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 DECOMPOSITION THEOREM FOR BOUNDED UNIFORMLY

 CONTINUOUS FUNCTIONS ON A GROUP.

 By A. W. KNAPP.'

 Introduction. The main theorem of this paper states roughly that the

 Banach algebra of all bounded left-uniformly continuous functions on a

 topological group is the direct sum of a space of functions which in a sense

 vanish at infinity and a space of functions which "oscillate regularly." The

 first space is any proper self-adjoint closed ideal I maximal with respect to

 the property of being invariant under left translation. (Such ideals exist by

 Zorn's Lemma.) The second space is a self-adjoint closed algebra A con-

 taining the constants and invariant under left translation.

 The decomposition is not canonical, even if I is held fixed. But any A

 of the type described above that is a direct summand with some such I is a

 direct summand with every such I, and vice-versa. Each such algebra A

 contains all almost periodic functions and even the wider class of right distal

 functions, which are defined in [5].

 The set-theoretic union of all the algebras A turns out to be the set of

 right minimal functions, which are defined intrinsically in Section 3 in terms

 of limits of their translates. Also in Section 3, right minimal functions are

 characterized in terms of the E-translation numbers familiar from the theory

 of almost periodic functions. It is this characterization which gives the sense

 in which right minimal functions "oscillate regularly."

 For studying minimal functions, we shall use shift operators, which are

 developed in Section 2 and which essentially are just limits of translation

 operators. This device was suggested partly by the work of Bochner [2].

 Shift operators will be used extensively at a later date when we elaborate on

 the results announced in [5].

 I am indebted to Robert Strichartz for many helpful conversations in

 connection with this paper.

 1. Decomposition theorem. Let G be a topological group with identity

 Received September 1, 1965.

 1 This research was sponsored by a fellowship from the National Science Founda-
 tion, and the preparation of this paper was supported by Air Force Office of Scientific
 Research Grant AF-AFOSR 335-63.
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 BOUNDED FUNCTIONS ON A GROUP. 903

 e. If f is a complex-valued function on G, then 11 f 11 denotes the supremum
 norm of f and fg is the left translate of f with fg(h) = f(gh). Such a func-

 tion is left-uniformly continuous if lim 11 fg - f 11 0. The set of bounded
 g-*e

 left uniformly continuous functions is denoted LUC; LUC is a self-adjoint

 (i. e., closed under conjugation) Banach algebra containing the constants and

 closed under left and right translation.

 The theorem to follow is the decomposition theorem. Its proof can be

 simplified when AO is the algebra of constants with the aid of the machinery

 developed by Ellis in [3] and [4]. The price is the loss of both the elemen-

 tary nature of the proof and the motivation for considering shift operators.

 THEOREM 1-1. Let I be a proper self-adjoint ideal in LUC which is

 maximal with respect to the property of being invariant under left translation.

 (Such ideals exist by Zorn's Lemma and are necessarily closed.) Let Ao be
 any algebra in LUC which

 (a) contains 1
 (b) is invariant under left translation and conjugation

 (c) satisfies AnIO 0

 (d) is such that the projection from Ao 0 I onto AO preserves order

 (i. e., a + i - 0 implies a ? O) .

 Condition (d) on Ao is automatically satisfied if AO is closed under uniform

 limits and satisfies (a), (b), and (c). Then there exists an algebra A con-

 taining A0 and closed under left translation, conjugation, and uniform limits

 such that LUC = I A.

 Proof. (1) We first prove that if AO is uniformly closed and satisfies

 (a), (b), and (c), then Ao satisfies (d). Thus let AO be closed and let

 a-+-i 0 with aEA and iCI. Then ReaEA and ReiCI, and

 a + i = Re a + Re i.

 Since Ao n I 0, a and i must be real. Since Ao is self-adjoint aid uniformly

 closed, AO is closed under absolute value and hence maxima. Since 0 C AO,
 max(a, 0) C Ao. If we can show that min(a + i, i) C I, then the equality

 a+i=max(a,0) +min(a+i,i)

 together with the fact that AonI=0 shows that a=max(a,0) or a?0.
 Now I can be realized as the set of continuous functions on the maximal ideal

 space of LUC which vanish on some closed set. On that set, i = 0 and

 a+i?0. Hence on that set, min(a+i,i) =0, and thus min(a+i,i) cI.
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 904 A. W. KNAPP.

 (2) We now produce A. Partially order by inclusion the set of all

 algebras in LUC which contain A, and which satisfy (a), (b), (c), and (d).
 Any chain in the set clearly has its union as an upper bound in the set. By

 Zorn's Lemma take A to be a maximal element.

 (3) Next we construct the map T that will be the projection onto A.

 The sum A 0 I is a self-adjoint normed algebra which has an identity and

 is invariant under left translation. Define po on A O I to be evaluation of

 the A part at e. Then p0 is a multiplicative linear functional on A ED I which
 commutes with conjugation. Property (d) implies that po is bounded by 1.

 By uniform continuity extend po to pi defined on the closure of A 0 I in LUC.
 Then choose p to be a multiplicative linear functional commuting with con-

 jugation which extends pi to all of LUC; we have 11 p =1. Define T by

 Tf(g) =p(fg) for gcG.

 Then T is a homomorphism which commutes with left translation and con-

 jugation. As a map into the space of bouLnded functions on G, its norm is

 one. Since

 11 (Tf)g-Tf 11 = 11 Tfg-Tf 11C 11 fg-f 11,

 its range is in LUC. Let B be its image in LUC. Then B is a self-adjoint

 algebra with identity and is invariant under left translation. Therefore B

 satisfies (a) and (b).

 (4) We shall show ker T I. Iff C I, then fg C I for every g and hence

 Tf (g) p (fg) =po (fg) =-0.

 Thus ker T D I. In the reverse direction, ker T is a left-invariant self-adjoint

 ideal in LUC. By the maximality of I, ker T = LUC or ker T = I. The first

 choice is impossible since Ti = 1.

 (5) Note that B D A and that T is the identity on A. In fact, if f E A,

 then

 Tf (g) ==p (fg) po (fg) fg(e) f (g),

 so that Tf = f, f E B, and T is the identity on A.

 (6) We claim that B n I=0. In fact, T-1(B n I) is a self-adjoint

 ideal in LUC invariant under left translation, and it contains I by (4). By

 the maximality of I, T-1(B n I) =LUC or T-1(B n I) =I. If T-1(B n I)

 =LUC, then
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 BOUNDED FUNCTIONS ON A GROUP. 905

 B=T(LUC) =TT-1(Bnl) =- (BnI) nB=BnI

 and 1 e I, a contradiction. Thus T-1 (B n I) = I and

 O T(I)- T(T-(BnI)) ==(BfnI) nB =BnI.

 (7) Next we show that T induces an isometry of LUC/I with B and

 hence B is closed in LUC. We are to show that

 inf jjf + i 11I =j Tf 11.

 In one direction

 11 Tf 11 ==11 T(f + i) 11 _< 11 T 11 11 f + i 11 == 11 f + i 11,

 and hence 11 Tf 11 _ infi 1I f + i 11. In the other direction we shall produce an
 iCI such that lf?+illll - Tf ll. If pg(f)-p(fg), we have

 jj Tfj=-supIpg(f)J.
 geG

 Let C be the closure in the maximal ideal space of LUC of {pg}. Then

 II Tf jj -=sup I x(f) X
 wEC

 The functions vanishing on C form a closed self-adjoint left-invariant ideal,

 and every function in I is annihilated by every pg. By the maximality of I,
 I is the set of functions in LUC which vanish on C. Extend the restriction

 of f to C to a continuous function g defined on the entire maximal ideal space

 of LUC without an increase in norm, and put i g-f. Then i C I and

 11 f + i 1 = 119g11 =-- If IC 11 sup Ix(f)l llTf ll aiEC

 Hence B is uniformly closed.

 (8) Since B is closed and since B satisfies (a), (b), and (c), step (1)

 shows that B satisfies (d). By the maximality of A, B = A and A is therefore

 closed. By (5), T is the identity onl A, and A is the image of T since B A.

 Therefore T is a projection. Its image is A and its kernel, by (4), is 1.

 Thus LUC = I D A, and the proof is complete.
 The corollary below was stated and proved by R. Strichartz. It shows

 that any A that is a direct summand with some I is a direct summand with

 every I and vice-versa.

 COROLLARY 1-2. If LUC = I D A and LUC =1' D A' are two decom-
 positions given by Theorem 1-1, then also LUC =-I' F A.

 Proof. Since A and LUC/I are isomorphic, A contains no proper non-
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 906 A. W. KNAPP.

 zero self-adjoint ideals invariant under left translation. Thus I' n A O or

 I' n A A. And since 1 is not in I', we must have I' n A =0. Therefore by

 Theorem 1-1 there is a closed A1 with A1 D A and LUC =-I' 0 A1. Reversing

 the argument, we can find a closed A2 with A2 D A1 and LUC = I 0 A2.

 Since A2DA and LUC IDA2, IA, we have A2 A. Then A1=A
 and LUC I' F A.

 2. Shift operators. The way the projection homomorphism T of LUC

 onto A in Theorem 1-1 was constructed was to take a certain multiplicative

 linear functional, translate it around the group, and fit the pieces together.

 Now any multiplicative linear functional is a weak-star limit of evaluations,

 and it follows that from any such functional this construction always leads

 to homomorphisms of LUC which are limits of right-translation operators in

 an appropriate sense. In this section we introduce the set of all such limiting

 operators.

 We consider nets {gn} in G (i. e., functions on a directed set) such that

 lim f (ggn) exists pointwise for every g in G and for every f in LUC. Every
 n

 convergent net, for instance, has this property. Call two such nets {gn} and

 {hm,} equivalent if

 lim f (ggn) ==lim f (ghm)
 n m

 pointwise for every g in G and f in LUC. The operator that sends f into

 its limiting value for that equivalence class is called the shift operator asso-

 ciated to the class. Shift operators are denoted T,,a, Tp, etc. Every right-
 translation operator is a shift operator.

 Each shift operator is a homomorphism of norm one on LUC, each com-

 mutes with conjugation and left translation, and each has range in LUC.

 Since an iterated limit of nets can always be realized as a single limit, the

 composition of two shift operators is again a shift operator.

 The class of shift operators is a set because distinct shift operators are

 distinct homomorphisms of LUC. A subbase for a topology on this set con-

 sists of all sets of the form

 N (Ta, f, x,e) = {To I Tf (x) - Taf (x) I < E}.

 In this topology a net {Ta11} converges to T. if, for every f in LUC, the net

 of functions {To,.f} converges pointwise to T,,f.
 This topology is the one induced by the multiplicative linear functionals

 under the construction described in the first paragraph of this section. There

 is a one-one correspondence between the multiplicative linear functionals and
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 BOUNDED FUNCTIONS ON A GROUP. 907

 the shift operators defined as follows: If a functional p is given, put

 Taf(g) = p (fg); any net of evaluations that converges weak-star to p is a

 net in G that defines T!. On the other hand, if a shift operator Ta is given,

 put p(f) = Taf (e). We thus get a one-one onto correspondence, and the

 topology on the set of shift operators is the topology that makes the corres-

 pondence a homeomorphism.

 Since the weak-star topology on the set of multiplicative linear functionals

 is compact Hausdorff, so is the topology on the set of shift operators. More-

 over, if lim Tor = Ta, then clearly lim TO11Tf6 = TaTp for fixed Tp. That is,
 for fixed T.6 the map T,a T,aT is continuous. We have proved

 THEOREM 2-1. The set of shift opercators is a semigr-oup under com-

 position and is a compact Hausdorff space. For fixed TB the map Ta > TaTp
 is continuous.

 Multiplication in the semigroup is not jointly continuous unless every

 function in LUC is almost periodic. The compactness of the semigroup implies

 that any net in G has a subnet which defines a shift operator.

 3. Minimal functions. We shall be concerned in this section with the

 set of all algebras A which can occur in Theorem 1-1 if Ao is taken as the

 algebra of constants. Evidently any such A is isomorphic to LUC/I, and

 consequently A contains no proper non-zero self-adjoint left-invariant ideals.

 This fact has an implication for the maximal ideal space of A, and we begin

 at this point.

 We first recall the definition of a flow and the connection between func-

 tions and flows. A flow (X, G) for G is a jointly continuous group action
 of G on a compact Hausdorff space. (We shall suppose the group acts on

 the left.) If p is a point of X, then for each continuous complex-valued

 function f on X, the function f defined on G as

 f(g) =f(gp)

 is in LUC, and the set of all such functions f for fixed p forms a self-adjoint

 Banach algebra containing the constants, invariant under left translation, and

 having maximal ideal space the closure of the orbit of p in X. We shall say

 f arises from the orbit of p. Conversely if such an algebra is given, then the

 left action of G on itself extends in a nautral way to a jointly continuous

 action of G on the maximal ideal space of the algebra. These two construc-

 tions are inverse to one another if p is chosen to be the evaulation-at-e

 functional in the maximal space.
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 908 A. W. KNAPP.

 We say that (Y, G) 7r(X, G) is a subflow of (X, G) if (X, G) and

 (Y, G) are flows and if 7r is a continuous map of X onto Y commuting with

 G. If p C X, the functions arising from r (p) are included in the set of
 functions arising from p. Conversely an inclusion of algebras of functions

 induces a map ir which exhibits the maximal ideal space of the smaller algebra

 as a subflow of the maximal ideal space of the larger algebra.

 A flow is minimal if every orbit is dense, i. e., if it contains no proper

 non-empty closed invariant subset. A function f in LUC is right minimal
 if for any To! there is a T27 such that TTaf =- f. If f C LUC, we denote by

 Af the smallest Banach algebra containing f and its left translates, their
 conjugates, and the constants. If B is a self-adjoint Banach algebra in LUC

 containing the constants and invariant under left translation, we let M (B)
 denote its maximal ideal space.

 THEOREM 3-1. A function f C LUC is right minimal if and only if

 M(Af) is a minimal flow. If B is a self-adjoint Banach algebra in LUC
 containing the constants and invariant under left translation, then the fol-
 lowing conditions are equivalent:

 (1) Every function in B is right minimal.

 (2) B contains no proper non-zero self-adjoint ideals invariant under
 left translation.

 (3) M(B) is a minimal flow.

 (4) M(Af) is a minimal flow for every f C B.

 Proof. If f is right minimal, then so is every other function in Af
 since the Tf corresponding to Ta can be chosen to be the same for all functions

 in Af. Therefore the equivalence of (1) and (4) will imply the first state-
 ment of the theorem.

 (1) # (2). If (2) fails, let f be a function not identically zero in such
 an ideal, and let p be a non-zero multiplicative linear functional on LUC

 which vanishes on the ideal in B. Define a shift operator Ta by Tah (g)
 p(hg). Then Taf =O and no T: can recover f.

 (2) # (3). The closed invariant sets in M (B) are in one-one corres-
 pondence with the closed self-adjoint left-invariant ideals in B.

 (3) # (4). A subflow of a minimal flow is minimal.

 (4) # (1). Let M(Af) be minimal and let Ta be given. Define a point
 x C M(Af) by x(h) =Tah(e), and by minimality of M(Af) find {g9} so
 that gnx converges to the evaluation-at-e functional. By compactness of the
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 BOUNDED FUNCTIONS ON A GROUP. 909

 set of shift operators, choose a subnet of {g"} which defines some shift operator

 TB. Then TjTef =f.
 Functions arising from minimal flows were considered by Auslander and

 Hahn [1], who proved that (3) and (4) above are equivalent. They showed

 that for the additive group of reals the functions arising from minimal flows

 are not closed under addition.

 LEMMA 3-2. The uniform limit of right minimal functions is right

 minimal.

 Proof. Let lim f t = f uniformly with each fn right minimal, and let Ta

 be given. Choose T,3n so that T,To,fn = f", and find a subnet of {Tpi}
 which converges, say to Tn. A 3E argument then shows that TpTaf = f.

 THEOREM 3-3. Any algebra A produced by Theorem 1-1 consists entirely

 of right minimal functions and is a maximal left-invariant self-adjoint algebra

 of right minimal functions. Conversely any left-invariant self-adjoint algebra

 of right minimal functions is contained in some A produced by that theorem.

 Consequently every maximal left-invariant self-adjoint algebra of right mini-

 mal futnctions is such an A, and the. set-theoretic union of the A's is exactly
 the set of all right minimal functions.

 Proof. Since A and LUC/I are isomorphic, A contains no proper non-

 zero self-adjoint left-invariant ideals and hence, by Theorem 3-1, consists

 entirely of right minimal functions. Any left-invariant self-adjoint algebra

 of right minimal functions clearly still consists of right minimal functions

 when the constants are adjoined. By Lemma 3-2 the uniform closure B of

 the resulting algebra contains only right minimal functions, and, by (2) of

 Theorem 3-1, condition (c) of Theorem 1-1 is satisfied by B. Thus B is

 contained in an algebra A produced by Theorem 1-1.

 This result implies that every A produced by the theorem is maximal and

 that every maximal algebra is an A produced by the theorem. Finally we know

 that the union of the A's is contained in the set of right minimal functions.

 The reverse inclusion follows from the fact that if f is right minimal, then
 Af is a left-invariant self-adjoint algebra of right minimal functions (Theorem
 3-1) and is thus contained in some A.

 The algebras A can be characterized quite simply in terms of shift opera-

 tors. Call Ta minimal if Taf is right minimal for every f E LUC; call Ta

 idempotent if TaTa, Ta.

 THEOREM 3-4. The decompositions LUC = I 0 A of Theorem 1-1 stand
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 910 A. W. KNAPP.

 in one-one correspondence with the minimal idempotent shift operators T.,,

 the correspondence being I = ker T, and A = image T,.

 Proof. If LUC=IEFDA, put p(i+a) =a(e) for iCI and aCA, and

 define T,4f(g) = p (fg). Then T, is an idempotent shift operator, and it is

 minimal by Theorem 3-3. Conversely if T, is given, then LUC decomposes
 as I ED A and the only problem is to show that I is maximal. But A contains
 no proper non-zero self-adjoint left-invariant ideals (Theorem 3-1) and hence

 the same is true of the isomorphic algebra LUC/I. Therefore I is maximal.

 COROLLARY 3-5. A function f in LUC is right iminimal if and only if

 Tuf = f for some minimal idempotent shift operator T,,.

 COROLLARY 3-6. Any two maximal left-invariant self-adjoint algebras

 of right minimal functions are isomorphic.

 Proof. Let A1 and A2 be given, and put LUC I A1 I I A2 by

 Theorem 3-3 and Corollary 1-2. If T, and T, are the minimal idempotents
 corresponding to these decompositions, then the restriction of T, to A1 is the

 required isomorphism because the restriction of Tu to A2 is a two-sided inverse.
 A comparison of several classes of functions may be helpful. A right

 almost periodic function is a function in LUC whose right translates form a

 conditionally compact set in the uniform topology. Right almost periodic

 functions are also left almost periodic. Iff E LUC, f is right almost auto-

 morphic if any net {gn} in G contains a subnet {fg9} such that limf(gg,,)
 exists and

 lim lim f ( 99n 9-ln j) J ( 9)
 k i

 These functions were considered by Bochner [2] and Veech [6]; Veech proved

 that every right almost automorphic function which is right uniformly con-

 tinuous is left almost automorphic. Iff E LUC, f is right distal if an equality

 TaT,f TaTyf always implies T,f = Tyf.
 It is easy to see that right almost periodic functions are both right almost

 automorphic and right distal and that right almost automorphic functions are

 right minimal. Minimal idempotent shift operators Tu exist by Theorems 1-1

 and 3-4, and hence if f is right distal the equality TUTUf = Tgf gives T7f =f f.
 Hence right distal functions are right minimal. Using the results of Veech

 [6] and Bochner [2], one can show also that an almost automorphic right
 distal function is almost periodic.

 We have seen that if f is right distal, then Tuf = f for every mninimal
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 BOUNDED FUNCTIONS ON A GROUP. 911

 idempotent T.. Veech's results imply that the same is true of all almost
 automorphic functions. Hence all almost automorphic functions, all right

 distal functions, and, in particular, all almost periodic functions are contained

 in every maximal self-adjoint left-invariant algebra of right minimal functions.

 A right minimal function on a discrete group need not be left minimal.

 For an example, consider the action of the discretized unimodular matrix

 group SL (2, R) on the circle, which is to be thought of as one-dimensional

 real projective space. This flow is transitive, hence minimal. If p is any

 point of the circle, then any function arising from the orbit of p is right

 minimal. On the other hand, each such function has a constant function as

 the limit of left translates and thus any non-constant such function cannot

 be left minimal.

 We come now to the theorem which tells in what sense right minimal

 functions oscillate regularly. This result was suggested by H. Furstenberg.

 An element r of G is a right E-translation number for the function f C LUC

 and for the subset F of G if f(gr) -f(g) I < e for all g C F. A subset S of
 G is right r elatively dense if there exist finitely many group elements r1, ,r

 such that G U riS.
 i=1

 For comparison, note that f C LUC is right almost periodic if and only

 if the right e-translation numbers for the set F G are right relatively dense.

 THEOREM 3-7. If f C LUC, then f is right minimal if and only if, for
 each finite subset F of G, the right e-translation numbers for F are right

 Xrelatively dense.

 Proof. Let f be right minimal and suppose that F is a finite set for

 which the set {T}F of right e-translation numbers is not right relatively dense.

 To each finite set E C G, associate an element gE not in E{T}F; the result

 is a net in G indexed on the finite subsets of G. Choose a subnet {g.} which
 defines a shift operator T,,, and find To (defined by a net {h,}) such that
 ToTaf = f. Next fix h, far enough out in the net that

 I limf(ghngm) -f(g) I < e/2
 ?n

 for all g in F, and choose an index m beyond the one-point set {hn-&} for which

 (* ) | f(ghngn)-f(g) < E

 for all g in F. On one hand, gm was defined not to be in h-'{T) F, and oti
 the other hand (*) gives hngm C {T}F. Contradiction.
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 912 A. W. KNAPP.

 Conversely, let the right e-translation numbers for each finite set F be

 right relatively dense and let Ta1! (defined by {gm}) be given. We define a

 net {hn} on the directed set of pairs (F,). If (F, E) is given, let S be the

 set of right e-translation numbers for F and find finitely many r's so that

 G = U rS. Define h(F,) to be an r-1 for which {g,} is in rS frequently.

 We claim that any shift operator T,i defined by a subnet of {hn} satisfies
 TgToaf = f. It suffices to prove that if go C G and 8 > 0 are given, then

 I Taf (goh(Fe,) -f (go) I < 8

 whenever (F, E) is beyond ({g,}, 8/2). Thus choose such a pair (F, E) and
 let mo be large enough that

 I Taf (goh(F,)) -f (goh(F, )gm) I < 8/2

 whenever m i m,. If S is the set of right e-translation numbers for F, then
 gi, by definition, is in h(F,,)1S frequently. Fix such m mo. Then h(F, e)gin
 is in S and

 I f (gh(F,) gm) -f (g) I < ? 8/2

 for all g C F and in particular for g g0. Consequently

 I Taf (goh (Fe) -f (go) I < 8.

 4. Connection with the Ellis semigroup. We conclude by showing the
 connection between shift operators and the Ellis semigroup introduced in [4]

 and defined as follows. If (X, G) is a flow, we form the closure of G. in

 the space Xx with the product topology. The result is a compact HausJorff
 space which is a semigroup under composition and in which the maps t -o ts

 for fixed s are continuous.

 Let B be a self-adjoint Banach algebra in LUC containing the constants

 and invariant under left translation, and let M(B) be the maximal ideal

 space of B. We shall use the symbol e interchangeably to denote the identity

 element of G and the evaluation-at-identity element of Mi(B).

 Relative to B we define an equivalence relation -- on the set of shift

 operators. Call Toa. e Ti if TaTyf = T,Tyf for all f E B and for all T',.
 Since the composition of two shift operators is a single shift operator, it

 follows that T, .-- Tp implies TeToa - TeTo and ToTe TOTe. In addition,
 the relation -- is a closed relation since multiplication of shift operators is

 continuous in the first variable. In other words, if lim Ton - Ta, lim T,, =Tp,
 and TagJ,- TOgn for all n, then Ta o-- T,. Therefore the quotient space of the
 set of shift operators modulo - is a compact Hausdorff space with an inherited
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 BOUNDED FUNCTIONS ON A GROUP. 913

 semigroup structure in which multiplication is continuous in the first variable.

 Convergence of a net of equivalence classes [Ta.] to [Tx] means that
 lim Ta<Tytf = TXTyf for all f in A and for all T.

 LEMMA 4-1. Let B be a self-ad joint Banach algebra in LUC containing

 the constants and invariant under left translation, and let T7 be a shift

 operator. Then there is a unique point x in M (B) such that

 Tf (g) - fg(x)

 for all g C G and all f C B. Every point x arises in this way from some T,.

 Proof. The map f -> Tyf (e) is a multiplicative linear functional and
 hence establishes the existence and uniqueness of x. If x is given, choose a

 net of evaluations convergent to x and choose a subnet which defines a shift

 operator Ty; then Ty maps onto x.

 THEOREM 4-2. Let B be a self-adjoint Banach algebra in LUC con-
 taining the constants and invariant under left translation. Then the quotient

 of the set of shift operators by the equivalence relation induced by B is

 canonically topologically isomorphic to the Ellis semigroup 7 of M(B).

 Proof. Let t be in G, and put Tf (g) fg(te) for g E G and f E B. Let

 {gn} be any net of G-actions in j converging to t. Then lim f (gne) f (te)
 by the continuity of f, on M (B), and hence

 Tf (g) lim f (ggn)

 for all f C B. Find a subnet of {g"} which defines a shift operator. We wish

 to show that different choices for these nets can lead only to equivalent shift

 operators. Thus let lim gn = t in G with {g9} defining Ta, and let lim hm t

 in G with {hm} defining Tn. Let Ty be given and choose x as in Lemma 4-1.
 Then

 (**) TatTlYf (g) lim Tyf (ggn) =lim fgg(x) =limfg(g9x) =fg(tx).

 By symmetry TaT,,yf = TfiTyf, and we therefore have a well-defined map from
 G into the quotient space.

 This map is one-one. In fact, if t and s are unequal elements of G

 corresponding to Ta and To, respectively, let t (x) s s(x). If T, is chosen
 according to Lemma 4-1 so that it maps onto x and if f is a function which

 separates t(x) and s(x), then (**) shows that Ta,T,y(e) #A T6T,yf(e). Hence
 Ta, and Ty are inequivalent.

 The map is onto. For each x in M (B) first choose Ty by Lemma 4-1
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 914 A. W. KNAPP.

 such that Ttyf(g) = fg(x) and then find t (x) by the same lemma such that

 ToaTryf (g) fgs(t (x) ) .

 Then t is in M(A)M(A). If {gn} is any net defining Ta, we claim that {(gn}
 converges to t in M (A) M(A) and hence t is in G. In fact, we have

 f (t (x) ) TgT,yf (e) lim T^yf (gn) lim f(g-nx).

 If {gn} does not converge to t, then, by the compactness of 1 (A) M(A), some
 subnet converges to s / t and gives the contradiction f (t (x)) - f (s (x)) for
 all f and x. Hence t is in 17, and (**) shows that t maps onto the equivalence
 class of Ta,.

 Finally we prove continuity. Let lim tn = t in G. We have lim fg (tnx)
 fg (tx) for all g, x, and f. Hence if tn corresponds to [Tax,] and t corres-

 ponds to [Ta], (**) shows that

 lim TaX,jTyf (g) TaTlyf (g)

 for all g, Ty, and f. That is, lim [Tan] = [Ta]. Thus the map is continuous
 and must be a homeomorphism.

 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.
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