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The problem of classifying the irreducible unitary representations of noncompact semi-
simple Lie groups remains unsolved. For discussion purposes these groups may be re-
garded as connected closed subgroups of real, complex, or quaternion matrices that are
closed under conjugate transpose and have finite center. Special linear groups, orthogonal
groups relative to an indefinite Hermitian form (with determinant one and only the identity
component used), and symplectic groups give examples.

Early work on this problem, beginning with Bargmann and Gelfand-Naimark in 1947,
proceeded group by group. The idea was to work with the Lie algebra action, taking into
account how the center of the universal enveloping algebra could act as scalars and how a
maximal compact subgroup might act.

Although this approach suggested some features that are important for a general group,
the approach was manageable only for certain very special groups. A list of the successes
(except that [5] was inadvertently omitted) appears in [13].

To put into context this idea that certain features of the classification for particular
groups are important in general, let us review the classification for the 2-by-2 real unimod-
ular group SL(2, R). Most of the irreducible unitary representations for this group fall into
three series: the “discrete series,” the “principal series,” and the “complementary series.”
There are also three exceptional representations.

The discrete series comes in two parts, corresponding to spaces of analytic functions
and their complex conjugates. For one part the parametrization is by integers n 2> 2, the
n'® representation taking place in the space of analytic functions in the upper half plane
square integrable for y~("=?) dz dy, with action
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if g has entries a, b, ¢, d. These representations are square integrable in the sense that they
occur as irreducible summands in L2(SL(2,R)).
The principal series comes in two parts. One part is parametrized redundantly by an
imaginary parameter v, the representation taking place in L*(R) with action
ar + c)
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The other part P~** of the principal series takes place in L?(R) with the same action
except that a factor sgn(bz + d) occurs on the right side. The redundance is given by
Piv 2 P and P~ = P~ In addition, P~° is reducible and therefore needs to
be dropped from the classification.

The “complementary series” is a variation of 27 in which iv is replaced by a real
number u with 0 < u < 1 and the norm is changed from L?(IR) to something else.

The three exceptional representations are the one-dimensional trivial representation and
the two irreducible constituents of P~°. The latter share some algebraic properties with
the discrete series, but they are not square integrable. They are called “limits of discrete
series.” looking somewhat like D; and its complex conjugate.

The above representations of S'L(2, R) already point to the three constructions that are
the most important in forming irreducible unitary representations of general semisimple
Lie groups. The analytic construction behind the discrete series extends to other groups,
with holomorphic functions getting replaced by Dolbeault cohomology (kermnel modulo
image relative to a J operator). In turn this construction may be imitated in the language
of algebra, and it becomes “cohomological induction,” which is a powerful technique for
constructing unitary representations under favorable hypotheses on the parameters. The
members of the principal series are induced representations from the upper triangular sub-
group; this construction generalizes to “parabolic induction,” which is a second important
technique for constructing unitary representations. The complementary series is obtained
from the principal series by a kind of “deformation,” and this is the third technique. The
three exceptional representations require special discussion, and we shall address these
later.

This article will address some successes in the classification problem that are related
to the above three techniques: cohomological induction, parabolic induction, and deform-
ation. In addition to [13], some other surveys of the classification problem for irreducible
unitary representations are the ones by Clozel [4] and Vogan [19,21]. Two books on rep-
resentation theory of semisimple Lie groups are [11] and [24].

1 Parabolic induction

For G = SL(2,R), the principal series representations are equivalent with induced repres-
entations from the upper triangular subgroup. This group is of the form P, = MpAp Np,
where M, = {+1}, Ay is the positive diagonal subgroup, and N, is the upper triangular
subgroup with 1’s on the diagonal. Corresponding to the parameter + indexing the prin-
cipal series, we associate the trivial or nontrivial character o of My, and corresponding to
the parameter 7v, we associate the linear functional » on the Lie algebra of A, that picks
off v times the upper left entry. Let p pick off the upper left entry itself. The induced
representation U( Py, o, v) takes place in the space of functions

{f: G— C| f(zman) = e~HPVl8e o (m) = f(2)}, 1)
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the action being U( Py, o, v,9) f(z) = f(g~'«). The norm is the L* norm of the restriction
to the rotation subgroup K. The equivalence with P=* is given by restricting functions
from G to the lower triangular subgroup with 1’s on the diagonal and identifying this
subgroup with R.

Let us generalize this construction. If G is the group to be studied, then the represent-
ation theory of G will require us to work with certain ““parabolic subgroups™ of the form
P = MAN within G, and it is important that the subgroups M be in the class of groups
under study. The class of semisimple Lie groups or even of linear semisimple Lie groups
does not have this property, and it customary therefore to enlarge the class of groups G.
The convention that we shall follow is to work with all reductive Lie groups in the “Harish-
Chandra class.” This class includes all semisimple Lie groups with finite center and allows
also for a small amount of mild disconnectedness and for a nonzero center in the Lie al-
gebra. Such a group G has a vector group as a direct factor, and the complementary factor
is denoted °G. For the exact definitions and for other group-theoretic terminology, see [12].

We denote the Lie algebra of a Lie group by the corresponding Gothic letter with a sub-
script 0; the complexification of the Lie algebra is indicated by dropping the subscript. Let
K be a maximal compact subgroup of G, and form the corresponding Cartan involutions
O of G and 4 of go. Fix an Iwasawa decomposition G = K A, Ny, of G.

Let M, be the centralizer of Ay in K. The subgroup P, = MpAp Ny, or any of its
conjugates, is called a minimal parabolic subgroup of G. A parabolic subgroup of G is
any closed subgroup containing a minimal parabolic subgroup. Each such has a Langlands
decomposition P = M AN, where N is the unipotent radical of P, MA is PN OPF, A
is the vector factor of M A, and M = °(M A). The group M is noncompact unless P is
minimal. The parabolic subgroup is called standard if P 2 P,. In this case, M contains
My, A is contained in Ap, and N is contained in Np. For G = GL(n,R), if Fp is the
upper triangular subgroup, then the standard P’s are the various block upper triangular
subgroups.

Let o be an irreducible unitary representation of M on a Hilbert space V. We obtain
representations of G by parabolic induction as follows: Let v be any complex-valued
linear functional on ag, and let p be the linear functional on ag such that conjugation of N
by a € A multiplies Haar measure of N by e*#'°s. The induced representation U(P, o, v)
is given by (1) except that the functions take values in V" rather than C. If v is imaginary,
then U(P, o, v) is unitary.

Parabolic induction is thus a rich source of unitary representations of G. In principle the
classification problem makes use of parabolic induction only when o is a “discrete series”
or “limit of discrete series” representation of M. We now define these notions.

2 Discrete series and cohomological induction

The discrete series of G consists of all square-integrable irreducible unitary representations
of G. These were parametrized by Harish-Chandra [9]. They exist if and only if rank G =
rank K, i.e., K has a Cartan subgroup that is also a Cartan subgroup of G.
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We describe Harish-Chandra’s parametrization under the assumption that G is connec-
ted; the complications from disconnectedness we dismiss as a technical matter. Let T" be
a Cartan subgroup of K and G, let A(g, t) be the associated system of roots, fix a positive
system A¥ (g, t), and let § be half the sum of the positive roots. The discrete series repres-
entations corresponding to the choice A™ (g, t) are parametrized by elements A in the dual
¢ such that A — § is integral and A is dominant and nonsingular. The A*" representation
has A in the formula for the global character. Two such representations are equivalent if
and only if their Harish-Chandra parameters are related by Ad(w) for some w in K that
normalizes t.

Schmid, starting in 1967 and following conjectures of Langlands and Kostant that were
motivated partly by the Borel-Weil-Bott Theorem for compact groups, showed how to
realize the discrete series concretely. An exposition appears in [17]. Let n be the sum of
the root spaces for the positive roots. Then G/T admits the structure of a complex manifold
such that G operates holomorphically and such that the dual n* gives the space of 1-forms
of type dz at the identity coset. Let A be a Harish-Chandra parameter, let A = A —é, and let
¢" be the corresponding character of T'. Let B, be the associated holomorphic line bundle
G x1 Cf over G/T, where T acts on C} = Cby e*+?,

For SL(2,R), B, can admit nonzero holomorphic sections, but this is not true in gen-
eral. Instead one introduces a & operator, which carries smooth sections of G x 7 ((An)* ®
Cf) to smooth sections of G xr ((A?*'n)* @ Cf). The group G acts on these spaces
of sections, and the kernel modulo image gives, after completion, a unitary representation
H%(G/T,C¥) of G.

Theorem 2.1 Ler \ + 6 be a Harish-Chandra parameter, and let S = dim(nN¢). The rep-
resentation of G in H*(G/T,C¥ ) is 0if g # S, and it is the discrete series representation
with Harish-Chandra parameter A + 6 if ¢ = S.

The cohomology spaces H%?(G/T, o ) are difficult to work with directly. In an effort
to generalize their construction, Zuckerman in 1978 considered a manageable algebraic
analog that he was able to generalize well. To understand Zuckerman'’s theory, it is neces-
sary first to say how group representations can be treated algebraically.

A representation of G in a Hilbert space is admissible if, when restricted to the com-
pact group K, it contains each K type (i.e., class of irreducible representations of K') only
with finite multiplicity. Irreducible unitary representations all have this property, and so
do representations of G obtained by parabolic induction from an irreducible unitary rep-
resentation. To any finitely generated admissible representation of G on a Hilbert space V/,
we can associate a so-called (g, &') module that is finitely generated and admissible. The
vector space is the space Vi of all K finite vectors. On this space, there is a natural K
representation. The space is left stable by the action of g, and hence also by the action of
the complexification g. The actions of g and K are suitably compatible, and the result is a
(g, K) module. The closed G invariant subspaces of V correspond to the (g, /') invariant
subspaces of Vi ; one passes from closed invariant subspaces of V' to invariant subspaces of
Vi by intersecting with V., and one passes in the reverse direction by taking the closure.
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Every finitely generated admissible (g, K') module arises in this way from some admissible
representation of G.

Zuckerman’s idea was to construct what ought to be the underlying (g, /') modules of
his cohomology spaces by using Taylor coefficients at the identity. A closed (0, ¢) form has
Taylor coefficients at 1 corresponding to all the derivatives at 1 of a certain kind of function
on G with values in (A%n)* ® CF. If U(g) denotes the universal enveloping algebra of
g, this system of derivatives may be viewed as a member of Hom(U(g), (A*n)” @ ch).
Working with constructions in homological algebra, Zuckerman was led to form the (g, 7’)
modules Homn7(U(g), CF )7, where n acts on C§ by 0 and where 7' denotes the T
finite subspace. Let I' be the operation of passing to the subspace of all elements for which
the action of &, globalizes to K; I’ converts (g, 7') modules into (g, A) modules. Let I'?
denote the ¢* right derived functor of I' in the sense of homological algebra. Zuckerman
used I'?(Homysn(U(g), CF )) as an algebraic analog of H**(G/T, C¥), and he sketched
a proof that his modules were O when ¢ # S and were the underlying (g, K') modules of
the appropriate discrete series when ¢ = S.

One way, not the original way, of defining limits of discrete series is in this setting. With
) still integral, suppose that A + § is dominant but singular. If T S(Homesn(Ulg), CF )7)
is not 0, it can be shown to be the underlying (g, K') module of an irreducible unitary
representation of G, and such a representation is called a limit of discrete series. The
condition for this representation to be nonzero is that A plus the sum of the noncompact
positive roots be dominant for K.

General cohomological induction is as follows: In place of t & n, one uses a parabolic
subalgebra q = [Gu of g that is suitably @ stable; here [ = qNq s the Levi factorand uis the
nilpotent radical. In place of T one uses the subgroup L of G given as the normalizer of q
in G; L has complexified Lie algebra [ and need not be compact. We begin with a ([, LN K)
module Z, shift it to Z# = Z @ APy, and extend Z# to a (q, L N K) module by having
wact by 0. Then Homgq rax (U(8), Z#)rnk is a (g, L N K) module. Applying I'? gives
a (g, K) module denoted R?(Z). This construction is meaningful for arbitrary G in the
Harish-Chandra class if T is defined carefully enough. An extensive theory conceming this
construction was developed by Vogan [18], and an important early theorem was proved by
Enright and Wallach [8]. For an exposition of cohomological induction, see [14]. When Z
is finite-dimensional, Wong [25] has shown that the analytic construction using Dolbeault
cohomology always results in representations in Hausdorff spaces and that cohomological
induction gives the underlying (g, ') modules.

Let us describe the effect of cohomological induction on irreducibility and unitarity.
For simplicity we assume G is connected. First let us introduce terminology concerning
unitarity. A (g, K') module is infinitesimally unitary if it admits a Hermitian inner product
preserved by K such that g acts by skew-Hermitian transformations. Any finitely gener-
ated admissible representation of G that is unitary has an infinitesimally unitary underly-
ing (g, K') module, and conversely an admissible finitely generated infinitesimally unitary
(g, K') module underlies a unitary representation of G; if the (g, K ) module is irreducible,
the unitary representation of G is unique up to unitary equivalence.
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In any irreducible (g, K') module, the center Z(g) of U(g) acts by scalars, and these
scalars yield a homomorphism y : Z(g) — C. If b is any Cartan subalgebra of g, the
“Harish-Chandra isomorphism” exhibits Z(g) as isomorphic to the Weyl-group invariants
in U(h), and then x may be identified, up to a Weyl-group transform, with 2 member of the
dual h~.

In our setting let by be any  stable Cartan subalgebra of [;; then by is also a Cartan
subalgebra of go. Choose a positive system A*(l,h) from the roots of [. The union of
A*(L,h) and the set A(u) of roots contributing to u is a positive system A¥(g, k) for g.
Let 6(u) be half the sum of the members of A(u). If Z is an irreducible ([, L N K') module
with infinitesimal character ) relative to f, we say that A is in the weakly good range if

Re(A + 6(u),a) > 0 foralla € A(u). (2)
We say that ) is in the good range if strict inequality holds in (2).

Theorem 2.2 With G connected, let Z be an irreducible admissible ([, LN K ) module with
infinitesimal character ). Define S = dim(u N €). Then RY(Z) is an admissible (g, K)
module with infinitesimal character \ + §(u) for all q. If ) is in the weakly good range,
then

(a) R(Z) = 0forq# S,

(b) R5(Z) is irreducible or 0, and

(¢) Z infinitesimally unitary implies R ( Z) infinitesimally unitary.
If A is actually in the good range, then

(d) RS(Z)is not 0 and
(e) R3(Z) infinitesimally unitary implies Z infinitesimally unitary.

Parts (¢), (d), and (e) of Theorem 2.2 are due to Vogan [20]. Wallach [24] gave a shorter
proof of (c).

3 Langlands classification and deformation

The Langlands classification, obtained in 1973-76 and appearing in [16,15], classifies all
irreducible admissible representations up to “infinitesimal equivalence.” Two finitely gen-
erated admissible representations of G are infinitesimally equivalent if their underlying
(g, K') modules are algebraically equivalent. Since every irreducible unitary represent-
ation of G is admissible, the Langlands classification reduces the classification problem
for irreducible unitary representations to the question of deciding which of some specific
representations admit invariant inner products.

In more detail the proof of the Langlands classification shows which irreducible ad-
missible representations have (g, /') modules that admit nonzero invariant Hermitian forms.
When such a form exists, it is unique up to a scalar factor, and the question is whether
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this form is semidefinite. Historically, a direct approach to unitarity by seeing which of
these Hermitian forms were semidefinite resulted in some further successes in finishing the
classification of irreducible unitary representations for particular groups, and a list of the
groups in question appears in [13].

In stating the Langlands classification, we shall not insist on having representations
appear only once; consequently the classification will be easier to state. The classification
makes use of the parabolically induced representations U(P, o, v) of §2, where P = M AN
is a parabolic subgroup of G and o is a discrete series or limit of discrete series of M. It
is enough to use a complete system of nonconjugate parabolic subgroups, and the standard
ones will suffice. Since M has discrete series if and only if rank M = rank(K N M),
we may assume this equal-rank condition on M; in this case P is called cuspidal. When
G = GL(n,R). the cuspidal standard parabolic subgroups are the block upper triangular
subgroups whose blocks are all of size < 2.

The nonzero simultaneous eigenvalues of ad ag on g are called a roots, and the ones
that correspond to ng are called positive. The positive Weyl chamber of aj is the subset
where the positive a roots are simultaneously positive. It determines a positive Weyl cham-
ber in the dual aj.

Let W (G, A) be the quotient of the normalizer of A by the centralizer. Elements of
W(G. A) act on »’s and on classes of o’s, and we let Wo, be the subgroup fixing » and the
class of o. We omit the definition of a subgroup W/, of W, , that is defined in [13] other
than to say that W/, = W,,, with v imaginary implies that U( P, o, v) is irreducible.

Theorem 3.1 [16,15] Let P = MAN be a cuspidal standard parabolic subgroup of
G. let o be a discrete series or limit of discrete series representation of M, and let v be
a complex-valued linear functional on ao with Re v in the closed positive Weyl chamber.
Suppose that W, = W,,. Then the induced representation U(P,o,v) has a unique
irreducible quotient J( P, o, v), and every irreducible admissible representation of G is of
the form J (P, o, v) for some such triple (P, o, v).

Because of Theorem 3.1 the classification problem for irreducible unitary represent-
ations would be solved if we could decide which representations J(P, o, v) are infinites-
imally unitary. To describe what needs to be done, we shall use an explicit intertwining
operator o (w)Ap(w, o, v) whose exact definition will not concern us.

Theorem 3.2 [13] Let (P, o,v) be such that the irreducible admissible representation
J(P.o,v) is defined. Then J(P,o,v) is infinitesimally unitary if and only if
(i) there exists w in W (G, A) such that w? = 1, wo = o, and wv = —v, and
(ii) the operator o(w)Ap(w,o,v), when normalized to be pole-free and not identically
zero, is positive or negative semidefinite.
If J( P, o, v) is infinitesimally unitary, then every w satisfying (i) is such that the normalized
operator is positive or negative semidefinite.
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The normalized operator may be viewed as varying holomorphically, the representation
J(P,o.v) is always the image of the normalized operator, and the invariant form is given
relative to L?(K) by the normalized operator. When the operator is scalar for v imagin-
ary, it remains definite as long as the symmetry condition (i) is satisfied and U(P, o, v) is
not reducible. It is in this sense that the invariant inner product is sometimes obtained by
deformation from L*(K'). This style of argument accounts for the unitarity of the comple-
mentary series of SL(2, R).

It follows from Theorem 3.2 that the set of real v’s giving unitarity for a fixed o is a
kind of bounded polygonal simplex. A picture in [13] gives an example. More complicated
versions of deformation often establish much of the unitarity. But the set where unitarity
holds is not necessarily connected. and deformation cannot handle everything. Thus to
decide unitarity of certain J(P, o, v), it is often helpful to have a second description of the
representation.

One important fact is that there is an interaction between cohomological induction and
the Langlands classification. Namely cohomological induction carries U/ ( Py, o, vr) for L
to U(P,o,v) for G when the parameters are matched properly. There are some provisos:
The functor R is to be replaced by a kind of predual L discussed in [14], cohomological
induction is to be normalized with a half sum of positive roots, A and v are to be the same
for L as for G, the positive Weyl chambers must be suitably consistent, and Re v is to be
dominant.

4 Results

e When dim A = 0, P equals G, and the representations J(P, o, v) are the discrete
series and limits. These are all unitary [15].

e Itis enough to decide unitarity for J(P, o, ») with v real. This is due to Vogan. See
[11]. Theorem 16.10.

e For fixed G and P, unitarity of J(P, o, ») needs to be settled only for finitely many
o. In fact, we refer to the end of the previous section. The weakly good range for fixed
o depends only on Re and is a convex polygonal set centered at the origin. When the
parameter of o is suitably large, the weakly good range includes all points » where unitarity
is possible. Consequently Theorem 2.2 implies that there are only finitely many o’s for
which unitarity cannot be decided by referring to some proper subgroup L. This result is
due to Vogan [20]. See Chapter X1 of [14] for further information.

e The papers [23], [6], and [10] completely settle unitarity for cohomological induction
outside the weakly good range when S = (. Later [7] investigated some other cases outside
the weakly good range. A certain amount of current research seeks to decide unitarity in
cases that [7] could not handle.

e When dim A = 1, the unitarity problem is completely solved. Except for split F}
and G5, this was proved in [1]. Split F; was handled by Zhonghu Chen, and split G, was
handled by Vogan. The real v with .J(P, o, v) unitary form either an interval or an interval
with one extra point. Deformation proves unitarity for the interval, and the extra points are



97

handled by cohomological induction.

o Vogan [22] settled the classification problem for GL(n) over the reals, the complex
numbers, and the quaternions.

o Barbasch [2] settled the classification problem for the classical orthogonal and sym-
plectic groups. This work relies somewhat on [3].
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