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Classification of irreducible tempered
representations of semisimple groups

By A. W. Knaprp* and GREGG ]. ZUCKERMAN*

PartI

For each connected linear real semisimple Lie group G, we shall establish
constructively a list without repetitions of all the irreducible tempered represen-
tations of G and of their characters. “Tempered” here means that the character,
as a distribution on the smooth functions of compact support on G, extends
continuously to Harish-Chandra’s Schwartz space [4] on G. Equivalently ([29],
p. 71), “tempered” means that the K-finite matrix coefficients, for K a maximal
compact subgroup, are in L2"%G) for every € >0. Our list of irreducible
tempered representations and characters will be expressed ultimately in terms of
the representations and characters of the discrete series of G and its subgroups.

Such a list was announced in [18] and [19], and the present paper gives the
detailed proofs of the announced results.

The significance of our list results from a theorem of Langlands [21] that
provides a classification of all irreducible admissible representations of G (up to
infinitesimal equivalence) once one knows the irreducible tempered representa-
tions. In essence our list therefore finishes a classification of irreducible represen-
tations of G apart from questions of unitarity. The two classifications together do
not go so far as to classify irreducible unitary representations; one simply has the
inclusions
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and a less-than-satisfactory criterion ([19], p. 147) for deciding whether an
irreducible admissible representation can be made unitary. For an alternative
approach to the classification theory of irreducible admissible representations and
the nature of irreducible tempered representations, see Vogan [33].

Tempered representations arose historically first in the work of Harish-
Chandra [4]. The irreducible tempered representations are the ones needed [5] to
decompose L*(G), and Harish-Chandra worked with all of them except for a set
of Plancherel measure zero. More detailed knowledge of irreducible tempered
representations plays a role in the work of Arthur [1] on analysis of the Schwartz
space of G and the space of tempered distributions on G, and also in the work of
Herb and Sally [10] on inversion formulas for orbital integrals. Tempered
representations play a special role in the Langlands correspondence [21] between
the homomorphisms of the Weil group of R into the L group of G, on the one
hand, and L-packets of irreducible admissible representations of G, on the other
hand; the tempered representations are the ones for which the homomorphism
into the L group has relatively compact image.

Before describing our classification, we introduce enough notation to be able
to define representations of G “induced from discrete series.” Fix a maximal
compact subgroup K of G. A representation of G will be called induced from
discrete series if it is a unitarily induced representation of the form

(0.1) ind$ (£ ® e ® 1),

where MAN is the Langlands decomposition of a cuspidal parabolic subgroup of
G, § is a discrete series representation of M, and e’ is a unitary character of A.

A preliminary classification of irreducible tempered representations is ob-
tained by giving a complete reduction into irreducible constituents of each
representation induced from discrete series. In fact, one knows that

(i) Every irreducible tempered representation is (equivalent with) a con-
stituent of some representation induced from discrete series. See [28] and [21].
(This result is also implicit in [5], though not explicitly stated there.)

(i) Two representations induced from discrete series either are equivalent
or else have no constituents in common. See Langlands [21].

(iii) Two representations induced from discrete series are equivalent if and
only if their data (except for their respective N groups) are conjugate within G.
See Harish-Chandra [5].

(iv) The irreducible constituents of any representation induced from dis-
crete series all have multiplicity one. See [13].

Combining these facts, we see how to obtain a complete list of irreducible
tempered representations, with no repetitions, from a complete reduction of all
representations induced from discrete series. Much of this paper will be devoted -
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to just this reducibility question, and the final result will be given as Theorem
8.7.

However, it is desirable to have a more intrinsic classification. For this
purpose we have to deal with a wider class of induced representations (0.1) in
which £ is allowed to be either a discrete series representation of M or a so-called
“limit of discrete series” representation. (See § 1 for the definition of ““limit of
discrete series.”) Such induced representations of G will be called basic. In
settling questions of irreducibility and equivalence of basic representations, we
are led inevitably to the notion of a basic representation “given with nondegener-
ate data.” (See § 12 for the definition of “nondegenerate data,” and see § 10 for
the definition of the R group that controls the reducibility.)

Our main theorem, given as Theorem 14.2, is stated in terms of this notion.
Roughly the theorem says that the irreducible tempered representations, up to
equivalence, are exactly the basic representations given with nondegenerate data
and having trivial R group and that two such basic representations are equivalent
if and only if their data (except for their respective N groups) are conjugate
within G.

We list here the other main results of the paper (besides Theorem 14.2):

(i) The fundamental properties of limits of discrete series (Theorem 1.1),
including criteria for nonvanishing, irreducibility, and equivalence.

(ii) The complete reduction of representations induced from discrete series,
i.e., the preliminary classification (Theorem 8.7). A special case of Theorem 8.7 is
worth noting: In the case that MAN is minimal parabolic, M is compact and the
theory of discrete series is consequently not needed to describe the irreducible
representations of M; the problem of determining the characters of the irreduci-
ble constituents in this case, which is solved by Theorem 8.7, is an old problem
from the 1950’s.

(iii) An extension of the theory of the R group and the standard intertwin-
ing operators of [16] to basic representations (Theorems 11.1 and 12.6). We
develop the same level of understanding of the standard intertwining operators
for basic representations as was previously known for representations induced
from discrete series. In particular we extend the Harish-Chandra completeness
theorem to basic representations and we obtain good algebraic invariants for
working with the standard intertwining operators for these representations.

(iv) The complete reduction of basic representations into irreducible con-
stituents (Corollary 12.2 and Theorem 13.3).

(v) Further development beyond [31] of the theory of tensor products of
finite- and infinite-dimensional representations (Appendices).

Our work makes repeated and extensive use of three well-developed theo-
ries. When we bring them all to bear on our problem, we find it necessary to
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generalize each of them significantly. The three theories are:

(i) Character identities of Schmid [24] and Hecht-Schmid [8]. The Schmid
identity exhibits the sum of two characters of limits of discrete series as equal to a
certain induced character, and the Hecht-Schmid identity shows that certain
limits of discrete series are zero. We introduce generalized Schmid identities in
Theorem 4.3; these are induced versions of the Schmid identity that take into
account the possible disconnectedness of M. In Theorem 6.1 we give conditions
under which they can be inverted. We need also a converse to the Hecht-Schmid
identity and prove the converse as part of Theorem 1.1.

(i) The theory of the R group and the standard intertwining operators for
representations induced from discrete series, as in [16] and [13]. This theory gives
a basis of the commuting algebra for representations induced from discrete series
in terms of a computable finite group R, and it shows that the commuting
algebra is always commutative and that R is always a sum of two-element groups.
Our generalization extends this theory to basic representations; the extended
definitions are not the obvious ones, and the full results are valid only when the
data are nondegenerate.

(iii) The theory of tensor products of finite- and infinite-dimensional repre-
sentations, as in [31]. This theory provides a means for coherent translation of
parameters appearing in suitable series of representations. The theory is enlarged
in three ways in an appendix to the present paper. This appendix, written by the
second author, forms the promised sequel to [31].

Our approach to classification begins with reducibility of representations
induced from discrete series. Essentially there is a local theory in which one does
each step of reducibility by means of a generalized Schmid identity, and there is
a global theory in which one sorts out the results of a succession of generalized
Schmid identities. The R group provides the global control in the process. In fact,
the R group does even more, since the explicit form of its elements points
directly to the final result.

As soon as one applies the first generalized Schmid identity, one is led
outside the realm of representations induced from discrete series to the wider
class of basic representations. The concept of a basic representation appears to be
new, but its chief ingredient—the limit of discrete series representation—had
been discovered and developed earlier in some special cases. In [14], limits of
discrete series were introduced in instances in which G/K is Hermitian. For
connected groups, Schmid [25] introduced general limits of discrete series
involving singularities with respect to noncompact roots and later proved their
irreducibility, and [31] simplified this theory and introduced limits of discrete
series with arbitrary singularities and showed that their characters are multiples
of irreducible characters. Still for connected groups, Enright [32] treated limits of
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discrete series with arbitrary singularities, showed which ones are nonzero, and
showed that the nonzero ones are irreducible. Realizations of these representa-
tions under suitable hypotheses appear in the work of Wallach [30] and in [17].
To get complete results concerning general limits of discrete series, we shall
develop limits of discrete series and generalized Schmid identities simultaneously.
The main result about limits of discrete series is stated as Theorem 1.1, but the
proof is not completed until the end of Section 5.

The general plan of the paper starting with Section 6 is as follows. In
Sections 6-8 we exhibit the reduction into irreducible constituents of representa-
tions induced from discrete series. In Sections 9-11, the theory of the R group
and of the standard intertwining operators is extended to basic representations,
and results special to the case of nondegenerate data are collected in Sections
12-13. The main theorem is the subject of Section 14. :

Contents

Part I
1. Limits of discrete series
Center of M
Basic characters
Generalized Schmid identities
Limits of discrete series, continued
Inversion of generalized Schmid identities
Plancherel factors
Complete reduction of characters induced from discrete series
9. Final basic characters
Part II
10. Modified Plancherel factors
11. Intertwining operators
12. Basic characters with nondegenerate data
13. Complete reduction of basic characters with nondegenerate data
14. Classification of irreducible tempered representations
15. Examples and counterexamples
Appendix on Tensor Products, by Gregg Zuckerman
A. Iteration of tensoring functors
B. Parabolic induction
C. Crossing walls

P N3 UL

1. Limits of discrete series

For this section only, G will be assumed to be a linear real reductive group
satisfying the axioms of Section 1 of [13]. The disconnectedness of G is limited
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considerably by these axioms, one of the requirements being that G is a matrix
group contained in the product of a connected complexification G€ and the
centralizer Z(G) of G. Our intention is to define limits of discrete series
representations for such a group G and to list their properties.

Let K be a maximal compact subgroup of G, let 6 be the corresponding
Cartan involution, and let ¢ = £ © p be the associated Cartan decomposition of
the Lie algebra g of G. Following the notation of [13], let GG, be the identity
component of G, let Z, be the center of G, and define G* = G,Z..

In this section we shall assume that rank G = rank K. Let b be a maximal
abelian subspace of f, and let B be the corresponding (compact) analytic
subgroup. Then b is a Cartan subalgebra of g, and we can speak of compact roots
and noncompact roots of (g€, b€) in the usual way. Note that B may not be the
full centralizer of b in G and hence may not be the full Cartan subgroup
corresponding to b.

The “Weyl group” W(B : G) is defined to be the quotient of the normalizer
N.(B) by the centralizer Z,(B). (More generally W(X:Y) is defined as
Ny(X)/Zy(X).) It is clear that

(1.1)  W(B:G,) C W(B:G) C W(B:G°Z(G)) = W(B : G°).

Proposition 4.5 of [13], together with the known identity W(B : K) = W(B: G)
in the connected case, implies here that

(1.2) W(B:K)=W(B:G).

Let t be any @-stable Cartan subalgebra of g. We identify complex-valued
real-linear functionals on t with complex-linear functionals on t€, denoting these
spaces t’ or t€’. A linear form in t’ is called integral (or g-integral) if it is the
differential of a holomorphic character of exp t€. If A is in t’ and p denotes half
the sum of the positive roots in some ordering, then the question of whether
A — p is integral does not depend on the choice of the ordering that deter-
mines p.

In the case of t = b, an integral form is imaginary-valued on 5. To each
nonsingular A in b’ such that A — p is integral, one can associate ([4], [24]) a
discrete series (irreducible) representation 7%(A) of G, with Harish-Chandra
parameter A. All discrete series representations of G, are obtained in this way,
and 7%(A) is equivalent with #%(A") if and only if A’ = wA for some w in
W(B: G,). On B N Zg, 7%()) agrees with ¢*~* times the identity operator.

The character of 7°(A) will be denoted @%(\, C), where C is the (unique)
Weyl chamber of ib with respect to which A is dominant. This character is given
by a well-known formula [4] on B. The above equivalence criterion translates as:
0%(A, C) = ©%(N, C’) if and only if there is some w in W(B : G,) such that
A’ = wA and C' = wC.
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If & represents an element w of W(B: N;o(G,)) and if wm(g) means
(10~ 'gib), then

(1.3) 7 %()\) has character @%(w, wC).

In fact, w7 %(A) is a discrete series representation, and it is enough to see that
its character matches ®“(wA, wC) on B.

The discrete series of a general G is obtained as follows: We start with a
discrete series representation m“(\) of G, and a character x of Z, such that x
agrees with ¢* " on B N Z, we form wGO(}\) ® x on G* = G,Z, and then we
induce to G, obtaining

(1.4) indG«(7%(A) ® x).

(See [6] in general, [13] for features special to linear G.) The character of (1.4) is
denoted

(15) OS(A, C, x) = indS«(8(A, C) ® x),

where C is the (unique) Weyl chamber of i b with respect to which A is dominant.
In practice, we will have at our disposal a well understood finite abelian
subgroup Z(. of Z such that

(1.6) G* = GyZL..

In this case the characters x in (1.5) stand in one-one correspondence via
restriction with characters of Z, that equal ¢** on B N Z[, since

BZ/. = BZ,.

Hence when convenient, we may take the domain of x in (1.5) to be Z...

In any event, the characters (1.5) are irreducible and exhaust the discrete
series; moreover @%(A, C, x( = O@F(X’, C’, x’) if and only if x = x’ and there is
some w in W(B : G) such that A’ = wA and C’ = wC. The equivalence criterion
and irreducibility of discrete series for disconnected G follow from the results in
the connected case; the proof that we give in Theorem 1.1 of the corresponding
implication for limits of discrete series works equally well for discrete series. In
either case we obtain also the identity
(1.7) %N\, C, x) |, = 3 0% (wA, wC).

weW(B : G)/W(B : G,)

Let us recall the functor ¢ mtroduced in [31] as an operation on compatible
(9, K,) Harish-Chandra modules for G,.! The definition makes sense in the
context of any @-stable Cartan subalgebra t of G,. Let T = exp t. Fix a Weyl

'In [31], it is assumed that the group is connected semisimple with finite center, but the
theorems and proofs apply to the more general class of connected reductive groups with compact
center.
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chamber C, and suppose that A in t€’ satisfies
(ReX, a)=0 for all C-positive roots a.2

Let p be integral and C-dominant, let F_, be the finite-dimensional irreducible
representation of g€ with lowest weight —pu, and let p, denote projection
according to the infinitesimal character (with parameter) A. The functor Y} ** is
defined on compatible quasisimple Harish-Chandra modules with infinitesimal
character A + p by

(1.8) M) =) @ F_).
Let us observe that changing C leads to the same functor:
(1.9) ATHC) = g t(-)  forwin W(T : GO).

This equation follows from the facts that (i) two parameters conjugate under
W(T : G°) yield the same infinitesimal character and (ii) the set of weights of a
finite-dimensional representation is closed under the operation of W(T : G°).
Notice that the same functor Y2** can arise also from a different Cartan
subgroup, provided the parameters match appropriately.

Now we can define limits of discrete series for G,. The parameters will be a
Weyl chamber C in ib and a member A of b’ such that A — p is integral and A is
C-dominant. Let p be a nonsingular integral form on b that is C-dominant. Then
the discrete series representation 7%(A + ) is defined. The Harish-Chandra
module

(1.10) 7%(X, C) = Y3 (a% (A + p))

is independent of p and equals 7 () if A is nonsingular, by Theorem 1.2 and
Corollary 5.5 of [31]. Then Theorem A.1 of the appendix shows it is independent
of p if A is singular. In the singular case, at this stage there is no natural
globalization of (1.10), but it will follow from Theorem 1.1 that the Harish-
Chandra module (1.10) is irreducible and infinitesimally unitary, and we can
then use the notation of (1.10) to denote also a unitary globalization. In any
event we call (1.10) a limit of discrete series representation if A is singular, and
for any A we denote its character by ©@%(A, C). In combination with (1.8), the
known formula for 7%(A + p) on B N Z, shows that 7%(A, C) equals e* "I on

BN Zg.
Let A and p be C-dominant, and suppose A — p and u are integral. Then
(1.11) 7%(X, C) = 3" (7%(A + 1, C))

%A condition is imposed in [31] on (Im A, a) as well, but the condition plays no role in the
proofs and it will be important for us to drop it.
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even if A + p is singular. Equation (1.11) follows by choice of a nonsingular
dominant integral p’ and application to 7%(X + p + p’) of both sides of the
identity

(1.12) YA = AR,

which is given as Theorem A.1 in the appendix.
Limits of discrete series for the general group G are parametrized by
(i) a Weyl chamber C in ib,
(ii) a member A of b’ such that A — p is integral and A is C-dominant,
(iii) a character x of Z, that agrees with ¢ * on B N Z.
The limit of discrete series representation with these parameters is

indG«(7%(A, C) ® x),

and its character is denoted ®F(A, C, x). As with discrete series, when (1.6)
holds, it is enough to take the domain of x to be Z¢,, and then the compatibility
condition in (iii) is that x agree with e’ on B N Z¢.

TueoreM 1.1. Limit of discrete series characters have the following proper-
ties:

(a) ®F(A, C, x) is irreducible or zero.

(b) (partly due to Hecht-Schmid [8]) ®F(X, C, x) is zero if and only if
(X, ay = 0 for some C-simple compact root a.

(c) When ©%(A, C, x) is nonzero, an equality

O%(A,C,x) = 0%(N,C', x)

holds if and only if x = x’ and there exists w in W(B: G) with wA = A’ and
wC = C".

(d) When OS(A, C, x) is nonzero, it is the character of a tempered unitary

representation.

Remarks in the connected case. Most of the proof in the connected case is
deferred to Section 5. Much attention has focused on limits of discrete series
when (A, @)= 0 only for noncompact roots a. In this special case if G is
connected, then the character does not vanish on B, a number of techniques are
available, and most of the theorem was known previously. See Section 5 of [31]
for a discussion of this case. In the present context, we place no such restriction
on A. For parts (a) and (b) in the connected case, see Enright [32], Theorem 4 on
p. 5 and Theorem 16.2 on p. 79.

We can give part of the proof in the connected case now. In (a), the
character is at worst a multiple of an irreducible character, by Theorem 1.3 of
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[31]. We prove in Section 5 that the multiple is one or zero. The sufficiency in
(b) is due to Hecht and Schmid [8]; the necessity will be proved in Section 5. The
sufficiency in (c) follows immediately from (1.9) and the corresponding condition
for discrete series; the necessity will be proved in Section 5. Result (d) for the
connected case will be proved in Section 5, and (e) is trivial in the connected
case.

Proof for general G, given theorem in connected case. Results (b) and (d)
follow immediately from (b) and (d) for the connected case. Result (d) allows us
to work with limits of discrete series as global unitary representations.

To prove (a) and (c), we shall apply Theorem 3’ of Mackey [22]. Let £ and £’
on G* be defined by £ = 7% (A, C) ® x and ¢’ = 7% (X", C") ® x’, and suppose
¢ is not 0. By assumption £ and ¢’ are unitary, and G¥ is an open normal
subgroup of G of finite index. Mackey’s Theorem implies that ind¢ is irreduci-
ble if and only if (i) the representation £ of G* is irreducible and (ii) g¢ is
inequivalent with ¢ for g not in G¥. Condition (i) follows from (a) for the
connected case. For (ii), it is shown in the course of the proof of Lemma 4.4 of
[13] that the mapping w € N;(B) - wG* yields an isomorphism

(1.13) G/G*=W(B:G)/W(B:G,).

Consequently (ii) follows from result (c) in the connected case if it is shown for w
in W(B: G) that
(1.14) wO% (A, C) = 0%(wA, wC);

this equation will be proved below.
To prove (c), let w be in W(B : G). Then
wO%(A,C)®x and O%(A,C)® x
lead to the same character of G upon induction from G¥*; thus (1.14) yields
O%(wA, wC, x) = ©%(A, C, x).
Conversely suppose
(1.15) 8%(A, C, x) = 8%\, C", X)).

The scalar value of the representations in question on Z. must match x on the
one hand and x’ on the other hand. So x = x’. Mackey’s Theorem implies that

@% (N, C') = g8%(A, C)

for some g in G. By (1.13), we may assume g normalizes B. Then we can apply
(1.14) and result (c) in the connected case to obtain (c) in the general case.
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Now we derive (1.14) from (1.3). Let 0 represent w in W(B: G). Then
wr(N, C) = Y Fr% (A + p)
= dp,[7%(A + p) ® F_|
= pwx[dmc"(}\ +u)® u')F_M]
= pw,‘[wc"(w}\ + wp) @ F_wﬂ] by (1.3)
= Yt (w + wp)
=7%(wA, wC),

and (1.14) follows by passing to characters.

We are left with (e). Each w in W(B : G) leaves stable the set of compact
roots. Thus by (a) and (b) in the connected case, every term on the right side of
(e) is zero or else every term on the right side of (e) is nonzero irreducible. We
may assume the latter. Because of (d) in the connected case, the character on the
left side of (e) is the character of a unitary representation of the form U = indg-£.
It is trivial that

Ulgs = 2 goé-

20,€G/G*
Using (1.13) and (1.14), we therefore obtain
O\, C, x) |+ = 3 0% (wA, wC) ® x,

weW(B : G)/W(B : Gy)

and (e) is obtained by restricting both sides to G,.

2. Center of M

Henceforth we shall assume G is a connected reductive Lie group with
compact center and with a faithful matrix representation. The notation of Section
1 still applies since G does satisfy the axioms of [13].

It is possible to construct an abelian group F that is useful in describing the
disconnectedness of parabolic subgroups of G. Because G is connected, we can
use a group F that is often smaller than the corresponding group in [13];® in
particular, F will always be finite here.

3The group F defined in [13] becomes G N (Zgcexp ia,) when G is connected. For SU(2, 1)
this group contains the three-element center of G. However, the group defined by equation (2.1) in
the present paper has only two elements when G = SU(2, 1).
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To define F, let a , be a maximal abelian subspace of p, and let M » = Zg(ay,).
The definition of F is

(2.1) F=KNexpia,,

and it is easy to see that F is a finite subgroup of the center of M »- The proof of
Lemma 9 of [23] shows that ‘

(2.2) M,=(M,)F.

P

One can describe F more explicitly as follows. (Cf. [14], Lemma 3.7.) Form
roots of (g, a,). For each such root , let H, be the corresponding member of
a,, and set

(2.3) Y, = exp2mi | a|2H,,.

Computations in SL(2, R) show that y, is in F and has order at most 2. The
theorem is that the elements vy, together generate F.

The Cartan involution leads to a Langlands decomposition for any parabolic
subgroup of G. Let MAN be the Langlands decomposition of such a parabolic
subgroup P, and let m @ a ® n be the corresponding decomposition of the Lie
algebra. Although M need not be connected, it does satisfy the axioms of [13], by
Lemma 1.3 of that paper. Let a,, be a maximal abelian subspace of m N p, and

form the maximal abelian subspace a,, of b given by
a,=a®ay.

The above remarks then apply, and the proof of Lemma 1.3 of [13] then shows
that (2.2) implies
M= M,F.
It follows from this equation that
(2.4) MA C (MA)S,

where (MA)C is the analytic subgroup of GC with Lie algebra (m @ a)C.
Equation (2.4) will allow us later to use the result in Section B of the appendix.
Although F is central in M, it is not necessarily central in M. However, if as in
[13] we let

M* = M,Z,,,
then the proof of Lemma 4.2 of [13] shows that
M* = My(Z, N F).

The group K,, = K N M is a maximal compact subgroup of M. We shall
assume hereafter that rank(f N m) = rank m, a condition summarized by saying
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that the parabolic MAN is cuspidal. Let b be a maximal abelian subalgebra of
f N m. Then b is a compact Cartan subalgebra of m, and a ® b is a Cartan
subalgebra of g. Let B be the analytic subgroup with Lie algebra b.

We can form roots relative to (g, (a ® b)), (g, a), and (g, a,). Some
relationships among these systems are described in detail in [12] and in Section 2
of [13].

One such relationship is worth special note. A root of (g€, (a ® b)) is real
if it is real-valued on a © b, i.e., if it vanishes on b. By Lemma 2.1 of [13], the
restriction of a real root « to a is an a-root of odd multiplicity, and its extension
to a, (by 0 on a,) is an a root of odd multiplicity. In whatever context we view
a, its corresponding vector H, is the same member of a. These identifications*
allow us to use equation (2.3) to define vy, for any real root a. Let

F(B) = span{ya | s a real root of (g€, (a ® b)C)}.
Then F(B) is a subgroup of Z,, N F.

LemMma 2.1. If MAN is the Langlands decomposition of a cuspidal para-
bolic, then

(a) Zc(a ® b) = ABF(B),

(b) Zy = (Zy, N B)F(B) = Z,, F(B),

(c) M* = M F(B).

Proof. We first show that the centralizer Z,(0) is connected.’ In fact, let
kexpY be the Cartan decomposition of a member of Z.(b) according to
G = Kexp p. Then 6(kexpY) = k(expY) ! and O(kexpY) 'kexpY = exp2Y
are in this centralizer since §b = b. Thus Ad(exp2Y )X = X for all X in b. Now
ad 2Y is self-adjoint in the usual inner product on g and has real eigenvalues.
Decompose X = 32X, into the sum of eigenvectors under the action of ad2Y.
Then we have

DX, = X = Ad(exp2Y)X = Ye’X,,

from which e* = 1 whenever X, # 0. Thus A = 0 is the only possibility and
[Y, X] = 0. That is, exp Y is in Z(b).

In other words k and exp Y are each separately in Z,(b), and also we see
from above that

(exp b) N Zc(b) = exp(p N Z (b))

4Under these identifications the set of real roots is identified in equation (3.10) of [13] with a
root system A, that will be important to us in Section 8.

Our proofs of this statement and of (a) amount to a shorter version of the proofs on pp.
62-64 of [24].



402 A. W. KNAPP AND G. J. ZUCKERMAN

Thus we have
Zo(b) = Zy(5) - exp(p N Z (D)),
and each factor on the right is connected, from p. 247 of [9], since G connected
implies K connected. Hence Z(b) is connected.
Consequently Z-(b) is the analytic group corresponding to

Z(b)=a+b+ Y g,
a real

=(a+b)+( > RH, + X ga).
a real a real
The second grouped term on the right is an R-split semisimple Lie algebra.
Hence its F group is generated by the elements y,, a real. Applying (2.2) to the
minimal parabolic subgroup of this R-split algebra, we conclude that the central-
izer of the Cartan subalgebra a @ b in Z-(b) is

ABF(B).
This proves (a).
From (a) it follows that Z(a + b) = BF(B). Intersecting both sides with
Z,, and using the fact that F(B) C Z,,, we obtain the first equality in (b). The
second equality follows since Z,,_is contained in every maximal torus of K N M,,.
Substituting (b) into the definition M* = M, Z,, and regrouping, we obtain (c).

We shall relate extensively representations induced from different cuspidal
parabolic subgroups. Following Koranyi-Wolf [20] and Schmid [24], we shall use
“Cayley transforms” to pass back and forth between parabolics. We assemble the
standard facts about such Cayley transforms here. First let P = MAN be the
Langlands decomposition of a cuspidal parabolic subgroup, let b C f N m be a
compact Cartan subalgebra, and let « be a real root of (g€, (a ® ib)°). Fix a
root vector X, in g in the root space for a such that

[Xa’ axa] = _2 I « |—2Ha’
Note that {H,, X, X} spans a Lie subalgebra of g isomorphic to $1(2, R). Let
d, be the unitary automorphism of g€ given by
(2.5) d, = Ad(exp%l-(xa - 0xa)).

The function d, carries (a ® ib)C to a new Cartan subalgebra (a* © ib*)C of
a€, where
a=a*®RH,,
b*=b®R(X,+ 6X,) (orthogonal sums)
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are in g. The function satisfies

(2.6a) d. (2|a|2H,) = —i(X, + 6X,),
(2.6b) d(H)=H forHea*®b,
(2.6¢) d (i(X, + 6X,)) =2|a|2H,.

The transpose mapping, also denoted d ,, carries roots of (g€, (a ® i5)®) to roots
of (g€, (a* ® ib*)€). From a* we can construct a group M* in a standard way
[5], and the various choices of positive systems for the roots of (g, a*) lead to
cuspidal parabolic subgroups M*A*N*. Here b* is a compact Cartan subalgebra
of m* (and is in f N m*), m* D m, and a* C a. And d (a) is a noncompact
root of (m*C, p*C), '

The function d ' leads us from the data (m*, a*, b*) to the data (m, a, b)
and can be constructed in its own right. Starting from (m*<, 6*C), let 8 be a
noncompact root and fix Ez and E_ in the root spaces for 8 and — B such that

(i) C(Eg, E_g) = 2| B| ™2 where C is the -invariant g-invariant symmetric
bilinear form used as a substitute for the (possibly degenerate) Killing form.

(i) i(Eg — E_g) and Eg + E_, are in g.

(See Lemma 3.1 on p. 219 of [9] for a discussion of how to achieve this
construction.) If Hy = 2| 8 |’2HB, then we have the bracket relations
[Hio Eg] = 2B, [HpE_g] = —2B_,,  [Eg,E_4] =

Note that {Hp, Eg, E_jz} spans a Lie subalgebra of g€ over C 1somorphic to
31(2, C); the intersection of this subalgebra with g is isomorphic to 81(2, R). Let
¢z be the unitary automorphism of g€ given by

2.7) o= Ad(exp (B, — E_p)).

The function cg carries (a* @ ib*)€ to a new Cartan subalgebra (a @ i5)C of

a€, where
a=a*®R(E; + E_,),

b*=b®iRH; (orthogonal sums)

are in g. The function satisfies

(2.8a) cs(2|B|72H,) = — (Eg + E_p),
(2.8b) cs(H)=H forHea*®D,
(2.8¢c) cs(Eg + E_g) = 2| B|2H,.

The transpose mapping, also denoted c,, carries roots of (g€, (a* @ ib*)€) to
roots of (g€ (a ®ib)C). From a we can construct a group M and cuspidal
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parabolic subgroups MAN.. Here b is a compact Cartan subalgebra of m (and is
in f N'm), m* D m, and a* C a. Also cg(B) is a real root of (g€, (a @ ib)°).

The Cayley transforms d , and ¢, are inverses of one another if 8 = d (a),
or equivalently @ = c4(B), and if the X’s and E’s are chosen suitably.

LemMmA 2.2. Let M* A*N* be a cuspidal parabolic subgroup, let b C £ N m*
be a compact Cartan subalgebra of m*, and let & be a noncompact root of
(m*C, b*€). Suppose that the Cayley transform c; leads from the data
(m*, a*, b*) to data (m, a, b) and that a = cz(&). Then the inclusion mapping
of Z,, into Z, (M N M*¥) yields an isomorphism

(2.9) Zy/ {1, Ya) Zyg Zogs = Zpy(M N M*¥) / (M N M*¥).

The groups on either side of (2.9) have order at most 2. They have order exactly 2
if and only if the reflection p; is in W(B* : M*).

Proof. Clearly Z,, maps onto the right side of (2.9). We have
{1,v,} CM,NM,, Zy, CM,, Zye gMpﬂM*#,
and all three right sides are contained in M N M*¥*, Hence
(1, ,)Zyy Zype © M N M,

and our map yields a quotient homomorphism of the left side of (2.9) onto the
right side. Suppose z is in Z,, N (M N M*¥). We have

(2.10)
ZyN(MNM*)=Z, "M*=2Z,0 (M} Zy.) =(Z,, N M})Z,,..

The group M{ is connected reductive with compact center, and we can apply
Lemma 2.1b with G replaced by Mg and M replaced by M N M. There is only
one real root in this situation, and the lemma gives

Zy N Mg =Zy{1,7,}

Substituting into (2.10), we see that z is in {1, v,}Z,Zy~. Hence our quotient
homomorphism is one - one, and (2.9) follows.

Let z be in Z,;, and consider the 3[(2, R) algebra corresponding to the real
root a. This has a basis { H (in a), X, X_ (= —6X_)}, and ad(a ® b) acts by
*aon X_,. Let Hbe in a @ b; since z is in Z,,,

[H,Ad(z)X,] = Ad(z)[Ad(z) 'H, X,| = Ad(2)[H, X,] = a(H)Ad(2)X,,.

Thus Ad(z)X, = =X, and similarly Ad(z)X_, = =X_,. The two signs must
be the same since Ad(z) acts on [X,, X_,] = 2|« | 2H, by +1.
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Suppose Ad(z)X, = X, and Ad(z)X_, = X_,. Then Ad(z) fixes X, + 60X,
which by (2.6a) is a multiple of H,. By Lemma 4.3 of [13], z is in M**. Hence z
maps to the identity in the quotient group (2.9).

On the other hand, any two elements z and z’ of Z,, mapping X ., to
—X ., would have quotient fixing X . , and (by the previous paragraph) map-
ping to 1 in the group (2.9). Consequently the group (2.9) has order at most 2.

If the group (2.9) has order 2, then we have seen that there is an element z
in Z,, with Ad(z)X., = —X.,. This element satisfies Ad(z)(X, + 6X,) =
—(X,+6X,) and Ad(z) =1 on b. Since X, + 60X, is a multiple of H; by
(2.6a), z exhibits the reflection p; as existing in W(B* : M*).

Conversely suppose p; exists in W(B* : M*). Choose, by equation (1.2), a
representative u; in K N M*. Let E; and E_; be the root vectors used in

constructing the Cayley transform c;. Then Ad(u;) satisfies
Ad(uz)H; = —H;

and
Ad(ug)E; = e'*E_; and Ad(ugz)E_; = ¢'’E;.

Since [E;, E_;] is a multiple of H;, we must have ¢ = —§. Thus
Ad(uz)(Eg+E_;) =€ Ez;+ e E_,.

Let b, = exp(if | « | 2H;). Then b, is in K N M* and satisfies
Ad(b))(Eg+E_;) = Eg+ e YE_,.

Hence w; = b, 'u, is another representative of p;, and Ad(w;) fixes E; + E_g,
which is a multiple of H,. Since wy; is in M*, Ad(w;) fixes a*. The fact that w;
represents p; means that w; fixes b. Thus w; centralizes a © b and is in K. By
Lemma 2.1a, wy is in
BF(B) C MyZ,, C (M N M**)Z,,.
On the other hand, wy is not in M N M** because it is not in M*¥; in fact,
W(B* : M**) = W(B* : M{),

and the right side contains no reflections in noncompact roots (like p;) since Mg
is connected. Thus Z, (M N M*¥) /(M N M**) has a nontrivial element and
must be of order 2.

3. Basic characters

As in Section 2, let G be a linear connected reductive group with compact
center, let P = MAN be a cuspidal parabolic subgroup, and let ®(A, C, x) be a
discrete series or limit of discrete series character. If » is a real-valued linear
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functional on a, we let
OMA(N,C, x,») = OM(A,C, x) ®e”,

which is a character of MA. If we tensor with the trivial character of N and
induce, we obtain characters

(3.1) ind$OM4(A, ¢, x, v),

which we call basic characters. When we want to insist that ®M is a discrete
series character, we shall call (3.1) a basic character induced from discrete series.

After Theorem 1.1 is proved, it will follow that (3.1) is a tempered unitary
character. It need not be irreducible, however. We should point out that (3.1)
does not depend on which group N is used to make MA into a parabolic
subgroup; this fact follows from Proposition 8.5(v) of [16] once we have seen in
Theorem 1.1 that limits of discrete series are irreducible unitary.

We shall want to be able to apply the functor ¢ to basic characters. As
preparation for such applications, we have the following lemma, which uses the
functor My defined in Section B of the appendix. The parabolic P = MAN is
assumed cuspidal, with notation as in Section 2.

LemMa 3.1. Let a positive system A}, of roots for (m © a)C,(a ® 6)€) be
specified, and let \ be a A}, -dominant linear form on (a ® 5)€ vanishing on oC.
Then there exists a positive system A7 of roots for (g%, (a @ b)C) such that

G) AL CAZ,
(i) A is AJ -dominant,
(iii) the intersection of ib with the closure of the Weyl chamber in a ® ib
determined by A has nonempty interior in ib.
Under these conditions, suppose C is the Weyl chamber of ib determined by A,
suppose ®M(X, C, x) is a discrete series or limit of discrete series character, and
suppose v is any real-valued linear function on a. Then

OY4(X, C, x, v) =ML FOMAN + 1, C, xet, v)
and
ind§OMA(A, C, x, v) = Y21 #ind§OMA(N + u, C, xe*, »)

for every integral® A7 -dominant linear form p on (a ® 5)C such that u vanishes
on a. Moreover there exists such a u satisfying

(3.2) (p,a)>0 forainA]
and even
(3.3) (h,@)y=0 forainA; implies a|, = 0.

8 Integral” is defined after Equation (1.2).
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Proof. First we show that the g-integral points in (ib)’ form a lattice in
(ib). Set b, =b N [g, g] and form the orthogonal sums b =5, ® Z, and
(ib) = (ib,)’ ® (iZ,)". Every gCroot a in (a @ ib)’ is integral, and conjugation
leaves the set of roots stable. Thus a — a is integral, and it is in (ib)’. Since the
a’s span (a @ ib,)" and since a > j(a — a) is the orthogonal projection of
(a ®ib) on (ib)’, the differences a« — a span (ib,)".

We still need to see that the g-integral points in (iZ;)" form a lattice. The
points in (iZ )" corresponding to characters of the identity component (Z.), of
the center of G form a lattice L in (iZ,)". If G, is the analytic subgroup of G with
Lie algebra [g, g], then G, is a semisimple subgroup of a matrix group and is
closed in G, by [2]. Consequently (Z;), N G, is finite. Those members of L
corresponding to characters that are trivial on (Z;), N G, form a sublattice and
all correspond to characters that extend to holomorphic characters on exp(a ® b)©
that are trivial on exp(a © b,)€. Thus the g-integral points in (iZ,)" form a
lattice, and the same thing is true of (ib)".

Next we produce the required ordering. Let H, be the element of ib dual to
A, and let H" be an element of ib in the open positive Weyl chamber relative to
m. We sort the closed Weyl chambers in a @ ib relative to g into three types.
The first type consists of those containing H, and meeting ib in a subset of ib
with nonempty interior. The second type consists of those containing H, and
meeting ib in a set with empty interior. The third type consists of those not
containing H,. Observe that the first and third type together cover ib. Choose
& > 0 small enough so that the segment from H, to H, + ¢éH" does not meet any
of the third type. Then H, + eH* must lie in the union of the closed Weyl
chambers of the first type; choose one containing H, + eH™, and let C, be its
interior in a @ ib. We take A} to be the positive system determined by C;: A
root is positive if it is positive on some element of the closure C;, and every
positive root is = 0 on every element of C,.

If a is in A}, then

a(Hy, + eH") = a(H,) + ea(H") = ea(H") > 0.

Since H, + ¢eH" is in C_'g, ais in A7 . Thus (i) holds. By construction E'G contains
H,; hence (ii) holds. Condition (iii) holds by definition of A .

Now suppose we are given A7 satisfying (i), (ii), and (iii). We shall prove the
character identities. Let p be given. For the first identity, we notice that the
group A acts as a scalar in MF_ , since MF_ , is irreducible on MA, and then

(3.4) MF_,(a) =1 forainA

since u vanishes on a. Let 7(-) denote a Harish-Chandra module with character
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©M(-). In the notation of Section B of the appendix, we have
M (aM(A + g, C, xet) @ e)
= prsi] {iInd¥e(7Mo (X + p, C) ® xe*) ® ¢} ®MF_ |
= py o[ indlke((70(A + ., C) ®¥F_, |, ) ® x) ® ¢”] by (3.9)
= pyind3fe] (7¥(X + p, C) ®¥F_, |\, ) @ x)] ® ¢
= ind¥up,[7M0(A + p, C) ®MF_, |, ® x| ® &

since Ad(M) is the identity on the center of the universal enveloping algebra of
(m ® a)C, and this last expression is

= ind¥.[7™ (A, C) ® x| ® ™.

Taking the character of both sides, we obtain the first character identity of the
lemma. The second character identity of the lemma follows from the first one
and from Theorem B.1 of the appendix.

Finally we produce an integral A -dominant linear p on (a & b)€ such that
u vanishes on a and satisfies (3.2) and (3.3). By (iii) find ¢ > 0 and H’ in ib such
that the e-ball in ib about H’ lies in the closure of the Weyl chamber in a © ib
determined by A} . Let p’ in (ib) be the element dual to H'. Then every
member of the e-ball in (ib)" about p’ satisfies all the properties required of p
except (3.3) and the integrality. Multiplying this ball by all positive scalars, we
obtain an open cone in (ib)’ of elements satisfying all the properties required of
p except the integrality. We have seen that the g-integral points in (ib)’" form a
lattice in (ib)’, and an open cone contains lattice points. In this way we can
obtain p satisfying all the required properties except (3.3). Moreover, not every
lattice point in the open cone can lie in one of the hyperplanes in (ib)’ given by

(p,a)y=0 forainA] with a|; # 0.

Thus we can even find p integral so that (3.3) is valid. This completes the proof
of Lemma 3.1.

4, Generalized Schmid identities

Let G be a linear connected reductive group with compact center. The
purpose of this section is to relate basic characters associated to two different
cuspidal parabolic subgroups of G that are obtained from each other by the
Cayley transforms (2.5) and (2.7).

Let MAN be a cuspidal parabolic subgroup. In the notation ®™(A, C, x) of
Section 1, the character ¥ is initially defined on Z,,. However, we mentioned in
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connection with equation (1.6) that it is sufficient to have x defined on a
subgroup Z}, of Z,, as long as M* = M, Z;,. We examine this remark in the light
of Lemmas 2.1b and 2.2.

First suppose rank G = rank K and b* C f is a compact Cartan subalgebra
of g. Let M be built from a Cayley transform c; with respect to a noncompact
root & of (g€ b*®). Then Lemma 2.1b says that Z, = Z, F(B), and we
therefore can take Z;, = F(B) = {1, v,}. This choice of notation is made in the
statement of Theorem 4.1 below.

If we have a cuspidal parabolic M*A*N* and build MA from M*A* by a
Cayley transform c; with respect to a noncompact root & of (m*C, (a @ ib*)°),
then Lemma 2.2 says that

{L, 'Ya}ZMOZM*

has index 1 or 2 in Z,,. In this case if the index is 1, we can take Z}, = {1, v,}Z .
Otherwise {1, v,}Z,,» determines a subgroup of index 2 in Z,,. These choices of
notation are made in the statement of Theorem 4.3 below.

We can now state one of Schmid’s character identities. (See Theorem 9.4 of
[24] and page 135 of [8]. See also [27].)

THEOREM 4.1 (Schmid). Let G be linear connected reductive with rank
G = rank K, and let b* be a compact Cartan subalgebra of g contained in K.
Suppose that C is a Weyl chamber in i6* and & is a C-simple noncompact root of
(€, 6*C). Suppose that the Cayley transform cg leads from the data (g, 0, b*) to
data (m, a, b) and that a = cz(&). If A is a member of b*’ such that
(i) A — p is integral, where p is half the sum of the positive roots,
(i) A is C-dominant,

(iii) (A, @)=0,

(iv) A is nonsingular with respect to compact roots,
then
(4.1) O%(A,C) + O%(A, p; C) = ind§OMA(A|,, CPs, ¢,0),
where

(4.2) CPs = unique Weyl chamber” of ib containing the orthogonal projec-
tion Proj,,C = Proj,,p; C
¢ = character of {1, v,} given by {(v,) = (— L)X /Il

p,, = half sum of roots of (a€,(a ® b)C) whose restriction to a is ca
with ¢ > 0.

"The set Proj,;,C is open and connected in ib, and no root of (m€, b€) vanishes anywhere on
it; thus it is contained in a single Weyl chamber of ib. However, it need not exhaust the Weyl
chamber of ib, as is seen in SU(2, 1).
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CoroLLARY 4.2. In Theorem 4.1, assumption (iv) may be dropped.

Proof. We shall specify consistent systems of positive roots for (g€, (a ® b)°)
and (m @ a)C,(a ® b)€) and then apply Lemma 3.1. The chamber C de-
termines a positive system for (g, (6*)€), and we carry that notion of positivity
over to the roots of (g%, (a @ b)€) by the Cayley transform ¢ & Restricting the
notion of positivity to roots of (m @ a)C, (a @ b)C), we obtain (i) in Lemma 3.1.
Then the corresponding positive Weyl chamber in ib is C?¢. The form A |p>
extended by 0 on a, is just ¢;(A), which is C-dominant. Consequently A |
satisfies (ii) in Lemma 3.1. We verify (iii) by showing that Proj,,C C C. Thus
suppose H; is in Proj,;C. Choose H, in a so that H,; + H_ is in C. Let 8 be a
C-positive root other than & Then p&,B is also C-positive since & is simple, and
hence

28(H,;) = B(Hib +H,)+ peB(Hy + H,)

is > 0. Also &(H,;) = 0. Hence H,; is in C, and (iii) holds.

Apply Lemma 3.1 to find a g°-dominant integral form cyp) on (a @ b)C
that vanishes on a and satisfies (3.3). The lemma says that the right side of (4.1)
equals

(4.3) lpc-&*ﬂ)mdc@m((x + 1) s> C?%, £,0).

Equation (3.3) implies that (A + p, 8)= 0 only for B = *a, hence that (iv)
holds in Theorem 4.1. The theorem then says that (4.3) equals

YA QA + p, C) + YHHOC(A + p, p; C),

because y does not depend on the choice of Cartan or the ordering. (See (1.9).)
The corollary then follows from (1.11).

We shall generalize the character identity (4.1) by replacing the connected
group G by the possibly disconnected group M*. The situation splits into two
cases, depending on whether the reflection p; is in the Weyl group W(B* : M*).
We call (4.4a) and (4.4b) below generalized Schmid identities.

TuEOREM 4.3. Within a linear connected reductive Lie group G, let M* A*N*
be a cuspidal parabolic subgroup, and let b* C ¥ N m* be a compact Cartan
subalgebra of m*. Suppose that C is a Weyl chamber in ib* and @ is a C-simple
noncompact root of (m*C, b*C). Suppose that the Cayley transform c; leads
from the data (m*, a*, b*) to data (m, a, b) and that « = c4(&). Finally
suppose that data \, x, and v for @™ 4*(\, C, x, v) are such that

() A — py is b*-integral, and e ~P»* agrees with x on Z,.. N B*,

(i) (A, & =0,
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(iii) A is C-dominant (and hence also pC-dominant).
There are the following cases:
(a) If pg is not in W(B* : M*), then Zy, = {1, v,}Zy; Zys» and

(4.42) M4 (A, C, x,v) + O™ 4 (A, p; C, x, »)

= ind Yoare @4 (A |, CP5, { @ x, v © 0),
where CP% and § are defined as in (4.2).
(b) If pg is in W(B*: M*), then | Zy /{1, Y,}Zp Zps» | = 2. Let CP*
and ¢ be defined as in (4.2), and let ({ ® x) and ({ ® x)~ denote the two
extensions of { ® e Pk ® x to Z,,. Then

(4.4b) OMA(A,C, x,») = ind¥ 4. LOMA(A |, CP, (§ ® )", » ©0)
= ind ¥4 LOMA(A |, CPe(E® X)L, v ©0).

Remarks. This theorem is intimately connected with Theorem 1.1. We shall
use the “if” part of Theorem 1.1c, which was proved completely in Section 1, in
the proof. In turn we shall use Theorem 4.3 and the Hecht-Schmid identity
(stated as the “if” part of Theorem 1.1b) to prove the remaining parts of
Theorem 1.1; this step will be carried out in Section 5.

Once Theorem 1.1 is proved, it follows that the two characters on the left of
(4.4a) are distinct unless both are zero. We can observe now that the two
characters on MA that are induced in (4.4b) are distinct; in fact, the correspond-
ing representations of MA are scalar on Z,, and equal to the distinct characters

E®x)".

Proof. We shall suppress some of the variables to simplify the notation. In
both cases (a) and (b) we begin with an application of Theorem 4.1 or Corollary
4.2 to M§, obtaining

(15)  ©(C) + 8" (p; ) = ind}ff; (7™ ® 147,

We intend to use x on Z,,. to extend both sides of (4.5) to M**. There are
compatibility conditions to check: The representations in question are all scalar
on Z,,, and we have to check that x agrees with these scalars on Z,,. By
assumption (i), x agrees with the scalar on the left, and it is implicit in the
statement of Theorem 4.1 or Corollary 4.2 that the scalar on the left agrees with
the scalar on the right. Thus we have the required consistency, and we obtain

@M»*(C) + @M**(p& C) - ind?,l(::px(@)MnM** ® lAnM'),

Induce to M*, using the double induction formula on the right, and
then rewrite the right side by further applications of double induction. Since
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M(A N M*) is the reductive part of P N M*, the result is that
(4.6)
oM (C) + M (p, C) = indll‘,’,:M*#(@M”M*# ® IA“M*)

= indﬁ‘fnw[(mdz (Mo ind M‘M”M**)(-)M”M**) ® lA”M'].

Here Z,,(M N M*¥) is a group intermediate between M* and M, and it satisfies
the axioms of Section 1 of [13]. In view of our definitions,

(4.7) @ZmMOM™) — jnqZyMOMHQM*,
We now divide matters into the two cases distinguished in the theorem.

(a) Suppose p; is not in W(B* : M*). Then Z,, = {1,v,}Z,, Zy+ by Lemma
2.2. Also Lemma 2.2 says that M N M** = Z, (M N M**), so that the inner
induction in (4.6) is trivial and we may write @ZM"M™ i place of @MNM™*,

Substituting from (4.7) into (4.6) and using the double induction formula, we
find that

0"(C) + 8" (p; C) = ind}f’y.[(ind}f0M") @ 147°]
= ind},,.[OM ® 147M°],
Tensoring both sides by e” on A*, we obtain (4.4a).
(b) Suppose p; is in W(B* : M*). Then | Z,, /{1, v,} Z,, Zy+ | = 2 by Lemma
2.2. Since p; is in W(B* : M*), ©M(C) = ®M"(p, C), by ‘the (already proved)
“if” part of Theorem 1.1c. Thus the left side of (4.6) equals 20(C).

Now M N M** has index 2 in Z,,(M N M**), by Lemma 2.2, and therefore
the inner induction in (4.6) may be written as

(4.8) indpUAMORMM(¢ @ )
— @ZM(MHM*")(“- ® X)+) + @ZM(MﬂM**)((g» ® X)- )

Substituting from (4.7) into (4.8) and from (4.8) into (4.6), we obtain
(4.9)

20M°(C) = ind;‘,’gw{ [indyu(mw,,)indg;gmw")(@M’*((g ®x)")
+OM((t®x)” ))] ® 1A“M*}
= ind}fr,.{ [ind}=(0M(s ® %)) + ©M((¢ ® %) ))] ® 14},
Let p, be the reflection in a in W((A N M*) : M*). We shall show that

(4.10) p 0t ®x)") =0"((t®x)).

Then it will follow that the two terms in (4.9) each contribute the same thing to

the sum after the outside induction, and hence (4.4b) is obtained by tensoring
with e¢” on A* and dividing by 2.
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Thus we are to prove (4.10). On M, the two characters are equal since
Lemma 3.2a of [13] shows p, has a representative in K N M that centralizes
M,. Thus we are done if we can prove that the characters ({ ® x)* of Z,, are
related by

(4.11) PS®X) = (k®x) .

Choose the standard representative w, = exp%(X .t 0X,) for p,. The
element w, commutes with each element of the subgroup {1, v,}Zy Zy. of Z,,
(since w, lies in the SL(2, R) corresponding to « and since w, centralizes B and

lies in M*), and ({ ® x)* and ({ ® x)~ agree on this subgroup. Let z be in Z,,
but not {1, v,}Z,; Zy+. Then

(4.12) ®x)" (z) == (®x) (2).
We shall prove that

(4.13) w, 2w, = zv,

and

(4.14) $(v,) = — 1.

Then we will have
w(§ ®x)" (2) = (§ ® x) " (wy zw,)
=(t®x) (3)(§®x)" () by(4.13)
= - ®x) ()(va) by (4.12)
=(®x) (2) by (4.14),
and (4.11) and (4.4b) follow.

Thus we are to prove (4.13) and (4.14). For (4.13) we know that z commutes
with A (z being in M) and with B (z being in Z,,). Therefore z is in Z,,,( AB),
which is contained in Z y4,c(AB) by (2.4). Since (MA)C is connected, z lies in
exp(a ® b)C. Thus let z = exp H with H in (a ® 6)C. Then

(4.15) (w5 'aw,)z ! = exp(p,H — H) = exp(—2| «| 2a(H)H,).
To identify a( H), we recall from the proof of Lemma 2.2 that Ad(z)X ., =
—X ., since z is not in (1, v,}Zy, Z,.. Hence

—X, = Ad(z)X, = exp(ad H)X, = e*®X_,

and it follows that a(H) is an odd multiple of wi. Substituting this fact into
(4.15), we obtain (4.13).

For (4.14) the fact that p; exists in W(B* : M*) means that p; preserves
type for roots of (m*<, b*C)—compact vs. noncompact. Since pz8 must be of
the same type as ,é and since @ is noncompact, it follows that 2( &, B' Y /| & |? must
be even for every root B of (m*C, b*C). Let pz be half the sum of all the roots of
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(m*C, b*€) having positive inner product with &. If B # @ is a root contributing
to this sum, then so is

2<&’E>&_ 23

—p&B— I&Iz B’

and the sum of these two roots is 2 | & | "% &, §) . Hence

i 2(d, B) .
2p& =da-+ 2 —<—:2—>'0[.
pairs | &
B‘) _p&B.

The sum over the pairs is an even multiple of & and thus 2(p;, &) /| &|® is an
odd integer. Since p, = cz(pz), it follows that

$(y,) =(~1 0/ = 1,
and (4.14) is proved. This completes the proof of Theorem 4.3.

CoroLLARY 4.4. Every basic character is contained in a basic character
induced from discrete series (in the sense that the basic character induced from
discrete series is the sum of the given basic character and some other character).

Proof. For basic characters of the form ind$®M4(A, C, x, »), the proof
proceeds by induction downward on the dimension of A, with G fixed. The first
step of the induction is for a minimal parabolic. In this case, M is compact; thus A
nonsingular with respect to the roots of (m€, b€) gives a finite-dimensional
representation of M, and A singular gives 0.

Now suppose ©@M4"(\, C, x, v) is given and the result is known when
dim A > dim A*. If A is nonsingular with respect to all C-simple roots of
(m*€, b*C), then OM"(A, C, x) is in the discrete series and there is nothing to
prove. If A is singular with respect to some C-simple compact root, then
OM'(A, C, x) = 0 by the Hecht-Schmid identity (see Theorem 1.1b). Finally if A
is singular with respect to some C-simple noncompact root &, then the conditions
of Theorem 4.3 are satisfied and either ®™™4*(A, C, x, ») or

M (X, C, x, v) + @M (A, p; C, X, »)
is the left side of a generalized Schmid identity. Inducing both sides from P* to
G, we can apply our inductive hypothesis to the right side to complete the proof.
5. Limits of discrete series, continued

We can now complete the proof of Theorem 1.1. In view of the partial proof
given in Section 1, we may assume that G is linear connected reductive with
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compact center. We still have to prove

(@) OC(A, C) is irreducible or zero.

(b") ®%(A, C) is zero only if (A, a) = 0 for some C-simple compact root a.

(¢’) When ®F(A, C) is nonzero, then ®(A, C) = ©%(X’, C’) implies there
exists w in W(B : G) with wA = A" and wC = C’.

(d") When O®%(A, C) is nonzero, it is the character of a tempered unitary
representation.

For (a’) and (d’), we shall use the following Multiplicity One Theorem.

TaeoreM 5.1 ([13], Theorem 7.1). The irreducible characters that occur in
any basic character induced from discrete series all occur with multiplicity one.

Proof of (a’) and (d’). We saw in Section 1 that ®“(A, C) is a multiple of
an irreducible character. Corollary 4.4 shows that ®%(A, C) occurs in a basic
character induced from discrete series. By Theorem 5.1 we conclude that
OC%(A, C) is multiplicity-free. This proves (a’). Hence O%(A, C) is the character
of an irreducible constituent of a'tempered unitary representation (one induced
from discrete series), and (d’) follows.

Proof of (b’). The proof is by induction on the rank of G. Let b* C f be a
compact Cartan subalgebra of g, and let ®%(A, C) be given with A C-dominant.
Define

Ac y = {aroot of (g€, b*C) | (a, A)= 0}.

If A; , contains only noncompact roots, then OC%(A, C) is given by the usual
nonzero formula on B* and so is nonzero. (See also Theorem 5.7 of [31].) If A
contains a compact root but no compact Csimple root, then there exist simple
noncompact 8 and & in A, , that are nonorthogonal, since A , is a root system
spanned by the simple roots that it contains. Say | 8|=|&|. Then pgé = & + B,
which is compact. Also p,8 is simple for p,C. By the Hecht-Schmid identity (the
“if” part of Theorem 1.1b), ©(A, p,C) = 0. By the Schmid identity (Theorem
4.1 or Corollary 4.2),

O(A,C) = ind$0M(A|,, C?,§) ® e°;

here (m, a, b) is obtained from (g, 0, b*) by means of the Cayley transform c,.
Our result will follow by induction if we show that A |y is nonsingular with
respect to the m-compact simple roots of (m€, b€) in the ordering given by C*s.
(The disconnectedness of M does not affect whether a limit of discrete series
character is zero.)

Let us emphasize the distinction between g-compactness and m-compact-
ness. To decide m-compactness of a root y of (m€, b€), one is to regard y as a
root of (g€, (a ® b)C) that vanishes on a; to decide g-compactness of v, one uses
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¢z (). Although ¢z does not move the vector H in ib, ¢z ! will move the root
vector associated with vy if and only if y and B are orthogonal but not strongly
orthogonal. By Lemma 5.4 of [17],

(5.1a) v and B strongly orthogonal
= (y is m-compact < 7y is g-compact);
(5.1b) v and B orthogonal but not strongly orthogonal
= (y is m-compact < v is g-noncompact).
Thus let
Ay = {roots for C»} = {e root of (gc, (a® b)C) | (e, B)= 0},

and let y be a C?e-simple root in A, such that (y, A) = 0. Our proof by induction
will go through if we prove y is m-noncompact. We expand y in terms of the
C-simple roots of A ,:

y=Yma;, «simpleinAc,, m;=0.

By assumption the Csimple roots in A , are all noncompact, and thus the
“height” 3m,; determines whether vy is g-compact or g-noncompact.

Let p be half the sum of all the C-positive roots. It is well known that
2(p, a;) /| ;| = 1 for a; simple (see [11], p. 248). We introduce the dual root
system (of co-roots)

vV _ 2 a,
o [?

and this relation becomes

(p,aYy=1 for a,simple.
If we dualize this equation, we obtain
(5.2) (p,a;)=1 for a,simple.
Consequently

)= (p’, Sma;)= Sm,.

Since y is m-simple,
(5.3) (1,0 = (pyy) Y= Zm, — 1.

We consider the co-roots a¥ contributing to the left side of (5.3). Each such
is C-positive and nonorthogonal to 8 and y. For any such aV, choose a sign = so
that +p,a" is positive. We cannot have +p o' = B" since y and B are orthog-
onal, and therefore the simplicity of 8 implies that ipﬁpya" is positive. We shall
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consider the set of positive co-roots

(5.4) {aV pga’, =p.a’, tpﬁpyav}.
The four co-roots in (5. 4) are dlstlnct unless —pya is positive and — pya = pBa
in which case —pﬁpy = " also. The exceptional case occurs when
2(a", 2 o
Q1) gy Ka )y
|7 | 8]
and this condition simplifies to
_{en, (0B
(5.5) = B.
v I8P

If a does not satisfy (5.5), then the four co-roots in (5.4) are distinct, and
their contribution to the left side of (5.3) is

ljlz .%[((y,a)+ (v> ppa)) = (Cv> Py + (¥, pep,a))],

which simplifies (Wwhen we move the reflections to the other side of the inner
products) to

la|2[2(y, @) F 2(7, &)],
which is an even integer. Thus the roots a not satisfying (5.5) do not affect the
parity of the left side of (5.3).

Now consider roots a satisfying (5.5). Since 8 and y are orthogonal, equation
(5.5) corresponds to recognizable situations in rank-two root systems. One
possibility is B,. Then | 8|=|v]| .

If B and vy are long roots in B,, then a (in order to be ‘nonorthogonal to 8
and y) is = 3y = B, and the positive choices for a are 1y = 8. The contribu-
tion to the left side of (5.3) is

Yy, (3= B) + 3y + B))
= T E Rt B B
and the parity of the left side of (5.3) is not affected.

If B and y are short in B,, then a is =y * B, and the positive choices for a
are y = B. The contribution to the left side of (5.3) is

Hy,(y —B) + (v + B)V)
1

|y [?
.—_:2’
[$(y—B)?

2|y
—B)+ (y +B)= —_ =1,
21y Blz(v (Y= B8)+ (v +8)) v BF

and the parity of the left side of (5.3) is reversed.
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The remaining possibility is G,. Let 8 and ¢ be the simple roots. The two
cases are Yy = 8 + 2¢, with height 3, and y = 38 + 2¢, with height 5. In both
cases, the left side of (5.3) is even.

Putting our computations together, we conclude from (5.3) that y has odd
height if and only if the orthogonal roots 8 and vy are strongly orthogonal. Since
the a;’s contributing to the height of y are all g-noncompact, y is g-noncompact if
and only if the orthogonal roots 8 and y are strongly orthogonal. Combining this
statement with (5.1), we see that y is m-noncompact in every case. This
completes the proof of (b).

Preparation for proof of (c’). We shall use the theory in Section C of the
appendix. We are assuming G is connected. Let us observe that the identity
component of the center of G contributes only an exponential to a character on
G, so that we may assume G is semisimple. Then without loss of generality, we
may pass to a covering group and assume that G€ is simply-connected.

We shall make critical use of Schmid’s Coherent Translation Theorem [26],
given below as Theorem 5.2. Schmid observed [24, 8] that in the formula for
©C(A, C) on each Cartan subgroup, the formula continues to make sense when A
is no longer C-dominant but A — p is still integral. The result is an invariant
eigendistribution on G for every value of A, and it will still be denoted O(A, C).

THEOREM 5.2 (Schmid [26]). Let G be linear connected semisimple, and
suppose b C t is a compact Cartan subalgebra of g. Let C be a Weyl chamber in
ib, and let A, be a nonsingular C-dominant form such that X, — p is integral. If
a is a noncompact C-simple root, then

®(paxl’ C) = Q(Ala C) + ®0,
where ©, is a true character.

Proof of (¢). As we saw above, we may assume that G is contained in a
simply connected complexification. We shall use freely the notation of Section C
of the appendix. Suppose

(5.6) ®(A,C) =0O(N,C) #0

for a C-dominant A and a C’-dominant A’. Choose w, in W(B: G€) so that
C’" = w,C. Then it follows from consideration of infinitesimal characters that
A" = wyA. We are to prove that w, is in W(B: G).

Choose a dominant integral nonsingular form g and put

(5.7) Ay=A+p and A =N + wyp.
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By definition,
O(A,C) =¢y20(A,,C),

(5.8) ,
o(N,C) = 4/{‘}@()\'1, C).

Let a be a noncompact C-simple root. Comparing Schmid’s definition of
O(p, A}, C) with the statement of Theorem C.1 of the appendix, we see that
O(p,A;, C) equals pO(A,, C), in the notation of the appendix. Thus Theorem
5.2 translates as ‘

(5.9) pO(A,,C) = (7, C) + 6,

with @, a true character. Applying v, to both sides of (5.9) and using the identity
¥,p, = ¥, of (C.8), we obtain

.0, = 0.
Consequently Lemma C.4 shows that
(5.10) (A, a)=0 implies @, isin J}.
In view of (5.10), equation (5.9) implies
(5.11) (A,a)=0 implies pO(A,,C)=0(A,,C)mod J}.

Let W(A) be the subgroup of W(B: G€) that fixes A. In the notation of
Theorem C.2, we shall prove that

(5.12) w € W(A) implies wO(A,,C) = 0O(A,,C)mod J}.

Since A is dominant, W(A) is a Weyl group generated by the simple reflections
that it contains. We shall prove (5.12) by induction on the length I(w). The
group W(A) contains no simple reflections in compact roots, by the Hecht-Schmid
identity (the “if” part of Theorem 1.1b). Thus the case l(w) =1 is exactly
handled by (5.11). Proceeding inductively, suppose (5.12) is known for w and
suppose p, is a simple reflection in W(A) with I(p,w) > l(w). Then a is
noncompact and we have

pwO(A,,C) =pO(A,, C) + p,i by induction
=0A,C)+i +pi by (5.11)
=0(A,C) +i” by Theorem C.5.

Thus (5.12) follows.
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Then we compute

P O(A,C) = A ¥3'0(A,, C) by (5.8)
= ¥ wO(A,,C) by TheoremC.3
weW(A)
(5.13) =| W) |O(A, C) + i

by (5.12). In view of (5.7), ¢}, and @), are the same functor. Thus there is an
equation analogous to (5.13) for ¢}, and (5.6) gives

| W(A) [8(A,, C) =| WA) | O(A;, C) + 7.

Decompose j”” = p — n into the difference of two true characters. Then we
have

p+|W(A)|O(A;,C) =n+|W(A)|O(1,,C).

Every irreducible constituent of p and of n is in J(¢3!), and the discrete series
characters (A, C") and ©(A,, C) are not in J(y1). Since distinct irreducible
characters are linearly independent, we conclude that

(5.14) O(A,C) =0(A,,C).
The characters in (5.14) are discrete series characters, and thus the element w, in

W(B : G€) with C’ = w,C has to be in W(B : G). We have seen that A’ = w,A.
Thus the proof of Theorem 1.1 is complete.

Proof. If G(w/VF)u((w — y)/e) # 0, |w|<2//3 and |w —y |<e
< Vr/6. This is case (i). Assume now that 8,(w/F)u(w, (w — y)/€) # 0. Since
p(w, u) is invariant under the map (w, u) — (gw, gu) for any orthogonal g by
(23), the condition (i) (22) implies that (u,w)=2|u|lw|/3 provided p(w, u)

7 0. Hence, by our assumption, (w — y, w)=2 |w— y||w]|/3. Then
generalized Schmid identities to exhibit reducibility. ‘I'here 1s an obstruction to
inverting the identities, having to do with integrality.

THEOREM 6.1. Let P = MAN be a cuspidal parabolic subgroup of a linear
connected reductive Lie group G with compact. center. Let b Cf N'm be a
compact Cartan subalgebra of m, and let a be a real root of (g€, (a ® b)C).
Suppose that the Cayley transform d, leads from the data (m, a, b) to data
(m*, a*, b*) and that & = d (a). Then the character

. IM*A* MA
indpppe0® (}‘M’ Cyvs Xus VM)

is the right side of a generalized Schmid identity (4.4a) or (4.4b) obtained from
@ if and only if (vy, a)= 0 and

(6.1) XM('Ya) - (_1)2<pma>/|a|z ’
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where p, is given by (4.2). When these conditions are satisfied, the Weyl
chamber C in ib* can be taken to be any chamber such that
(i) Ay ©® 0 is C-dominant,
(ii) (C Nib) N C,, has nonempty interior, and
(iii) & is C-positive.
Proof. The necessity of the conditions is obvious, in view of the statement of
Theorem 4.3. For the sufficiency, we are to construct

@M*A'(A, C,x,7) ‘

with the properties in Theorem 4.3. The definitions of A, x, and » have to be

Ay onb
A= {0 on Hg,

X= Xumlzy, and v =y ..

The sufficiency will then be proved if we show that

(a) any chamber C satisfying (i), (ii), and (iii) has & simple and C,, = C"3,

(b) there exists a chamber C satisfying (i), (ii), and (iii),

(c) A — pyy« is b*-integral, and e*Pv* agrees with x on Z,,. N B*.
Note that { and x,, will have consistent values on y, by the assumption (6.1).

First we prove (a). For each root § of (m*€, b*C) that is not identically zero
on b (i.e., B # = &), ker B N ib has empty interior in ib. Hence there is an open
dense set Cj, in C,, on which B is nonvanishing for every root 8 of (m*<, b*C)
other than *=a@. By (ii), (C Nib) N C}, is nonempty; let H;, be a member of this
set. Since H,, is in C, ,B( H;,) is =0 for all positive roots B # & Since
,B(H,b) # 0 for all roots § # +d, we actually have ,B(H p) > 0 for all positive
roots § # d.

Now let 8 # @ be > 0 and form p&ﬁ. We have

p&':é (Hib) = E(Hib) >0,

and hence p&ﬁ > (0. Thus the only positive root sent into a negative root by p; is
&, and & must be simple.

In addition, H,, + ¢H; must be in C if ¢ > 0 is sufficiently small. Then H,j
is in Proj;;C (in the notation of (4.2)) and is in C;; C C,,. Since C,; N Proj;;C is
not empty, it follows that Proj,,C C C,, and that C?# = C,,. This proves (a).

For (b), we choose C by means of Lemma 3.1. Then (ii) of the lemma yields
(i) here, and (i) and (iii) of the lemma yield (ii) here. If (iii) here fails, we replace
C by p; C, and then (iii) will be valid.



422 A. W. KNAPP AND G. J. ZUCKERMAN

For (c), the ordering that defines p,,. is at our disposal. Form roots of
(m*C,(RH, + 6)°), order RH, before ib, and transfer the resulting positive
system to roots of (m*C, b*C) by the Cayley transform d_,. Then we obtain

Py = Pz T Py
Whel'e pé(' = da(pa)‘
Let B; = exp iR H; this is a circle group in SL(2, R) built from the real root
a. We then have B* = BB; on the group level and
(6.2) A=y = (A = par) + (=)

on the Lie algebra. It is implicit in the existence of ©®™4 that A, — p,,
exponentiates to B. Thus A — p,,. is b*-integral if and only if

(¢) — psz exponentiates to B; and

(c”) eM P and e” 7 agree on B N B;.

In (c), we are to prove also that e *v agrees with x on Z,. N B*. By
Lemma 2.1b, we have

Zy. N B* C Z,, N\ M* = {1,7,}(Z,, N B).

It is implicit in the existence of @4 that e*»~*v agrees with x,, on Z,, N B. If
(¢’) and (c”) hold, then (6.2) shows that e~ #»* agrees with x,, on Z,, N B. Also

e 7P (y,) = exp2mi | &| XA — py., &)

= exp27i| &| X — py, &) by (6.2)
={(v,) since d , is unitary
= Xu(Ya)- by (6.1).

Hence e* v agrees with x on Z,,. N B*. Thus (c) will follow if we prove (c’)
and (¢”).

In (¢’), p; is a half-integral multiple of &, and & exponentiates to B*, hence
to By, since & is a root. Thus the only way that p; can fail to exponentiate to B; is
if both

pz = (n+4)a for some integer n
and
Yo =1,

and these two equations togetlier are incompatible with (6.1). This proves (¢’).
In (c”), the most general element of B; is exp(if | & | 2H;), and we have

Ad(expif|&|2H;)E; = " E,.
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Since Ad(b) fixes E for b in B, the only elements of B, that can be in B have 6 a
multiple of 27. That is

BN B, C{l,v,).

If v, is in B N By, then e**~# and e~ agree on v, by (6.1). This proves (c”).
The proof of Theorem 6.1 is complete.

7. Plancherel factors

Let P = MAN be the Langlands decomposition of a cuspidal parabolic
subgroup in the linear group G. For any irreducible unitary representation ¢ of M
and character e”” of A, we have associated in Section 7 of [16] various “n-factors”
to the induced representation

Up(¢,iv) = ind§(£ ® ™).
These n-factors arise from intertwining operators in a way that will not concern
us at present, and they are related to the reducibility of U,(£, iv). We shall study
an n-factor 7, ,(iv) attached to each (positive) reduced a-root a.

The formula for 1, ,(i») in [16] is fairly complicated,® and it is our intention
to simplify it when £ is a discrete series or limit of discrete series representation.
The final result is Proposition 7.1. Let us recall the formula in [16]; it is not
evident that it depends only on £, », and a. Let a u» be a maximal abelian
subspace of m N p, and let a, = a ® a,. Choose a positive system of a ,Toots so
that a comes before a,,, and form the corresponding minimal parabohc sub-
groups M, A N, of G and M, A, N,, of M, where N, = NN,,. The representation
§ imbeds as a subrepresentatlon of a nonunitary prmmpal series representation of
M, say the one with parameters (o, A,,), where o is an irreducible unitary
representation of M, and A, is a member of a),. Then the formula in [16] given
by (7.7) and Theorem 7.6(v) is
(7.1) Mg, iv) = II "lo,/s()\M ®iv).

B=reduced a,root

Blo=ca withc>0
Here, apart from a multiplicative constant independent of £, i», o, and A > W€
have

(72) no,B(AM ® iv)_l = po,B(AM ® il’),
where the product of the degree of o and the function P,, g gives a multiple of the

®In [16], the actual notation was 7((8P® : P : ¢ : iy | ).
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Plancherel density for the o-principal series in the Plancherel formula for a group
G, See Propositions 7.3, 7.4, and 10.1 of [16].

When § is a discrete series representation, 7, , itself is related to a Plancherel
formula; namely, the product of the formal degree of £ by the function 7, | gives
a multiple of the Plancherel density for the &induced series in the Plancherel
formula for a group G®. This interpretation breaks down when £ is a limit of
discrete series representation because the formal degree of £ is 0, but 7, |, is still
defined. Accordingly we define’ a Plancherel factor p., (iv) by

(7.3) pe,o(iv) =g o(i7) .

Then (7.1) and (7.2) give

(74) pe oiv) = I P, p(Aag @ i)
B reduced a ,root

Bl,=ca with ¢c>0

Formulas for p, 4(w) were derived by several authors, and the results and
references are compiled in Section 12 of [15]. We shall need the formulas and
hence reproduce them here. Let b, C m, be a maximal abelian subspace. Then
a, + b, is a Cartan subalgebra of g. Form roots of (aS, (a, +D )C) introduce
a p051t1ve system so that a, comes before b, let Pu, be half the sum of the
positive roots that vanish on a ,andlet A~ be the hlghest weight of o. There are
two cases, each involving a product over roots ¢ of (g€ s(a, +Db %)

(a) If B is an even a -root, then
(7.5a) Po, p(w) = |Hﬁw ® (A +pu,), )

(b) If Bis an odd a ,root, and B’ = 28 or B according to whether 28 is an
a oot or not, then

(7.5b) Pa,p(‘*’) = H (0w ® (A_ +PM,,)’ &) f;,p'(‘*’)’
elo, =B or 28

where
itan(m(w, B /| ') ifo(yy) = — (—1)* /T
—icot(m(w, B /| B'[) ifo(yy) = +(—1)>PF /BT

When £ is in the discrete series, (7.4) has to simpify to the formula in
Proposition 7.1 below because of the connection of . , to the Plancherel formula

(7.5¢) £, plw) =

9This definition is off from the one in [16] for discrete series by a nonzero multiplicative
constant independent of £ and »; this constant need not be positive.
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and because of the results of [7]. The content of the proposition is that this result
persists when £ is a limit of discrete series representation.

ProposiTION 7.1. Let the discrete series or limit of discrete series representa-
tion & have character ®"(X, C, x), and let a be a reduced a-root. Then ¢ (iv) is
given by two cases, each involving a product over roots € of (g%, (a + b)°):

(a) If a is an even a-root, then
(7.6a) pe o(iv) = |H (A +iv, €).

g,=a

(b) If a is an odd a-root and o’ = 2a or a according to whether 2a is an

a-root or not, then

(7.6b) 173 Jiv) = ( I (A+iv, 8>)fé’a,(iy),
elo=ca, c>0
where

itan ﬁ_w_ﬁz) _ _tanh(ﬂ(v,a’ )

o/ |* | o |

i Y= (1) e

(76c)  f; w(iv) = . ,’f X(Ya) (-1 ,
i cot M) _ —com(""<”’“>)

o’ [? | o

| if x(1) = (=1

The proof requires some preparation. Let us observe that we have at our
disposal how a,, is chosen to extend a to a,, and how b, is chosen to extend a,, to
a, ® b, together with the orderings on a and a, ® b,,. The positive system
for b C £ N m is determined by C (given in the notation for the character of ).
Then in addition we have the imbedding ¢ = (o, A,,) at our disposal. The
choices that we make will be those dictated by the construction in [17], and we
now describe that construction.

We thus start with A and the positive system of noncompact roots for
(mC, b€). Following [17], we choose any “fundamental sequence” of positive

noncompact roots §,,...,8, of (m€, b€). This sequence is strongly orthogonal
and leads to a definition of a ,,. The Cayley transforms c;,...,c; commute, and
the product ¢ = ¢; -... ¢ enables us to define a,, and b, by

RHg)
i=1 i

aM=c(
j=
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and
m
p = orthocomplement in b of 3 iRH;.
i=1

For the positive system of roots of (m®, (a,, + bp)c), we say that ¢ > 0 if either

(6,8,)= = (e, 8~,_l>= 0 and (e, 5;)> 0 for some j
or
(e,8))=+-=(e,8,)=0 and ¢ () >0 for(mC, bC).
Let p,; be half the sum of the positive roots of (m€,(a,, + b »)¢)- The images
¢(4;) under the Cayley transform will be denoted 5.
Roots of (g, a) are restrictions to a or a€ of roots of (g, a,), which in turn
are restrictions of roots of (g%, (a, ® b,)°).

LemMA 7.2. The discrete series or limit of discrete series representation § of
M has an imbedding (infinitesimally) as a subrepresentation of the nonunitary
principal series of M with parameters 6 on M, and Ay, on a, such that each

8 = &, satisfies
2(Ay, 8) _ 2(A, 8)
|5 |5

(7.7)

and
(7.8) U(Ys) = (_1)2<Au—p;“,,8)/|5|2 .

Proof. We apply the results of [17] to M,. Theorem 10.8 of [17a] and the
proof of Theorem A of [17b] apply as long as the Blattner parameter of ¢ (there
called A, here to be called Ag) is integral and K N M, dominant and the
Harish-Chandra parameter of £ (there called A, here called A) is M, dominant.
We need to check that A = A — p, + p, is K N M,, dominant if p, and p, are
the half sums of the positive compact and noncompact roots of (m€, b€),
respectively.

Write Az = A + p — 2p;, and let & be a simple root of ((f N m)C, bC). If &
is simple for (m®, b€), then Theorem L.1b says 2(A, €) /| €[> = 1. Hence

2(Ags &) _ 2\, &)
e el

If & is not simple for (m€, bC), then 2(p, €) /| ¢ |* = 2, and hence

+1—-2=0.

Thus Az is K N M, dominant.
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The results of [17] therefore give us an imbedding of £ as a quotient of a
nonunitary principal series representation. The a parameter of the imbedding is
there called p™ —» with & = §, satisfying

2(,8) _ 2(A5.8)

X 5P + 2n, by (6.5a) of [17a],
and
2n, = 2(p" ,28> + 2{ py _"P,,,g)
18] |52
by Lemma 8.5 of [17a].
Thus

2p* —9,8) _ _2Agtp—p8) _  2(),8)
|6 |81 |51
for the quotient. The a parameter for a subrepresentation is the negative of this,
and (7.7) follows for M,.

According to Theorem C of [17b], the (M,), parameter o, of the corre-
sponding quotient imbedding or subrepresentation satisfies

(79) (%) = (=1
Now Az = A — p, + p,, and Lemma 8.5 of [17a] gives
2{py; > O
_{_")M__z =1+m +n,
|8 |2 1 1
oo — -
w =—-1—m +n,
|6 |2 i i

for certain integers m; and n;. Then

2(— Pt Pus8) _2(py,08) _  2(py,8)
|81 |8 |8
and (7.8) follows for o, and M,, by applying (7.7).

Now we pass to M. According to the proof of Theorem 5.4 of [16] £ imbeds
infinitesimally as a subrepresentation in a nonunitary principal series representa-
tion of M with parameters (o, A,,), where o is some irreducible constituent of
ind%nMooo. Thus (7.7) is still valid, and (7.8) is valid for ¢ since it is valid for
and since v; is central in M,,.

mod 2,
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LEmMa 7.3. In the notation of Lemma 7.2, the scalars £(z) and o(z) match
forzin Z,,.

Proof. The result reflects a well known property of induced representations.

In proving Proposition 7.1, we are to combine (7.4) and (7.5) and simplify
the result to obtain (7.6). When we combine (7.4) and (7.5), we obtain a
polynomial part and a tangent /cotangent part. The polynomial part is

(7.10) II I (Ay+iv+A- +Pu, EN
Breduced ¢, =c’B
B|a=ca, c>0 C”'>O

= I Ay+iv+A +py,e).
g,=ca, c=>0 ’
Here Ay, + A™ +p,, is a parameter for the infinitesimal character of
(7.11) ind%pAMNM(o ®e®1),

and A is a parameter for the infinitesimal character of §, which is a subrepresen-
tation of (7.11). Hence

Ayt A7 +py, = we(A)
for some w in W(A B, : (MA)®). Thus (7.10) is
= I (wed)+iv,ey= [I  (c(A) +ir, &).

gl,=ca, ¢>0 el,=ca,c>0
If we reinterpret the roots ¢’ on the right as roots of (g€, (a + b)C), then we may
replace ¢(A) by A, and the right side matches the polynomial part of (7.6). In
other words, the problem in Proposition 7.1 is to show that

(7.12) I £y +iv) = {fg,,,,(w) if o is odd
B /‘;‘l’d“ced’ B odd 1 if a is even.
a—Cca,C

The proof of (7.12) is the heart of the proof of Proposition 7.1. Ultimately
we shall divide matters into a number of cases depending on « and the B8’s that
restrict to it. Until the end, we assume that a does not arise as the reduced a-root
of a maximal parabolic of the exceptional group split G,, or as a version of this

situation imbedded in a non-simple reductive group.
Define

p,(z) =itanymz and p_,(z) = —icotzmz
for z in C. These functions jointly satisfy the identities
(7.13) pi(z)p_y(z) =1
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and
(7.14) po1(z) =po-1y(n+2z) forninZ.

LEmMMA 7.4. Let a be a reduced a-root other than for a maximal parabolic in
split G,. Suppose B = a + a; is an extension to an aroot, and define B =
a — a;. If a; 5 0, then there are only the following possibilities for a and B.

(a) a is even, and 2(B, B) /| B|> = +1. Then B = a = 48 for some & = §,
with |8 |=| B| and 2{p;;, 8) /| 8 |* odd.

(b) « is even, and 2(B, BY /| B> =0. Then B = a = $8' = 18 for some
6’=8,.cmd8=8,.withi<i,2(p;},6)/_|6|2odd,and|8’|=|8|=|B|.

(c) ais odd, a is a root, and 2{ B, BY /| B|> = 0. Then either
(1) B = a =8 for some & = &; with 2(p;;,08)/|8|* odd and 2|8 * =
| B, or |

(2) B=a = 38" =38 for some &' =98, and 8 =29, with i<j,
2(pis. 8)/| 8 odd, and | 8'|=| 5|=| B .
(d) a is odd, 2a is a root, and 2{B, B) /| B|* = 0. Then either
(1) B = a = $8 for some & = &, with |§ > =|2a > =2| B, or
(2) B=a =36 =38 for some &' =9, and & =8, with i<j,
2(pir. 8) /|8 odd, and | &'|=| 8|=| B .
(e) ais odd, 2a is a root, and 2{B, B) /| B|* = —1. Then
(1) B=a = 48 = 48’ for some 8’ = 8, and 8§ = & with 2(p;;, 8) /|8 |7
odd and | 8" > = 2|8 =2|B% or
(2) B= a = 48 =8 for some & = §, and & = §, with 2{p;;,8) /| 8 |?
odd and |8' P = 2|8 > =|B|?, or
() B=a= 38" = 38 = 38 for some 8" =8, & =4, and 8 = §,
with 1 <i <j, 2{py;,8)/|8|* odd, and | 8" |=|8"|=|8|=| B|.
Moreover, B has multiplicity one in cases (a), (b), and (c).

Proof. Forn = +1, 0, or —1, we have

Lo 28R _ 2l —lel) _ 20BP—4|af

|8 |8 |8
and so
(7.15) 4|a;P=(2—n)|B
Since
o= B0

=1 &P 7
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we have
o (B.§)”
|y = X ,
=

and thus (7.15) implies

m 4 2
(7.16) 3 (5. 2> =2—n

i=1 |81|

The partitioning of the possibilities according to the first sentences of (a)
through (e) is by [12] and Lemma 2.7 of [13], and then (7.16) shows the form of
a; in each case in terms of the 8,’s, including the lengths. We have to show that
2(py;,8)/|8* is odd in all cases except (dl) and that B has the stated
multiplicities.

In (a), Proposition 10a of [12] shows that §; is a simple a yroot. Lemma 2.3

of [13] shows that B and 8; have multiplicity one as a ,-Toots. Thus

2(pn -8 /18P =
Let us consider (b) and (c2) at once. For the statement about multiplicities,
suppose Y 7 0 in b}, makes 8 =+ y a root. Then

(B+v,B—v)y<(B,B)=0,
and (B + y) + (B — y) = 2a is a root, a contradiction. Hence 8 has multiplicity
one. Next, we consider the parity of

(7.17) 2o ) /18
Let £ > 0 be an a root contributing to p,, such that (¢, §,) = 0. Any effect of ¢
is determined by ( e, 8,) for some k <j. If k <j, then ¢ and ps,€ are both >0,
and (& + Ps,& 0;) = 0. Thus (7.17) is affected only by §, itself (Wthh contributes
an odd mteger) and by a -roots
(7.18) e=+8+ b, and e= +45,+ 3 ¢,
k>j k>j

The first kind sum in pairs ¢ and —PsE and then do not change the parity of
(7.17). With the second kind, let us say 8 = a + 46, + 48,. Then B — ¢ is an

a,root and must be of the form (b) or (c2). We conclude there are a ,-roots

a+ 38+ 36, and a+ 35, =15, |6;|=18;|=]8] -

From a + 3§, + §6, and a — §5, = 18, we see that §, + 38, = 38, is an
a,root. However, its length squared works out to %|8;|% a contradiction.
Consequently there are no a p,-Toots of the second kind in (7.18) and (7.17) is odd.

Consider (cl). If a = 8 *vy is a root with y#0 in b,, then again
(a+8+y,a—8—v)is <0 and 2« has to be a root, a contradxctlon So B
has multiplicity one. In considering the parity of (7.17), we argue as in the
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previous case and have only to consider a -roots of the form

(7.19) e= 48+ X b,

k>j

But there are no such a -roots, since otherwise a + §; — ¢ would have to be an
a,root but would not be of the form (c). Thus (7.17) is odd.

Next consider (d2). Again the only a,roots that can affect the parity of
(7.17) are those of the form (7.19). Forming the inner product of both sides of
(7.19) with §;, we see that (e, 8;)= §|;|> and hence |&|=<|§;|. On the other
hand, | §,|<|2a| . We claim that | e|=|§;]| .

Thus suppose that |e|<|8;|. The a,roots in question then all lie in a
BC-type root system, and 2¢ is an a root. Let us say that 8 = a + 38, + 38,
Then py(2¢) = 2e — 2 is an a oot of the same length as 2a, not equal to +2a,
and not orthogonal to 2a, a contradiction.

Hence | &|=|§;|. Then it follows that | Zc;8; |> = $|¢|?, and hence there
are at least two k’s for which ¢, # 0. Taking into account the possible signs of
the ¢,’s in (7.19), we see that the number of a roots of the form (7.19) is a
multiple of four. Thus the roots (7.19) do not affect the parity of (7.17), and
(7.17) is odd.

We argue similarly with (el). The a -roots a + 38; + 36, and a + 38; — 39,
are orthogonal, and their difference is an a -root. Hence their sum 2a + §; is an
a,root. As with (d2), we have |&|=<|§;| . On the other hand, | §;|<|2a + §;|.
Since & is not orthogonal to 2a + 6, and is not = 3(2a + §;), we must have
|e|=|8;| . Then | Zc;8; |* = § | &[?in (7.19), and the number of a roots of the
form (7.19) is a multiple of four. Thus the roots (7.19) do not affect the parity of
(7.17), and (7.17) is odd.

We use the same argument with (e2). Here we have | ¢|<|;|<| 8] . Since &
is not orthogonal to B and is not = $8, we must have |e|=|§;|. Then
| ¢8| = 2 |e|? in (7.19), and the number of roots of the form (7.19) is a
multiple of four. Thus the roots (7.19) do not affect the parity of (7.17), and
(7.17) is odd.

Finally we consider (e3). Once again the only a -roots that can affect the
parity of (7.17) are those of the form (7.19). Let us say

B=a+ 36, + 36, + 39,
Then B — & is an a ,root of the form

B—e=a+ 38+ 38 — Eckaka
k>j
with |2a|=|8,|=]|8,|=|§;| . Referring to our classification into cases (d) and
(e), we see that B — & must be of type (e3); hence there is just one k > j with
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¢y #0, ¢ is = ¢, and|8k|=|8i|.Thuswe may assume
Be=atis+15+ 10,
Then
2(B,B—ey _2[5P(i+3i+5+0+0)
| B |8i|2

a contradiction. Thus there are no a -roots of the form (7.19), and (7.17) is odd.

bojeo
-

LemMA 7.5. Let a be a reduced a-root other than for a maximal parabolic in
split G,. Suppose 2a is an a-root and B = 2a + a; is an extension to an a -root.
If a, # 0, then 2(B, B)/ | B> = 0 and there are only the following posszbzhtzes
for B.

(1) B =2a =38 for some 8 = §; with 2(p;;,6) /| 8> odd and 2|8 |> =| B |*.

(2) B=2a =38 =38 for some & =96, and 6 =8, with i <j,
2(piy. 8)/|8 F odd, and |8'|=|8|=| B

Proof. From Lemma 2.7 of [13], we know that «a is odd, 2« is useful, and 4«
is not an a-root. Hence 2(B, B) /| B|* = 0. Then (7.16) follows with n = 0, and
the only possibilities are those analogous to (¢) in Lemma 7.4. Then we can argue
as in the proof of Lemma 7.4c to see that 2(p;;,8) /|8 |* is odd in the cases at
hand.

LemMma 7.6. Let a be a reduced a-root such that 2« is an a-root. Suppose
B = a + a; is an extension to an a -root, and suppose 2 is an aroot. Then
a,=0.

Proof. We may disregard split G, since twice an a,root cannot be an

aroot in that case. Suppose a; # 0. Applying Lemma 7. 5 to 23, we see that

2(,8 B)/| B|* = 0. Choose y in b/, so that 8 + y is a root of (g€, (a, + b,)€). If
vy # 0, then we have

KBV B—Y) _HBHY.B—y) _ A4lel
B+ P B+vP (B P
_UB+1.B-1)
1B+
Thus (B+v,B8—v)=0. The sum 28=(B+ y) + (B — ) is a root, by
Lemma 3 of [12], and the difference 2y = (8 + y) — (B — v) is not a root, by
Lemma 1 of [12]. Thus we have a contradiction and must have y = 0. But then 8

and 28 are both roots, in contradiction to the fact that twice a root is not a root
in the system of (g€, (a, + b,)°).
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Proof of Proposition 7.1. We continue to leave aside the cases in which a
arises as the reduced root of a maximal parabolic of split G,. We are to prove
(7.12).

We first dispose of the a ;roots B of the form a + a; or 2a + a; with a; # 0
and with 8 not of type (dl) in Lemma 7.4. We may assume that 8 is odd.
Neither 8 nor 28 is an a,root, by Lemma 7.6, and hence B’ = B. Since B is
odd, 2p; is an odd multiple of 8. Thus

. 2N, +iv, B
in the notation of (7.5¢) and (7.13). Lemmas 7.4 and 7.5 associate to each 8
under consideration a certain root § such that

. .
(7.21) 2w 8) is odd.
|8

We shall use (7.13) to show that the product of the factors (7.20) for 8 and p;B is
one. In every case | 8|=| § | and hence

(7.22) Yo = YaYEE /B = vy,
Let p,8 = B — 18 where |r|=| B[*/| 8 [. Then

2(Ay + i, mB) 2<)\M+i,,,,;_r3>)
Ps = Po(y)ovs by (7.22)
(Ypsﬂ)( | 8 |2 (¥8)0(¥5) B |2
_ 2(Ay +iv, B)  2(A,,8) )
= po(yﬂ)o(ys) 2 — — :
4] 1]
= 2(Ay +iv, B) +2<>\M,5>)
Po(y)o(vs) B |2 + s |2
= 2(Ay +iv, B)
= Po(yg)o(ys)(—1)xPm: 0>/18 —T
by (7.14)
2{Ay +iv, B)
= Pa(y,;)(—l)“m»”/w@( —<—M|,E—|§—) by (7,8)
= p—a(yp)( __—IEF— by (7.21).

Hence (7.13) shows the factors (7.20) for 8 and p, B cancel.
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In particular, this proves (7.12) if a is even. Suppose now that a is a root.
Then 2({p,, ') /| &’ |* is just the multiplicity of « as an a-root, which is odd. But
a also has odd multiplicity as an a ,root. Hence

N 2(iv, a)
feo(i7) —Pe(m( <|a|2 )
2(A,, + iv,
M) by Lemma 7.3

= pﬂ(Y«)( I a |2

=f, oAy + iv).
In view of the cancellation in the previous paragraph, this completes the proof of
(7.12) when a is a root.
Finally suppose 2« is a root. Then
2< pa’ a,> — ]-

7.23 =3
(7.23) op 2

multiplicity (a as a-root)

+ multiplicity (2« as a-root).

The multiplicity of 2a is odd. The multiplicity of a is understood by looking at
cases (d) and (e) in Lemma 7.4. All possible signs are allowed in the indicated
cases, and hence the contribution to the multiplicity from (d2) and from (e) is
divisible by 4 and does not affect the parity of (7.23). Even a -roots 8 of type
(d1) similarly do not affect the parity of (7.23). Thus let

Cc= #(odd a,-root pairs 8 = a +18).
Then we conclude that
2(p,, @)
o [?
One reduced a ;root B is a multiple of a, say 8 = f,. Whether B, equals «
or 2a, B is 2a. Moreover,

W = —2—mult1p11c1ty ( as a ,root)

(7.24) =1+C+ —;-multiplicity (aasaroot) mod2.

+ multiplicity (2« as ap-root)
E%multiplicity (aasa,root) + 1 mod2.

Hence in either case we have

M:C-}_M

(7.25) L= ,
o[ |85 °

mod 2.
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Let us now consider the contribution to the left side of (7.12) of an
odd aroot pair 8 =a + 38 and B =a — 38. Here v3 = ¥3 = Y2a¥s = Ya'¥s
and thus

2<}\M+iv,,8))

f;,B'(AM + iV) = pa(yp)( |8 |2

_ (2<}\M+iv,a+§8>)
= Po(va)o(vs) Py
| 8]
2(iv, a’) 2(A ., 0) )
= +
pf('Ya')G(‘Ys)( | a/ Iz I 8 |2
by Lemma 7.3
2iv, o’
= Pg(yn.)a(ys)(—1)z<m,a)/|a|2(————<| " |2 ) ) by (7.14)
2{iv, a’

= Pe(yo)(— 1P /108 ( —%;'Tzl ) by (7.8)

— D) 2(ppp 871812
2(iv, a’) (17w
pf(‘Yn') Ia/ |2

by (7.13). We get the same result for g.
The only other contribution to the left side of (7.12) is from S,. Here
B = o, and

2<}\M + ip’ Bé) )

f;,ﬁé(}\M +iv) = p_a(ya,)(_1)z<p,;o,ﬂo>/|ﬂbl2( I8, |2
0

, —1)CH1+2(pq oy /|2
_ 2(iv, a’) b
= Peran

o [?

by Lemma 7.3, (7.13) and (7.25). Similarly the right side of (7.12) is

—L+pq @)/l
oiv, ) |V
Pe(y,) | o |2 :

Thus (7.12) boils down to a question of proving

1\ CH1+2(p,, ') /) _ 2<pf€4,8>/l8|2= _ \1+2¢p,, @) /e
(7.26) (—1) +2 > (-1 (—1) )
8 in (d1),
B odd

which is
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If C =0, (7.26) is clearly valid. If C = 1, then there exists an odd 8 = a + 38,
and 2a is an a -root. By Proposition 7, parts (a) and (b), of [12], a cannot be an
a-root. Thus B, is 2a, not a, and 2{pg, B;) /| B | is just the a -multiplicity of
2a, which is odd. By (7.25)

2p,,a
—%,—I(:—>EC+1 mod 2.
o

Thus we can rewrite the statement (7.26) to be proved as

(7.27) 1+2 3 (1P = (—1)°,
8 in (dl),
B odd
for C=1.

Let us determine the a,roots that make a contribution to the parity of
(7.17) under the assumption that 8 = a + 38, is an odd a oot of type (d1). As
usual, we are to consider a -roots ¢ of the form (7.19). When two or more indices
k are present, the number of such roots is a multiple of four, and the parity of
(7.17) is unaffected. Thus the parity is influenced only by

(7.28a) €= 39,
and
(7.28Db) £ = 38, £ ;0.

If (7.28a) is an a ;root, then so is @, and we saw above that this is not possible
because B is an odd a ,-root. If (7.28b) is an a -root, then B — ¢ is an a ;root, and
Lemma 7.4 shows that ¢, = = 3. Hence the parity is influenced only by a -roots

(7.28¢) e= 18,18, k>i.

Such choices of k clearly stand in one-one correspondence with the choices of
k > j such that a + 38, is an odd a ;root of type (d1).

Since the other §’s do not matter, let us renumber the relevant §’s from 1 to
C. Then modulo 2, we have

2Py > 8,)
|6,
(o, + 5(8, +8,) + 5(8, —8) +--- +3(8, + 80) +5(8, — 60)’ 8,) =C
18, ’

and so on. In general, 2{p;7, 8,) /| 8;|* = C + 1 — i. Thus the left side of (7.27)
is

1+2(-D°+2(-1) " +2(-1) 2+ -+ +2(-1)",
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which equals (—1)C. This proves (7.27) and completes the proof of Proposition
7.1 except when « is the reduced root in a maximal parabolic in split G,.

In split G, there are two really distinct choices for a maximal parabolic, and
in both cases 2« is an a -root. First consider the case when 2a is a short a ,-root.
Take 8 to be the unique positive root of (1, a,,). Then § is simple for (m, a,,),
and (7.21) holds. The a roots restricting to ca with ¢ > 0, except for 2a, are
paired by p; as

a*38 and 3a *144.

For each pair, (7.22) is still valid. For the second pair, | 8|=|8| and the
argument following (7.22) is valid. For the first pair, p;8 is 8 = & and r should be
taken as 1 in the argument. However, | B|> = 4|8 |?, and the effect is that the
cube of (—1)2*w8)/BF occurs instead of the first power. Thus the argument
following (7.22) is valid with minor changes, and the factors Lo, p(Ay +iv) all
cancel except for 8 = 2a.

For the factor f, ,,(Ay, + i»), we have 2p, = 10a and 2(p,, ') /| &’ | = 5.
Thus

2(iv,2a)

|2(¥ |2 ) = f;,za(AM + “’)

(7.29) fe, o (iv) = Pema)(

by Lemma 7.3, and (7.12) follows.

In the other case with split G,, 2« is a long a,root. Then § is short, but
(7.21) still holds because & is simple. The a ,-roots restricting to ca with ¢ > 0,
except for 2a, are paired by p; as

a+38 and a =36

For each pair, (7.22) is still valid and | 8|=| & |. Then the argument following
(7.22) is valid, and the factors f, 4(A,, + iv) all cancel except for 8 = 2a. In this
case, 2(p,, @'y /| &' |> = 3 and (7.29) is again valid. Then (7.12) follows, and the
proof of Proposition 7.1 is complete.

8. Complete reduction of characters induced from discrete series

We come to the first form of a classification theorem. The setting is a
cuspidal parabolic subgroup MAN in a linear connected reductive group G with
compact center. We are given a basic character induced from discrete series

(8.1) ind$OMA4(A,,, Cys X5 7),

with @M(A ,,, Cy,, x) the character of the discrete series representation £ of M. In
Theorem 8.7 we shall decompose (8.1) into irreducible characters.
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Let W be the subgroup of the Weyl group of A that leaves ¢ ® e” fixed:
W=W,, ={weW(A:G)|wt=¢tand wr = »)
= {we W(A:G)|weMr = M4},

The group W corresponds to standard self-intertwining operators of the induced
representation [16]. We shall recall from [16] a semidirect product decomposition
W = W'R, where W’ is the Weyl group of a.(nonreduced) root system A’ and
W’ is normal in W.

Namely let A be the (nonreduced) root system of “useful” roots' of (g, a).
The main theorem of [12] identifies W(A : G) as exactly the Weyl group of A.
Let

(8.2) A = {a€|p, (iv) =0}."

Then W carries A’ into itself, and it follows that A’ is a root system. Let W’ be its
Weyl group. It is a nontrivial fact ([5], Lemma 19) that W’ C W; we shall give a
different proof of this fact in Corollary 10.6 that applies also when £ is a limit of
discrete series and (8.2) is generalized suitably. In the case at hand, the definition

(8.3) R={we W|wa>O0foralla >0in A’}

leads to the semidirect product decomposition W = W’R.

This decomposition of W has the following properties:

(a) The dimension of the commuting algebra for the induced representation
with character (8.1) is exactly the order | R | of R, according to Theorem 13.4 of
[16]. (In terms of the operators of [16], W’ corresponds to trivial operators, and R
corresponds to independent operators. The operators for W span the commuting
algebra by Harish-Chandra’s completeness theorem ([7], Theorem 38.1) and a
supplementary argument; see Sections 9-13 of [16].)

(b) The a-roots of odd multiplicity'?* form a reduced root system A, C A
whose Weyl group S C W(A : G) can be characterized (see § 3 of [13]): The
group W(A:G) has an action on b’ preserving C,,-dominance such that
wé |y, = & |y, if and only if wA, = A, by Theorem 3.7 of [13], and S is the

1%“Useful” is defined as follows, in terms of the notation of Section 7. Define a conjugation of
a,tobelonaand —1on ay. Except in a maximal parabolic of split G,, call a root « of (g, a)
useful if it is the restriction of some a, root 8 with 2(8, 8)/| B |> # +1. In a maximal parabolic
of split G,, with reduced root a, we take a and 2a to be useful, 3a to be not useful. See [12] and
Section 2 of [13] for properties of useful roots.

''By convention, p , means p, , for the unique reduced a root g that is a multiple of a.

2By Lemma 2.1 of [13], the a-roots of odd multiplicity are exactly the restrictions to a of the
real roots of (g€, (a + b)©).
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group that operates trivially on b’ in this action. In terms of this action, define

W, = {we W(A:G) wA,, = A,, in the action on b ,and}’

wy=v»p in the action on a’

Then W, , is the Weyl group of a root system
P isin W, . anda, }

A, ,=1arootof (g, a)
M if odd, has odd multiplicity

and we have the following inclusions:
wcocwew, .

See Section 6 of [13] for details.'®

(c) The group R is a subgroup of the group S defined in (b), by Lemma 7.3
of [13].13

(d) R = 3Z,, by Theorem 6.1 of [13].

LemmMa 8.1. Suppose a and B are nonproportional nonorthogonal a-roots in
A,,, ,with|a|=|B|. If a and B are not in A, then pga is in A'.

Remarks. For £ in the discrete series and » = 0, this is an immediate
consequence of (6.2) and Lemma 6.5 of [13]. A different proof will be given in
Lemma 10.17 that applies also to limits of discrete series and general ».

LEmMA 8.2. Let q be the linear transformation on o’ given by
8.4 q=157 T.
(5.9 HP

Then v is orthogonal to (1 — q)a’, and no a-root in (1 — q)a’ lies in A’.

Proof. The operator q is the orthogonal projection on the simultaneous +1
eigenspace of the members of R. Thus the image of 1 — q is the same as the
kernel of q. If a is in A’, then ra has the same sign as a, for each r in R, and
hence ga cannot be 0. Thus a cannot be in the image of 1 — q. Moreover
qv = v, and hence » is orthogonal to (1 — q)a’.

A set of a-roots {a,,...,a,} in A, , will be said to be superorthogonal
(relative to A, ) if the only way that Zc;a; can be in A4, , is for all but one of
the ¢;’s to be 0.

I3Statements (b) and (c) need to be treated in [13] only for the case » =0, but minor
additional arguments handle general ». See the end of the present Section 10, starting with Lemma
10.12, for an indication of details in the context that £ is a discrete series or limit of discrete series
representation of M.
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LemMmA 8.3. With q as in (8.4), the positive members of A A, » that lie in the
space (1 — q)a’ are superorthogonal.

Proof. Otherwise we can find nonproportional nonorthogonal a-roots & and
Bin(1—gq)a’ N A, , with |a|=|B|. Lemma 8.2 shows that a and B cannot
be in A". By Lemma 8.1, pga is in A". But pga is also in (1 — g)a’, and we have a
contradiction to Lemma 8.2.

ProposiTioN 8.4. With q as in (8.4), the set 3= {a,,...,a,} of positive
a-roots of odd multiplicity in (1 — q)a’ is superorthogonal and spans (1 — q)a’.
Moreover,

(a) each rin R is of the form Poy, "+ "Pay, with {a;,...,a; } C I and

(b) each a; in X satisfies

(8.5) (v,a;)=0, and

(c) each a; occurs in the decomposition of some r in R.

Remark. Since 30 C A, , this use of “superorthogonality” lies within the
scope of our definition.

Proof. The set J( is superorthogonal by Lemma 8.3. If r is in R, then r fixes
ga’. According to property (c) of the group R, R is contained in the Weyl group
S of A, and hence Chevalley’s Lemma says that r is the product of reflections in
roots of A, each fixing ga’. Such roots of A, must lie in (1 — q)a’, hence are
members of JC up to sign. Thus IC satisfies (a). Conclusion (b) follows from
Lemma 8.2.

To prove conclusion (c), we show that the roots needed for (a), as r varies,
span (1 — g)a’. Assume the contrary, and let v be a member of (1 — q)a’
orthogonal to all such roots. On the one hand, v must be fixed by every element
of R, hence by g, so that v is in the image of g. On the other hand, v is in the
image of (1 — gq) and hence the kernel of g. Since the image and kernel of q are
disjoint, © = 0. This completes the proof.

Each of the a-roots a; of Proposition 8.4 can be regarded as a real root of
(g€, (a + b)©). (See footnote 12.) Let us form the Cayley transforms d,,....d,.
The product dq = [I{_ 1d,, does not depend on what order the roots a; are
written in, since the a; are strongly orthogonal, and dq leads us to data
(m*, a*, b*) with

bo® EiRH&, =b*, where & = dy(q;),

a*® JR(E; + E_;) = a.
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Define

Ay onb
= *
A 0 on XiRH, on b%,
i

X* = Xlz,. onZys,
v*=p|,. ona*

Let Wy be the abelian subgroup of order 29 in W(B* : (M*)€) generated by the
reflections Ps, and let Eq be the subgroup of members of Wy realizable in M*:
Eq = Wy N W(B* : M*).

LemMa 8.5. The parameter N satisfies (A, ,é Y70 for all roots E of
(m*C, b*C) other than =4d, 1 =j =< q. Consequently there exist exactly 29 Weyl
chambers C in ib* such that C contains an open neighborhood of A, in ib. All

such chambers are obtained from one of them, C, as {wC,|w € Wy}. For any
such chamber the positive roots from among the =d,, 1 <j =< q, are all simple.

Remark. A reference chamber C, can be constructed explicitly as the
chamber containing a specific small perturbation of A. See the proof below,
especially (8.7).

Proof. First we show (A, B Y 0 under the circumstances stated. Regard B
as a root of (g€, (a* + 6*)C) that vanishes on a* and form d3'(8). We may
assume this has nonzero a component since A, is m-nonsingular. Let 85 be the
a-root dX( B) |o- Then By is a linear combination of the a-roots a; and hence is in
(1 — g)a’. By Lemma 8.2, B is not in A’. However, according to Proposition
7.1, we have

(8.6) penliv) = | I owrn o)) i 00),

where f; g, is 1 or is given by (7.6c). One of the factors in the polynomial part of
this expression comes from

€= d:J_cl(:é) =Br t Brs
where B, is the restriction to ib. If 8, # 0, another factor comes from
E = BR - BI'
The factors in question area
(A + 17, Br = B = =( Ay, By) + i(, Br)y= =(\, B+ i(v, B)-
By equation (8.5), (», Bg) = 0. Then (A, E) = 0 and B; # 0 together mean that
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(8.6) vanishes at », since f; 5, contributes at most a simple pole. Since B is not in
A’, we conclude either Bj is ' not useful or else B;=0.

We can rule out B85 as not useful since Lemma 7.4a shows in this case that
2, is a root of (m€, 6€). Thus

(A B)= (X, B)=0
would contradict the m-nonsingularity of A ;.

Thus B; = 0 and B is in A, C A, . By Lemma 8.3, Bz = *a, for some j,
and hence § = +d,. This completes the argument about (A, B).

Now we prove Ehe statements about Weyl chambers. We have just shown
that (A, B8)+# 0 for B # = d;,, and we know (A, @)= 0. It therefore follows that
any choice of g signs s; = =1 makes
(8.7) A+ Y gsd;
nonsingular as long as the ¢; are sufficiently small and positive. Each choice of
signs {s,} therefore leads to a chamber as asserted, and there are no other
chambers whose closure meets A ;. We obtain 29 chambers, and the members of
Wi clearly permute them simply transitively.

If C is such a chamber, the positive roots are those B such that (v, §)>0

for some v in C. Suppose ,B is not one of the +4&; and ,B is positive. Take v as in
(8.7). Then

2<“k’ﬁ>

| & [*

= (v, B)— 2(&, B) sy,

(v, p5,B)= (v, By— =25 (v, &)

which is positive for ¢, sufficiently small. Hence pg, B is positive, and it follows
that one of &, and —@, is simple. The proof of the lemma is complete.

Let C be one of the chambers described in Lemma 8.5. The case i = q in
Lemma 8.9 below will show that A satisfies the appropriate integrality condition
so that we can speak of

OMAY (X, C, x*, v*).
In that context, the statement of the following lemma makes sense.

Lemma 8.6. With C as in Lemma 8.5, let w be in Wy and e be in Eg.. Then

OM A" (N, weC, x*, v*) = OM™A* (A, wC, x*, v*).
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Proof. We have we = ew, and A is dominant with respect to wC. Also
eX = A. By Theorem 1.1c,
OM™ A (N, wC, x*, v*) = OM™ (e, ewC, x*, v*)
= @M A" (A, weC, x*, v*).

Tueorem 8.7. Let ind$OMA(A,,, Cy,, X, v) be induced from discrete series.
In the context of the corresponding induced representation, E is given by

for each rin R, w and r have an }

even number of factors P, in common'*

and formula (8.8) sets up a canonical isomorphism of Wy /Eq onto the dual
group R. Moreover,

(8.9) ind$OMA(A,,, Cypy x> 7) = > ind$.0M4%(A, wC, x*, v*)
wEWSC/E.sti

for any choice of the chamber C as in Lemma 8.5. The characters on the right
side of (8.9) are all nonzero and irreducible.

Remarks. It is shown in the introduction how Theorem 8.7 can be interpre-
ted as a classification of irreducible tempered representations. Part of that
argument leads to the following corollary.

CoroLLARY 8.8. Every irreducible tempered character is basic.

Proof. It is known that every irreducible tempered character is a constituent
of a basic character induced from discrete series. (See Langlands [21] and Trombi
[28]; the result is also implicit in the work of Harish-Chandra [5], though not
explicitly stated there.) Theorem 8.7 shows that these irreducible constituents are
all basic.

The proof of Theorem 8.7 will be accomplished by the sequence of lemmas
in the remainder of this section. We regard the roots a;,...,a, in JCas listed in
some particular enumeration, and we build intermediate data (m,, a;, b;) and
subgroups

M=Mg,CM CM,C - CM,=M*

by means of the successive Cayley transforms d, . For each i, let C{*) denote the
various chambers in ib; given by (wC)?P% P&+, (See (4.2) and footnote 7.)

14 . after identification of Pa, With pg by the Cayley transform.
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Define
A, = extension of A, by 0,
X; = restriction of x to Z,,
v, = restriction of » to a;.
LemMaA 8.9. For each i with0 <i<gq,

(8.10) indlz"{r"\%iA‘@MA(}‘M’ Cysx>?)= 2 @)M‘A‘(}‘i’ C, x> Vi)’

some j’s

with \, satisfying the appropriate conditions so that the right side makes sense.

Remark. As we observed earlier, the case i = g implies that the characters
in the statements of Lemma 8.6 and Theorem 8.7 are meaningful.

Proof. The proof is by induction on i by means of generalized Schmid
identities and double induction. To use generalized Schmid identities, we apply
Theorem 6.1. In view of the statement of that theorem, we have to check
successive p, type conditions like (6.1), and we have to see that the chambers are
the ones asserted. (The orthogonality condition on »; follows from the fact that
(v, a;)= 0 for all j, which was noted in (8.5).)

Let us first check the p, condition. Let ) be half the sum of the roots of
(S, (a, + b,)€) whose restriction to a, is ca;,, with ¢ >0. We are to check
that

(811) X(‘YaH-l) — (_1)2<P&?+1, a1/l )

We know from Lemma 8.2 that a,_ , is not in A’. Since (A + i», a; ;)= 0,
we see from (7.6¢c) that

(812) x(-y ) — (_1)20’9‘)“’ air1) /o )

Hence (8.11) will follow if we show that

2<p$:i)+l — pf’?i)ﬂ’ ai+1>
| @ivy |2

That is, we are to show that the sum (with multiplicities) of all coefficients
¢;+1 > 0 of all roots B of (g€, (a + b)) of the form

(8.13) is in 2Z.

B=c @, +ca;+ - +ca; mod((a* + b)c),

with c;,...,c, not all zero is an even integer.
There are two situations. If 8 has a nonzero component g, in ((a* + 6)€Y’,
then we note that c,,, is an integer or half-integer.If j is an index =< i with ¢; # 0,
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we can produce new roots by changing the sign of ¢; and by changing the sign of
B;. Then B occurs in a set of 4n mates for some n, and 4nc,, , is an even integer.

If ,B has zero component in ((a* + b)C), then Proposition 8.4 shows that
¢, = -+ = ¢, = 0, and there is no contribution to the expression in (8.13). Thus
(8.13) holds, and (8.11) follows.

We are left with showing that the chambers in the generalized Schmid
identities can be selected in such a way that (8.10) results. Fix a reference
chamber C in ib* as in Lemma 8.5. To each w in Wy corresponds a set of signs
sp, l=j=gq, such that

q
(8.14) A+ D gs,d;

i=1
is in wC as long as the ¢; are sufficiently small and positive. Then (wC)"% " P+
is the unique Weyl chamber of ib, containing the orthogonal projection of (8.14)
to ib;, namely

i
(8.15) A+ Y gsd,
i=1
For i = 0, the chamber in question is C,,, the one in ib containing A. Suppose
C™Y = (w,C)P P& occurs at stage i — 1 on the right side of the lemma. We
apply Theorem 6.1 to

. IM;A M;_,A,; G—1) )
lndl"‘lf‘ﬁM‘AG e l()\i—l’c,' » Xi—1> Vi—1)-

According to the theorem, this character is the right side of a generalized Schmid
identity, and the chamber(s) on the left side can be taken to be C” and /or p;C’
in ib; such that :

(a) A, is C'-dominant,

(b) (C’Nib;_;) N CE™Y has nonempty interior.
Choose

0= G = ()P ™,
psC’ = Gl = paC(‘) = (pawo )Pea e,

The C’-positive roots have positive inner product with (8.15), hence nonnegative
inner product with A; thus (a) holds. The set in (b) contains the sum of a small
ball in ib about A plus Zi_e;s,d; for all sufficiently small positive ¢;, and thus it
has nonempty interior. A similar argument shows p;C’ satisfies (a) and (b). Then
we can select C{? and /or C9 as the chambers that occur at stage i on the right
side of the lemma, and the induction is complete.
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Let n(i), 0 <i < g, denote the number of terms on the right side of the
character identity (8.10) at stage i. It will turn out that none of the characters on
the right side of (8.10) is zero. But until we know this fact, we count both zero
and nonzero characters in computing n(i). In passing from stage i — 1 to stage i,
we use a generalized Schmid identity of one of the two types (4.4a) or (4.4b), and
the condition that decides which type to use does not depend on the chambers in
question. Therefore

n(0) =1,

n(i) =2n(i — 1) if identity (4.4a) is used in passing
from stage i — 1 to stage i,

n(i) =n(i—1) if identity (4.4b) is used in passing

from stage i — 1 to stage i.

The decisive property of the R group is that it controls completely when n(i)
jumps in value.

LemMA 8.10. The function n(i) satisfies n(i) = 2n(i — 1) if there exists an
element r of R of the form

(8.16) r= ( II pai)pa‘.
some §<<i
Proof. Assume the contrary, so that identity (4.4b) is used in passing from
stage i — 1 to stage i. From the statement of Theorem 4.3, and especially
equations (4.11) and (4.12) in the proof, it follows that there exists zin Z,;  such
that

pa,»Xi—l(z) # Xi—1(7)-

The other factor Hpai of r in (8.16) has a representative in M;_,, and hence
it fixes x,_,- Thus we obtain rx; , # x;,_,, and we cannot have rx = X,
a contradiction.

LemMma 8.11. The function n(i) satisfies n(q) =| R | . Consequently

(a) the characters ind§OM4(N, C(?, x*, »*), induced from those on the
right side of (8.10) when i = q, are nonzero and irreducible, and

(b) n(i) = n(i — 1) if there exists no element r of R of the form (8.16).

Proof. For each i, Lemma 8.5 shows that A, is nonsingular with respect to
all roots of (mC, b€) except =d,,..., =d;, and these roots are all noncompact.
By Theorem 1.1b the characters on the right side of (8.10) are all nonzero. Hence
the induced characters are nonzero. If there are =| R | terms in the sum, then
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there are exactly | R| and the induced characters are irreducible, by Theorem
13.4 of [16].

We shall show that n(i) jumps at least log, | R | times as a result of Lemma
8.10. Then n(q) =| R |, and it follows that n(q) =| R | and (a) holds. Moreover,
n(q) =| R | means that all jumps of n(i) have been accounted for by Lemma
8.10, and hence (b) holds.

Write out each element of R as the product of its reflections in order, and let
i) <iy < --- <i, be the final indices that appear. Lemma 8.10 says that n(i)
jumps between i; — 1 and i;, and hence it is enough to prove that k = log, | R | .
Let R; be the subgroup of R of elements with final index < i;, and let Ry = {1}.
Then |R,. /R;_, |=2 since i; is assumed to be a possible last index, and
| R;/R;_, |< 2 since the product of two elements of R with last index i, has last
index <i, ;. Thus |R;/R;_,|=2 for 1 =j <k, and R, = R. Consequently
k =log, | R | . This proves the lemma.

Lemma 8.11a shows that the character identity (8.10) for i = g will be close
to the desired identity (8.9) after we induce to G. We still have to identify the
chambers C{? that occur. For this purpose, we turn matters around, start with A
on b*, and use generalized Schmid identities to work toward b. Let C be any
chamber in i6* as in Lemma 8.5, and define

W, = subgroup of Wy generated by p; _ ... Pz,
E,=E;NW,.

LemmMma 8.12. For 0 <i <g,

2 OMA(N, wC, x*, v*) =|E, | ind}7 4. (@A (N, CPxPa, X, ;).

wew,

Proof. Lemmas 8.9 and 9.5 show that the left side is defined for each i. We
shall prove the identity by induction on i downward, the case i = q being
obvious. Suppose inductively that the identity is known for i for any reference
chamber C; we prove it for i — 1.

Let us suppress some of the variables in the notation. We interpret Theorem
4.3 as saying

(8.17) @MA(CPay Pan, ;) + @MiAi(pg CPa P, x, )
= Ciindll"f‘_?hMiA,-@Mi‘lA‘_l(Cp"""' PP, Xi—l)’

where

c:{2 if n(i) =n(i—1)
Y1 if n(i) =2n(i — 1).
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In fact, there are two cases. If the relevant generalized Schmid identity is (4.4a),
then (8.17) holds once we observe from (8.12) that x; (v, ) has the value
required by (4.2). If the relevant generalized Schmid identity is (4.4b), then
(8.17) is one of the versions of (4.4b) multiplied through by 2; since x;_,(v,,) has
the value required by (4.2), either ({ ® x,)* or ({ ® x;)” matches x,_,.
Now we apply our inductive hypothesis to write
Y OM4(wC) =|E,|ind}¥a%. ;@M (CPaPan, ;)
weWw,;

and

3 @M:A*(wp&ic) =|E,| ind%;‘};*A*@)M‘A‘((p&iC)p&q"'p&‘“, Xi)

wew,;
. * * 7 - s s . -~
=| E;| md%mﬁl'A*(')M'A‘(P&iCp“" Pav1, X5 ) .

We add, substitute from (8.17), and use the double induction formula on the
right side. The result completes our inductive proof of the lemma, provided we
prove the formula in Lemma 8.13 below.

LemMma 8.13. Forl <i<gq,

C(1E]if i) =2n(i— 1)
‘Ef““{zwil if n(i) = n(i — 1).

Remark: The proof of this lemma will be given after Lemma 8.15.

Lemma 8.14. Suppose w = (Il ome j>iPs)Ps, is in W(B* : M*) and x is a
representative in K N M*. Then g, is in W(B;: M,), and there exists b* in B*
such that b*x is a representative.

Proof. We shall use root vectors E & relative to (m*C, 6*C), with the
normalization as in the definition of ¢ g in (2.7). For any b* in B*, b*x is in M*
and so Ad(b*x) is 1 on a*. We want to choose b* so that Ad(b*x) is 1 also on
the remaining generators of a;, which are E; + E_ g fori+1=j=gq. Then
b*x will be in M;, Ad(b*x) will act as p; on b, and the proof will be complete.

First suppose j is not one of the indices with Ps, appearing in w. Then

Ad(x)E; = cE; with|c|=1,
Ad(x)E_&, =dE_; with|d|=1,
Ad(x)H,';' =Hg.
Since [E&f, E_&f] = H,}', it follows that cd = 1. Writing ¢ = ¢'%, we have
Ad(x)E; = ¢E; and Ad(x)E_; =e¢ "E_;
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If we set
(8.18) ;= exp}ifH;,
then we have
Ad(b})E; = ¢E; and Ad(B})E_; = e "E_g,
and
(8.19) Ad(by 'x)(E; +E_;) =E; + E_;
Next suppose that j =i + 1 is one of the indices with Pz, appearing in w.

Then
Ad(x)E; = cE_; with|c|=1

Ad(x)E_g = dE; with|d|=1
Ad(x)Hj = —Hj,

and again we conclude cd = 1. Writing ¢ = e "% and defining b} by (8.18), we
again obtain (8.19). Then

Ad(BYy' - b 'x)(Eg + E_g) = E, + E_,
forj =i+ 1, and b* = b} --- b} " is the required element.

Lemma 8.15. Suppose pg is in W(B; : M,). Then some product

(8.20) w= ( II P&,)p&,.
some j>i
is in W(B* : M*).
Proof. Let x be a member of K N M, representing pg,. For j > i we use root
vectors X; relative to (m*C,(a, + b,)*), with the normalization as in the

definition of d, ,in (2.5). Since x is in M;, Ad(x) = 1 on a;. Thus the vector H,
in a, satisfies

(8.21) Ad(x)H, = H, forj>i.
Then we have
Ad(x)X, = ¢;X, with|¢|=1.
Since x is in G and X, is in g, c; is real. Thus
Ad(x)Xaf =5, X,,
with s; = =1. By (8.21) we have also
Ad(x)6X, = 50X, ,
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so that
Ad(x)(X,, + 6X,) = 5,(X, + 6X,),i>i.

The elements here are generators of the complement of b; in 6*. Thus if we
define

w = II Pg, | Ps,>
j>iwith -
s;=—1

then w is in W(B* : M*) with x as a representative.

Proof of Lemma 8.13. First we observe that E; C E,_, with index at most 2
because the product of two elements in E;_, but not E, does not involve Pz, and
therefore lies in E;.

If |E,_,|=2]|E,]|, then choose an element

w = ( II p&,)pai
some j=>{
in E;_, but not E,. Lemma 8.14 shows that Pz, is in W(B;: M,). According to
Theorem 4.3, the relevant generalized Schmid identity in passing between M,_,
and M, is (4.4b), and hence n(i) = n(i — 1).

Conversely if n(i) = n(i — 1), then the generalized Schmid identity is
(4.4b), so that p; is in W(B, : M,). By Lemma 8.15 some element of the form
(8.20) is in W(B* : M*). This element is in E,_, but not E,. Hence |E,_, |=
2| E;|.

Lemma 8.16. Wy /Eq. and R have the same number of elements, and

(8.22) ind§OMA(N,, Cyp, x,7) = X indS.OMA(N, wC, x*, »*),
wEWf)C/EgC

with the characters on the right nonzero and irreducible.

Remark: With this lemma, the proof of Theore,m 8.7 is complete except for
the formula (8.8) and the isomorphism Wy, /Es. = R.

Proof. We start with the identity of Lemma 8.12 for i = 0 and induce from
P* to G. The result is

| Es|ind50M4(A,, Cy, x, 7) = X indS.OM4(A, wC, x*, v*).
Lemma 8.6 allows us to rewrite this identity in the form (8.22). Now we compare
(8.22) with the identity referred to in Lemma 8.11a. The latter identity has all its
terms nonzero irreducible, and each of its terms is one of the ones on the right of
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(8.22), distinct terms going into distinct terms by the Multiplicity One Theorem
(Theorem 5.1). Hence the right side of (8.22) contains exactly the same terms as
in the identity referred to in Lemma 8.11a, with no terms zero by Theorem 1.1b
and Lemma 8.5. The lemma follows.

It is important to notice that our lemmas so far work for all enumerations of
ay,...,a,. In the final lemmas we shall several times select convenient enumer-
ations.

We now identify each element r in R with the subset of elements of
{a),...,a,} mapped by r to their negatives. An element of r will be called
minimal if the corresponding subset is minimal under inclusion, by comparison
with the other elements of R.

Lemma 8.17. Suppose r in R is minimal and r is a consecutive product
"= PaPay ** " Pa, Then | W‘JC/(WE‘JC) |= 2.

Remark. Recall that W, is the group generated by p; ... Pz,
Proof. Lemma 8.16 gives
| Wo/Eqo|=| Wac /Eqc|=| R ,
and Lemma 8.13 and the minimality of r imply that
|Wi|=27"|Wy| and |E,|=|E,_,|=27“V|E,].
Thus
| W./E;|= 3| Wo/E,|= 2| R| .
Taking the quotient, we obtain
| W/ (W,Eg) | =| (Wo/Eo)/ (W,/E,) | = 2.

Lemma 8.18. Suppose r in R is minimal and e is any member of Eq.. After
identification of each a; and &; by the Cayley transform, r and e have an even
number of root reflections in common.

Proof. Without loss of generality, we may take r to be a consecutive product
T = Po Py, " * * Po, We show first that Ps, is not in W, E, for j <i. Since W, does
not depend on the enumeration of «;,...,a;, we may assume j = i without loss
of generality. So suppose on the contrary that p; is in WE,, say with

Ps, =we and w, = I1 Pg,-
some j>i

Then we can write w;p; = ¢ € W(B* : M*) and apply Lemma 8.14 to see that
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g, is in W(B;: M,). Then the generalized Schmid identity from step i — 1 to
step i is of type (4.4b), and we have a contradiction to Lemma 8.10.

Next, we note that if j; and j, are < i, then Pg,Ps, isin W,Eq. In fact, Wy
has two cosets modulo W,E,;, by Lemma 8.17. Each of Pa, and P, is in the
nontrivial coset, by the result of the previous paragraph, and their product must
then be in the identity coset W,E,,.

Consequently every product of an even number of root reflections of r is in
W,Ey, and it then follows from the result of the first paragraph that every
product of an odd number of root reflections of r is not in W;E,.

Now let e be given in Eq, and write ¢ = ¢,e,,,.,, where ¢, is the product of
the root reflections common to e and r. Then ¢, = ¢,,.e exhibits e, as in W,E,,

and it follows from the result of the previous paragraph that e, is the product of
an even number of root reflections.

Lemma 8.19. Suppose r is in R and e is any member of E,. After
identification of each a; and &, by the Cayley transform, r and e have an even
number of root reflections in common.

Proof. First we show that the minimal elements of R generate R. More
generally, let S be any subgroup of the group W(p,,...,p,) generated by n
commuting reflections. We prove (inductively on n) that S has a Z,basis of
minimal elements. This is trivial for n = 1; assume it for n — 1.

Let ¢ be the homomorphism of W(p,,...,p,) onto W(p,,...,p,_,) given
by mapping p, to 1, and let @ be the restriction of ¢ to S. Suppose @ is one—one.
By inductive hypothesis, let {v;, 1 <j <k} be a basis of minimal elements of
®(S). Define u; = ¢‘1(v,), 1 <j=<k. Then {u;} is a basis of S, and each u; is
minimal since ¢ preserves “inclusions.” Thus the induction goes through if @ is
one - one.

Let the above ¢ be called ¢,, and treat similarly ¢,, 1 <i <n, where ¢,
maps p; to 1. The induction goes through unless @, fails to be one-one for all i. If
@; is not one-one, then p, is in S; if this happens for every i, then {p,, p,,...,p,}
is the required basis of minimal elements. This completes the argument that S has
a Zybasis of minimal elements.

Thus the minimal elements of R generate R. To prove the lemma, it is
enough, in view of Lemma 8.18, to prove that the product of any two elements r,
and 7, of R having an even number of root reflections in common with e also has
an even number of root reflections in common with e. In terms of the sets of
reflections involved, group multiplication corresponds to symmetric difference,
and passage to the common root reflections corresponds to intersection. Using
set-theoretic notation, we are to show e N (r; Ar,) has an even number of
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elements when e N r, and e N r, do. But
le N (rn An)|=|(e N r)A(e Nr)|
=lenr|+|leNrn| —2|enNr N
=leNr|+|eNr| mod2,
and the result follows.

Let us identify R canonically with a subgroup of Wy by means of the Cayley
transform a; - &;. Each w in Wy gives a character x,, of Wy whose value on w’
is +1 or —1 according as the number of root reflections that w and w’ have in
common is even or odd. The mapping w — x,, carries Wy onto the dual
group Wi.. Restriction of these charac}ers X to R (viewed as C Wq) gives us a
homomorphism w - x,, of Wy onto R.

LemMa 8.20. The homomorphwm w = X, of Wy onto R sets up an isomor-
phism of Wy /Eq4 onto R and Eq is given by (8.8).

Remark. This lemma and Lemma 8.16 together prove Theorem 8.7.

Proof. Lemma 8.19 shows that Eq maps to 1 under the map w — x,, of Wy
onto R. Hence Wiy /E4 maps onto R. By Lemma 8.16, Wy /Eq and R have the
same number of elements, and the same thing is then true of Wy /Ey and R.
Consequently the map of Wy /E4 onto Ris an isomorphism.

In (8.8), E4 is contained in the l}ght side of that formula, according to
Lemma 8.19. The fact that Wy /Eq — R is one-one then says that equality holds
in (8.8). This completes the proof.

9. Final basic characters

A basic character is final if it is not the right side of any generalized Schmid
identity (4.4a) or (4.4b). According to Theorem 6.1, indS@M4(A, C, x, ») is final
if there is no real root a of (g€, (a + b)®) such that (»,a)=0 and x(y,) =
(—1)2¢Pe ) /laf’,

The following theorem uses some of the initial ideas of Section 8 but not
Theorem 8.7 itself. It provides an alternate proof of Corollary 8.8.

THEOREM 9.1. Every final basic character is irreducible (or zero).

Proof. Let ind$@®M4(A, C, X, ») be final. Choose a positive system of roots
for (g (a + b)€) meeting the conditions of Lemma 3.1, and choose an m-
nonsingular linear form p as in that lemma such that (3.2) holds. The lemma says
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that
(9.1)  indSOMA(A, C, x, ») = YAt Hind§OMA(N + p, C, xe*, »).

Suppose that the induced representation on the right side of (9.1) is
reducible. Then its R group is not {1}, by Theorem 13.4 of [16], and the
superorthogonal set JC for it is not empty. If « is in the set J(, then (», a) = 0 by
(8.5) and

xe (1) = (1)
by (8.12). Since e* is a character of (a + b)€ and (p, a) =0, e*(y,) = 1. Thus

2(pq> @) /|af?
X('Ya) — (_1) {Pa> @)/ ,

and the left side of (9.1) is not final. Consequently we conclude that the induced
representation on the right side of (9.1) is irreducible.

By Theorem 1.3 of [31], the character on the left side of (9.1) is a multiple of
an irreducible character. However, the character on the left side of (9.1) is
contained in a basic character induced from discrete series, by Corollary 4.4,
which is multiplicity-free by Theorem 5.1. Thus the character on the left side of
(9.1) is irreducible or zero.

COROLLARY 9.2. A nonzero basic character ind$®™4(\, C, x, ») is irreduci-
ble if (v, a) # 0 for every a-root a.
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10. Modified Plancherel factors

In Sections 10-11, we shall extend the theory of the R group to basic
characters. The definition of A’ in (8.2) for discrete series on M requires a
non-obvious generalization for limits of discrete series on M. In order to give this
generalization, we introduce modified Plancherel factors p’ as below. Modifying
the original Plancherel factors p of Section 7 will allow us to obtain the key
property of p’ given in Corollary 10.6.

Let the basic character ind$@M4(A, C, x, ) be given, with @(A, C, x)
the character of a discrete series or limit of discrete series representation £ of M.
Let a be an a-root; & will denote a root of (g€, (a + b)®). If a is even, we define

1 if a not useful
(10.1) pe o (iv) =1 I (A +iv,e) if a useful.

dla=a

If a is odd and not an a-root for a maximal parabolic subgroup of split G, we
define

(10.2) e oiv) = ( I (A +ire)|fliv),

g,=ca, c>0
le|=|e|
where a’ = 2a or a according to whether 2a is an a-root or not and where f; ,, is
given by (7.6¢).

Finally for a maximal parabolic subgroup of split G,, there is exactly one
pair of roots ¢ and & such that 2(¢, &) /| ¢|> = +1, and we take p} , to be the
same as j, , except that the factors contributed by this pair & and & are to be
dropped.

003-486X /82,/0116-3 /0457 /045$04.50 /1
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Lemma 10.1. The notation p; , is unambiguous in the sense that the
formula is unchanged if \ is replaced by wA with w in W(B: M).

Proof. We have
(wA +iv, &)= (A +iv, w le),

¢ ranges over the same collection of roots in the definition as ¢ does.

and w™

By way of preparation for the next two propositions, let us recall that once C
is fixed, W(A: G) has an action on b’ preserving C-dominance. This action is
defined in Theorem 3.7 of [13], and some of its properties are listed here under
property (b) of the decomposition W = W’'R near the start of Section 8. A
number of results connecting this action with discrete series extend to limits of
discrete series.

LemMma 10.2. Let £ be a discrete series or limit of discrete series representa-
tion of M with character ®™(\, C, x), and define the action of W(A: G)on b’
by Theorem 3.7 of [13] so as to preserve C-dominance. If p is in W(A: G) and w
is a representative of p in Ng(a), then wé is a discrete series or limit of discrete
series representation, respectively, and its character is @™(p), C, px).

Proof. Without loss of generality we may assume that w is the special
representative of p given in Theorem 3.7a of [13] with the property that Ad(w)
agrees on b’ with the action of p. Taking ¢ to be the automorphism of M,, given
by @(m) = w™ 'mw and applying Proposition 4.1 of [13], we see that

(10.3) wOMo (X + p, C) = OM(p(A + p),C)

whenever p is C-dominant, M yintegral, and M nonsingular. (Cf. the proof of
Proposition 4.7 of [13].) Fix such a p and apply the functor x[/,f,f‘“"‘ to both sides
of (10.3). We shall show that

(10.4) YR PO = wydtre,
and then the result will be
0™ (pA, C) = YR Pw@M (X + 1, C) by (10.3)
= wyr*OM (A + u,C) by (10.4)
= wO®M(),C).

Extending both sides to M* by px and inducing to M, we obtain the conclusion
of the lemma.

Thus we are to prove (10.4). Let 7 be a representation with character © and
with infinitesimal character x, ., with parameter A + p. We claim that

(10.5) w has infinitesimal character p(A + p)
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and
(10.6) wF_ =F

—p —pp’
If so, then
wyr™r = w(7r ® F_,), by definition
= (w(7® F_"))p}‘ by (10.5) with A in place of A + p

= (w'rr ® wF_")p)\

=(wr®F by (10.6)

_P#)p)\
=yR*Pwr by (10.5) and definition.

Thus (10.4) follows if we prove (10.5) and (10.6). Equation (10.6) follows since

Ad(w) acts on b’ the same way p does, so that —pp is the lowest weight of

wF_,. For (10.5) we need to observe that, for z in the center of the universal
enveloping algebra of m€, we have

(10'7) X)\+“(Ad(tU)_lz) = Xp()\-}-p,)(z)’
Then

wm(z) = w(Ad(w)_lz) = XA+,4(Ad(w)_lz)I = Xp()\+p,)(z)1

and (10.5) follows. Equation (10.7) can be phrased more generally as a statement
about automorphisms of m€ that map b€ into itself and preserve the positive
system of roots and can then be proved readily by using Verma modules. This
completes the proof of the lemma.

LemMma 10.3. Let £ be a discrete series or limit of discrete series representa-
tion of M with character ®™(\, C, x), and define the action of W(A: G) on b’
by Theorem 3.7 of [13] so as to preserve<C-dominance. If p is in W(A: G) and w
is a representative of p in Ny(a), then '

(a) wé is equivalent with ¢ if and only if pA = X and px = x, and

(b) wé |y, is equivalent with £ |, if and only if pA = A.

Proof. Result (a) is immediate from Theorem 1.1c and Lemma 10.2. For (b),
we use Lemma 10.2 and Theorem 1.1e to see that

- (10.8a) £ |, has character > OMo(sA, sC)
s€ W(B: M), W(B: My)

and

(10.8b) wé |, has character 3 OMo(spA, sC).
s€W(B: M)/ W(B: M,)
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Each of w§ |y, and §|, is fully reducible, and they are equivalent if and only if
their cha.racters are equal Thus we can read off conclusion (b) from (10.8) and
Theorem 1.1c.

ProposiTiON 10.4. Let £ be a discrete series or limit of discrete series
representation of M with character ®™(\, C, x), and define the action of
W(A: G) on b’ by Theorem 3.7 of [13] so as to preserve C-dominance. If a is an
even a-root and v is real-valued in a’, then the following are equivalent:

a) p; (i) =0,

b) p,A = A in the action of W(A: G) on b’, and (v, a)= 0,

c) pl=fandpy =

Remark. It is implicit in (b) and (c) that a is useful, since p, exists.

Proof. Suppose (a) holds. By (10.1), « is useful. Since (a) holds, some root
¢ = a+ o has

0=(A+ir, &)= (A, &)+ i(v,a).

Thus (A, ') = (», &)= 0. Choose & to be a minimal positive element in (ib)’
such that &’ = a + «” is a root. Then a’ = & are roots of (mC, b€) of the same
sign, say positive. We have

0=(\,a)=(A, o £a")F (A, a")
= F(A, a"),

since A is C-dominant. Thus (A, &)= 0. According to Lemma 3.8 of [13], p,
acts on A by p_., and hence p,A = A. Thus (b) holds.

Suppose (b) holds. Since (»,a)=0, we have p,» = ». Since p,A =A,
Lemma 10.3 shows that (b) will follow if p,x = x. The equality p,x = x is
proved in this case exactly as in the discrete series case (Proposition 5.1a of [13]).
Thus (c) holds.

Finally suppose (c) holds. Then (», a)= 0 and it is enough to find a root
¢’ = a + o such that (A, @)= 0. Lemma 10.3 above and Lemma 3.8 of [13]
show that the minimal positive &” in (ib)’ such that @ + a” is a root will have
PN = A and hence (A, &) = 0. Thus (a) holds.

ProposiTioN 10.5. Suppose a is an a-root of odd multiplicity and § is a
discrete series or limit of discrete series representation of M. If v is real and
B} (iv) = 0, then (v, a)= 0 and

(2) &(v,) = +1 or

(b) 2{a, B) /| B|? is even for every a-root B of odd multiplicity.
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Proof. Suppose u; ,(iv) = 0. Then certainly (v, a) = 0. We are to prove (a)
holds or (b) holds.!® Suppose (a) fails. In this case we shall produce below a
complex root y with y |, = 3a. We can use such a root y to prove (b). If B is as in

(b), then

(a,B) _ 2z, B) _ v, B)
|8 |8 |BJ*

Hence 2(a, B) /| B |* is even, and (b) holds.
Assuming (a) fails, we produce y. Since pu; (iv) = 0, either f, , is given by
a tangent in (7.6¢c) or there exists a complex root y of (g€, (a + b)) whose
factor (A + i», v) is present in p; , and is 0. In the latter case, v |, is a positive
multiple of a and |y |<| a | ; hence v |, = 3a. Thus without loss of generality we
may assume that f; , is given by a tangent in (7.6c) and that (a) fails, i.e., that
£(v,) = —I. In view of (7.6c), we see that 2(p,, a) /| a |* is even. Now
App) _ 1 multiplicity (—l-a) + multiplicity (a).
la|? 2 2

isin Z.

The multiplicity of « is odd, and we conclude the multiplicity of 1a is nonzero.
Thus vy exists, and the result follows.

CoroLLARY 10.6. If a is an a-root, v is a real-valued member of a’, and ¢ is
a discrete series or limit of discrete series representation such that p) (iv) =0,
then p & = & and p,v = ».

Proof. For a even, the result is contained in Proposition 10.4. Thus we may
assume that a is odd and (after multiplying a by a constant) that a has odd
multiplicity. Clearly (», a) = 0 and hence p,» = ». Lemma 3.8 of [13] shows that
p, operates trivially on b’. Thus by Lemma 10.3, it is enough to prove that
p,£(z) = &(z) for zin Z,,. Applying Lemma 2.1b and recalling the discussion in
connection with equation (1.6), we see that it is enough to prove that p §(z) =
§(z) for z in F(B), hence for z = v, such that B is an a-root of odd multiplicity.
Now

p.t(1p) = £(v,,5) = £(vp) (7)< P/,
and the right side is £(v;) by Proposition 10.5. This completes the proof.

ProposiTioN 10.7. If a is an a-root, v is real-valued in a’, and § is a discrete
series representation of M, then p. , vanishes at iv if and only if p, , vanishes at
iv. A

5In a maximal parabolic in split G, (b) holds. Thus we may and shall disregard such cases.
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Remark. Even when £ is a limit of discrete series representation, pu; , is
obtained from p} , by multiplying by a polynomial factor. Hence the vanishing
of p} , implies the vanishing of p, ,.

Proof. Suppose a is even. If a is useful, then p; , = p; ,- If @ is not useful,
then p; , is 1 and

pe o(iv) = [[(A +iv,a + 38)(A + iv, a — 38)
=I[~( &) — 57,87,

with the products taken over certain roots 8 of (m€, b€), by Lemma 7.4a; p. ,
cannot vanish anywhere since A is M-nonsingular. Thus g} , and p, , are both
nonvanishing.

Suppose a is odd. Scale a so that it is of odd multiplicity. Apart from the G,
cases, which can be handled by inspection, the factors that appear in p, , and
not in p} , are (A +i»,y) when |y|>|a| and y|, = ca with ¢ >0. Then
| 7|2 = 2] «[? and it follows that y = a + 8, where 8 is a root of (m®, b€). For
such a root v,

(A +iv,y)=i(v,a)+ (A, 8),
and this cannot vanish since A is M-nonsingular. The proposition follows.

Now we are in a position to imitate a certain amount of the theory of the R
group. For £ a discrete series or limit of discrete series representation of M and
for » real-valued in a’, we define

W=W,,={we W(A: G) | w= §and wr = »}
= {w € W(A: B) |w®MA = @MA},
where M4 = @MA(A, C, x, »). Let
A" = {aroot of (g, a) | p; o(iv) = 0 and ja not an a-root} .6

Proposition 10.7 shows that the definitions of W and A’ are consistent with the
earlier definitions in the case that £ is in the discrete series. Note that every
member of A’ is useful, i.e., A’ is contained in A.

Lemma 10.8. If w is in W(A: G), then p (i) = p,-1¢, (i~ ')

Proof. Suppose ¢ |, = cwa with ¢ > 0. We let w~ ! act on b’ by means of
Theorem 3.7 of [13], and we identify the effect on £ by Lemma 10.2. Then

(A+iv, &)= (w (A + iv), w 'e) and w e |, = ca,

16The condition on 3« eliminates one positive a-root in one of the maximal parabolics of split
G,.
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and w A is the parameter for w™'£. Thus the polynomial parts of p} . (iwv)
and p),-1; ,(iv) match.

Now suppose a has odd multiplicity. We have to see that f; ,.(iv) =
fi-1¢, (iw™'v). The arguments of the two functions are

a{iv, wa) and a{iw v, a)

| wa [? |a?
and so are equal. The two functions are the same, tangent or cotangent, because
E(Ywa) = w €(Ya)

- and

(- 1)2(9.,).,» wa)/|wal* _ (- 1)2(9.,‘ o) /lef*

ProposiTioN 10.9. If w is in W and a is in A, then wa is in A'.

Proof. By Lemma 10.8 and by the unambiguity proved in Lemma 10.1, we
have

s wali7) = pipmig Jiw™1v) = pp o(iv),
and the result follows.

CoroLLARY 10.10. A’ is a root system (possibly nonreduced).

Proof. We have to show that A’, as a subset of A, is closed under its own
reflections. Let a and 8 be in A’. Then p, is in W by Corollary 10.6, and pga is in
A’ by Proposition 10.9.

Define
W’ = Weyl group of A’,
R={weW|wa>0foralla >0inA’}.

CoroLLARY 10.11. W is a semidirect product W = W’'R with W’ normal.

Proof. If a is in A/, then p, is in W by Corollary 10.6, and it follows that
W’ C W. If wis in W, then wpw™! = p,,,, so that Proposition 10.9 shows that
wpw~ ! is in W’. Hence wW’w™! is in W’, and W’ is normal. The semidirect
product decomposition is then standard.

The basic algebraic properties of the R group generalize in the expected
way. We shall give brief proofs, referring often to [13] and to Section 8 of the
present paper; however, we allow » to be nonzero.
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LemMma 10.12. Let
W,={w € W(A: G) |w\ = X in action of W(A: G) on b’},

W, =subgroup of W(A: G) generated by reflections in even simple roots
in A,
Woa=W, 0 W,
Then W, , is generated by the reflections that it contains; hence
A, ={BeA|pe W,a}

is a root system and W, , is its Weyl group.

Proof. W, is a Weyl group, and Theorem 3.7 says that its action on b’ is
isometric with its action on a’. Thus Chevalley’s Lemma applies, and the

subgroup of W, that fixes A is a Weyl group, hence is generated by its own
reflections. The rest is clear. '

Recall that the a-roots of odd multiplicity form a reduced root system A, in
A, and the Weyl group of A is denoted S.

Lemma 10.13. W, = W, ,S. Moreover,

W, \CW CWCW,.

Proof. The equality W, = W, ,S follows as in Proposition 6.2 of [13], since
S acts trivially on b’, by Lemma 3.8 of [13].

LeEmMma 10.14. Let ,

Ay=A,USA, ,.

Then A, is a reduced root system on (a subspace of) a, and its Weyl group
is W,.

Proof. This is proved in the same way as Lemma 6.4 of [13].

Lemma 10.15. Let
Wy, = {w e W, |wr =»}
and
A, ,={aeA\|{(r,a)=0}.
Then A, , is a reduced oot system on (a subspace of ) a and its Weyl group is
W,,,- Moreover, W C W C W, .

Proof. The first statement follows immediately from Lemma 10.14 and
Chevalley’s Lemma. The inclusion W’ C W is part of Corollary 10.11, and the
inclusion W C W, , is implied by Lemma 10.3.
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Lemma 10.16. R is contained in S N W, .

Proof. We know that R C W C W, , by Lemma 10.15, and we show that
R C S. Here W, , is the Weyl group of

Ay ,=v"N (AU SA, \) = (»*NAy) U (»* NSA, ,).

We first prove that »* NSA, , C A" If a is in »* NSA, \, then « is an even
a-root and (¥, a) = 0. Also @ = s with s in Sand Bin A, ,, so that Lemma 3.8
of [13] gives

Pul = Pygh = sppsT'A = spph = sA = A,

"By Proposition 10.4, By o(iv) = 0. Thus « is in A’.

Let us notice also that the roots in »* NA,, are odd and those in »* NSA,,
are even. Thus the even roots in A, , are in A’

Now let r be in R, and write p, - --p, as a minimal product of reflections
that are simple for A, ,. Suppose a; is even. The minimality of the decomposition
implies that y = p, - - ‘Pa,, (@;) is a positive root in A, , such that ry < 0. Since
a; is even, v is even. Thus v is in A", and we obtain the conclusion that r maps the
positive member y of A’ into a negative root, a contradiction. We conclude that
a,,...,a, are all odd, and the lemma follows.

LemMma 10.17. Suppose a and B are nonproportional nonorthogonal a-roots
in Ay , with |a|=| B|. If « and B are not in A, then ppa is in A'.

Proof. Proposition 10.4 shows that the even a-roots in A, , are in A”. Since
and B are not in A’, they must both be odd. The odd a-roots in A A, » are scaled so
as to be of odd multiplicity. If we combine (7.6c) and the orthogonality of a and
B to v with the fact that p} ,(i») and p; 4(i») are not 0, we conclude that « and
B correspond to cotangent cases; i.e.,

X(1) = (ZDP* 0  x(y,) = (—1e 0

Now

)2<ﬂ» B /\af®

X(Ypa) = x(¥a)x (5 = x(Ya)x(vp)-

We shall show that p} pga(i?) = 0 by showing that pga corresponds to a tangent
case. (Note that (», pga) = 0.) In view of our computations and of (7.6c), we are
to show that

2 Ppya> Pp) 2(p,, a) n 2(pg, B)

(10.9) _
| ppat [* |af? | B

mod 2.
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The term on the left of (10.9) equals the first term on the right. Thus we are
to show that '

|BP '

Since B has odd multiplicity, (10.10) will follow if we show that 8 is not an
a-root. If 1B is an a-root, then the simple component of A to which a and 8
belong is of type BC, and B is already a long root. Since | a|=| 8|, we must
have | a|=| 8| . In a BC system of roots, any two long roots are proportional or
orthogonal. We conclude that 8 cannot be an a-root and that (10.10) holds. This
proves the lemma.

(10.10)

LemMA 10.18. Let q be the linear transformation on a’ given by (8.4). Then
v is orthogonal to (1 — q)a’, and no a-root in (1 — q)a’ lies in A".

Proof. This is the same as for Lemma 8.2.

Lemma 10.19. With q as in (8.4), the positive members of A, , in the space
(1 — q)a’ are superorthogonal.

Proof. This is the same as for Lemma 8.3.

ProposiTioN 10.20. R = 3Z,. In fact, with q as in (8.4), the set } =
{a),...,a,} of positive a-roots of odd multiplicity in (1 — q)a’ is superorthogo-
nal and spans (1 — q)a’; therefore,

(a) each r in R is of the form Pay"* *Pa, with {a;,...,a; } C I, and

(b) each a; in I satisfies (v, ;)= 0, and

(c) each a; occurs in the decomposition of some r in R.

Proof. The second sentence is established as in Proposition 8.4. Then
R = 3Z, follows from (a) and the superorthogonality of J(.

ProposiTioN 10.21. Two basic characters ind$OMA(A, C, x, v) and
indS@MA(A, C, x, v), with the same data except for chamber, have the same R

group.

Proof. The revised Plancherel factors p’ for each do not depend on the
chamber and are thus equal. Hence A’ is the same for each. For each one, the R
group is contained in S, the Weyl group of the odd roots of (g, a), by Lemma
10.16. The action of S is trivial on the parameter A, by Lemma 3.8b of [13], and
the two basic characters have the same central character x. By Lemma 10.3 the
same members of S fix the two representations of M that are induced. Hence the
R group is the same for both basic characters.
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11. Intertwining operators

We shall now connect the extended theory of the R group with the theory of
intertwining operators. With £ as at the start of Section 10 and with » real, let

Up(¢,iv) = ind$(£ ® e ® 1).

In [16], a construction is given of normalized standard intertwining operators
@p(w, &, iv) for w in N(a) with the following properties:
(i) @p(w, &, iv) is holomorphic in » (on K-finite vectors) for » real and also

is unitary for each real ».

(i) Up(wt, iwn)@p(w, & iv) = @y(w, & iv)Up(, iv).

(iii) ERp(w, &, iv)E™! = @p(w, EEE™Y,iv) if E is a unitary operator on
the space on which £ operates.

(iv) @p(w,w,, &, iv) = @p(w,, wyé, iw,r)Ep(wy, &, iv) (11.1).

See Sections 6-8 of [16]. Under the assumption that w§ is equivalent with &,
Lemma 7.9 of [16] shows that it is possible to define {(w) and extend £, without
enlarging its representation space, to be defined on the subgroup of G generated
by M and w; the definition of £(w) is unique up to a scalar factor equal to a root
of unity. The composition {(w)@,(w, &, iv) then depends only on the class of w
in W(a). If w represents a member of the stability group W = W, ,, then
{(w)@p(w, &, iv) commutes with the induced representation Up(&, iv) and will
be called a normalized standard self-intertwining operator for Up(§, iv).

THEOREM 11.1. Suppose § is a nonzero discrete series or limit of discrete
series representation of M and v is a real-valued member of a’. Then

(a) The normalized standard self-intertwining operators for Uy(£, iv) corre-
sponding to members of W’ are all scalar.

(b) The normalized standard self-intertwining operators for Up(&, iv) corre-
sponding to all members of W span the commuting algebra of Up(§, iv).

(c) The dimension of the commuting algebra of Up(£,iv) is <|R|.

Remark. If § is in the discrete series, this result is contained in Theorem
13.4 of [16].

Proof of (c) when (a) and (b) are known. By Corollary 10.11, W = W'R.
The operators for W span the commuting algebra, by (b), and the operators
‘multiply according to the group law of W except for scalar factors, by Lemma
13.1b of [16]. The operators for W’ are scalar, by (a), and hence the operators for
R span the commuting algebra. Then (c) follows.

Proof of (a). The group W’ is generated by the reflections p, in the
(necessarily useful) a-roots a in A’. Thus we are to show that if p; (i) = 0, then
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£(p,)@p(Py & iv) is scalar. In the orthogonal complement of a in a’, there is a
dense set of members »* such that (v + »*, B)# 0 for all a-roots f that are not
multiples of a. Fix such an element »*. Then p(» +»*) =» + »*, and we
have

(11.2) i) = () =0

since p; , factors through the projection on Ra. We shall prove that Up(§, i(v +
1)) is irreducible. Then the self-intertwining operator §(p,)&p(p,, &, i(v + vh))
must be scalar, and hence the limiting operator &(p,)@p(p,, £, iv), obtained by
letting »* tend to 0, must be scalar.

Let ¢ have character ®M(A, C, x). By Theorem 9.1, Uy(, i(v + v%)) is
irreducible unless a is odd and

(11.3) x(vy) = (=13 T,

since the only a-roots orthogonal to » 4+ »* are the multiples of a. Here o’ is the
unique multiple of « that is a positive real root of (g€, (a + )°). Thus suppose
« is odd and (11.3) holds. Let us normalize matters so that a’ = a. Equations
(11.2) and (11.3) together imply there exists some complex root 8 such that

(11.4a) B|. = ca withc #0,
(11.4b) (\,B)Y=0,
(11.40) 1B1=lal.

the last condition coming from the use of p’ in place of p.

We use the real root a to pass by a Cayley transform d, from the data
(m, a, b) to data (m*, a*, b*). By Theorem 6.1, the character
(11.5) ind¥'A LOMAN,C, x, v +v)
is the right side of a generalized Schmid identity (4.4a) or (4.4b). If the identity is
(4.4b) with only one term on the left, then we have
(11.6) indS.OM™4"(A*, C*, x*, (v + »*) |,») = indGOMA(A, C, x, v + vt)
for suitable A*, C*, and x*. On the left side of (11.6), (v + »*) |« is a*-regular,
by construction, and the character on the left side of (11.6) is irreducible by
Theorem 9.1. Thus the character on the right side of (11.6) is irreducible, and
hence Uy(¢, i(v + v™)) is irreducible.

Thus we may suppose that (11.5) is the right side of a generalized Schmid
identity (4.4a) with two terms on the left. Inducing to G, we obtain
(11.7) indS.OM™4*(A*, C*, x*, (v + v*) |,.)

+indS.0M" A" (A*, ps C*, x*, (v + %) |,+)

= ind§®MA(A, C, x, v + »*).
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We shall use the Hecht-Schmid identity (Theorem 1.1b) to show that one of the
terms on the left side of (11.7) is zero. Then the irreducibility of U,(&, i(v + v*))
follows as in the previous paragraph by means of Theorem 9.1.

We may suppose that « is not a real root of a maximal parabolic of split G,
since this case leads to a generalized Schmid identity (4.4b). Possibly by
replacing 8 by — B we may assume that the root 8 satisfying (11.4) is such that
d(B) = ,3' is positive for C*. We may assume also that ,[3' is as small as possible,
relative to C*, so that (11.4) holds. We prove that § is C*-simple.

Thus let § =7+ & with >0 and > 0. We know that A* is just A
extended by 0. The equality

(A%, B)=(A,B)=0 ,
of (11.4b) implies (A*, ¥) = (A*, § ) = Osince A* is C*-dominant. Set y = d_'(¥)
and e = d_ (€). By (11.4a) and (11.4¢c), 8|, = =+ }a. Since we have eliminated
the exceptional cases in G,, it follows that
Yl,=ca and €|, =c”a with ¢’,¢” =0, =3, 0r =1.

Thus one of ¢’ or ¢” is = 4. Say y|, = * $a. Then y satisfies (11.4a) and
(11.4b). Since p,Y|, = F 3a, we have p,y = vy * a. Thus 2(vy, a) /|« | equals
+1, and so | y|<|a|. Hence v satisfies (11.4c). Then 0 <7 < B and v satisfies
(11.4), contradicting the minimality of B. We conclude that § is C _*-simple.

It follows that p; B is pz C*-simple. Since A* is orthogonal to B and Pz B, one
of the two terms on the left side of (11.7) will be 0, by the Hecht-Schmid
identity, if either § or p‘;,l; is compact. However, (11.4c) implies that

B —psB = =d,

and & is noncompact. Hence one of § and p&,B is compact, one of the terms on
the left side of (11.7) vanishes, and the proof of irreducibility goes through.

Proof of (b). Let £ have character ®™(A, C, x). By Proposition 3.1, we can
write
(11.8) ind$OMA(N,C, x, v) = YT *ind$OMA(N + p, C, xe*, »)
and thereby exhibit the character of Uy(§, iv) as ¢ of a basic character induced

from discrete series. By the Multiplicity One Theorem (quoted as Theorem 5.1),
we can write

(11‘9) ind%@MA(x + p‘, C) xe", V) = @l + A +®n,
where O, are distinct irreducible characters and

4O, = i s {

nonzero forl <j<m
zero form+1=<j=n.
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By Theorem 1.3 of [31], ¢©, is a multiple of an irreducible character. On the
other hand, it is a contributor to the left side of (11.8), which in turn is contained
in a basic character induced from discrete series, by Corollary 4.4. By the
Multiplicity One Theorem, ¢/©, is therefore multiplicity free. Consequently 4@ is
irreducible for 1 <j <m. Moreover, the YO, for 1 <j <m are distinct char-
acters by another application of Corollary 4.4 and the Multiplicity One Theorem.
All the representations in question are unitary. Hence we can describe the
commuting algebras of the representations with characters (11.9) and (11.8) as
follows. The one for (11.9) is n-dimensional, generated by the projections
corresponding to each ©;,1 < j < n. The one for (11.8) is m-dimensional, gener-
ated by the projections corresponding to each y0,,1 <j <=m.Ilf 1 <j < m, then
Y carries the projection for ©, to the projection for y®; since ¢ carries the
identity morphism to the identity morphism. We conclude that ¢ carries the
commuting algebra corresponding to (11.9) onto the commuting algebra corre-
sponding to (11.8).

By Theorem 13.4 of [16], the commuting algebra corresponding to (11.9) is
spanned by standard normalized self-intertwining operators. Thus conclusion (b)
of Theorem 11.1 will follow if we prove

‘ProposiTion 11.2. With notation as in (11.8), let £ be a discrete series
representation with character @™(\ + p, C, xe*). If w is in Ng(a) and wé’ is
equivalent with ¢, then w§ is equivalent with § and

AT (w)@p(w, &, iv)) = cé(w)@p(w, &, iv)
for a nonzero constant ¢ = c(v).

Remarks. Equality of the operators in the proposition is to be understood in
the following sense: ¢ carries the Harish-Chandra module Uy(£’, iv) to a module
equivalent with U,(&, iv), and under this identification the two operators corre-
spond.

Lemma 11.3. With notation as in (11.8), let ¢’ be a discrete series represen-
tation with character ®™(\ + u, C, xe*), and let v’ be real-valued on o’. If w is
in Ny(a), then

(11.10) M@ y(w, £, 97) = e(v)@p(w, &, iv)
for a nonzero constant c(v’).

Proof. First suppose v’ is a-regular. In this case Corollary 9.2 shows that
(11.11a) Up(¢,iv) and  Up(w¢, iwv’)
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and
(11.11b) Up(&,iv') and  Up(¢, iwr’)

are all irreducible. The operator @,(w, §’, i»’) intertwines the two representa-
tions in (11.11a), and the irreducibility implies the operator is characterized by
this intertwining property, up to a constant. Similar remarks apply to @ ,(w, £, iv’)
and (11.11b). Since ¢ carries isomorphisms to isomorphisms, (11.10) follows for »’
regular.

Now let »’ be general. To complete the proof, it is enough to show that the
operator on the left side of (11.10), regarded as an operator in the compact
picture of Uy(§, iv’), varies continuously with »’.

We shall use notation consistent with Section B of the appendix. Let V be
the space of K,finite vectors for ¢, and let V@’ and V. *”" denote the
compatible (M &, K,,) modules corresponding to the action of MA by ¢’ ® ¢
and wé’ ® e'*”, respectively. Since

)}\‘i:::ﬂl = Pa+ir ® [(_) ® F—n],
we have
AL12) M (@ylw, £, 9) = pavi [@plw, £, iv) @ 1.

On the right side of (11.12), we can regard p, ., as an operator, rather than a
functor, and the right side thus denotes a composition. The operator
@p(w, &,i»") ® I has domain ind(V*’ ® F_,) in the compact picture, the
dependence is continuous in »’, and the image is contained in (the compact
picture of) ind(V,{*”) ® F_)). We apply p, ,,,- (which is the same as p,, ., by
Theorem 3.7 of [13]) to this space. We shall show that the operator p,,;,  on
ind(V{*") ® F_ ,) is independent of »” when we view matters in the compact
picture. This independence of »’ will prove the continuity.

Since p, ., is a projection, it is enough to show that its image and kernel
are independent of »’. We form a composition series of MAN modules

F—p, =F® D F® DD F™ ) F*tD 20

with irreducible quotients F; and MF _ , in some order, as in the proof of Theorem
B.1. As a sequence of MA modules, this sequence splits, and we can write

\ F_,=F ®F,® - ©F, O"F_,.
The proof of Theorem B.1 shows that

p)\+iv'[indlcélAN(Vu(>wy,) ® F,)] =0 forl=i=<n
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and then that
(11.13) PA+w[ind§\;4AN(Vu(>w”’) ® F—p)] = p)\+iv’[indlcl:'[AN(Vlf>wy,) ®MF_[L)]

= ind?lAN[p)\-Fiv'(Vu()wy’) ®MF—;1):|

= indﬁAN[p}‘(V,f)O) ®MF_P) ® e""”'].
Thus the image is independent of »’. There are two contributions to the kernel,
one from

Y ®ind§,y (V™ ® F)
i=1

and one from the part of
indf,AN[(V,ff’) ®MF_M) ® e“‘”"]

complementary to the right side of (11.13). Both are indepeﬂdent of »’, and the
proof of the lemma is complete.

LemMa 11.4. With notation as in (11.8), let ¢’ be a discrete series represen-
tation with character ®M(\ + p, C, xe*), and define the action of W(A: G) on
b’ by Theorem 3.7 of [13] so as to preserve C-dominance. Let p be in W(A: G),
and let w be a representative of p in Ny(a). If w§’ is equivalent with §’, then w§
is equivalent with ¢ and pp = p.

Proof. Without loss of generality, we may assume that w is the special
representative of p given in Theorem 3.7a of [13] with the property that Ad(w)
agrees on b’ with the action of p. Then Ad(w) normalizes a + ib and defines a
member w of the complex Weyl group W(a @ ib: G€). By Lemma 10.3a, we
have w(A + p) = A + p and p(xe*) = xe". Since A + p, A, and p are all
g-dominant, i fixes A and p separately. Thus pA = A and pu = p. Then it follows
that px = x. Since pA = A and px = x, Lemma 10.3a shows that w¢ is
equivalent with £.

Proof of Proposition 11.2. Lemma 11.4 shows that w¢ is equivalent with £
and therefore that £'(w)@,(w, ¢, ir) and §(w)@x(w, &, iv) are defined. Lemma
11.3 shows that ¢ = Y} F*** carries @ (w, ¢, iv) to a nonzero multiple of
@p(w, &, iv). Hence it is enough to show that “y(£’(w)) is a nonzero multiple of
f(w).

Here £’(w) and §(w) are operators on the level of representations of G; they
act on the values of the functions in the induced representation spaces. These
operators are the images under the induction functor of operators ¢’(w) and
£(w) on the level of representations of M, and we show first that My(¢'(w)) is a
multiple of {(w).
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In fact, £ and w§’ are equivalent, and §'(w) implements the equivalence.
Since My respects equivalence of Harish-Chandra modules, we can regard My as
carrying £’ to £ and w¢’ to wé, and then My carries £(w) to an operator
implementing the equivalence of £ and wé§. This operator must be £(w), up to a
scalar factor, since £ is irreducible.

Hence, on the M level, ¥ y(¢'(w)) is a multiple of £(w). Then it follows from
Corollary B.2 that, on the G level, Sy(¢(w)) is a multiple of £&(w). Thus
Proposition 11.2 is completely proved.

12. Basic characters with nondegenerate data

We say that a basic character ind§®™4(A, C, x, ») is given by nondegener-
ate data if, for each root & of (m€, b€) with (A, &) = 0, the reflection p; is not
in W(B: M). Let us notice that this definition depends on how a character is
written, not just on the character itself. If a basic character is exhibited as
induced from discrete series, then it is given by nondegenerate data because
(A, &) is nonzero for each root & of (m®, b€). Much of the theory of basic
characters induced from discrete series extends to the case of nondegenerate
data.

ProposITION 12.1. A nonzero basic character indSOMA(A, C, x, v) is given
by nondegenerate data if and only if @M4(X, C, x, v) is not equal to the left side
of some generalized Schmid identity (4.4a) or (4.4b).

Remark. In the case of (4.4a) with two terms on the left side of the identity,
this condition means that ®™4 cannot be taken as one of the terms on the left in
such a way that the other term equals 0.

Proof. Suppose that @¥4(X, C, x, ») equals the left side of a generalized
Schmid identity (4.4a) or (4.4b). If the identity is (4.4b), then the C-simple
noncompact root & with respect to which (4.4b) is constructed is such that
(A, @)= 0 and p; is in W(B: M). If the identity is (4.4a), let the left side of the
identity be

(12.1) OMA(N,C, x,v) + OM4(X, ps C, x, 7),

where S is a C-simple noncompact root 8 with (A, B Y= 0. Our assumption, as
amplified in the remark, is that the second term of (12.1) is 0. By Theorem 1.1b
this means that there is a compact root & that is simple for pzC and satisfies
(A, @)= 0. Since a is compact, p; is in W(B: M) C W(B; M). Hence & has the
required properties.

Conversely suppose that the data are degenerate. Let & be a root of
(m®, b€) such that (A, &) = 0 and p; is in W(B: M). Without loss of generality
we may assume that & is the smallest C-positive root with these properties.
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First suppose @ is noncompact. If & were not C-simple, we could write
a@= B + 7 with 8 and 7 both C-positive and one of B and 7, say 7, compact. The
C-dominance of A would imply (A, ¥) = 0, and we would have p; in W(B: M)
since 7 is compact. Thus ¥ would contradict the minimality of &.

Thus if & is noncompact, @ is Csimple. Then we can form a generalized
Schmid identity (4.4b) from &, and the left side will be ®4(X, C, x, »), as
required.

Now suppose @ is compact. Since our given character is non-zero, the
Hecht-Schmid identity (Theorem 1. 1b) implies that & is not C-simple. Hence we
can write & = 8 + 7 with B and 7 both C-positive. The argument just given
when & is noncompact shows that both B and 7 are noncompact and C-simple.
The C-dominance of A implies (A, ,B) (A, ¥)=0. Say |,B|<|y| Form a
generalized Schmid identity from . If the identity is of type (4.4b), we are done.
Thus we may assume it is of type (4.4a). The left side is then-of the form

(12.2) OMA(A, C, x, ») + OMA(N, p;C, x, 7).

The root py-,é = & is simple for p;C, and it is compact and orthogonal to A.
Therefore the second term of (12.2) is 0 by the Hecht-Schmid identity (Theorem
1.1b), and the generalized Schmid identity is of the required form.

CoroLLARY 12.2. Every nonzero basic character can be given with nonde-
generate data.

Proof. If the data are degenerate, Proposition 12.1 allows us to rewrite the
character with data corresponding to a more noncompact Cartan subgroup.
Iterating this construction, we arrive ultimately at nondegenerate data, since a
nonzero basic character given in terms of data from a minimal parabolic
subgroup is necessarily given with nondegenerate data.

ProrosiTiON 12.3. Let
ind$OM4 (A, Cops X>¥) = ind$.OM™4* (X, wC, x*, v*)
weWy/Ex = R
be the canonical decomposition given in Theorem 8.7 of a basic character

induced from discrete series into irreducible basic characters. In this identity, the
irreducible characters on the right side are given by nondegenerate data.

Proof. Let = {a,,...,a,}. If & is a root of (m*C, b*€) such that
(A, & = 0, then Lemma 8.5 shows that & = *d; for some j. The reflection p; is
not in W(B*: M*) by Lemma 8.10, and hence the data are nondegenerate.

PropOSITION 12.4. A basic character ind$@M4(A, C, x, ) is given by non-
degenerate data if and only if all four of these conditions are satisfied:
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(a) A is nonsingular with respect to the compact roots of (m©, bc)

(b) For each a-root a that is not useful, (A, a + 18) # 0 for every root § of
(m€, bC) such that a + 18 is a root of (g%, (a + b)°).

(c) For each real root o of(g J(a+0)°), (A, a+ ,B)# 0 for every root B
of (m€, bC) such that a + B is a root of (g%, (a + b)°).

(d) In any simple component of g that is isomorphic to split G, and whose
intersection with m © a ® n is a maximal parabolic, the component of \ is
nongzero.

Proof. Suppose (a) fails. Then there is a compact root & of (m€, b€) with
(A, @ = 0. Since & is compact, p; is in W(B: M). Hence the data are degener-
ate.

Suppose (b) fails. Then § is a noncompact root of (m€, b€) for which
(A, 5)= 0, and Proposition 10a of [12] shows it can be taken to be C-simple.
Construct a generalized Schmid identity by means of 8, passing from the data
(m, a, b) to data (m4, ax, b«) and letting § = cg(8~). Then a + %8 is a real root
of (m$, b¥). Suppose the generalized Schmid identity is of type (4.4a) with two
terms on the left. Then Theorem 4.3 shows that the M central element v, 15 is
in {1, Ya}Z(M yZy and hence centralizes Hy. But Ad(y,,15)Hs= —Hs by a
computation in SL(2 C). We conclude the generalized Schmid identity from 8 is
of type (4.4b). Hence the data are degenerate by Proposition 12.1.

Suppose (c) fails in the case of a + B. Then B is a root of (m€, b€) and
(X, B)=0, and we may assume B is C-positive. We have seen that if A is

orthogonal to a compact root of (m€, bC€), then the data are degenerate. Thus we
may assume without loss of generality that A is nonsingular with respect to all
compact roots of (m€, b€). Then it follows that ,[3' is noncompact and C-simple.
Construct a generalized Schmid identity by means of 8, passing from the data
(m, a, b) to data (m«, ax, bx) and letting 8 = cﬂ'(ﬁ). Then a + B is a real root
of (m¢, b¥). Suppose the generalized Schmid identity is of type (4.4a). Then
Theorem 4.3 shows that the M, central element v, g is in {1, v3}Z oLy and
hence centralizes H;. But Ad(y,.z)H; = —Hj by a computation in SL(2, C).
We conclude that the generalized Schmid 1dentity is of type (4.4b). Hence the
data are degenerate by Proposition 12.1.

Suppose (d) fails. Then there is a root a + 1§ of (8%, (a + 5)%) with
al, =0 and &, = 0 such that +§ is a noncompact C-simple root of (m®, 6€)
with (A, 3 »= 0. Then we can argue as when (b) fails to see that the data are
degenerate.

Conversely suppose that (a), (b), (c), and (d) hold but that the data are
degenerate. By (a) and Theorem 1.1b, ®4(A, C, x, ») is nonzero. By Proposi-
tion 12.1, @MA(A, C, x, ») is the left side of some generalized Schmid identity.
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This identity cannot be of type (4.4a) since, by (a), A is nonsingular with respect
to all compact roots of (m€, b€). Thus the identity is of type (4.4b). Suppose
that the identity is built from a noncompact C-simple root ,l'f and that the Cayley
transform cj leads from the data (m, a, b) to data (my, ax, b«). LetB = cﬁ"(ﬁf).
Since the identity is of type (4.4b), Theorem 4.3 says that

(12.3) | ZM*/{]" ‘YB}Z(M*)OZM|: 2
By Lemma 2.1b, Z,, = Z,,, F(By). Consequently (12.3) implies that
F(B*) ¢ {1, ‘YB}Z(M*)OZM'

Thus we can choose a real root 8 of (g€, (ax ® b)C) such that
(12.4) ¥s is not in {1, yB}Z(M*)OZM.

It is clear from (12.4) that 6 #=. Also c;l(ﬁ) cannot be a real root of
(g€, (a ® b)) since otherwise y; would be in Z,,, in contradiction to (12.4).
Thus & is of the form

(12.5) d=cB+a with ¢#0,a#0,(B,a)=0.

If ¢c= =1 in (12.5), then a is a real root of both (g€ (ax ® b4)®) and
(% (a® 5)C), and « + B is a complex root of (g€, (a ® b)€) with (A, a +
,B> 0. Thus (c) fails, and we have a contradiction.

If c= =1 in (12.5), then we may assume 6 = a + 38. So a + 2,8 is a
complex root. Thus

2a+ B, a—3B) _ o Hat

|a + 3B |a+%[§|2
If (12.6) is —1, then |,B P=3]a+ 18 |? and (d) fails, a contradiction. If (12.6)
is 0, then |,B|2 =2|a+ 182, 2a is a root, and

.Y2a‘YB - ‘Ya+EB - .Ys’

so that v, is exhibited as in Z,,{1, vz}, in contradiction with (12.4). Thus (12.6) is
+1, and we obtain a contradiction to either (b) or (d).

All possibilities for the root & thus lead to contradictions, and we conclude

~ that no generalized Schmid identity was possible. This completes the proof of the
proposition.

(12.6)

CoROLLARY 12.5. Suppose the basic character indG04(A, C, x, v) is given
by nondegenerate data. Then each a-root a has the property that p (iv) and
1ty (iv) are both zero or both nonzero.
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Proof. Suppose the conclusion fails for a. In view of Proposition 7.1 and the
definition of p’, we must have

pe o(iv) =0  and  p} (i) #0,

and one of three things must happen:

(i) ais not useful and (A + ir, a + %6.) = 0 for some extension a + 18 of
a to a root of (g€, (a @ 6)°).

(ii) After multiplication by a scalar, a extends by O to a real root and there
exists a root B of (mC, bC) such that a + £ is a root of (g€, (a ® 6)®) and
(A iv,a+ B)=0,0r

(iii) a is an a-root of a maximal parabolic in a split G, that occurs as a
simple component in g, and the component of A in that split G, is 0.

Then (i), (ii), or (iii) shows respectively that (b), (c), or (d) fails in Proposition
12.4. Hence the proposition shows that the data are degenerate. The corollary
follows.

The Plancherel factor p; (iv) is used to define normalizing factors for the
standard intertwining operators in [16]. Corollary 12.5 therefore allows us to
define the R group of Section 10 in the nondegenerate case directly in terms of
normalizing factors. Going over the proofs of Lemma 11.6 and Theorem 12.1 of
[16] and taking the present Theorem 11.1 into account, we obtain the following
conclusion.

THEOREM 12.6. Suppose § is a nonzero discrete series or limit of discrete
series representation of M and v is a real-valued member of a’, and suppose that
the character ind$OMA(A, C, x, v) of the induced representation Uy(£,iv) is
given by nondegenerate data. Then

(a) The normalized standard self-intertwining operators for Uy(§, iv) corre-
sponding to members of R are linearly independent.

(b) The dimension of the commuting algebra of Up(£, iv) is exactly |R | .

Remark. Theorem 13.3 will give an independent proof of this theorem, but
without the conclusion that the unnormalized standard self-intertwining opera-
tors corresponding to R are regular at ».

13. Complete reduction of basic characters with nondegenerate data

For basic characters given by nondegenerate data, we can imitate the proof
of the decomposition of Theorem 8.7 for basic characters induced from discrete
series.
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Let
(13.1) ind$OMA(N,,, Cy, X5 ¥)
be a basic character. As in Section 10, we form the stability group W in
W(A: G), and we let W = W’'R be the semidirect product decomposition of
Corollary 10.11. The fundamental properties of the R group have been assembled
at the end of Section 10 and in Theorem 11.1. Throughout this section, we shall
assume that (13.1) is given by nondegenerate data.

Let i = {a,,...,a ) be the superorthogonal system of positive a-roots of
odd multiplicity given in Proposition 10.20. Then we can make the same
definitions as after Proposition 8.4 (which dealt with the special case of basic
characters induced from discrete series). Namely d is the Cayley transform built
from JC, and we are led from the data (m, a, b) to data (m*, a*, b*) with
m* DOm,a* Ca,and b* D b. Let

1

q
b= Y iRH
=1

a;:
i

Then b+ is the orthogonal complement of b in b*. We still define

)\:{}\M onb
0 onb*,

x* = Xle. on Zy.,

* =

v*=v|. ona*

Let p,, be half the sum of the C,-positive roots of (m®, b€), and extend p,, to
(5*)€ by taking it to be 0 on b* . Define Wy, and E,, as in Section 8.

The assumption of nondegenerate data comes in partly through the follow-
ing lemma, which generalizes Lemma 8.5. Nondegeneracy will play a critical role
when we prove that the component characters of Theorem 13.3 are nonzero and
irreducible (see Lemma 13.6).

LemMma 13.1. Under the assumption that (13.1) is given by nondegenerate
data, the parameter A satisfies (A, ,B~) # 0 for all roots B of (m*C, 6*€) other
than (1) =@&;, 1 <j =< q, and (2) certain roots that are orthogonal to &,,. .. &,
Consequently any sufficiently small rectangular neighborhood Uy X U;. of N in
(ib) ® (ib*) = (ib*)’ has the property that there exist exactly 29 Weyl cham-
bers C in ib* such that C N(U, N C,,) # @, and this intersection has in each
case nonempty interior. All such chambers are obtained from one of them C, as
{wCy|w € Wy }. For any such chamber the positive roots from among the
*d;,1 =<j=gq, are all simple.

Proof. First we show (A, 8 »7 0 under the circumstances stated. Thus
suppose (A, 8)=0 and B is not orthogonal to all of a,...,d,. We show
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,B~ = =g, for some j. Begard ,8 as a root of (g€, (a* + b*)€) that vanishes on a*
and form d5X( B). Since B is assumed nonorthogonal to at least one of a,...,4,,
d3( ,B) has nonzero a component, say B8;. Then B is a linear combination of the
a-roots «; and hence is in (1 — g)a’. By Lemma 10.18, B; is not in A’. Thus
¢ g (ir) # 0. By nondegeneracy and by Corollary 12.5,

(13.2) pe g iv) # 0.
Now Proposition 7.1 gives

(13.3) “e,BR(iV) = 11 Ayt iv, e) f; g(iv),

ela=cBr, c>0
where f; 4. is 1 or is given by (7.6c). One of the factors in the polynomial part of
(13.3) comes from

e=d'(B) = Ba+ B
where B is the restriction to ib. If B, # 0, another factor comes from

€= Br — B

The factors in question are

Ny + iy, Bp = Br)= =(Ayy, Br)+ i(v, Bg)= =(v, BY+ i(v, Bg)-

By Proposition 10.20b, (v, Bz) = 0. Then (A, ,é) = 0 and B, # 0 together mean
. that (13.3) vanishes at », since f; g, contributes at most a simple pole. Since the
vanishing of (13.3) would contradlct (13.2), we conclude that 8, = 0. Therefore
Bg has odd multiplicity and is in ZRa;. Proposition 10.20 shows that B = *a;
for some j, and hence g = * &

This proves the part of the conclusion concerning (A, B ). Since there are
only finitely many B’s, we can choose a rectangular neighborhood Vy X Vi
around A in (ib)’ @ (ib*)’ on which (-, ] ) continues to be nonvanishing for the
same B’s. It follows that any choice of g signs s; = =1 makes

q
(13.4) N+ D g8,
i=1

nonsingular as long as A’ is in V, N Cy, and the ¢; are sufficiently small and
positive. Each choice of signs {s;} therefore leads to a chamber as asserted, and
there are no other chambers whose closure meets V, N C,,. We obtain 29
chambers, and the members of Wi clearly permute them simply transitively.
Then we can argue with (13.4) as in Lemma 8.5 to see, for any such chamber,
that the positive roots from among the *&;1 <j =< g, are all simple.

Let C be one of the chambers described in Lemma 13.1. The case i = q in
Lemma 13.4 below will show that A satisfies the appropriate integrality condition
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so that we can speak of
M AN (X, C, x*, v*).

In that context, the statement of the following lemma makes sense.

Lemma 13.2. With C as in Lemma 13.1, let w be in Wy, and let e be in E,,.
Then

OM™ A (N, weC, x*, v*) = OMA (A, wC, x*, v*).
Proof. Same as for Lemma 8.6.

TueoreM 13.3. Let ind$OMA(X,,, Cy,, X, ¥) be a basic character given by
nondegenerate data. In the context of the induced representation with these data,
Eq is given by

even number of factors P, in common!

for each rin R, w and r have an’
(13.5) Eq = we Wy 70

and fmznula (13.5) sets up a canonical isomorphism of Wy./Eq onto the dual
group R. Moreover,

(13.6) ind$OMA(A,, Cyy, x> ¥) = 3 ind$.0M" A" (X, wC, x*, v*)
weWq/Eq =R

for any choice of the chamber C as in Lemma 13.1. The characters on the right
side of (13.6) are all nonzero and irreducible, and they are given by nondegener-
ate data.

The proof of Theorem 13.3 will be accomplished by the sequence of lemmas
in the remainder of this section. We shall cite Section 8 for proofs whenever
possible. Our emphasis here will be on how nondegeneracy is used.

As in Section 8, we enumerate the members of J as a,,...,a, and build
intermediate data m,, a;, b,, C\), A, x;, #;.

Lemma 13.4. For each i with0 <i<gq,

(13.7) indll‘,',i{}\;iAi@MA(}\M, Cy> X>¥) = 2 GM‘A‘O‘N C;'(i)’ Xi» Vi)’

some j’s
with A, satisfying the appropriate conditions so that the right side makes sense.
Proof. Most of the argument is the same as for Lemma 8.9. When we come

to the last paragraph of the argument, in which we are to show that the
chambers can be selected in such a way that (8.10) or (13.7) results, we replace A

17 . . after identification of Pa, with Ps, by the Cayley transform.
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by A + €p,, for any sufficiently small ¢ > 0. In particular, (8.14) is replaced by

q
A+epy+ X gsd,,
i=1

and then the argument goes through.

As in Section 8 let n(i),0 < i < g, denote the number of terms on the right
side of the character identify (13.7) at stage i. It will turn out that none of the
characters on the right of (13.7) is zero. But until we know this fact, we count
both zero and nonzero characters in computing n(4).

Lemma 13.5. The function n(i) satisfies n(i) = 2n(i — 1) if there exists an
element r of R of the form

(13.8) r=( 1 7).

some j<i

Proof. Same as for Lemma 8.10.

LEmMa 13.6. Under the assumption that (13.1) is given by nondegenerate
data:

(a) For each C as in Lemma 13.1 the character ind$.0(A, C, x*, v*) is well
defined and is given by nondegenerate data, hence is nonzero.

(b) The characters ind5.0(X, C/?, x*, »*), induced from those on the right
side of (13.7) when i = q, are nonzero and irreducible and are given by
nondegenerate data.

(c) The function n(i) satisfies n(q) =|R|.

(d) n(i) = n(i — 1) if there exists no element r of R of the form (13.8).

Proof. We begin with (a). The case i = ¢ in Lemma 13.4 shows there is
some chamber for which the character in question is well defined. Since the
integrality and compatibility conditions needed for existence of the character do
not depend on the chamber, the character is well defined for every C.

We shall prove the nondegeneracy from the definition, showing that
(A, ,5) = 0 for a root B of (m*<, 5*C) implies that pg is not in W(B*: M*). Thus
suppose (A, 8 Y= 0. Lemma 13.1 shows that either 8 is orthogonal to &@,...,d,
or B = =@, for some i.

Let B be orthogonal to d,,...,d,, and suppose pgis in W(B*: M*) with x as
a representative in K N M*. Put 8 = d5(B). Then B is a root of (m€, 6€) with
(A B)= 0. We can produce b* in B* so that b*x exhibits pg as in W(B: M),
and we then have a contradiction to the nondegeneracy of the data in (13.1). To
do so, we argue as in the first part of the proof of Lemma 8.14 where
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Ad(x)H' = Hg. For 1 <j < q we define b;" by (8.18) and then (8.19) holds.
Consequently if we take b* = bt~!---b}7', then Ad(b*x) fixes a* and each
E; + E_;. Hence b*x is in M. The element b*x actson b C b* as the restriction
of pﬁ, hence as pg. We obtain the contradiction asserted, and we conclude that

(XA, B)=0 and B orthogonal to &,...,&, together 1mply‘ pg is not in

W(B*: M*). .
The other case in which (A, B)= 0 is possible is 8 = +d,. Renumbering
a,,...,d,, we may assume the root in question is @,. By Proposition 10.20c we

can choose an element r in R that involves p, . Then Lemma 13.5 shows that p;_
is not in W(B*: M*). (See the proof of Lemma 8. 10.)

Now we can prove (b), (c), and (d). The nondegeneracy in (b) is a special
case of (a). The rest of the argument proceeds as in the proof of Lemma 8.11.
This time we refer to the present Theorem 11.1 in place of Theorem 13.4 of [16],
and. we refer to Lemma 13.5 in place of Lemma 8.10.

LemMma 13.7. If C is any chamber in ib* as in Lemma 13.1, then
> OMAY(N, wC, x*, v*) =| Eo | ind¥4% LOMA(N,,, Cy» X, 7).

weWy

Proof. The proof follows the same inductive pattern as in Lemmas 8.12 to
8.15, passing from (m*, a*, b*) to (m, a, b). No new steps are involved.

Lemma 13.8. Wy/Eq and R have the same number of elements, and

- (13.9) ind§OMA(A,,Cys x>v) = 3 indS.OM A (A, wC, x*, v*)
weWy/Eqg '

with the characters on the right nonzero and irreducible, given by nondegenerate

data.

Proof. We start with the identity of Lemma 13.7 and induce from P* to G;
Lemma 13.2 allows us to write the result in the form (13.9). Every term on the
right side of (13.9) is nonzero and is given by nondegenerate data, by Lemma
13.6a. We shall show the terms are irreducible. Let us take (13.7) with i = g,
induce from P* to G, and compare the result with (13.9). The induced version of
(13.7) has all its terms nonzero irreducible by Lemma 13.6b, and each of its
terms is one of the terms on the right of (13.9). Distinct terms go into distinct
terms since (13.1) decomposes with multiplicity one, by Corollary 4.4 and
Theorem 5.1. Hence the right side of (13.9) contains exactly the same terms as in
the identity induced from (13.7) with i = q. The lemma follows.

LemMa 13.9. Suppose r is in R and e is any member of Es. After
identification of each a; and &; by the Cayley transform, r and e have an even
number of root reflections in common.

-
N
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Proof. Same as for Lemmas 8.17 to 8.19.

Lemma 13.10. The homomorphism w — x,, of Wy onto R sets up an
isomorphism of Wy /Eq onto R and Eq_ is given by (13.5).

Proof. Same as for Lemma 8.20.

Lemmas 13.8 and 13.10 together prove Theorem 13.3. With the aid of
Theorem 13.3, we can decompose any basic character into its irreducible
constituents. First we use the degeneracies and Proposition 12.1 to rewrite it, one
step at a time by generalized Schmid identities, in terms of data for a smaller
group MA. This step is noncanonical. When the data are finally nondegenerate,
we decompose the character by means of Theorem 13.3. This step is canonical.

14. Classification of irreducible tempered representations

A first classification of irreducible tempered representations is implicit in
Theorem 8.7. The results on nondegeneracy allow us to give in Theorem 14.2 a
more intrinsic classification. In establishing the equivalence criterion in Theorem
14.2, we shall use the following Disjointness Theorem of Langlands. (See [21],
pp- 65 and 76-78, and also Harish-Chandra [5].)

THEOREM 14.1 (Langlands). If
ind$@MA(A, C, x, ») and  ind$OMA(N,C, x', V')

are basic characters induced from discrete series that have an irreducible
constituent in common, then the two induced characters are equal and there is
an element w in K such that M’ = wMw™!, A’ = wAw™!, B’ = wBw™},
AN =wA, C =uwC, x' =wx, and v' = wy.

THEOREM 14.2. Every irreducible tempered character is basic and can be
written with nondegenerate data; when the character is written this way, its R
group is trivial. Conversely every basic character with nondegenerate data and
trivial R group is an irreducible tempered character. For two irreducible basic
characters with nondegenerate data, an equality

(14.1) ind§O@MA(A, C, x, ») = ind§.OM4 (N, C’, X', v')
holds if and only if there is an element w in K with
M =wMw™!, A =wAw’}, B’ = wBw™ !, A = wA],
C’' = uwC, x = wx, and v = wr.
Proof. Every irreducible tempered character is basic by Corollary 8.8 and

can be written with nondegenerate data by Corollary 12.2. When a basic
character is written with nondegenerate data, the dimension of the commuting
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algebra equals the order of the R group by Theorem 12.6, and hence irreducibil-
ity corresponds to trivial R group.

Conversely a basic character with nondegenerate data and trivial R group is
irreducible by Theorem 12.6. According to Corollary 4.4, such a character
imbeds in a basic character induced from discrete series and hence is tempered.

If two irreducible basic characters with nondegenerate data have data
conjugate by an element w in K, then (14.1) holds. To complete the proof, we
are to show conversely that (14.1) implies the data are conjugate.

The idea will be to work with one of the two sides of (14.1), obtaining a
canonical imbedding of the character in a basic character induced from discrete
series. We then show how to recover the original data, except for the chamber,
from the data for the basic character induced from discrete series. Comparing the
imbeddings for the two sides of (14.1) and applying Theorem 14.1, we obtain the
conjugacy of the two sets of given data, except for the chambers. A supplemen-
tary argument will deal with the chambers.

Thus let

(14.2) ind§@MA(X, C, x, »)
be a basic character given by nondegenerate data. Define
K = {aroot of (m€, b€) | (A, & = 0 and & is C-positive}.

By nondegeneracy, K contains only noncompact roots. The C-dominance of A
therefore implies that the members of K are C-simple. Since they are also all
noncompact, they are orthogonal, hence superorthogonal. We form the Cayley
transform
ex=1I en
acX
with ¢ as in (2.7), and we are led from the data (m, a, b) to data (14, ax, bs).
Let Wy, C W(B: M) be the subgroup generated by the reflections p; for & in
K. Number the members of X as &,,...,d,, let ; = cq(d;), and form successive
generalized Schmid identities (4.4a) or (4.4b) by means of Theorem 4.3. Repeat-
ing the argument in Lemmas 8.12 to 8.15, we are led to the identity
(14.3) ¥ OM(A,wC, x) =|Eg|ind¥ ,,@M4M(} (., Cx, xx,0),
weWy
where Cy = CPa P4 and Eqy = Wy, N W(B: M). The central character x is an
extension of x (with apparent nonuniqueness occurring each time the generalized
Schmid identity is of type (4.4b) with just one term on the left). We can rewrite
(14.3) as

(14.4) S OM(A,wC, x) = ind¥ ., @M-AM(X .., Cy, Xx,0).
weWy/Eg
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Let us write ax = a @ ay, orthogonal decomposition, with A, = AAq the
corresponding decomposition of groups. Let Wy, be the subgroup of W(Ay: M)
generated by p, ,...,p, . The superorthogonalit‘y of K implies that Wy is the
Weyl group of the odd roots of (m, ag). )

The character on the right of (14.4) is a basic character of M induced from a
discrete series £x of M, (and O on ay), and the theory of the R group as
developed in [16] and [13] applies to it, since M satisfies the axioms of Section 1
of [13]. Let the usual A’ and R for this situation be denoted A% and R4. Lemma
7.3 of [13] shows that R, is a subgroup of the Weyl group of the odd roots of
(m, ag). Thus

(14.5) Ry = {w € Wy |wts = ¢4 and wAl* C AL }.

By nondegeneracy, parts (a) and (b) of Theorem 1.1 show that the characters on
the left of (14.4) are nonzero and irreducible. Thus Theorem 13.4 of [16] implies

(14.6) | Woe/Eg|=| Bx | -

Now we adjoin a and order ax with a before ay. We extend both sides of
(14.4) by iv on a and induce to G. Then we obtain

(14.7) wzy/g ind$@MA(N, wC, x, ») = ind%@M*A*(}\ l6+s Cxs X5 ¥ © 0).
we %

The right side of (14.7) is a basic character of G induced from the same discrete
series £x of M, (and i» on a4). Let A" and R have the usual interpretation for it.
(See § 8.)

Let us regard W(Aq: M) as a subgroup of W(Ay: G). Under this identifica-
tion, we shall show that

(14.8) R, CR.

To do so, let w be in R,. Then w fixes {4« by (14.5) and w fixes » since w is 1 on
a. Let >0 be in A’, and form wp. Suppose by way of contradiction that
wf < 0. Then the facts that a is ordered before a and that w is 1 on a imply
that B vanishes on a, i.e., that B is a positive root of (m, ay). But then 8 is in A%
since p,, g is the same whether computed in G or in M. Since w is assumed to be
in Ry, wB < 0 is then impossible, and we have a contradiction. We conclude that
wp > 0. This proves (14.8).

We return to (14.7). The induced terms on the left remain nonzero during
induction. One of them, corresponding to w = 1, is by assumption irreducible.
By Proposition 10.21, each term on the left has the same R group. By Theorem
12.6, irreducibility is controlled by the R group for each. Consequently every
term on the left side of (14.7) is an irreducible character.
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Thus the R group of the right side of (14.7) satisfies

(14.9) | Wy/Ex|=|R].
Putting together (14.6), (14.8), and (14.9), we conclude that
(14.10) R. =R.

Now we apply Theorem 8.7 to the right side of (14.7). The set J( of that
theorem, by (14.10), is a subset (apart from signs) of {a,...,a,}, and we claim it
is exactly the full set. In fact, otherwise we can first form the decomposition of
Theorem 8.7, passing from data (11, a, bx) to data (m’, a’, b’) and then we
can do additional Cayley transforms d.,,, and pass to the original data (m, a, b).
The latter step gives us no new terms, since Theorem 8.7 has already provided a
decomposition into irreducible characters, and thus we can reverse the latter
step, using the given character @4(A, C, x, ») as the left side of some gener-
alized Schmid identity. In view of Proposition 12.1, this contradicts nondegener-
acy. We conclude that JC = {a,,...,a,}, apart from signs.

Let us summarize. Starting from the left side of (14.1), we used the given
data to imbed the character in a basic character induced from the discrete series
of some M. From a suitable ordering on a ., depending on our given data, we
were able to recover our original MA from the set JC of superorthogonal roots
obtained from the R group. If we start instead from the right side of (14.1), we
must be led to the same basic character induced from discrete series, by the
Langlands Disjointness Theorem (Theorem 14.1). Moreover, the data for the new
version of the basic character induced from discrete series are G-conjugate to the
data for the old version and hence may be assumed identical. Any two orderings
for a4 lead to W’-conjugate R groups and hence to superorthogonal systems JC
that are conjugate, apart from signs.

Thus without loss of generality we may assume M’A’ = MA in (14.1) and
rewrite (14.1) as

(14.11) ind§OMA(A, C, x, ») = ind$OMA(N, C, X', »).

We shall not attempt to track down the remaining G-conjugacy we have proved
but shall instead relate (A’, x’, »") and (A, x, ») directly. The argument above
imbeds the two characters of (14.11) into equal basic characters induced from
~ discrete series:

(14.12a) ind§@M41(A |, , Cx, x4, » © 0)
and

(14.12b) ind§OM242(A" |, , Ck, X4, v' © 0);
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also the data in (14.12b) are the transforms by some w in K of the data in
(14.12a):

(14.13) wMuw'=M,, Ad(w)a,=a,, Ad(w)b, =05
Ad(w)(Aly) =X, wxs=xk Ad(w)(r®0)=»" 0.

Write a; = a ® ag, and a, = a ® ag,. Order A} so that a comes before
ag,, and order A} so that a comes before ag,. We have seen that R, determines
ag, and R, determines ag . We know that Ad(w)A] = A}. Choose p in K
representing a member of the Weyl group of A}, so that Ad(pw)A’+ = ALt
Then pwR,w 'p~! = R, and hence

(14.14) Ad(pw)(=%X,) = =K,

and Ad(pw)ay, = ag,. Also Ad(pw)a, = a,, and thus Ad(pw)a = a. Adjust-
ing p by an element of (M,),, we may assume that Ad(p)b, = b,.

Since p represents a member of the Weyl group of A}, p fixes the discrete
series character @M2(\’ ls,» %> X%) and p fixes »” © 0. Hence p fixes x%. Adjust-
ing p by an element in the normalizer of b, in M,, we may thus assume

p(N |b2) =N |b2‘
Combining this information about p with (14.13), we see that

(14.15) pwMw ™ 'p ' =M,, Ad(pw)a=aqa, Ad(pw)ay = ag,
Ad(pw)b, = b,, Ad(pw)()\ |bl) =X g,
pwxx = Xk, Ad(pw)(»®0) =»' ®O0.

These equations imply that pw normalizes A, normalizes M, and satisfies
Ad(pw)v = v’ and pwx = x’.

We have

b=0, ®icy (ay,).

Applying Ad(pw) and using (14.14) and (14.15), we have
(14.16) Ad(pw)b = b, ®icy,(ay,).
But the right side of (14.16) is b, and hence Ad(pw)b = b. Then it follows from
(14.15) that Ad(pw)A = N’. In short pw conjugates (A, x, ¥) to (X', x’, ')

Thus without loss of generality we may rewrite (14.1) and (14.11) as
(14.17) ind§®@MA(X, C, x, ») = indSOMA(A, C', x, ).
The proof comes down to showing that an equality (14.17) implies C’ = wC with
w in

Wy N W(B: M) =E
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Since A has to be dominant, we certainly have C’ = wC with w in Wy,. Assume
(14.17) and run through the argument leading to (14.7). If this w with C’ = wC
is not in Eq;, then both sides of (14.17) contribute to the left side of (14.7). Hence
the irreducible constituents of the right side of (14.7) do not occur with
multiplicity one, in contradiction to Theorem 5.1. This contradiction completes
the proof of Theorem 14.2.

15. Examples and counterexamples

1. Two types of generalized Schmid identities. Prototypes for the two
generalized Schmid identities (4.4a) and (4.4b) occur with M* as SL(2,R) and
SL™* (2, R), respectively.

In M* = SL(2, R) there are two limits of discrete series; they correspond to
A = 0 and differ as to chamber. They occur as irreducible constituents of the
unique reducible unitary principal series representation, which is induced from

the extension to MAN of the signum character of the diagonal subgroup MA. The

Cartan subalgebra b* is all multiples of ( _(1) 1

representative in the group M*. The identity (4.4a) expresses the reducibility of
this principal series representation.

In M* = SL™ (2, R) there is only one limit of discrete series (up to equiva-
lence). Although we still have A = 0 and there are still two chambers, p; has

), and the reflection p; has no

((1) _(1) ) as a representative in M*, and Theorem 1.1c says the two chambers
lead to the same character. The group M now has four elements ( i(l) +(1) )

The two characters of M that are —1 on -1 0 are what are denoted

(¢ ®x)* and (¢ ® x) ™ in (4.4b). These two characters, extended by the trivial
character on A, lead to equal principal series characters, which in turn are equal
to the limit of discrete series character by (4.4b).

2. Fundamental examples of reducibility. Suppose G is split over R and
P = MAN is a minimal parabolic. When it turns out that the superorthogonal set
9C of Theorem 8.7 consists of simple a-roots, then the reducibility can be
understood directly from the theory of intertwining operators for SL(2, R) and
related groups. In fact, the intertwining operator for a simple reflection p, can be
viewed (cf. [16], p. 23) as an intertwining operator for the group built from M
and a, and the identity component of this group will be locally isomorphic to
SL(2,R). The operator for an element r in R of the form IIp, with each a,
simple will be an operator for an analogous group involving several copies of
SL(2,R). The reducibility coming from r already comes from this group, and a
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corresponding decomposition of the unitary principal series representation of G
under study comes by inducing this decomposition to G.

We shall give the three examples of this phenomenon that led us to the
general pattern of Theorem 8.7. These occur in the groups Sp(2, R), SL(2n,R),
and SO(4, 4).

First we make some comments about reducibility in groups related to the
sum of n copies of SL(2, R). When G is the direct sum of n copies of SL(2, R), the
M for the minimal parabolic is itself a sum and has order 2". If we use
the character of M that is signum in each of the n coordinates, then the
corresponding principal series representation decomposes into 2" pieces in an
obvious fashion. If G is enlarged to a disconnected group by adjoining some
n-tuples (g,,...,g,) with det g, = =1 for each i, then the amount of reducibility
for the corresponding principal series goes down. In terms of generalized Schmid
identities, the additional elements force the use of identities (4.4b) in place of
(4.4a) in the reduction, and fewer terms appear in the end.

a) Sp(2, R). In standard notation this group is of type C,, and the simple
roots of (g, a) are e; — e, and 2¢,. Let

€(Yo—e,) =1 and  £(v,,) = —1.
Then
ANt ={e, + e, —e)
and

R = {1, pzez}.

Here J(C consists of a single root 2¢,, and it is simple. The general theory says that
reducibility already occurs within the group M* = SL(2,R) ® Z, built from M
and the root 2e,. This fact can be seen directly on the level of intertwining
operators, as noted above. The intertwining operator corresponding to the simple
reflection p,, can be viewed as an SL(Z, R)-type nontrivial self-intertwining
operator (Hilbert transform) occurring in M*, and thus the reducibility already
occurs in M*.

b) SL(n,R). In standard notation this group is of type A, and the simple
roots of (g, a) are e; — €y, €, — €3,...,65,_ — €y,. Let

g(‘Yezk_l—ezk) =—1 forl<k<n

and
£(Yyyo,,,) = +1 forl<k=n-—1.

Then A’" is generated by all ey, — €50 and €y — €3 for 1 <k =n—1,
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and

R= {1’ Pe,—eyPey—e, " .pe2n~l_82n} '
Thus

= {e;— €3, 03— €45 -1€30—1 ~ €2n}>
and 9C consists entirely of simple roots. Again the reducibility that is explained by
Theorem 8.7 can be predicted directly from intertwining operators. The group
M* built from M and the members of I is isomorphic to the sum of n copies
of SL(2,R), with all ntuples of matrices (g,,...,g,) adjoined such that
deg g, = *1 for all i and IIdet g; = +1. Intertwining operators show that the
two-fold reducibility within this M* accounts for the two-fold reducibility within
G.
c) §5(4, 4). In standard notation this group is of type D,, and the simple
roots of (g, a) are '
€, —€y,6,— €3,63— €4, ¢4

Let
E(Ye—e,) = £(Yey-ey) = £(Vey—e,) = E(Yepre,) = — 1.
Then '
AT ={e, > e, 6+ ey}
and
R = {1, 1, (Pe—ep Por—esPesegr Peyep Pester)
Thus

SC: {el - 62, 63 - 64, 63 + 64}:

and I consists entirely of simple roots. Once again the reducibility that is
explained by Theorem 8.7 can be seen directly. The group M* built from M
and the members of JC is isomorphic to SL(2,R) ® SL(2,R) @ SL(2,R) with

( ( (1) _(1) ) ( (1) _(1) ) ( (1) _1 )) adjoined. The four-fold reducibility within
M* induces to the four-fold reducibility within G.

3. Parametrization by R. It is natural to expect that the different chambers
that appear in Theorem 8.7 are related by C* = r,C, with r, in (the Cayley
transform of) R, but this is not so. In the case of SL(4, R) in Example 2b above,

the chambers can be regarded as the quadrants in R?® with basis e, — e, and
e; — e,, and the nontrivial element of R is p, _,p, ., This element carries a
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chamber to its negative, which gives an equivalent representation. To get two
inequivalent representations, we want to use two adjacent chambers. Adjacent
chambers are the result of parametrizing by R instead of R.

4. Degenerate intertwining operator. Let P = MAN be a cuspidal maximal
parabolic subgroup in G, let a be a root of (g, a), and suppose that p, exists in
W(A: G). If £ is a discrete series representation of M and if » = 0 is the
parameter on a, then there are only two possibilities for the behavior of the
standard unnormalized self-intertwining operator for Uy(£,0) corresponding to

p,: (1) the operator has no pole at » = 0 and is obviously not scalar, in which
case Up(§,0) is reducible, or (2) the operator does have a pole at » = 0 and when
normalized becomes scalar, in which case Up(§, 0) is irreducible. (See [16], § 11.)

If £ is a limit of discrete series, this dichotomy breaks down. The unnormal-
ized operator can have a pole at » = 0 and remain nonscalar after normalization.
In such a case we necessarily have p, ,(0) = O (to get a pole) and p,; 0) # 0 (to
have a chance of obtaining a nonscalar operator). For an example, take G =
Sp(2, R) with notation as in Example 2a. Let M, _, be built from the minimal M

and the root ¢, — e,. Then M, _, = SL*(2,R). If £ is the limit of discrete series
representation of M, _ , then the standard unnormalized self-intertwining opera-
tor for the induced representation with » = 0 has the stated properties. We check
readily that p, ,(0) = 0, from which it follows that the unnormalized operator
has a pole, by (7.3) above and also Section 8 of [16].

To prove the normalized operator is not scalar, we apply the completeness
result in Theorem 11.1b and find it is enough to show the induced representation
is reducible. The data are degenerate, and we can rewrite the induced represen-
tation as coming from the minimal parabolic. One of the two ways of rewriting
the representation leads exactly to the representation in Example 2a, and that is
reducible. Hence the normalized operator under study is not scalar.

5. Nonexistence of a unique “top” for characters. There is a natural
ordering on #-stable Cartan subgroups in which a first one is smaller than a
second one if the identity component of the compact part of the first one is
conjugate to a subgroup of the compact part of the second one. It has been
conjectured that to every irreducible character of a connected G is associated a
unique “top”, a unique largest Cartan subgroup (in this order) on which the
character is nonvanishing. This conjecture is false, even for basic characters, as is
shown by any of the irreducible constituents contained in the D, example treated
as Example 2c.

At first glance these characters do appear to have a “top”, namely the
Cartan subgroup obtained by starting with the most noncompact Cartan and
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using

dy.=d
to obtain a new one. But it is easily checked that these characters vanish on this
Cartan subgroup and that the next lower Cartan subgroups in the ordering give
three “tops”. These are the Cartan subgroups obtained by instead using

d d,_.d ,andd, _ d

e —ey e3tey e;—ey e3tey”

el—ezdes—e4de3+e4

e1—é e3¢,

6. Strict inequality may hold in Theorem 11.1c. That is, for a degenerate
basic character the dimension of the commuting algebra may be strictly less than
the order of the R group. An example occurs in G = Sp(3,R). Let MAN be a
minimal parabolic subgroup, and denote the simple roots by e, — e,, e, — e3, 2e;.
Form M, _, from M and the root ¢, — ;. Then M, _, is isomorphic with

e —e

SL=(2,R) ® Z,. We take A = 0 and » = 0, and we define x consistently by
X(Yel+e2) = _1 and X(Y2e3) = —]‘Y’

The basic character in question is the one induced from these data.
The positive roots for this parabolic are

e, + ey 265, (e t+e) Te,
and 3(e, + e,) = e, are not useful. We find that A" is empty and hence

R= {1’ pe1+e2’ p2e3’ pel+e2p2es}’
of order four.

However, the basic character splits into only two pieces. This fact can be
seen in two ways. One is to rewrite the character in nondegenerate form,
induced from the minimal parabolic, and to calculate the new R group. Another
way is to use character theory directly. The usual superorthogonal set is JC =
{e, + ey, 2¢;}, and we can use generalized Schmid identities (first from e, + e,
and then from 2e;) to decompose the character. The maximum number of
constituents arises if all identities are of type (4.4a). In any event, we drop all
indices for the characters except for the M of the parabolics and the simple roots
of the chambers, and we obtain

ind®@"a-2({e, — ¢,})
= ind®@Ma-e222({e, + ey, —2€,}) + indOMer-c222({ —e; — €,,2¢,})
= 0%({e, + €5, —ey — €5,2¢5}) + O%({e; + ¢,, —€, + €5, —2€3})
+0%({—e, — ey, €, — €5,2¢5)) + OF({—e; — €5, €, + €5,2¢5}).

The second and third terms on the right are zero by the Hecht-Schmid identity
(Theorem 1.1b), and the reducibility is into only two pieces.



Appendix on tensor products

By GREGG ]. ZUCKERMAN

The material in this appendix is a supplement to the paper [31], and we
follow the notation of that paper. However, we shall restrict attention to
connected semisimple Lie groups G having a faithful matrix representation.

The Lie algebra of G is denoted g,, and the complexification is g. The
group GC€ is the analytic group with Lie algebra g.

A. Iteration of tensoring functors

Let H be a Cartan subgroup of G, b, its Lie algebra, §) the complexification
of h,, H® the complexification of H in G, and H’ the set of regular elements in
H. Suppose a system of positive roots has been selected. Let A and p be in h*,
suppose Re A and p are dominant, and suppose p is integral (in the sense of being
the differential of a holomorphic character §, of H € into C*). Then Definition
1.1 of [31] gives the ¢ functor as

Ate= pa° [(“) ® F—,,] ° Patp
in the category of Harish-Chandra (8, K) modules.

TreEoREM A.l. If Re A is dominant and n, and p, are dominant integral,
there is a natural isomorphism

(A.1) Y T = YRt o gl e,

We shall observe presently that (A.1) is evident on the level of characters,
but the formula says more—first that the two sides operate on any Harish-Chandra
(8, K) module and lead to isomorphic modules, and second that the resulting
system of isomorphisms is natural.

We begin with the appropriate observations from global character theory.
Characters are locally integrable class functions on G analytic on the regular set
of G, by [3]; they are thus determined by their values on the regular sets within
each member of a system of nonconjugate Cartan subgroups of G. If such a
Cartan subgroup is given and a positive system of roots is specified, then we may

493
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transform H and the parameters on ¢ canonically, rewriting them in terms of this
specified Cartan subgroup.!® Changing notation, we may specify a character by
giving its expression on H’.

The Weyl denominator V is the function on H€ given by
(A.2) v(h)= 1] (53/2(") - g—ﬁ/z(h))-

B>0
If © is a character with infinitesimal character A,, then we have locally
(A.3) vO(hyexp X) = X ¢(0; s)(hy)exp{sA,(X)} inH'.
seW
Here the expressions c¢(®; s)(h,) are locally constant functions on H’. (See
equation (3.5) of [31] and the last two paragraphs of Section 3 of [31].)
LEmMA A.2. Formula (A.l) is true at the level of characters.

Proof. If © is a character with infinitesimal character A + p, + p,, then
(A.3) gives
(A4)  VO(hyespX) = 3 o(8; s)(ho)exp{s(A + , + ) (X))

sew
By Formula (3.8) of [31], we have
Va0 (hoexp X) = X c(0; 5)(ho)exp{s(A + p,)(X))}
sEW
and then

VYR YT e0 (hgexp X) = 3 ¢(©; 5)(ho)exp{sA(X)}.
seW

The right side of the latter expression equals vy} **1+*2@(h,exp X), again by
Formula (3.8) of [31].

LEmMA A.3. Suppose 0 is a dominant integral form with n < p, + p,. Then
the functor pyo[(—) ® F_,]op,,, +,, is naturally isomorphic to the zero
functor.

Proof. It is enough to prove that every character maps to 0. We argue as in
the proof of Lemma 3.3 of [31]. Let

0(F_,1)(h0exp X)= zveP(F_n)gv(hO)exp{V(x)}‘

18Any two Cartan subalgebras are conjugate by an inner automorphism of GEC. As a map
between Cartan subalgebras, this map is completely determined by specifying which positive
systems of roots are to be matched.
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If © denotes p, ,, ,, of some character, then VO is of the form (A.4) and
VO(F_,)0(hyexpX)

= 2 Z &(ho)e(®; s)(ho)exp{[s(A + py + pg) + #](X)}.

veP(F_,) seW

To compute the image under p,, we must determine for which » in P(F_, ) there
exists ¢t in W such that ¢t[s(A + p; + py) + v] = A. If ¢ exists, then
ReA +p, +py =5t 'Re X — s '».
However, Re A = s 't 'Re A since Re A is dominant, and p, + p, > —s~'»
since
sTlvz —> = (py +opy).

Hence there is no such ¢, and the image under p, is 0.

Proof of Theorem A.1. We introduce a new functor
w=pyo[(-)®F_, ®F_, |opyiy s
If we fix a decomposition
F ,®F 6 =F  _, ® > F_,
n<pitpg

into irreducibles, then w is naturally isomorphic with

(-)® (F_“l_“z ® 3 F_,,)

n<ptp,

which in turn is naturally isomorphic with ¢} **1*#2 by Lemma A.3. Write
4/}}\‘_‘_“1 ° ‘P}}\\iﬁ:+"2 = p)\ ° [(_) ® F—p,l] ° p)\+p,l ° [(_) ® F—p,z] ° p)\+;l,l+p,2'

There is a natural injection of p, ., into the identity functor, and it follows from
the exactness of the functors in question that there is a natural injection of
YA Mo Yr Tk into w, hence into Y3 1R,

Let us abbreviate F = y**1 0y ft*#k2 and G = YrTHMTE2 We know there
is a natural injection of F into G. If A is any Harish-Chandra (9, K)-module, then
we have an exact sequence

0- F(A) > G(A) > G(A)/F(A) - 0.
Taking characters and using the fact given in Lemma A.2 that 8(F(A)) =
6(G(A)), we conclude that §(G(A)/F(A)) = 0. Hence G(A)/F(A) =0 and
F(A) = G(A). It follows that the natural injection of F into G is a natural
isomorphism.

[N

o
Pr+pi+pg
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B. Parabolic induction

In this section we shall give conditions under which the y functor commutes
with induction from a parabolic subgroup. The choice of a maximal compact
subgroup K of G determines a Cartan involution of g,, which in turn leads to a
Langlands decomposition for any parabolic subgroup of G. Let MAN be the
Langlands decomposition of such a parabolic subgroup, and let m, @ a, © n, be
the corresponding decomposition of the Lie algebra. We write I Q for the
universal enveloping algebra of m @ a, and we let K,;, = K N M. We can define
compatible (9M @, K,,)-modules in analogy with compatible (§, K)-modules.
(See § 2 of [31].)

Fix a Cartan subalgebra b, of m,. Then b, ® a, is a Cartan subalgebra
(with complexification b © a) of both m, ® a, and g,. If A and A denote the
sets of roots for (m @ a, b ® a) and (g, b ® a), then A C A . We suppose we
are given positive systems, not necessarily related to 1, such that

(B.1) A% C A,

If p is an integral form that is g-dominant, then p is also m-dominant, and we
can form an irreducible finite-dimensional representation of m @ a with lowest
weight —pu. Since M C (MA)C, the globalization to (MA)C of this representation
restricts to a well-defined representation F_ , of MA. We regard MF_, also as a
representation of MAN with trivial N action. We shall use ™F_ , to define a
functor ¢ for M.

Thus suppose A is in the closed tube ¥ defined above Definition 2.3 of [31].
If Vis a compatible (9 &, K,,)-module whose infinitesimal character (relative to
M @) has parameter A + p, we define

MATHV) = pA[VOVF_],

where p, is projection according to the infinitesimal character A relative to M.

For emphasis we write “y}** for the usual ¢ functor associated with G.
Freedom for the imaginary component of A will be important in applications, and
we point out that the results of [31] apply for A in the whole closed tube €, not
just in the dense fundamental domain ¥. For a compatible (9N &, K,,)-module
V, let ind$ 4,V denote the compatible (8, K)-module obtained by induction,
with parameters arranged so that unitary representations induce to unitary
representations.

Tueorem B.1. For any compatible (M@, K,,)-module V, the functors
MyA*e and CYr** are related by

c\p,{‘“(indmeV) = indg{AN(M‘P;\\ﬂV)'
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Proof. We know that
(B.2) F_, ®ind§, V= ind§,y(F_, [yan ® V).
An irreducible MAN-subquotient F; of F_, |,/ 4 contributes the subquotient
(B.3) pA[inngAN(Fi ® V)]

to p, of the right side of (B.2). Thus the discussion on pages 300-301 of [31]
shows that we can get a nonzero subquotient of p, of the left side of (B.2) only
by having a weight —» of F,, a member ¢ of the Weyl group W,, of (MA)C, and a
member s of the Weyl group W, of G€ such that

—v+t(A+p) =sA.

Here F, has to be irreducible under MA, and N must operate trivially. Thus
—v’ = —t !y is a weight of F,, and the member s’ = t~'s of W, satisfies
(B.4) At pu=sA+vr.

Since Re A is dominant and p is the g-highest weight, we have s’"Re A < Re A and
v’ =< p. Then (B.4) forces

(B.5) s’A=Xand v’ = p.

Thus the only contribution to p, of the left side of (B.2) can come from an
irreducible subquotient of F_, |,/,» containing the weight —p. Since F_, is
irreducible under g, there is at most one such subquotient.

On the other hand, —p is a lowest weight of F_, relative to A} since

A} C A7, and hence MF_, occurs, with trivial N action, as an irreducible

MAN-subquotient of F_, 4 n- By (B.3),
CYrFindf,nV = p,\[indﬁANMF_u ® V] ’
and the right side here is
= indfMN[p)‘(MF_“ ® V)] = ind§,y ("2 V)
since s’A = A in (B.5).
CoroLLARY B.2. If V| and V, are two compatible (M@, K,,)-modules and
T is a morphism from V, to V,, then
UG T) = indun ().

Proof. We trace through the proof of Theorem B.1, replacing spaces by
morphisms, and we obtain a proof of the corollary.
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C. Crossing walls

Now suppose that G is a connected semisimple Lie group with a faithful
matrix representation and with G contained in a simply-connected complexifica-
tion G€.

By a virtual character on G, we will mean a finite integral linear combina-
tion of characters of irreducible Harish-Chandra modules. The exact functors ¢
and ¢ in [31] give rise to homomorphic maps, also denoted ¢ and v, from the
additive group of virtual characters to itself. We shall study certain combinations
of @ and ¢ that leave stable the subgroup of virtual characters with a specified
infinitesimal character. For simplicity we work only with virtual characters that
have integral'® infinitesimal character. With care, all our results can be gener-
alized.

Fix a Cartan subalgebra ) C g and a positive system of reots for (g, §). Let
a be a simple root, and let A, be a nonsingular dominant integral form on §. Let
A, be the fundamental weight dual to «, and define

2N, a
C.1) o= Xio®)
| ]
Then A, — cA, is dominant integral, and it is nonsingular with respect to all
simple roots except a. Define

17 ¢A,

‘Pa = lIJ}}\‘:—CA“‘ and Py = (p})\\l
If O is a virtual character with infinitesimal character A, let
(Cz) pu® = (pu\’/a@ - @

Then p O is again a virtual character with infinitesimal character A;.

We shall study the homomorphism p, of the additive group of virtual
characters with given infinitesimal character A, into itself. The mapping p, has
an interpretation in terms of reflection across the wall ker a, if we use global
character theory. The precise statement is given as Theorem C.1.

The same remarks and notation concerning global character theory apply
here as in Section A of this appendix before (A.2) and (A.3). In view of the
identifications noted there, we can specify a virtual character by giving its
expression on the set H’ of regular elements of an arbitrary Cartan subgroup H of
G. For any integral form p on b, let §, be the holomorphic character of the
connected complexification H¢ into C*. The Weyl denominator Vv is the
function on HC given by (A.2). If © is a virtual character with infinitesimal

19Gince G€ is simply-connected, the analytic definition of “integral” that we have been using
coincides with the algebraic one: A is integral if 2(A, B)/| B|? is an integer for every root B.
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character A, and if h is in H’, then our special assumptions on G and A, allow us
to simplify the expression for v O in (A.3) to
(C.3) v(h)B(h) = 3 ¢(©;s)(h)é, (h),

sew

where the expressions ¢(0; s)(h) are locally constant functions on H’.

Taeorem C.1. Let a virtual character ® with nonsingular dominant in-
tegral infinitesimal character A | be given by equation (C.3). If a is a simple root,
then p © is given by
(C.4) v(h)pB(h) = X c(8;5)(h)é, A (h).

sew

Proof. Suppose that A, A,, and p are all dominant integral forms on f) and
that A\, = A, + pu. Let ®, and O, be virtual characters with infinitesimal
characters A, and A,, respectively. Formula (3.7) of [31] simplifies under our
assumptions on G and A, to

(C.5) V(h)ehOy(h) = X X (O s)(h)E, 1y (R).
W) sew
W)
Formula (3.8) of [31] simplifies to
(C.6) V(h)y0y(h) = X c(©y;5)(h)En(h).
seW

In our present situation, we combine (C.5) and (C.6) to compute (pﬁ‘\‘b;\pf\‘; in
the case that A, = A, and A, = A, —cA,, with ¢ as in (C.1). Since A, is
assumed nonsingular, we have W(A,) = {1} and W(A,) = {1, p,}. Theorem
C.1 then follows.

In [31], equations (C.5) and (C.6) were used to prove Lemma 3.3, a special
case of which is the identity (on the level of characters)

(C.7) V.9, = 2.
Applying ¥, to both sides of (C.2) and using (C.7), we obtain
(C'8) \Papa(a = \Pag‘

TaeoreM C.2. The mapping © - p O extends (uniquely) to an action
® - wO of W as automorphisms of the additive group of virtual characters
having nonsingular dominant integral infinitesimal character \,. If © is given by
equation (C.3) and if w is in W, then w® is given by
(C.9) V() wO(h) = X c(0;s)(h)E,,-1r,(h).

seW
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Proof. Write w in W as a product of simple reflections: w = Poy- - +Pa- BY
induction on r, we see from Theorem C.1 that

(C.10) V(h)pe,.- 2,8(h) = 3 c(©;5) (), 2(h)
= EWC(G; $)(h)&,.,-1,(R).

The left side of (C.10) is v (h) times a value of a virtual character, hence of a
locally integrable function on G. The right side of (C.10) depends only on w and
not on the specific factorization into the product of simple reflections. The
element h can be any regular element of G, and such elements exhaust G except
for a set of measure zero. The result follows.

Lemma 3.3 of [31] gives a formula on the level of characters for \pi‘;qﬁ‘j, and
Theorem C.1 gives a formula for q”ﬁ%}\‘; in a special case. We now consider
(p’;\zlxlxi‘; more generally.

TaEOREM C.3. Let A, A,, and p be dominant integral forms on ) such that
A, = A, + pand A, is nonsingular. If © is a virtual character with infinitesimal
character \ |, then

Aol A —
PRYLI0 = 2 wo,
weW(Ay)

with wO defined as in Theorem C.2.
Proof. We combine (C.5) and (C.6) to obtain a pointwise equality on the

regular set. The theorem then follows since characters on G are locally integrable
functions.

We conclude this appendix by discussing the additive group ]f; of virtual
characters generated by irreducible characters ® such that ® has infinitesimal
character A, and 4&;@ = 0. We assume that A |, A,, and p are dominant integral,
that A, = A, + u, and that A, is nonsingular. The group ]{‘21 need not be zero.

Lemma C4. Y31 = \p,’\‘;_“az{/ﬁ;_m“ if a is a simple root such that (A4, a)= 0
and if c is given by (C.1).

Proof. This result is a special case of Theorem A.1.

TrEOREM C.5. Suppose that A,, A,, and p are dominant integral, that
A, = A, + u, that A, is nonsingular, and that {(\,, a) = 0. Then

pa])z\; g R;
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Proof. Let © be an irreducible character with infinitesimal character A, and
with xp;‘;@ = 0. We have p® = ¢ ¥ ,® — 0, and ¢ 0 and O are true char-
acters. Since 1[/}}“; takes true characters to true characters, it is enough to prove
that xp;‘;%xpa@ =0 and \l/,{‘;@ = 0. The latter formula is our assumption. The
other formula holds because

4’;“;((’)&4/(1@) = \b;\‘;—CAa‘Pa((palPaG) by Lemma C.4,

=293 Ay 0 by (C.7),
= 2%{‘;@ by Lemma C.4,
=0 by assumption.
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