Fatou’s theorem for symmetric spaces: I’

By A. W. KnAPP

Introduction
Let P(r, t) denote the Poisson kernel

1 — 7
1—2rcost + 7 °

The Poisson integral of an integrable function f on the circle is the harmonie
function % in the disc given by
h(re®) = L S P(r,x — t)f(t)dt ,
27 J-r
and Fatou’s theorem is the assertion that, as » tends to 1, % tends to f
almost everywhere.

If the disc and the circle are viewed as homogeneous spaces of the group
SL(2, R), the setting for this theorem may be generalized as follows. Let G
be any connected non-compact semi-simple Lie group with finite center, and
let K be a maximal compact subgroup. G/K is the symmetric space of G, and
a complex-valued function on G/K is harmonic if it is annihilated by every
G-invariant differential operator on G/K. In [3] Furstenberg exhibited a
Poisson integral formula for the bounded harmonic functions on G/K, and
he generalized his results to positive harmonic functions as part of [4].
Furstenberg knew that the boundary (analogous to the circle) was a homo-
geneous space of G (and actually of K), and he wrote the Poisson kernel as
Radon-Nikodym derivatives of the action of G on the K-invariant measure on
the boundary. Moore [9] identified the boundary explicitly, and a concrete
formula for the kernel followed from calculations of Harish-Chandra in [5].

Now a symmetric space admits polar coordinates, in which the radial
direction is indexed by a cone in a euclidean space and the other coordinate
is indexed by the boundary. A theorem of Fatou type would say that, as the
radial coordinate tends to <= in some fashion, the Poisson integral of an
integrable function on the boundary tends to the function at almost every
point of the boundary.

Theorems of this sort are known in several special cases. In addition to
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Fatou’s result for SL(2, R), there is a proof for SL(2, C) implicit in Ahlfors
[1], Helgason (unpublished) has proved the theorem for the Lorentz groups
SO,(n, 1), Koranyi [7] has treated the case of the groups SU(n, 1), and
Marcinkiewicz and Zygmund [8] proved the theorem for the direct sum of
finitely many copies of SL(2, R). Helgason’s proof is interesting in that it
does not use an explicit formula for the kernel, though the symmetric space
for SO.(n, 1) is the n-ball, and the kernel is easily seen to be

_ 2 n—1
‘”“X):<1_Zmﬁ+w) , x| =1.

With SU(n,1) the symmetric space is the unit ball in complex n-space and the
kernel is
mnm:(_Lzﬁ_y, z]=1.
[1 — 7z |

In this paper we prove a Fatou theorem for all symmetric spaces of rank
one., Some results for the general case will appear later. The individual ideas
in the argument given here extend to the general case, but the general proofs
are more elaborate and the results taken together are insufficient for proving
a Fatou theorem in the general case. The difficulty is that the Poisson kernel,
as the radial coordinate tends to <, has a one-point singularity for rank-one
spaces and a higher-dimensional singularity for spaces of rank greater than
one. The complications introduced by this fact are suggested by a comparison
of the simple proof for the disc (rank one) and the involved proof of Marcin-
kiewicz and Zygmund for the product of two discs (rank two).

The theorem we prove is stated precisely in § 1, and the contents of the
paper are outlined at the end of that section.

I am indebted to S. Helgason for helpful conversations in connection with
this paper. The line of proof in § 5 arose from joint work with Richard
Williamson on the case of SO,(n, 1), before we knew of Helgason’s proof for
this case.

1. Statement of Fatou’s theorem

The following notation will be in force throughout the paper. See [6]
for details of the results quoted. Let G be a connected non-compact semi-
simple Lie group with finite center and with identity ¢, let g = tP p be a
Cartan decomposition of the Lie algebra of G, let ¢ be the corresponding
Cartan involution (and the exponential of it), and let B, be the positive def-
inite form By(X, Y) = — B(X, 8Y), where B is the Killing form. Leta & p
be a maximal abelian subspace, and fix an open Weyl chamber a* as positive.
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If m is the centralizer of a in t and n is the sum of the positive restricted root
spaces g;, we have the decompositions
g=0mPmPaPdn and g=tPHaPn.

If A and N are the exponentials of a and n, then G = KAN. The log of the
A-component of an element g is denoted H(g), and the K-component is denoted
k(9). G/K is the symmetric space of G, M is the centralizer of A in K, K/M
is the boundary, and dk is the normalized K-invariant measure on K/M. G
acts transitively on K/M by g(kM) = k(g)M, and this action is isomorphic in
the obvious way to the action of G on G/MAN. Finally 20 is the sum of the
positive restricted roots on a, counted according to their multiplicities, and A+
is the exponential of a*,

It is known that (a,kM)— kaK is a map of A x K/M onto G/K. Restrict-
ed to A* X K/M, this map is one-one onto an open subset whose complement
is of lower dimension. That is, all points of G/K are of the form kaK with k
in K and a in the closure cl(4*), and for most points % is unique up to M and
a is unique and is in A*. For such points, kM and a are the polar coordinates
of kaK.

The Poisson kernel is the function on G/K x K/M given by

P(gK, kM) = e~%Hw0 ) |

and the Poisson integral of an integrable f on K/M is the function & on G/K
defined by

h(gK)= SK/MP(gK, kM) f(kM)dk .

If gK is a point of G/K with polar coordinates k,M and a, then use of the
identity P(k,«aK, kM) = P(aK, k;*kM) and a change of variables give

(1) h(e,aK) = SX/MP(aK, kM) F (ke M)dk .

Formula (1) shows that, for our current purposes, the Poisson kernel can be
viewed as a function on A* x K/M, and it was this point of view that was
adopted in the introduction.

The rank of G/K is the dimension of a. If G/K has rank one, there are
either one or two positive roots. We denote them « and 2« (or just « if there
is only one). We can now state the main theorem,

THEOREM 1.1, Let G/K have rank one, and let H, be a member of at. If
fisin L(K/M), and if h is its Poisson integral, then

lim,._.,.. h(k, exp(tH)K) = f(k.M)

almost everywhere with respect to dk.
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The proof will be modeled after one proof of Fatou’s theorem for the
dise. The proof we have in mind is in five steps. First, one observes that the
Poisson kernel in the disc satisfies the inequalities

(2) Per,o) <% and P(r, o< Cl—7

1—7 x?
Next, the second of these inequalities implies that P(r, x) is an approximate
identity, and Fatou’s theorem follows for continuous boundary values. Third,
one proves a form of the Hardy-Littlewood maximal theorem: If f is an
integrable function on the circle, and if

7@ = Sz | 15018,

then the measure of the set where f*(x) > & 1s < C&'|| f|l, with C inde-
pendent of f and & Fourth, if A is the Poisson integral of f, and if
f«(®) = SuDo<,<: | R(re*®) |, then f, is shown to be < some constant times f*(zx),
and f, therefore satisfies the same kind of maximal inequality as f*. Fatou’s
theorem follows easily from this maximal inequality and the theorem for
continuous boundary values.

For the proof of Theorem 1.1, the inequalities for the kernel are derived
in § 3 from some more general inequalities proved in § 2. The theorem for
continuous boundary values appears also in § 3. The main step in the proof
of the maximal theorem is a covering theorem which is the subject of § 4.
The maximal inequalities themselves, together with the argument that com-
pletes the proof of Theorem 1.1, appear in § 5. In § 6 we extend the state-
ment and proof of Theorem 1.1 to the case of signed measures, as opposed to
integrable functions, as boundary values.

2. Inequalities for the Poisson kernel
We begin by obtaining inequalities which generalize inequalities (2) for
the disc. The main result of this section is Theorem 2.2, which gives a system
of inequalities valid for any symmetric space. Appropriate positive combina-
tions of these inequalities will give in Theorem 3.1 the generalizations of (2)
to spaces of rank one. Throughout this section G/K is allowed to be of arbi-
trary rank.

The proof of Theorem 2.1 below was simplified to its present form by
Helgason and Kostant in a seminar,

THEOREM 2.1. Let the rank of G/K be arbitrary. Then
e = det [P,Ad(97) | f],
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where |t means restriction to t, and where Py is the projection of g on t along
a + n. Consequently
(3) P(aK, kM)~ = det [P,Ad(k'a) | ] .

Proor. Write g = kan. Since K is compact connected, and since Ad(k)
maps t into ¥, we have det Ad(k~')|f = 1. Since determinant is multiplica-
tive, we can assume k = ¢ and g = an. Now Ad(an)~ preserves a + 1, and
det Ad(an)™! = 1. Thus

det [P, Ad(an)~* | f]det [Ad(an)™* |a + n] = det Ad(an)™* =1
or
det [Py Ad(an)™" |¥] = det [Ad(an) |a + n] .
The right side of the last equality is ¢*'*=*, and the proof is complete.

We wish to describe a special system of vectors in g. Orthogonality will

be with respect to the inner product B,. Since the restricted root spaces are

mutually orthogonal, we can let {X;} be an orthogonal basis of m + n com-
patible with the decomposition

min=m+y,  g.
For uniformity of notation, we shall let X, be in g:,. Here\;is =0, and the
\’s may be repeated. With the X,’s constructed this way, the vectors
X; + 6X; are an orthogonal basis of . If X is any vector in g, the notation
{X}; will mean the column vector which represents P(X) in the basis consist-

ing of the vectors X, + 6X,.
Let H be in a, and let a = expH. From equation (3) we have

(4) P(aK, kM)~ = det [{4Ad(k™) X, + e " Ad(k™)0X )] .
This formula is motivation for the discussion which follows.

Let v be the dimension of f, and consider the determinants D,(g) of the
2” possible matrices with i™ column either {Ad(¢~") X} or {Ad(g7")0X.};. Here
R is an index on the subsets of 1, - .., v telling for which i’s to use Ad(g~") X,
rather than Ad(g~")0X,. If m == 0, different R’s may give identical matrices,
but this fact is irrelevant. The relevance of the determinants D.(g) is that
the right side of (4) is a positive combination of the determinants D,(k), and
the coefficients depend only on H, not on k.

THEOREM 2.2. Dg(g9) = 0 for all subsets R.
The proof of this theorem will be given after two preliminary lemmas.

LEMMA 2.3. A real polynomial x* + px"2 + «++ with p >0 and n > 1
cannot have all roots real.



FATOU’S THEOREM 111

PROOF. The roots of the n—2" derivative are non-zero and pure imagi-
nary, and they lie in the convex hull of the roots of the given polynomial.

LEMMA 2.4. If X and Y are in t and a is in A with
By(Ad(a)X, Ad(2)Y) = By(Ad(ea)X, Ad(a)Y) =0,

then ad(Ad(a)X + Ad(a)Y) cannot have all eigenvalues real unless
X=Y=0.

PRrRoOF. Let the dimension of g be n. Choose an orthonormal basis of g
compatible with g = on@m@aPn. In this basis the matrices ad f are skew,
ad p are symmetric, and ad a are diagonal. This fact means 6 is negative
transpose and Ad(a) is conjugation by a diagonal matrix. Thus if Z is in g,
then

By(Z,0Z) =¥, (ad Z):,(ad Z),; .

Also ad of
(5) Z = Ad(a)X + Ad(a )Y

has 0’s on the diagonal.
Now if T is any n-by-n matrix with 0’s on the diagonal, then

det (¢ — T) = 2™ + (EM T;;Ti)am2 + «--
With Z as in (5),
det(x —ad Z) = a" + By(Z, 0Z)x" % + «+.
But the given orthogonality conditions, the invariance of the Killing form,
and the fact that fa = a* give
By(Z,07) = Bo(Ad(a)X, Ad(a“)X) + Bo(Ad(a“) Y, Ad(a)Y) +0+0
= BO(Xy X) + BO(Yy Y) .
By Lemma 2.3, either X = Y = 0 or det (xI — ad Z) has a non-real root.
ProOOF OF THEOREM 2.2. To see that D,(g) = 0, let H be any vector in
cl(a®) and change the ¢ column of the matrix defining D,(g) to
{¢Ad(g7) X, + e M Ad(97)0 X )
if it was {Ad(¢™") X}, or
{e M Ad(g™) X, + e Ad(g X ),
if it was {Ad(¢7")0X.};. If the new determinant is called Dy(g, H), and if
¢ = dimm, then
Dy(g) = 27+ limAllii(H)—wo e " Dy(g, H) .
Since H runs through a connected set, and since Theorem 2.1 shows that
Dy(g, 0) = "9 it suffices to prove that D,(g, H) # 0.
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Thus suppose Dy(g9, H) = 0. Then for suitable constants ¢; and d; not all
0, the vector

Ad(g™) [E‘.GR c(eH X, + e MG X,) + E,‘ek di(e M X, + i X)]
isina + n. If ¢ = exp H, this fact means
Ad(g7)[Ad(a)X + Ad(e")Y]
is in a + n, where
X =3 (X +0X)e 2.z SPan (X, 6X,)
Y= E,-eg di(X; + 0X;)e . .span(X;, X)),
and where the subspaces on the right sides of (6) are orthogonal and Ad(A)-

invariant. That is, X and Y satisfy the orthogonality conditions of Lemma
2.4. Thus either X = Y = 0 (and all ¢,’s and d;’s are 0, contradiction) or

ad(Ad(a)X + Ad(a")Y)

has a non-real eigenvalue. In the latter case the same is true of the conju-
gate matrix

(3)

ad(Ad(g™")(Ad(a)X + Ad(a™)Y)),
in contradiction to the fact that the members of ad(a + n) have all eigen-
values real,
3. Special case with continuous boundary values

Return to the case that G/K has rank one. Theorem 3.1 will finish the
construction of inequalities generalizing (2). Actually for SL(2, R) and the
dise, inequalities (7) and (8) below are

Pir,e)<2*" and Per,o)<i=? 2 |
1—7r 1+7r1—cosx

which are slightly better estimates than (2).
THEOREM 3.1. Let G/K have rank one. Then

(7) P@aK, kM) < elose for a in cl(4") ,
and
(8) P@aK, kM) < e*eF(kM)™! for a in cl(4") ,

where F (kM) is a continuous function vanishing only at eM.

Proor. Part of the content of Theorem 2.2 is that the determinant of
any matrix whose i column, for each %, is a non-negative combination
(depending on ¢) of {Ad(k™")X,}; and {Ad(k~")0X,}, is decreased if the coeffi-
cients in the combination are decreased. This is so because any such deter-
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minant is a non-negative combination of the 2* determinants Dy(k), and
the coefficients are products of the coefficients of the {Ad(k) X}, and
{Ad(k)0 X},

We apply this observation to equation (4). Inequality (7) results if we
replace the coefficients ¢*#’ by e~%" and leave the coefficients e~%* alone.
The coefficients do not increase since \;(H) = 0 for each 7. A factor of e—#®
comes out of the i™ column, and the total factor is e~*'**, The remaining
determinant is det [Ad(k~") | f], which is 1.

To obtain inequality (8), we replace, in (4), e=*"" by 0 if »; > 0, and we
leave it alone if A, = 0. Also we leave % alone in either case. Define E(k)
to be the determinant of a matrix whose 4** column is {Ad(E) X}, if » >0,
and is {Ad(k~')(X; + 6X,)};if A\, = 0. Then

P(aK, EM) < e~*'=*E(k)~* ,

and we are left with proving that E is right-invariant under M and that, if
F (kM) = E(k), then F vanishes only at eM. The right invariance of E under
M is so because Ad(m™), for m in M, commutes with P, and Ad(m~") | t has
determinant one.

Let us treat the second problem more generally, defining E(g) to be the
function obtained from replacing k by ¢ in the formula for E(k). E(g)is =0
by Theorem 2.2, and the claim is that sign E(g) is right and left invariant
under MAN. In fact, the vectors X; with A, > 0, and the vectors X, + 0X;
with \; = 0, together form a basis of n + m, and thus sign FE(g) = 0 if and
only if there is a non-zero vector Z in n + m such that Ad(¢HZisina + n.
The right and left invariance under MAN then follow from the fact that both
n + mand a + n are invariant under Ad(MAN).

Choose m’ as a member of the normalizer of A in K so that Ad(m') maps
a* into —a*. Ad(m') maps n into fn and maps m into itself. Thus the crite-
rion in the preceding paragraph shows that E(m’) = 0. Now since G/K is
assumed to be of rank one, the Bruhat decomposition theorem gives

G = MAN U MANm'MAN .

Since sign E(g) is right and left invariant under MAN, El(g) can vanish only
if g is in MAN. Specializing to ¢ a member of K, we see that E(k) vanishes
only for & in M. The proof is complete.

Inequality (7) was obtained by Harish-Chandra in [5]in a slightly different
form. We shall remark on this further in the proof of Lemma 5.2.

COROLLARY 1. Let G/K have rank one. Then
(a) P(aK, kM) =0,
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(b) S  P(K, kM)dk = 1,
KIM
(¢) for any neighborhood U of eM in K/M
lim, goga)steo SUPirer P(aK, kM) = 0 .

Result (a) is trivial, result (b) follows from the representation of the
harmonic function 1, and result (c) is immediate from inequality (8). Together
these three statements show that P(aK, kM) is an approximate identity. The
style of the proofs in [12, Ch. 3, 4] yield the following corollary.

COROLLARY 2. Let G/K have rank one, let f be an integrable fuuction on
K/M, and let h(gK) be its Poisson integral. With the indicated limits being
as o(log a) — + <o, the following things happen.

(a) If fis continuous, lim h(kaK) = f(kM) uniformly.

(b) If fis in L* and 1 < p < o, lim k(kaK) = f(kM) in the norm
topology of L*.

(¢) If fis in L=, lim h(kaK) = f(kM) weak-+ against L.

4. A covering theorem

The heart of the proof of Theorem 1.1 is a differentiation theorem, which
we prove in the form of a maximal inequality as Theorem 5.1. The maximal
inequality is an easy consequence of a covering theorem, something like
Vitali’s, and this we give as Theorem 4.1,

We require some information about the relationship between ¢N and
K/M. (Typically a member of 4N will be denoted %.) The map v which sends
7 into k(W)M is known to be a real analytic diffeomorphism of /N onto an
open subset of K/M whose complement is of lower dimension. If K/M and
G/MAN are identified, the image of 7 is #MAN. If kM is in the image of 7,
we write n(k) for v~'(kM). In this case, (k) = kman, where man is some
member of MAN.

Both M and A act on 6N on the left by inner automorphism, and M and
A also act on G/MAN on the left in the natural way. Helgason pointed out
(oral communication) that these actions correspond. That is, with obvious
notation

my(#) = Y(mam™") and av(%) = v(ana™) .

Again let us identify G/MAN and K/M, and let us denote the action of G on
K/M by a dot. That is, g-kM = k(gk)M. Then we have

(9) m-k(@)M = k(mam")M and a-k(n)M = k(ana™")M .

Recall that in the rank-one case n = g_, @ g .., where « is the smaller
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positive root. We now introduce some coordinates on 1t and transfer them to
K/M, where they will be used to give an appropriate system of neighborhoods
for the statement of the differentiation theorem. For the Lorentz groups,
g_.. = 0 and K/M is a sphere; the set B, defined below is the set of points
whose distance (the usual distance on the sphere) from eM is less than a
certain constant. For groups in which g_,, is not 0, B, is harder to visualize.

Choose an Ad(M)-invariant inner product on 6n = g_, P g_.., let || - || be
the corresponding norm, and let (,) denote the decomposition of 6un into g_,
and g_,,. Fix the vector H, in a*, which appears in the statement of Theorem
1.1, and let

B, = {(X,Y) |max {|| X|}} || Y[}} < e} .

Since « is positive, these sets shrink to 0 as ¢ — + <o, and they expand to 6n
as t— — oo, B, isdefined in such a way that B, = Ad(exp tH,)B,. Let S, be
the boundary of B,, and let B, and S, be the images under v of exp B, and
exp S,, respectively.

If kM is in K/M, let B,, = kB, and S,,, = kS,. Notice that these sets
depend only on the coset of & modulo M. That is, if m is in M, then

(10) B..=B.m and S, =S, n.
It suffices to show the first equality. We have
B,,=kB, = km(m—'B,) = kmB, = B, 1 ,
the next-to-last equality following from (9) and the Ad(M)-invariance of B,.
In writing measures of sets, we shall write my,,(E) for the dk-measure

on the set E in K/M, and we let m,, be a Haar measure on 6N; myy can be
taken as the image of Lebesgue measure under the exponential map.

THEOREM 4.1. There is a positive real mumber C, with this property.
If E is any Borel set in K/M, and if to each point kM in E, there is associ-
ated a set B,, (with t perhaps depending on k), then there is a finite or
infinite disjoint sequence of these associated B’s, say Btv"u Etz,kz, <o, SUCh
that

E:;, Mg (B, ~,k,~) = Ci'mgu(E) .

J

Theorem 4.1 has a euclidean analog. K/M is replaced by a euclidean
space, E is assumed to have finite measure, and B, , is replaced by a cube
centered at the point in question, and having edges parallel to the axes. A
similar conclusion is valid. Both Theorem 4.1 and the euclidean analog depend
on a specific geometric fact about the group in question. For the euclidean
plane, this fact is that no matter how small a square we start with, the union
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of all squares which are translates of the given square, and which intersect
the given square, has area <9 times the area of the given square.

The analogous geometric fact for K/M is given as Theorem 4.2. Once
the geometric fact is known, Theorem 4.1 follows from a standard kind of
proof, which is given at the end of this section. See Marcinkiewicz and
Zygmund [8], Zygmund [11], and Edwards and Hewitt [2] for closely related
proofs.

By the K-hull of B, is meant the union of all K-translates of B, which
have non-empty intersection with B,. The O N-hull of exp B, is the union of
all 0 N-translates of exp B, which have non-empty intersection with exp B,.
Both kinds of hulls are open sets since B, is open.
mK/M(K'hu’lE of B, < oo,

mK 124 (B t)

The proof of Theorem 4.2 will occupy most of the rest of this section.
Our procedure is first to prove the analog of Theorem 4.2 for the ¢N-hull of
exp B,, and then to show that the map of ¢ N into K/M comes close enough to
preserving the group actions that the result for K-hulls follows.

A word is in order about where the difficulty lies in the proof. In the
case of SU(2,1), the set B, looks like a wafer in three dimensions. Its radius
is of the order of e—* and its height is of order e?*. Hence its measure is of
order e~**. The 0 N-translates of exp B, tilt somewhat, and it is conceivable
that the 6 N-hull of exp B, had all sides of the order of ¢, hence measure of
order e~*. In this case the ratio of the measures in question would be e’ and
the supremum would be infinite. Thus the problem is to show that the tilt is
not so serious. But what about the passage to K/M ? The K-translates of
B,, when pulled back to N under v, look like the 6 N-translates of exp B,,
except that the former bend slightly. Again the problem is to show the con-
tributions to the bending are mostly in the directions in which the wafer is
big (the g_, directions) and not in the direction of the small dimension of the
wafer (the g_,, direction).

For the remainder of this section, we shall identify 61 and 6N via the
exponential map, and we omit writing exp. Then 6n has two multiplications,
its bracket operation and the multiplication - inherited from 6 N. We can view
the map v: 0N — K/M as defined on 6n. Under the identification of fn and
0N, the multiplication rule in 6n is

THEOREM 4.2. SUP _cocicwo

(Auy Asa)(Bay Bua) = (Aa + B, Ay + B +%{Aa, Bal) ,

where A4, and B, arein g_,, and A,, and B,, are in g_,,.
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LEmMMA 4.3. If C, is the real number max ||[R, S]|| with the mazimum
taken over all vectors R and S in g_, of norm <1, then

ON-hull(B,) < (3 ¥ %Q)Bt .

Proor. Let (X,Y)-B,N B, + @, and let (4., 4;,.)e(X, Y)-B,. Let
(Bay By) = (X, Y')+(C,, C,,) be in the intersection of B, and (X, Y)-B,. Here
(B., B,,) and (C,, C,,) are to be in B,. Then

(BuyB.) = (X +C0y ¥ + Cu + Lix, c.1)
or
X=B,—C, and Y =B, — C, — %[Ba, C.l .
From the definitions of B, and C,, and from the triangle inequality,
1 X <20t and || Y] < (2 n %cz)e—ww .
Now (A, A,) is of the form (X, Y) - (D,, D,,) for some (D,, D,,) in B,. Thatis,
(4, 4) = (X + D, Y + D, + 11X, D),

Hence
A < [| X || + || D, || £ 8e—aHot |

Al S | Y|+ || Dol + %HX, D, |l
< ez + 1o+ 1+ L, 2)
2 2
— 6—-2a(H0)t(3 + icz> .
2

Thus (A,, 4,.) € (3 + %CZ>B“ and the proof is complete.

Now we pass to K/M. By joint continuity of the operation of K on K/M,
choose open sets U = K and V< K/M withee U, eMe V, and UV Sv(0N) <
K/M. Let V=v"(V)Z0N; the function v is defined on all of V since eV <
7(@N). For g in G and % in 6N, we put

g-n = 1(g-v(7@))

whenever the right side is defined. (Recall G acts on K/M when we identify
K/M and G/MAN; the dot on the right refers to this action.) If % is
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in the subset U of K, and if 7 is in the subset V of 6N, then k-7 is defined.
We shall study the real analytic map U x V — 6N defined by

(11) k x 1 — q(k) (k7).

This map is translation by K (but viewed in 6N rather than K/M) followed

by the inverse of the corresponding translation by 6N, and hence the extent

to which it does not send U x V into {e} measures the extent to which N-

hulls and K-hulls are different.

LEMMA 4.4. There exist a nmeighborhood W, of e in ON, a compact
neighborhood W, of e in K, and a positive real number C, such that, if
B, & W, and ke W,, then u(k)~"(k-B,) < C,B,.

Proor. We require an expression for the form of the map (11) in local
coordinates. The dimension of K is v; let the dimension of N be d. Choose
real analytic coordinates on 6N by picking an orthonormal basis of 0 consist-
ently with the decomposition 1 = g_, @ g_,., and exponentiating to §N the
coordinates z,, - - -, 2, obtained from these vectors. Restrict the coordinates to
the open set VS 0N. Also choose a real analytic chart on an openset U, < U
about ¢ in k&, and let k,, - - -, k, be local coordinates. The two systems of co-
ordinates taken together give coordinates for the domain of the map (11), and
the first system gives coordinates for the range.

Each coordinate of #(k)~'(k-7%) has an expansion in a convergent power
series in the ;s and k;’s. Define W, and W, by the conditions that
W, s VnexpB, W, < U, W, has compact closure, and all d of these power
series converge in an open neighborhood of the closure of W, x W,. On such
a neighborhood we can rearrange the terms of these power series freely to
write the " coordinate of 7(k)~'(k-7) as

alk) + 300 aulk)e; + 30, (@, ke, l=1,.--,d,
where a,(k), a,,(k), and a,;;(%, k) are real analytic functions whose power series
expansions converge when 7 is in W, and % is in W,.

The term a,(k) is the I*" coordinate of 7(k)-'(k-7%) evaluated when 7 = ¢;
that is, a,(k) = 0. We skip temporarily the first-order terms and consider the
error terms. Let # = exp X and let the functions a,;;(#, k) have a common
bound C, on the compact closure of W, x W,. Then

|3, @@, k), | < d°C, || X |

on the closure of W, x W,. That is, on this set #(k)~(k-%) is the exponential
of the sum of a vector with components Y a,;(k)x; and a vector of norm
= d°C || X |

Now we examine the first-order terms. For fixed & in W,, the matrix
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{a,(k)} is clearly the jacobian matrix of the transformation
(12) 7 — (k)" (k-7) .
Since ke U and (U)(eM) < v(ON), the remarks at the beginning of this
section show that we can write n(k) = kman with man in MAN. We shall
show that the map (12) is the same as the map
(13) n— (man)~-7 ,
and we shall then compute its differential. To begin with, v~ is defined on
knMAN, by construction of U and V, and the definition of v~ gives
ERMAN = v (ki MAN)MAN

or

(man)"'mMAN = (man) k= v (knMAN)MAN
(k) vy knMAN)MAN
Y(7(k) v (kR MAN))
Y(7 (k) (k- v(7)))
Y(7(k) (k- 7)) .
Since v is defined on the right side, it is defined on the left side, (man)=—"-7%
is defined, and

(man)-n = w(k)(k-n) .
Next, we show that the differential of the map (13) is
X —— Py Ad(man)—'X , Xebn,
where Py is the projection of g on 61 along m + a + n. The map (13) is the
composition of conjugation by (man)—', the quotient map G — G/MAN, and
the map v~'. The differential of conjugation by (man)™ is Ad(man)™*, and
the differential of the composition of the other two maps is P,: because the
composition is the identity on 6N and sends MAN into e.
Let (X,, X,,) be in B, with B, & W,, and let k ¢ W,. Write #(k) = kman.
If Ad(m)~'X, = Y, and Ad(m)~'X,, = Y., then [| X, || = || Y, || and || X, || =
[| Y, |l. Let Ad(a)~'Y, = ¢,Y, and Ad(a)'Y,, = ¢,Y,,. Then
Py Ad(man)(X,, X.o) = (¢, Y — cad(log n) Yo, ¢.Y20) = (Zay Zsa) -
If jad(log n) || = ¢, then the inclusion W, & exp B, gives
| Zoll = ci |l Xall + co05 [| Xoll = (61 + coeg)e 0t
[ Zeall = € || Xoa || = cogH0"
The error term in the expression whose exponential is 7(k)~'(k-7) satisfies
[ Exvor || < d°C, | X |I* < dC. (| X || + || Xue )7 S 4d°Cie-0" .
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Consequently the projections of the error term on g_, and g_,, satisfy
inequalities with the same right side. Thus the g_, component of
log (n(k)~*(k-#)) has norm

(14a) < (Cl + ¢yes + 4d304)6—a(}10)t
and the g_,, component has norm
(14Db) < (c; + 4d°C,)e*=Hot

As k varies through the compact set W,, the numbers ¢, ¢,, and ¢, remain
bounded. If we take C; to be the larger of the bounds for the coefficients of
the exponentials in (14a) and (14b), then the lemma follows.

PROOF OF THEOREM 4.2. First we prove there is a C, such that, for suffi-
ciently small B, (large t),

(15) K-hull(B,) < 7(C;By)
Sufficiently small here means that B, = W, in the notation of Lemma 4.4.

Thus suppose B, = W,, and suppose for the moment that % is a member of
W, with k-B, N B, + . We can rewrite the conclusion of Lemma 4.4 as

ﬁ(k)—l(k'Bt) - Bt—c
for a positive number ¢ independent of . We then have
n(k)B,_. N B,_, 2 n(k)[#(k)"(k-B)IN B, = k-B,N B, = & .

Therefore

kB, = WI)[A(k) (k- B)) S alk)B.—. (3 + 2C.)B..,

the last inclusion holding by Lemma 4.3. Write B,_, = C,B, with C, independ-
ent of ¢, and put C; = (3 + 38C,/2)C,. Then k-B, < C,B, or

(16) kB, = v(C:B)) .

This is the asserted result except that we have restricted & to lie in W,.

Let o be the quotient mapping of K onto K/M. Since kB, = B, ,, equation
(10) shows that (16) holds if k£ € 0-%(o W,), as long as B, & W,. Now suppose
there are sequences ¢, — < and k, € K such that (16) is false for %, and B,
though B, < W, and B, ., N B, # ©. We have shown a(k,) is not in the
neighborhood o(W,) of eM. Without loss of generality we may suppose £,
converges, say to k, since K is compact. We know o(k,) = eM. Let
P.€B,, ., N B, Since p,e B, and ¢, — o, p, —eM. But p, = k,q, withg,
in Ew Since ¢, — <, ¢, — eM. Passing to the limit, we obtain eM = keM
or o(k,) = eM, a contradiction.

Hence (16) holds when B, & W,, say when ¢ = ¢,. For such ¢, (16) gives



FATOU’S THEOREM 121

mgy(')"—l(K-hull Et)) < 'moN(C;,B,) —
Mor(B,) - mey(B,)

with the right side independent of ¢ as long as ¢ = ¢,. On the bounded subset
CiB,, of 6N, the measures m,, and v(mg,,) are bounded by multiples of one
another since 7 is a diffeomorphism onto its image. Hence there is a constant
C; such that ¢t = ¢, implies

(Ca)dimﬂN

mK/M(K-hI_lll Bt)
mK/M(Bt)

Since K/M is compact, m,,(K-hull B,)/my,,(B,) is trivially bounded if ¢ < ¢,.
The proof of Theorem 4.2 is therefore complete.

PRrROOF OF THEOREM 4.1. Theorem 4.2 and the argument in the last
paragraph of its proof imply the formally stronger result

Mg y(K-hull of B, < oo
mK/M(Bt+1)

Let C, be the left side of (17). Then 1 < C, < oo.

Let T, be the infimum of all ¢’s such that B, , is one of the associated sets
for some k. If T, = — <, then we can find a B, with measure as close to 1
as we like, and the conclusion of the theorem follows. We assume from now
on that 7, > — <. Let R, be the class of all the sets B, , in question. Pick
one, say E,l,kl, with ¢, < T, + 1, and let R, be the set of members of R, which
are disjoint from Etl,kl. If R, is empty, we let all further 7';’s be + - and all
further B,j,kj’s be empty. If not, let T, be the infimum of the #’s for which
some B, , is in R,, and choose a set B,,;, in R, with ¢, < T, + 1. Let R, be the
set of members of R, disjoint from B,, ,, and proceed inductively to construct
R,, T, and B, ...

The numbers 7', tend to < since otherwise K/M would have an infinite
disjoint sequence of sets with measures bounded below. If V, is the (open)
union of the members of R, — R, ., and V, is the (open) union of the members
of R,, then

(18) Vi=Uia Ve
In fact, a B,,, which occurs in R, cannot occur in every R; since the numbers
T; tend to <, and hence B,,, must be in some R, and not in R,.,. Equation
(18) follows.
Since E < V,, equation (18) gives
My u(B) = E:;l My (V5) .

The proof will be complete if we show that my,,(V,) < Cimyg, M(E,n,kn). Thus

=C.

17) SUP_woct<oo
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let B,,eR, — Ry;,. Then t>T, and B,,N Ec,,,k,, # @. Consequently
Br, N By, # @, or k;'kBy, 0 By, # @, or k;'kB;, S K-hull B, or
B.. S kB, < k. K-hull B;) .
That is, V, S k,(K-hull B, ). By the definition of C, and by the inequality
=T, +1,
M Vi) = Myullen(K-hull By, )) = m;y(K-hull By,)
éCImK/M(BT”—H) = ClmK/M(Btn) = ClmK/M(Btwkn) .

5. Maximal theorems

With the notation of § 4 define, for each integrable f on K/M,

(kM) = SUP_oci <o |f(kM) | dk .

5]
mK/M(Bt) ‘_Bt,ko
The function f* is measurable because the supremum over rational ¢ gives
the same answer.

THEOREM 5.1, For any integrable f on K/M, and for any & > 0,

mn kM| £6D) > 8 < S 17 |k

Remark. C, here is the same constant as in Theorem 4.1.
ProoF. Let E={kM|f*(kM)>&}. By definition of f*, there is, associ-
ated to each k,M in E, a set B, ,, such that

| 170D |k 2 mayu(B) = EmaradBu,) -
t,ko
Apply Theorem 4.1, and let the disjoint sets obtained from the theorem be
B.,,. Then

[ 1FEdD k=T, 1 FEMD) k2 & X man(Beye) 2 S0 M B)

J

Bejuk;
and the theorem is proved.

Let H, be the vector in a* appearing in the statement of Theorem 1.1
and in the definition of B,, and put a, = exp tH,. Let &k be the Poisson integral
of an integrable f on K/M and define

f*(kM) = SUPpst <o I h(katK) I .
Recall the function F' (kM) of Theorem 3.1.
LemMA 5.2, If0 <s =1,

P(a.K, a,-kM) < e totHogeCHOF (KM )™ .
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Proor. If aecl(4*), then
(19) @20 H (ak) < g2olloga)

This inequality appears in Harish-Chandra [5, p. 281]. It can also be obtained
from inequality (7) and the fact that H(ak) = — H(a'k,) for some k, in K, or
it can be derived directly by the method of Theorem 3.1.

To prove the lemma, we write

P(a.K, a,-k,M) = exp {— 20H(a;'k(ak.))}
= exp {— 20H(a;:'aka(a k) 'n)} ,
where a(-) means A-component and » is in N. The right side

= exp {— 20H(a;'a,k,)}e*™ @0
< gt Hogott ek B (fo, M)~ by (8) of Theorem 3.1
< gtot=nogotsito) B (kM) by (19) .

THEOREM 5.3. There is a constant Cy such that f (kM) < Cof *(kM) for
all integrable f on K/M and for all kM in K/M. Consequently

Mk M| 06D > §) = CC| () |k

Proor. Lett = 0 and write
hea )| = | P, kM) || dk
KM
=S_ +S- ) +S =14+ 1410,
By By—B, KIM-B,
We have || fI| = myu(B_.)f*(k,M) = f*(k.M) and hence
III £ e?to SUDkwex/m—F, FEM) ] £, by (8)

(20) = [SU-pcheK/M—EO F(kM)_i]f*(koM) . (recall t= 0)

To estimate I and II, we need a lower bound for f/*(k,M). On the bounded
set B,, the pull-back of my,, under v~ is dominated by a constant C, times
Mgn. Thus for ¢ = 0,

mK/M(Bt) < Cymgn(B,) = Ce o |

where C,,C;' = mgu(B,). After a change of variable,

S*(kM) = SUD_wcico _ | f(kkM) | dk = SupPogicol —)

. S S

Mg u(B;) JB:

= SUDogt<e Clerrtto SE | fk kM) | dk
t

or
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(1) g2t S | F(kokM) | d < Crof *(ku M) forallt=0.
By BS
Term I is estimated with (7) and (21). We have
(22) I < ety g | Fkoke MY | dke < Cof* (kM) .
By

For term II, we coordinatize 6N — {¢} by the reals and exp S, under the
identification

(w, s)cexp S, X Reals — a,wa;* .

Let d(t) = S | F(kocM)| dk. Then
d(t) = S | f(kok(R)M) | yr(T)dT | < a certain jacobian

| f(kok(a,0a; )Y M) | g(w, s)dwds g a certain jacobian

- Sz [iexp | f(kk(a,wa; ) M) | g(o, s)dco]ds

If we call the expression in brackets W(s), then

I = S_ _ P(a.K, kM) | f(kJeM)| dk

Bo—B,
- SS . PlaK, i(a,0a;)M) | f(kk(a.0a;)M) | g(w, s)dwds

N with g as above
< ||, e mermlsup,y.g, FEM) | £(-)]| g(@, sidwds
by (9) and Lemma 5.2. If we call the expression in brackets C,,, then

I < Cpe ng 1V (s)ds

— C e_z,; tHo){[ (ID(s)e“’ sIIo)]t + 4{0(H0)S 4o(sHo)q)(s)ds}

< cue—ww{cbw) + 4p<Ho>§ eZP“Ho)Cmf*(koM)ds} by (21)
< CL®(0) + 2C,Cuuf * (ko M)
(23) é SCucwf*(koM) by (21) .

Putting together (20), (22), and (23) and taking the supremum over t > 0, we
obtain the conclusion of the theorem.

Theorem 1.1 is an easy consequence of Theorem 5.8 and Corollary 2a of
Theorem 3.1. Analogous arguments appear in abbreviated form in several
places in [13], but we repeat the argument here for completeness.
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PRrROOF OF THEOREM 1.1. Let ¢ > 0 be given and write f = f, + f., where
f, is continuous and || f; ||, < €% Let h, and h, be the Poisson integrals of f;
and f,. Choose, by Corollary 2a to Theorem 3.1, T = 0 large enough so that
t = T implies

| hy(ka K) — fu(kM)| < e ( for all kM .

If E, is the set {| f — f.| = ¢}, then emy y(E,) < || f2]l; < € or mgy(E) <e.
So, except in the set E, of measure <e,

| hy(ka,K) — f(EM)| < 2¢ whenever ¢t > T .

On the other hand, Theorem 3.1 shows that |k,(ka,K)| < ¢ for all ¢ = 0 except
in a set E, & K/M of measure < C,Ce'¢* = C,C¢e. Hence, except in the set
E, U E, of measure <(C,C; + 1)g,

| h(ka,K) — f(EM)| < 3¢ whenever ¢t > T .

Replacing ¢ by 2-"¢ for each ¢ and taking the union of the E™ U E{"’s, we
obtain a set E of measure =< 2(C,C; + 1)¢, outside of which lim h(ka,K) =
f(EM). Since ¢ is arbitrary, the set where the convergence does not take
place has measure 0.

6. Measures as boundary values

Fatou’s theorem in the disc can be formulated more generally than for
L' functions as boundary values. Namely there is a theorem with signed
measures as boundary values. The obvious extension of the latter theorem to
all symmetric spaces of rank one is true and generalizes Theorem 1.1. The
statement is given below, and the proof is standard. (See [13, p. 313].)

THEOREM 6.1. Let G/K have rank one, and let H, be a member of a™.
If p is a signed measure on K/M, if h is its Poisson integral

WoK) = | POK, kM)dpteM)

and if 1t = fdk + pt, is the Lebesgue decomposition of t, then
lim,_. ... bk, exp(tH)K) = f (kM)
almost everywhere with respect to dk.

Proor. Introducing maximal functions

1

*(oM) = SUP_coctcoo ————=—
7 ( ) = SUP_wcic Mmn(BY)

L, @11 @Dy

and

#*(koM) = SUDst<e ] h(koatK)l ) a; = exp tHo ’
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and checking that the arguments in Theorems 5.1 and 5.3 remain valid with
S replaced by z, we obtain

24) Mok M | g, (kM) > &} < % el

with C, and C, as in § 5. For proving Theorem 6.1, we may assume, by
Theorem 1.1, that x is singular with respect to dk, and clearly we may sup-
pose /¢ = 0. We want lim A(k,a,K) = 0 almost everywhere,

Let us notice also that, if ¢#(U) = 0 for an open set U, and if L = U is
compact, then i(k,a,K) — 0 uniformly for k,M e L. In fact

hk,a,K) = SK/M P(.K, ki kM)dp(kM) = Skmp(atK, ke ke M)dp(k M) .

The k,’s such that k.M e L form a compact set, and K/M — U is compact.
Hence the set of values of k;'kM is compact when k,Me L and kMe U.
Since k;'kM cannot equal eM, the expression P(a, K, k;'kM), for these values
of k, and k, tends to 0 uniformly as ¢t— <, by Corollary 1(c) of Theorem 3.1.
The asserted uniform convergence follows.

Now let ¢ > 0 be given. Find, since / is singular, an open U < K/M with
Mg n(K/M —U) <e and ((U) < €. Put pe=p, + pt,, where p,(E) = p(E —U)
and /,(E) = (E N U). Let k, and h, be the Poisson integrals of s, and f,.
Then ¢, vanishes on U. By the preceding, we can find 7= 0 so that t > T
implies k,(ka,K) < ¢ for all kM in U except for those in a set E, of measure
<&, hence for all kM in K/M except for those in the set E, U (K/M — U) of
measure < ¢ + &’ < 2¢, But (24) shows that h,(ke,K) < ¢ for all ¢ = 0 except
in a set in K/M of measure < C,Ce™" || .|| < C,Cee. Thus h(ka.K) < 3¢ for
all t > T except for kM’s in a set of measure < (C,C; + 2)e. This conclusion
implies that lim k(ka,K) = 0 almost everywhere.

Remark added in proof. Recently S. Helgason and A. Koranyi [Bull.
Amer. Math. Soc. 74 (1968), 258-263] proved that any bounded harmonic
function on a symmetric space of arbitrary rank has limits on almost every
geodesic from a point. The common ground of their theorem and Theorem 1.1
is Theorem 1.1 for L™ boundary values.
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