtain

EA(EA'(UO X “1} eXal)

(5.11) = —E\Ey Uy 14 2% @K o) @ Xy 5, 105K,,
_"";’.A("]I':"A'(00® [Xp+ Lp+2 SX—ai]) = [Xp+?,,p+ I’SXGI]}'
Next we expand the right side of
2(C- I)EA'(UO 8 X—u-z) = Xp +2,p lXp +1,p+ ZEA'(UD 2 X—az)

in the same way as the sum of four terms (two of which vanish), and we
obtain

(5‘12) EA'(Xp-t- 1,p+2 UU ® iXp+2,p+l’ X~a2]) = (C_ ”EA‘{DO ®X—a2)'
If we write
(5.13) X—-a2=a[Xp+l,p+2'SX-ul]‘

then we obtain

[X

p+2,p+1? X—a.;] = aSX—u:l

and (5.12) therefore becomes

EA.(XP U(]@SX_GI)=(C— DE, (v, ®[Xp SX—a,D'

+1L,p+2 +1,p+2?

Hence (5.11) simplifies to

E(E,(veX ,)®X,)
(5.14)

=—CE,(E, (v, ® [Xp " SX_O_I e fXP SApAD SX“HD'

+1,p+2

The complex conjugate of (5.13) is

X =—a[X

oy p+ 2‘p+l’San]°

and it is easy to see that |‘fz|2= 1. Substituting into (5.14), we therefore
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obtain (5.9).
Thus we can apply Theorem 2.4. Substituting from the formulas of
Theorem 2.5, we obtain the conclusion of Theorem 5.7.

6. PROOF OF THEOREM 3.2

We turn now to the proof of Theorem 3.2. We work with G = SU(p, 2),
and we may assume p > 3. Before reintroducing the subgroup L of G, we
define some parameters of special interest. Let us write

p—2 4

w

o =e"(’""+"*’)oﬂ(w),

elv

ot

where o, is an irreducible representation of U(p — 2). This formula defines

integers m and n. These integers are not unique since e2©®*%) can always

be absorbed into 04s however, the difference m — n is well defined.
Following §8 of [9], we introduce a fundamental rectangle

0< V{Xﬁl o+ X“"‘l} <a,
0 Qv()(ﬂz -+ X_az)QbO

in a'. Namely if we restrict o to the subgroup of M where ¢ = 0, we obtain
a representation o, of the M for a subgroup SU(p — 1, 1) of G. The number
a, is the endpoint of the complementary series of SU(p — 1, 1) associated to
0,. It is described as the least value of a >0 such that the infinitesimal
character of the representation of SU(p — 1, 1) induced from 0, and the
A parameter v{Xa] +X“*|) =a is integral and fails to be singular with
respect to two linearly independent roots. The number b is defined similarly
in terms of a representation o, obtained from the subgroup of M where 6 = 0.

As we introduce our A*, we introduce also a normalization of 0. Com-
plex conjugation is an (outer) automorphism of G. On the series induced
from our MAN, this automorphism is implemented by sending ¢ to @ and
leaving v fixed. In the process, (m, n) is replaced by (—m, —n), and all of
our consfructs behave nicely. As a consequence, we may assume without
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loss of generality that m = n. The contribution to the infinitesimal character
A, of o from the last four indices is

1 1
= e — s
= m( =i +ep+2) + - n(ep+ €y s 1}
When m>n, our choice of A" must therefore have € 1% and
) S AT - il i
€42 €pyqin AT. When m = n, the roots €p—_1 e, and O - must

anyway have the same sign, so that o, and «, can both be simple, and in our
choice of A* we can insist that these roots be positive. Thus as part of our

g o o _ s
normalization, we shall insist that €1 e, and €2 €, are SR A

LEMMA 6.1. (a) The number a, is the smaller of

(o) .
1+ |a|2 +2#{'GEANlﬁlazrﬁ"aleﬁ‘(f\,ﬁ-—al)=0}
and
2(u.ay)
V a2 +2#{'66‘5;|IGl“z~ﬁ+“1€&,(!\,ﬁ+o¢]>=0},
o

(b) The number b is the smaller of

2(p, ay
1 + ‘ |2 +2#{BEA;|!310fl=ﬁ—&2€&,(/\,;3—a2)=0}
o
and
2 o<2>
1= 5 +2#{'86&:lﬁlar-ﬂ"‘ageﬂn(A,ﬁ+a2):0}_

PROOF. Let G1 be the subgroup of G built from all roots orthogonal to
a,, and use «G» as a superscript or subscript on constructs in G,. The
number a is the length of the complementary series in G, corresponding
to M parameter 0,. By Theorem 3.1 (applied to the semisimple part of G,
which is isomorphic to SU(p — 1, 1)), a, is the smaller of

2, )

1+ + 2#{Ben); [B-a € (AT, p-ap=0)

||

and
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2, @)
2

i +2#{BE N ¢ B+ €A N B+ap=0).

||

So conclusion (a) follows if it is shown that (A, v) = (AG’, v for all compact
roots vy orthogonal to @, From (2.1) we have

A=XN—EQp) +u
G G
AT=N—EQp"H +u

Qpgr ) (20, @)
(EQ2p.), v)= ——— (o, v)+ ———— (o, 7)
R a2
G
G, (2p's )
(E(ZPK Yoay= W <0f1: ¥).

So matters reduce to showing that
Gi
(61) (2‘0.'(’ (II)Z (295 ,0{1)‘

The positive compact roots that contribute to the left side of (6.1) but not
to the right side are e, and €oig—Chpp and their sum is orthogonal
to a;. Thus (6.1) is proved, and conclusion (a) follows. Conclusion (b) is

proved similarly.

Now we fix a compatible format and introduce AL, L, and ol as in §3.
We can control the behavior of compact roots by the following lemma.

LEMMA 6.2. If  is in Ay and (A, y) = 0, then 7y is in A% and (AX, v) = 0.

PROOF. Form the basic case A, , for the given format, and let A, be the
corresponding minimal K-type parameter. Then we have

Hence (\y, 7> = (N, o 7). and v is in A", By (4.2), (A%, 7) = 0.

The proof of Theorem 3.2 divides into two cases, depending on whether
a, and «, are in the same simple component of AL or not. We treat first the
case where they are not in the same simple component. Then L is essentially
a product of some SU(p', 1) and some SU(p", 1). In view of Lemma 6.2 and
the formulas of Lemma 6.1, the parameters » that lead to unitary representa-
tions of L are the ones in the closed positive Weyl chamber that lie in the
fundamental rectangle (of G) and that have JL(S (Y& (IL, v) defined. To get
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a match of the unitary parameters v for L and those for G, we must there-
fore show:

(i) If v#0, then JX(SN L, oL, v) is defined if and only if J(S, g, ) is
defined.

(ii) U(S. o, v) is irreducible in the interior of the fundamental rectangle.

(iii) There are no unitary points for G outside the fundamental rectangle.

The key to (i) is the following lemma.

LEMMA 6.3. When «; and «, are in different components of AL the
number

2(p, o))
(6.2) 1+ ]—iz+2#{66.&;|Bia2.ﬁ—a16A,(/\.ﬁ—a]>=0}
o
is zero if and only if A+« is a second minimal K-type parameter for
U(S, 0. v). Similar statements apply with «, replaced by —ea, and with
«, and «, interchanged.

PROOF. Suppose (6.2) is zero. Then 2(p_.oa])f|ct|2=—-l and every
Be A with fla, and f—a, EA has 2(A,B—ap) |@|*>1. According
to Theorem 1 of [6], the only way that A 4+ «; can fail to be a minimal
K-type parameter is if A + a, fails to be ,f}.; dominant. Thus suppose that
there is some v in /_\} with (A + oy, ) <0. Since (A.7v) is =0, we must
have (A,y)=0 and (a;, 7)< 0. Thus =7+, is in AF, has B—a, € A,
and has (A, —a;)=0. From what we have assumed, we see that ,G‘J’_o:z.

Let us see that Blcxz gives a contradiction. Lemma 6.2 and the equality
(A, B—a)=0 imply that B—a, is in AE. Hence B, a,, and @, are in AE
Since B Lo, and BLla, o and o, are in the same simple component of
AL Thus we have the required contradiction. The first statement of the
lemma follows, and the rest follows similarly.

To prove (i), we argue as follows. Suppose JL(S N L, o*, v) is not defined
on the a, axis. This means that the induced representations of L have both
AL and Af + o, as minimal (K N L)- types. Lemmas 6.3 and 6.1b say that
b,=0. A second application of these lemmas allows us to conclude that
the induced representations of G have both A and A + «, as minimal K-types.
Then U(S, o, ») is reducible for » on the «, axis, and J(S, o, v) is not defined.
For the converse, we reverse the steps.

Let us turn to (ii). From §8 of [9], the only reducibility in the interior
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of the fundamental rectangle occurs on the lines

a+b=m—n+ 2l I an integer > 1
(6.3)
a—b=m—n+ 2k, k an integer =1,
where
(6.4) a= V(Xﬂl 4+ X““l) and b= v(){’alz - X'“z)'
(Recall we are assuming m = n). So it is enough to prove that
(6.5) ay+by<m-—n+2.
Put
. 2(u, a,) "
vi=1+ W +2#{BEN; |BLla, B—a, €A, (A, B —a) =0}
- 2(u, a)) g
vy =1-— ]TIZ— +2#{BEA, |B Loy B+, EA (A, B+ ay)=0}.

Let consecutive roots in the Dynkin diagram of A™ be

€p-1 s 282 G2 €1 T CpEp—E,, .

Since a; and «, are not connected in the diagram for (AL)*, the f's that
contribute to v, are at most

e

j-17€

o J b L "ei_ep+1’
while the §'s that contribute to v, are at most

—e,...,e

p+2 i <

prh A=
Moreover, the roots contributing to v; are orthogonal to those contributing
tov; . Thus

2y, oy —ay)
(6.6) v, +rv] <2+ +2(—10)
|e|?
On the other hand, we have
1 1
(6.7) A=Ro+ P2y =0y — —

from (4.13) of [9]. Since €y 5 has nonzero inner product with both
@, and a,, it is not in AL, and Lemma 6.2 gives (A, €1 —ep)> 0. Applying
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20e T — ep);" [ a|? to both sides of (6.7), we obtain

p—
1 2(p,ep_1— ep)
lé-—-(m—n)+(j—r'+3)—2(j—i+1)+ 5 +0.
2 lﬂ:"
Hence
1 (. o) —ay)
(6.8) i—le—m—n)t+t ————— -
2 | a|?

Since a, + by < v; + ], (6.6) and (6.8) together prove (6.5) and hence (ii).
Finally we prove (iii). Lemma 6.2 implies that

(A,e, ,—ey>0 and (A,ep+2—ep+])>0.

p-1
Hence «; and o, are not partially conjugate modulo A, in the sense of §5.
Thus we can apply the two estimates for v(Xﬁ1 + X—al) given in Corollary

4.4a2 and the two estimates for 1»‘()1’0‘2 + X_az) given in Corollary 4.4b. The

result is that there are no unitary points outside the fundamental rectangle.
This proves (iii) and completes the proof of Theorem 3.2 in the case that o
and a, are in different simple components of AL. -

The second case for the proof of Theorem 3.2 is that a, and @, lie in the
same simple component of AE. This component yields some SU(p', 2) with
p' <p. Our procedure will be as follows: We compute <A,ep‘1—ep) and
(A, €ps2 €p+ ;2 in order to see that «, and &, are partially conjugate modulo
A. When (A,ep_] —ep) is nonzero, we shall see that there are no unitary
points in L or in G. When (A, B ep) = (0, the basic case ol will be one
of those considered in §2 of [9], and we shall make a detailed comparison
of the unitary points, partly with the help of Corollary 5.5 and Theorems
5.6 and 5.7.

LEMMA 6.4. When o and «, are in the same simple component of B,
then (A, o i ep) = 0 unless ¢ and @, have only one simple root (namely
€yt 2 —ep) between them in the Dynkin diagram. If (A, g ep) >0,
then there are no values of » in L or G that correspond to unitary represen-
tations. If (A,e, ;— e,)=0, then 2(A,e,, ,—¢,, A al?=m—n and
(A.e,.—ej)z Oife; —¢; isin AFandi<pandj<p.

PROOF. Suppose that there is more than one simple root between &, and
o,. Let consecutive roots in the diagram be
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e =g

2 Cpira €281 —€pe

p—1 % " %+r

and let pu=p, 0 + By Q. Plainly €18 is the sum of j —i + 2 simple
roots of A" and j —i + 1 simple roots of AI'(", and all of these roots are in
AF. We calculate A from the identity (6.7) applied to AL and from the
formula for Ré in Corollary 2.7 of [7]. Under the convention that | o [2 =3

the result is

(A,ep_l—ep)=(}\"‘,e e)

B hi-p

1 1

=(7\(‘;'+pl—2p‘,f:+p—-2—al—~5az,e e)

p-1" °p

1 1
=]i(— —#1)+(i—i— 1) +(—~ +p2ﬂ+ (—i+2)
7. 2
—20 =i+ 1)+, —p,)=_0.
Also we have
(A, (ep,_1—e)) +(e,, =€, 1))
(6.9) =N —E(2pg) + u, (ep_1 +ep+2}——(ep+ep“))
=<k,{ep_] +ep+2)—(€p+ep+l))=m—n_
Hence
(Ae,, ,—€,, P=m—n.

We omit the easy calculation of (A, ¢; —ej) for the remaining compact
roots of AL.
The remaining case is that consecutive roots in the Dynkin diagram are

€1 Cpu 2 Chs s Cp Oy €y

We calculate A in the same way as above: From [7],

(?\é.ew e = e,  —e) =1 —u,.

Since € el and €pr2 " €pyy ATE A;E simple and are orthogonal to
1

-2“ (Ck'I + I‘IZ},

(6.10) e €)= g e, e+ e, —e)=[p =iy |+ (1 — k)

Ry =
Aty P =G =8 P+ (M =6 ) =| Iy =i [ = (4 —p).
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If (A,e, ;—e,)=0, then (6.9) shows that (Byeg rp=se, )=
the other calculations of (A, e, — ef) are easy and are omitted.

Suppose (A, €p_1 —ep)> 0. Then p; —p,> 0 by (6.10). So #; =0 and
MEQO, with at least one of them nonzero. Under these circumstances, we
shall see that A — e, is another minimal K-type parameter if g, > 0, and
A + @, is another minimal K-type parameter if p, < 0. Similar conclusions
apply also to L, and there are no unitary points in G or L, by Vogan’s
theory [17] of minimal K-types. '

Say u,<0. By Theorem 1 of [6], it is enough to show that A + a, is
Ay dominant. We have

m—n;

(A+Ck':,_,e y=1

p+2_ep+]): <a2‘ ep+ l_ep+l
(A + a,, er.—ep)z (A.e,.—ep_l) + (A,ep_l—ep)—l

?(A,ef—ep_l)PO if i<p—1 and ¢, —¢,>0

<A+or2,ep—ef)=(A,ep—ej)+l;l if j<p—1 and E'p‘—‘?,->0-

Hence A +a, is QE dominant. The argument is similar when g, > 0, and the
lemma follows.

In view of the lemma, we may henceforth assume that

(6.11a) (AL, e, 1—ey=(Ne, ;—e)=0
B0, 2005 e =) UM ey, o
‘ |e|? |e|? '

The part of L containing &, and &, is of the form SU(p', 2) for some p' with
2 <p'<p. The lemma says that T i is scalar on the U(p) part of L N K.

Since oX must occur in 7 o the h]ghe%t weight A* of o must be of the form

1 1
i,
A= E ml,.(ep_1 Je, )+ ; nL(ep+ €p 4 -
The integers m; and n; are uniquely determined if p'>2 and satisfy
|mL|£p 1 and [n, |< p' — 1. When p' = 2, we cover all cases by including
| m, 1 5. The integers m, and n; are related tom and n by

| <

s When p’ =2, the M group of L is disconnected, and the behavior of ol on the
second component normally needs to be taken into account. We leave this detail to
the reader.
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L L
) S 4(\ ,ep_l—ep> ‘s 4(\ ,ep_l—ep)
by £ |2
(6.12) o
( €l {2
s Yo Bt e,

|ef?

It follows from (6.11) and the inequality m =n that @, and @, in G are
partially conjugate modulo A, that (A, o) <(A, az), and that A —a, is a
weight of Tir—og)" If m <n, then (A, ;) <(A, a,). Moreover, the corre-
sponding statements are true in L, and, by Lemmas 6.1 and 6.2, the numbers
a, and b, for 0 in G are the same as for ol in L. Thus the hypotheses of
Corollary 5.5 and Theorems 5.6 and 5.7 are satisfied.

Before applying these results, however, we shall dispose of the cases where
one or both of a; and b, is zero.

LEMMA 6.5. Let o, and @, be in the same simple component of AL,
Suppose that (A, egh i ep) = 0 and that ayorbis 0.

(a) If m>n, then there are no values of » in L or G that correspond to
unitary representations.

(b) If m =n, then the values of v in L or G that correspond to unitary
representations are given by

a+b<2, a>0 b>0,

with @ and b as in (6.4).

PROOF. (a) Let m >n. We start as in Lemma 6.3. Suppose a,=0.If
(6.2) is 0, we try to prove A + o, is A}“ dominant. Problems can come only

from vy = ey ey andy=e —e as in that proof. But

p+2 p+1°
2. =
2A +a, ep_l—ep>f|a| = 2a;, €p1 —ep) =]
and

2h+a,,e

: p+2—ep”)f|oz|2=m—n—l;0‘

The alternative is for

(6.13) 1-—

+2#{BEA} |BLla,, B+ EALA, B+ ) =0}

to be 0. We show this cannot happen. If it does happen, then 2(u, o) | |2
= 1. Also the simple root adjacent to a, in the Dynkin diagram must be
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€T not some other €pr2 % since otherwise ff = €42
butes to the set in (6.13). Thus a, ep+2—ep, o, are consecutive roots in
the Dynkin diagram. Referring to (6.10), we see that (A,ep_l—ep>= 0
forces 2(u, a,)/ |e|? = 1. Then (6.10) shows also that (A, e, ,—e, ) =0
and hence m = n, contradiction.

Thus a; =0 implies A + o is A‘,} dominant. The same argument applies
to L. The presence of the two minimal K-type parameters A and A + a;
shows that there are no parameters v corresponding to unitary representa-
tions in G. and the same argument appliesin L.

If b,=0, we can prove similarly that A —a, is A'; dominant. Then the
same considerations show that there are no unitary points in G orin L.

(b) Let m=n. In G all 8 members of the Weyl group of the restricted
roots then fix o, and the two reflections in the «non-real» restricted roots
lead to the identity intertwining operator at » = 0. Then it follows that the
— 1 element of the Weyl group corresponds to the identity intertwining
operator. Hence there will be unitary points near v = 0.

Let us see that the Langlands quotient is not well defined on the a axis
and on the b axis. It is enough to see that the R group of [10] has order 2
at v = 0. since then the reflections in the axes will have to correspond to
nontrivial intertwining operators. By [17] it is enough to deduce the exist-
ence of a second minimal K-type from the equality a,= b, = 0. We describe

what happens without giving the details: One shows that p = i (e, + ay)

— contri-

1
with |u, | = o Then one shows that A — 2, (a; + a,) is a second minimal

K-type parameter. The style of argument is similar to that in (a). Thus the
Langlands quotient is not well defined on the @ axis and on the b axis.

All the argument thus far applies equally well to L, and the same conclu-
sions apply to L. To complete the proof, we must identify the unitary
points off the axes. We have seen that there are unitary points in G and in
L near v = 0, and unitarity must then extend to the first place where the
induced representations are reducible, which is the line @ + b = 2, by (6.3).
We now apply Theorem 5.7. If m, =n, = —(p" — 1), the theorem applies
directly. The other case is that m; =n; = +(p' — 1), and then a variant of
the theorem is needed. The theorem says that there are no unitary points
in G or in L outside the circle of radius 2 centered at 0. Referring again to
the list of reducibility points in (6.3), we see that unitarity in G and in L
must stop already at the line @ + b = 2. This completes the proof of (b) and

the lemma.

We are left with the situation that (6.11) holds and that a and bDarc S0
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Within the closed fundamental rectangle, the unitary points are identified
in Propositions 8.1 and 8.2 of [9]. They depend only on the parameters 4,
by, and m —n. Since these parameters are the same for G as for L, the
unitary points within the closed fundamental rectangle are the same.

The heart of Theorem 3.2 is its statement about the exterior of the funda-
mental rectangle. We handle these points largely by means of the results of
§5, using one or another result depending on the values of m; and n,.
Since the estimates in §5 are the same in L asin G (by Lemma 6.2), we are
in effect proving Theorem 3.2. Here are the situations and applicable results:

1) m;>n; = 0. We use Corollary 5.5a to see that there are no unitary
points for a > vl+, where v1+ is a certain constant. In L, V1+ coincides with
a,, which is the same number in L as in G. Thus there are no unitary points
for a>a, In L also we have b, > a, for this case, and the same must be true
in G. The points (a, b) with a <a, and b > b lie outside the positive Weyl
chamber. Thus we have proved that there are no unitary points outside
the fundamental rectangle.

2) m;=20=n; with m;#n,. We apply Corollary S5.5a to exclude
a>a, and Corollary 5.5b to exclude b > b,. Again we are identifying a,
and b, with our estimates by examining the effect in L. The result is that
there are no unitary points outside the fundamental rectangle.

3) 0>m, > n;. We apply Corollary 5.5b to exclude b > b, and Corollary
5.5¢ to exclude the region where a > a, and b < b, The remaining part of
the exterior is the line with > a, and b=b,. We apply Theorem 5.7 to
exclude the part of the line where a>a,+ 2. The result is that there are
no unitary points outside the fundamental rectangle except possibly on the
line segment a, <a <a,+ 2, b=0b,.

4) 0=>m; =n;. (Here a;= b,). We apply Theorem 5.6 to exclude the
two regions {a>a; b < bo} and {a <a, b> bo}‘ Then we apply Theorem
5.7 to exclude the region

{@® +b%> (ag+ 2)* + by}

The result is that there are no unitary points outside the fundamental rectan-
gle except possibly on the set where a >4, b= b, either a>aq, or b>bg
and a® + b2 <(ay+ 2)* + bg.

5) m; =n; = 0. This is completely analogous to (4) and is derived from
obvious variants of Theorems 5.6 and 5.7.

To handle more of the undecided sets, we use the method of Duflo, as
described in §10 of [9]. The K-types7,, ;.. where y=e,, ,—e, , and
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k=0 is an integer, occur in the induced representation with multiplicity

ne. Consideration of the determinant of the intertwining operator on
these K-types excludes all the remaining points listed above except those
lying on some line

a=b+(m—n+2k), k=1.
In (3) above, ayis p' —|m, | —1and byis p' —|n, | — 1. Thus
ag—by=m; —n; =m-—n,

and the only candidate for a unitary point is (a, b) = (au + 2, bo). In (4)
we have ao=bo. and the only candidate for a unitary point is (a, b) =
= (ao + 2, ao). In (5) the only candidate is the same point as in (4).

In short, the only candidates for unitary points outside the fundamental
rectangle in L or in G are the points (a, b) = (a5 + 2, bo} when0>m, >n;
or when m;=n,;. We mentioned in §3 that these pointsin L can be shown
to be unitary. A little computation, which we omit, proves the following
lemma.

LEMMA 6.6. Let «, and «, be in the same simple component of AL
Suppose that (A, €p_1 —ep) =0 and that g, and b, are nonzero. Suppose
further either that 0> m; > n, or that m; = n,. Then

Qs +l(a +2)a +~bﬂl ®,8) >

for every 8 in A* that is not in AL.

We can now apply Theorem 1.3a of Vogan [19] to conclude that these
exceptional points correspond to unitary representations of G. This com-
pletes the proof of Theorem 3.2.
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