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PREFACE

This book is a sequel to the author’s Basic Real Analysis, which systematically
developed concepts and tools in real analysis that are vital to everymathematician,
whether pure or applied, aspiring or established. The intention was that it and
its companion volume, Advanced Real Analysis, together would contain what the
young mathematician needs to know about real analysis in order to communicate
well with colleagues in all branches of mathematics.
The first editions of these books consciously omitted a few topics, the most

notable of which were advanced topics in the calculus of several real variables,
particularly the integration theorems that relate an integral over a region or
surface to an integral over the boundary. These integration theorems go under the
general name “Stokes’s Theorem” because of the history that will be explained
in the Introduction, and they too are tools in real analysis that are vital to every
mathematician.
This book aims to treat that topic. Actually the digital second edition of

Basic Real Analysis dealt with low dimensional aspects of the topic somewhat by
addressing arc length, line integrals, and Green’s Theorem in the plane in Chapter
III. The spirit of the treatment of thesematterswas the same as the treatment in that
book of Riemann integration in one and several variables, careful and thorough,
the expectation being that the reader had earlier seen this material presented in a
utilitarian fashion. When it comes to surface integrals, however, the method used
for addressing arc length breaks down, as was shown toward the end of Section
III.13 of Basic Real Analysis. Unlike the length of a curve, the area of a surface
cannot be defined as the supremeum of some obvious inscribed approximations,
and a different approach to the whole subject is needed.
Thedifferent approach thatwe follow is to usematerial that lies at the beginning

of the study of both differentiable topology and algebraic topology. The material
in question is the topic of differential forms, including integration of differential
forms. The spirit of the treatment is quite different from that of Basic Real
Analysis, andChapter I of the present book takes some time to develop differential
forms and tools for working with them.
By way of prerequisites, this book relies in part on some real analysis that

is treated in Chapters III, V, VI, and X of Basic Real Analysis. In addition,
it makes use of elementary linear algebra and a certain amount of multilinear
algebra that can be found in the author’sBasic Algebra, Chapter VI, Sections 1–7.

vii



viii Preface

The key theorems that are needed from real analysis are the Inverse and Implicit
FunctionTheorems and the change-of-variables formula for theLebesgue integral
in Euclidean space. The Riemann integral could be used in place of the Lebesgue
integral in most circumstances, but at a cost of making certain statements more
cumbersome. The key thing that is needed from algebra is some familiarity with
the tensor algebra of a real finite dimensional vector space.
A philosophical problem arises in finding the right setting for the integration

theorems that are collectively known as Stokes’s Theorem and that relate an
integral over a region or surface to a integral over the boundary. The integration
theorems are most transparent when the sets of integration are rectangular, and
we indicate the simple idea in the Introduction. On the other hand, the proofs are
most natural when the sets and functions are smooth, as they are for a circle or a
ball. Rectangular sets are not smooth. The setting in which the sets and functions
are smooth is that of “manifolds-with-boundary,” which are defined in Chapter II
of the present book. To handle both settings at the same time—rectangular sets
and smooth manifolds-with-boundary—the traditional approach is to break the
sets of integration into pieces by some kind of triangulation or other cutting of
regions into parts. Then one establishes Stokes’s Theorem for each piece and
adds the results. Pedagogically this approach is unsatisfactory.
Amoremodern approach is to use “manifolds-with-corners,” which are defined

and used in the first half of Chapter III. Manifolds-with-corners handle a great
many caseswithout any cutting of regions into pieces, but they are still insufficient
to handle all cases of practical interest without additional effort. The second half
of Chapter III treats Stokes’s Theorem in a still broader context due to Hassler
Whitney. Whitney worked with what he called “standard manifolds” but which
are more aptly called “Whitney manifolds.” Whitney manifolds do indeed handle
all cases of practical interest.

Some years ago, aware of the tension between the two standard approaches
to Stokes’s Theorem via rectangular sets and smooth manifolds, I asked my
colleague Blaine Lawson whether one could now finally give a satisfactory
exposition of the theorem. At that time he introduced me to manifolds-with-
corners and explained to me how one could often use them to avoid the traditional
cutting ofmanifolds into concrete pieces. The resulting situation, although better,
was still not satisfactory in my view.
More recently, to help cope with restrictions because of the COVID-19

pandemic, I decided to look at the matter again. Libraries were closed. But
during my online reading I encountered Whitney’s book Geometric Integration
Theory, which proves a version of Stokes’s Theorem that seems to handle all
examples of practical interestwithout any need at all to cutmanifolds into concrete
pieces. In response to emailed questions about some passages inWhitney’s book,
my colleague Chris Bishop introduced me to various notions of dimension and
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explained to me the relationships among them, pointing to his book Fractals in
Probability and Analysis written with Yuval Perez for some of the details. I am
grateful to both colleagues for sharing information with me.

The problems at the ends of chapters are an important part of the book. Some
of them are really theorems, some are significant examples, and a few are just
exercises. The reader gets no indication which problems are of which type, nor
of which ones are relatively easy. Each problem except perhaps the last one can
be solved with tools developed up to that point in the book, plus any additional
prerequisites that are noted. Detailed hints appear at the end of the book.
The typesetting was by AMS-TEX, and the figures were drawn with help from

Mathematica.
I invite corrections and other comments from readers. I plan to maintain a list

of known corrections on my own Web page.
A. W. KNAPP

November 2020



INTRODUCTION

Stokes’s Theorem is a generalization of the Fundamental Theorem of Calculus
from one dimension to higher dimensions. In an easy formulation the Funda-
mental Theorem of Calculus says that

Z b

a
F 0(x) dx = F(b) − F(a)

on the closed interval [a, b] if F is a real-valued function with a continuous
derivative F 0. In thinking how to generalize this theorem while keeping the
ideas clear, we shall not be looking for the best possible hypotheses and will be
content with assuming in the statement merely that F is smooth (i.e., infinitely
differentiable). At any rate the formula relates the integral of the derivative of F
over an interval to a linear combination of the values of F at the endpoints.
We encountered two qualitatively similar results in Chapter III of Basic Real

Analysis, as follows:

(1) One such result was the formula in Proposition 3.47 for the line integral
of the gradient of a smooth function over a smooth curve ∞ in Rn with domain
[a, b], namely Z

∞

∇ f · ds = f (∞ (b)) − f (∞ (a)).

Again the formula relates an integral of a derivative of f over a curve to a linear
combination of the values of f at the endpoints of the curve.
(2) The other such result was the formula in Section III.13 concerning Green’s

Theorem in the plane, namely
ZZ

U

≥@Q
@x

−
@P
@y

¥
dx dy =

Z

∞

P dx + Q dy.

Here U is a region in R2, the curve ∞ traces out its boundary with the region
on the left, and U and ∞ are assumed to be suitably nice. This formula involves
a two-component real-valued function with entries P and Q, and it relates an
integral over the region involving first derivatives of P and Q to an integral over
the boundary of the values of P and Q.

x
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The first of these results is simply a matter of applying the Fundamental
Theorem of Calculus component by component, and it is not mysterious.
Let us consider Green’s Theorem in more detail. The idea behind the theorem

is clearest for the special case thatU is a rectanglewith sides parallel to the axes, a
case that was considered in Example 1 of Section III.13 ofBasic Real Analysis. In
that caseTheorem3.49 is proved by considering P andQ separately. To handle P ,
one applies the Fundamental Theorem of Calculus in the x variable and integrates
the result in the y variable; to handle Q, one applies the Fundamental Theorem
of Calculus in the y variable and integrates the result in the x variable.
Unfortunately the style of proof that works well for a rectangle already runs

into technical problems if one tries to prove the theorem for a closed disk in R2.
Example 2 in Section III.13 of Basic Real Analysis gives the details. There are
two technical problems—(a) the need to impose new parametrizations on a curve
and see that its line integrals are unchanged and (b) the need to use Lebesgue
integration or some other device to cope with unbounded integrands. Example 3
in Section III.13 shows that for a washer (or annulus) in R2, further difficulties
arise, and the argument uses a decomposition of the region into a number of
parts. For a more complicated region, the corresponding decomposition may be
expected to be more difficult to describe, and it is not at all apparent how to make
a general argument.

Classical treatments of calculus in three variables, or particularly of what is
sometimes given the more advanced-sounding name vector analysis, discuss two
further theorems of this kind, known respectively as the Divergence Theorem (or
the Gauss–Ostrogradsky Theorem) and the Kelvin–Stokes Theorem (or simply
Stokes’s Theorem).
The Divergence Theorem inR3 concerns a solid bounded regionU inR3 with

a 2 dimensional boundary @U . In classical notation it says that
ZZZ

U

≥@P
@x

+
@Q
@y

+
@R
@z

¥
dx dy dz =

ZZ

@U
P dy∧dz+Q dz∧dx+R dx∧dy.

Evaluation of a term on the right side involves parametrizing the surface in
(x, y, z) space by parameters s and t , and then dy ∧ dz, dz ∧ dx , and dx ∧ dy
are given formally by substituting the product of a two-by-two determinant times
ds dt , specifically

dy ∧ dz =
@(y, z)
@(s, t)

ds dt, dz ∧ dx =
@(z, x)
@(s, t)

ds dt, dx ∧ dy =
@(x, y)
@(s, t)

,

and carrying out the double integrations. Some important questions concerning
orientations and signs need to be sorted out, but we skip over those for the time
being.
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In the case that U is a rectangular solid with faces parallel to the axes, the
formula can be verified one term at a time by using the Fundamental Theorem
of Calculus in the differentiated variable and then integrating in the other two
variables, carefully managing the signs that appear from the integrated terms.
This computation is the expected generalization of the computation in Example 1
of Section III.13 of Basic Real Analysis on Green’s Theorem. For more general
solids U , one can attempt a similar argument after breaking the original integral
into a number of pieces. Once again, it is not at all apparent how to describe such
a decomposition of a complicated region, and thus it is not at all apparent how to
give a general proof of the Divergence Theorem in this style.
TheKelvin–Stokes Theorem,1 sometimes known simply as Stokes’s Theorem,

concerns an oriented 2 dimensional surface S having a 1 dimensional boundary
given by a curve ∞ , the whole manifold plus boundary embedded in R3. The
formula is
ZZ

S

≥@R
@y

−
@Q
@z

¥
dy ∧ dz +

≥@P
@z

−
@R
@x

¥
dz ∧ dx +

≥@Q
@x

−
@P
@y

¥
dx ∧ dy

=
Z

∞

P dx + Q dy + R dz.

When a sketch of proof is given in an elementary text for this theorem in special
cases, it often goes by reducing the theorem to Green’s Theorem in the plane.
When necessary, the surface is cut into pieces and canceling pieces of boundary
curve are adjoined.

From an expository point of view, the whole matter is rather unsatisfactory.
In 1934 the young French mathematicians André Weil and Henri Cartan had
the joint responsibility in Strasbourg for teaching a course on “differential and
integral calculus,” and they consulted each other frequently. In his autobiography
Weil writes of this interaction, saying,2

One point that concerned him [Cartan] was the degree to which we
should generalize Stokes’ formula in our teaching. This formula is
written as follows: Z

b(X)

ω =
Z

X
dω,

1The theorem was discovered by William Thomson (Lord Kelvin) and communicated to Stokes
by letter in 1850.

2André Weil, The Apprenticeship of a Mathematician, Birkhäuser, Basel, 1992, pp. 99-100.
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where ω is a differential form, dω is its derivative, X its domain of
integration, and b(X) the boundary of X . There is nothing difficult
about this if for example X is the infinitely differentiable image of an
oriented sphere and if ω is a form with infinitely differentiable coef-
ficients. Particular cases of this formula appear in classical treatises,
but we were not content to make do with these.

Weil goes on to describe how this interaction led a group of young French math-
ematicians over a period of years to explain systematically much of elementary
mathematics in a series of published books going under the title Eléments de
Mathématique and written with the pseudonym Nicolas Bourbaki.3
Ironically although Bourbaki’s books eventually developed a wide swath of

mathematics rigorously, especially in the 1950s and1960s, they hadnot yet treated
Stokes’s Theorem as of 2018. Possibly the reason was that a suitable framework,
conveniently handling all shapes of interest at once, was not developed until well
after World War II. Let us elaborate somewhat on the history.

Building on his own work frommuch earlier and on some work of H. Poincaré
and E. Goursat, Elie Cartan4 had brought a degree of unity to the subject by
showing that Green’s Theorem, the Divergence Theorem, and the Kelvin–Stokes
Theorem were really special cases of the same general theorem. In a course
in 1936–1937, whose notes were published as a book in 1945, he showed how
to view all three classical theorems as instances of a result about “differential
forms” and “exterior differentiation,” the unifying formula being the one in the
quotation above fromWeil’s book. Moreover, the theory, which dealtwith smooth
“manifolds-with-boundary,” was not limited to cases in R3, and the final proof
took little more than a couple of pages. The cost of having such a tidy final result
for smooth manifolds-with-boundarywas that the hard work was transferred into
the definitions and verifications necessary to set up the theory. The 1965 book
by M. Spivak, Calculus on Manifolds, proves Stokes’s Theorem just for smooth
manifolds-with-boundary,5 it does so in exactly this way, and it makes the point
that the difficulty occurs in setting up the theory. We shall see this cost first hand
in the present book in that all of Chapter I and part of Chapter II are devoted to
setting up the theory.
In practical applications unfortunately, physicists and engineers need a version

of Stokes’s Theorem that holds for rectangular sets and other polyhedral sets, as
3Although the original six members of the Bourbaki group were all French, mathematicians of

other nationalities joined the group later. Members were expected to retire from the group about at
age 50.

4Father of Henri.
5In Spivak’s book the manifolds-with-boundary are always embedded in some Euclidean space

for the sake of concreteness, but working in such a setting merely adds one unnecessary parameter
to the mix and obscures the simplicity of the final formula.
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well as for smooth manifolds-with-boundary. This is the matter that concerned
H. Cartan in the quotation above. Even as late as the 1950s, rectangular solids and
polyhedral sets were best treated directly, essentially by cutting the set into pieces
and making an explicit calculation for each piece, while round shapes were best
treated as manifolds-with-boundary to which E. Cartan’s theory could be applied
directly.
In 1961 J. Cerf and A. Douady introduced smooth “manifolds-with-corners,”

which included solid balls and also rectangular solids. In other words, smooth
manifolds-with-corners offered a step toward further unifying the treatment of
Stokes’s Theorem. The present book will give a proof of Stokes’s Theorem for
smooth manifolds-with-corners in Sections 1–3 of Chapter III. The argument is
really no harder than the argument for smooth manifolds-with-boundary, and one
can perhaps regard the setting of manifolds-with-corners as giving a sufficient
answer to H. Cartan’s question about pedagogy.
It may be a sufficient answer, but it is not completely satisfactory. The corners

in the theory of smooth manifolds-with-corners turn out to be of really limited
scope. In R3, for example, when three planes come together at a point, the result
is a corner in the sense of the theory, but when four planes come together at a
point, the resulting intersection point no longer fits the theory. Thus, for example,
the theory applies to a tetrahedron in R3 but not to a square pyramid.
It turns out that there is a more all-encompassing theory, and it was already

known by 1960. Hassler Whitney developed the theory and published it in a
book in 1957. The present book concludes Chapter III with the relevant parts
of Whitney’s theory. Qualitatively Whitney’s theory looks at a manifold and
boundary and divides the boundary into two sets. One set consists of nice points
like those in the E. Cartan theory of smooth manifolds-with-boundary. The
other set consists of exceptional points. Whitney’s theorem is that if the set of
exceptional points is small in a certain precise sense, then everything is fine and
the Stokes formula is valid. The theorem handles all smooth manifolds-with-
corners. In fact, the theorem appears to handle all situations that might be of
interest to physicists and engineers, as well as all those that are of interest to most
mathematicians. The proof still takes only a few pages, with its complications
concealed in the definitions. One cannot ask for more.
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CHAPTER I

Smooth Manifolds

Abstract. This chapter introduces just enough differential topology to serve as a suitable framework
for Stokes’s Theorem. The subject matter is the elementary structure of smooth manifolds, which is
a topic in real analysis that sits at the intersection of algebraic topology and differential geometry.
Section 1 presents the beginning definitions and results about smooth manifolds, tangent vectors

and vector fields, cotangent vectors and differential 1 forms, derivatives of smooth mappings, and
differentials.
Section 2 defines the exterior algebra of a finite dimensional real vector space. Tensor algebras,

which are discussed in Chapter VI of the author’s Basic Algebra, are taken as known.
Section 3 introduces differential forms and their pullbacks under smooth maps. It shows how to

compute pullbacks, and it establishes some properties of them.
Section 4 introduces the exterior derivative, which is the differentiation operator to be used with

differential forms, and shows that it satisfies a number of properties.
Section 5 contains the construction of a smooth partition of unity, which is a device making it

unnecessary in many cases to cut manifolds into pieces when treating integration problems.
Section 6 introduces the notion of an oriented smooth manifold and integration of top-degree

differential forms on it. The section shows also the relationship between integration and pullback.

1. Smooth Manifolds, Vector Fields, Derivatives, and Differentials

This section introduces smooth manifolds, and it briefly develops the notions of
smooth function, tangent and cotangent space, vector field, derivative, differential
1 form, and differential. For a more thorough presentation of this material, the
reader may wish to consult the author’s Advanced Real Analysis, particularly
Sections VIII.1–4.

“Manifolds” in our treatment are built from “charts,” each manifold has a
uniform dimension, and each manifold will be assumed to be separable in the
sense of having a countable base for its topology. The term “smooth” is used
interchangeably with the term C∞. The prototype for a manifold is the surface
of a sphere in three dimensions. Let us discuss this case informally first and then
return to develop the formal mathematics.
In the real world one describes the surface of the earth by means of “charts,”

with each chart containing a likeness of part of the earth’s surface and with all

1



2 I. Smooth Manifolds

the charts together describing the whole surface. The collection of charts is an
“atlas.” The sense in which a chart contains a likeness of part of the surface is
that there is an understood one-one function (“map”) from the one onto the other.
In mathematics this function goes from a part of the surface into a likeness; in
the real world it tends to go in the opposite direction, namely from the likeness
into the surface.
Let M be a separable1 Hausdorff topological space, and fix an integer m ∏ 0.

A chart (Mα, α) on M of dimension m is a homeomorphism α : Mα → α(Mα)
of a nonempty open subset Mα of M onto an open subset α(Mα) ofRm ; the chart
is said to be about a point p in M if p is in the domain Mα of α. We say that M
is a manifold if there is an integer m ∏ 0 such that each point of M has a chart
of dimension m about it.
A smooth structure of dimension m on a manifold M is a family F of

m dimensional charts with the following three properties:
(i) any two charts (Mα, α) and (Mβ, β) in F are smoothly compatible in
the sense that β ◦ α−1, as a mapping of the open subset α(Mα ∩ Mβ) of
Rm to the open subset β(Mα ∩ Mβ) of Rm , is smooth and has a smooth
inverse,

(ii) the system of compatible charts (Mα, α) is an atlas in the sense that the
domains Mα together cover M ,

(iii) F is maximal among families of compatible charts on M .
A smooth manifold of dimension m is a manifold together with a smooth
structure of dimension m. In the presence of an understood atlas, a chart will be
said to be compatible if it is compatible with all the members of the atlas.
Once we have an atlas of compatible m dimensional charts for a manifold M ,

i.e., once (i) and (ii) are satisfied, then the family of all compatible charts satisfies
(i) and (iii), as well as (ii), and therefore is a smooth structure. In other words,
an atlas of compatible charts determines one and only one smooth structure. As
a practical matter we can thus construct a smooth structure for a manifold by
finding an atlas satisfying (i) and (ii), and the extension of the atlas for (iii) to
hold is automatic. Particularly in discussing orientability in Section 6, it will be
convenient to work with atlases that are not maximal.

EXAMPLE. The unit sphere M = Sn in Rn+1, the set of vectors of Euclidean
norm 1, can be made into a smooth manifold of dimension n by using two charts
defined as follows. One of these charts is (Mϕ, ϕ) with

ϕ(x1, . . . , xn+1) =
≥ x1
1− xn+1

, . . . ,
xn

1− xn+1

¥

1The treatment in Sections VIII.1–4 of Advanced Real Analysis does not insist on separability
of manifolds.
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and with domain Mϕ = Sn − {(0, . . . , 0, 1)}, and the other is (M√,√) with

√(x1, . . . , xn+1) =
≥ x1
1+ xn+1

, . . . ,
xn

1+ xn+1

¥

and with domain M√ = Sn − {(0, . . . , 0,−1)}. We need to check that the two
charts are smoothly compatible. The set Mϕ ∩ M√ is Sn − {(0, . . . , 0,±1)}, and
the image of this under ϕ and √ is Rn − {(0, . . . , 0)}. Put yj = xj/(1 − xn+1),
so that ϕ−1(y1, . . . , yn) = (x1, . . . , xn+1). Then √ ◦ ϕ−1(y1, . . . , yn) is

=
°
x1/(1+ xn+1), . . . , xn/(1+ xn+1)

¢

=
°
y1(1− xn+1)/(1+ xn+1), . . . , yn(1− xn+1)/(1+ xn+1)

¢
.

To compute (1 − xn+1)/(1 + xn+1), we take
n+1P

j=1
x2j = 1 into account and write

1 =
n+1P

j=1
x2j = x2n+1+

nP

j=1
y2j (1− xn+1)2. Then

nP

j=1
y2j = (1− x2n+1)/(1− xn+1)2 =

(1+ xn+1)/(1− xn+1), and

√ ◦ ϕ−1(y1, . . . , yn) =
≥
y1

± nP

j=1
y2j , . . . , yn

± nP

j=1
y2j

¥
.

The entries on the right are smooth functions of y since y 6= 0. Similarly if we
put zj = xj/(1+ xn+1), we calculate that

ϕ ◦ √−1(z1, . . . , zn) =
≥
z1

± nP

j=1
z2j , . . . zn

± nP

j=1
z2j

¥
.

Again the entries on the right are smooth functions of z since z 6= 0. Thus the
two charts are smoothly compatible, and Sn is a smooth manifold.

Euclidean spaceRm itself is of course a smoothmanifold of dimensionm, with
an atlas consisting of the single chart (Rm, 1), where 1 is the identity function
on Rm . Real projective spaces, which are defined in Problem 3 at the end of
the chapter, give further straightforward examples. A number of interesting
manifolds arise as a part of the space of simultaneous solutions of some equations,
often polynomial equations in several variables. The technical device that shows
the solution space tobepart of a smoothmanifold is normally the Implicit Function
Theorem (Theorem 3.16 of Basic Real Analysis), as is explained in Problem 30
at the end of the chapter.
Another simple example of a smooth manifold M of dimension m is any

nonempty open subset U of M . The subset U becomes a smooth manifold
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of dimension m if we define an atlas for it to consist of all restrictions
(U∩Mα, α

Ø
Ø
U∩Mα

) ofmembers of the atlas {(Mα, α)} forM; thenwemust discard
occurrences of the empty set. We shall often use this observation without special
notice, in effect making definitions and deducing conclusions for nonempty open
subsets of amanifoldM from the correspondingdefinitions and conclusions about
all manifolds.
Most manifolds, however, are constructed globally out of other manifolds

or are pieced together from local data. The Hausdorff condition often has to
be checked, is often subtle, and is always important. The first place that the
Hausdorff condition plays a role is in Lemma 1.2 below.
Any manifold is a locally compact Hausdorff space. The separability implies

that there exists an exhausting sequence in M , i.e., an increasing sequence of
compact sets with union all of M and with each set contained in the interior of the
next member of the sequence. This is Proposition 10.25 of Basic Real Analysis.
Let us mention that because of the separability and Theorem 10.45 of Basic

Real Analysis, the topology of a manifold can always be realized by a metric; this
fact turns out to be more comforting than useful.
Although manifolds have a global definition, it is often convenient to work

with them by referring matters to local coordinates. If p is a point of the smooth
manifold M of dimension m, then a compatible chart (Mα, α) about p can be
viewed as giving a local coordinate system near p. Specifically if the Euclidean
coordinates in α(Mα) are (u1, . . . , um), then q = α−1(u1, . . . , um) is a general
point ofMα, and we definem real-valued functions q 7→ xj (q) onMα by xj (q) =
uj , 1 ≤ j ≤ m. Then α = (x1, . . . , xm). To refer the functions xj to Euclidean
space Rm , we use xj ◦ α−1, which carries (u1, . . . , um) to uj .
The way that the functions xj are referred to Euclidean space mirrors how

a more general real-valued function on an open subset of M may be referred
to Euclidean space, and then we can define a real-valued function on M to be
smooth if it is smooth in the sense of Euclidean differential calculuswhen referred
to Euclidean space.
Therefore a smooth function f : M → R on the smooth manifold M is by

definition a function such that for each p ∈ M and each compatible chart (Mα, α)
about p, the function f ◦α−1 is smooth as a function from the open subset α(Mα)
of Rm into R. A smooth function is necessarily continuous.
In verifying that a real-valued function f on M is smooth, it is sufficient, for

each point in M , to check smoothness within only one compatible chart about
that point. The reason is the compatibility of the charts: if (Mα, α) and (Mβ, β)

are two compatible charts about p, then f ◦β−1 is the composition of the smooth
function α ◦ β−1 followed by f ◦ α−1.
The space of smooth real-valued functions on the nonempty open set U of M

will be denoted by C∞(U). The space C∞(U) is an associative algebra over R
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under the pointwise operations, and it contains the constants. The support of a
real-valued function is the closure of the set where the function is nonzero. We
write C∞

com(U) for the subset of C∞(U) of functions whose support is a compact
subset of U .
The space C∞

com(U) is not 0. This fact is a consequence of the following result
for Euclidean space that appeared as Proposition 8.12 in Basic Real Analysis.

Lemma 1.1. If K and U are subsets of Rm with K compact, U open, and
K ⊆ U , then there exists ϕ ∈ C∞

com(U) with values in [0, 1] such that ϕ is
identically 1 on K .

Lemma 1.2. If U is a nonempty open subset of a smooth manifold M and if
f is in C∞

com(U), then the function F defined on M so as to equal f on U and to
equal 0 off U is in C∞

com(M) and has support contained in U ,

PROOF. The set S = support( f ) is a compact subset of U and is compact
as a subset of M since the fact that U gets the relative topology means that the
inclusion of U into M is continuous. Since M is Hausdorff, S is closed in M .
The function F is smooth at all points ofU and in particular at all points of S, and
we need to prove that it is smooth at all points of the open complement V of S in
M . If p is in V , we can find a compatible chart (Mα, α) about p with Mα ⊆ V .
The function F is 0 on Mα ∩ U ⊆ V ∩ U = Sc ∩ U because it equals f on U
and f is 0 on the complement of S in U . The function F is 0 on Mα ∩Uc since
it is 0 everywhere on Uc. Therefore F is identically 0 on Mα and is exhibited as
smooth in a neighborhood of p. Thus F is smooth. §

M

S

U Uc

p

Mα

FIGURE 1.1. Diagram for Lemma 1.2 with p shown outside Mα ∩U .

Lemma 1.3. Suppose that p is a point in a smooth manifold M , that (Mα, α)
is a compatible chart about p, and that K is a compact subset of Mα containing
p. Then there is a smooth function f : M → R with compact support contained
in Mα such that f has values in [0, 1] and f is identically 1 on K .
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PROOF. The set α(K ) is a compact subset of the open subset α(Mα) of
Euclidean space, and Lemma 1.1 produces a smooth function g in C∞

com(α(Mα))
with values in [0, 1] that is identically 1 on α(K ). If f is defined to be g ◦ α
on Mα, then f is in C∞

com(Mα). Extending f to be 0 on the complement of Mα

in M and applying Lemma 1.2, we see that the extended f satisfies the required
conditions. §

Proposition 1.4. Let p be a point of a smooth manifold M , let U be an open
neighborhood of p, and let f be inC∞(U). Then there is a function g inC∞(M)
such that g = f in a neighborhood of p.
PROOF. Possibly by shrinking U , we may assume that U is the domain of

some compatible chart (Mα, α) about p. Let K be a compact neighborhood of p
contained inU , and use Lemma 1.3 to find h in C∞(M) with compact support in
U such that h is identically 1 on K . Define g to be the pointwise product h f on
U and to be 0 off U . Then g equals f on the neighborhood K of p, and Lemma
1.2 shows that g is everywhere smooth. §

In the sameway thatwedefined smoothnessof real-valued functions on smooth
manifolds by means of local coordinates, we define smoothness for a continuous
function from an m dimensional manifold M into an n dimensional manifold N .
Namely let p be in M , so that F(p) is in N . Assuming that F is continuous at
p, let a local coordinate system be given at F(p) by means of a chart (Nβ, β),
and choose a local coordinate system at p given by a chart (Mα, α) such that
F(Mα) ⊆ Nβ . The local version of F is the function β ◦ F ◦ α−1, which carries
α(Mα) into β(Nβ). If we write α = (x1, . . . , xm) and β = (y1, . . . , yn), then we
obtain an expression of the form

(y1, . . . , yn) = β ◦ F ◦ α−1(x1, . . . , xm),

and we see that β ◦ F ◦ α−1 is the local function in the Euclidean setting that
corresponds to F in the manifold setting. The function F : M → N is said to
be smooth if it is continuous and all the functions β ◦ F ◦ α−1 are smooth, more
precisely if it is continuous and for each p in E and each compatible chart β about
F(p), there is some compatible chart α about p such that β ◦ F ◦ α−1 is defined
and smooth. In this case we often call F a smooth map. A smooth function
between smooth manifolds with a smooth inverse is called a diffeomorphism.
In this way all questions about smoothness of functions in the manifold setting

can be translated into questions about smoothness of functions in the Euclidean
setting. One consequence, by means of the Inverse Function Theorem,2 is that
the dimension of a smooth manifold is well defined. More specifically the
same underlying topological space cannot have two compatible atlases of distinct
dimensions.

2Theorem 3.17 of Basic Real Analysis.
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We turn to a discussion of tangent spaces and vector fields. Let M be a smooth
manifold of dimensionm. The idea is that the tangent space toM at p is the space
of all first-order derivatives at p. To make this notion precise, one introduces the
space of germs Cp(M) of smooth functions at p. These are equivalence classes
formed frompairs ( f,U), each pair consisting of an open setU containing p and a
smooth real-valued function f defined on that open set, two such being equivalent
if their restrictions are equal on some subneighborhood of p. The set Cp(M) of
equivalence classes inherits arithmetic operations that make it into an associative
algebra over R. Evaluation at p is a well defined linear functional e on Cp(M).
A derivation of Cp(M) is a linear function L : Cp(M) → R such that L( f g) =
L( f )e(g) + e( f )L(g). Each such L annihilates constant functions because

L(1) = L(1 · 1) = L(1)e(1) + e(1)L(1) = 2L(1)

forces L(1) = 0. The set of derivations of Cp(M) forms a real vector space that is
denoted by Tp(M) and is called the tangent space ofM at p. If a local coordinate
system at p is given by means of a chart (Mα, α) with α = (x1, . . . , xm), then m
examples of members of Tp(M) are given by the derivations

£
@

@xj

§
p defined by

h @ f
@xj

i

p
=

@( f ◦ α−1)

@uj

Ø
Ø
Ø
(u1,...,um)=(x1(p),...,xm(p))

for j = 1, . . . ,m.

These derivations satisfy

h@xi
@xj

i

p
=

@ui
@uj

Ø
Ø
Ø
(u1,...,um)=(x1(p),...,xm(p))

= δi j ,

where δi j is the Kronecker delta. It follows that the m derivations
£

@
@xj

§
p are

linearly independent. Actually these m derivations form a vector-space basis
of Tp(M), as is shown in the following proposition. Spanning follows from an
expansion formula established by the proposition for all members of Tp(M).

Proposition 1.5. If M is a smooth manifold and if a compatible chart (Mα, α)
about a point p in M is given by α = (x1, . . . , xm), then each member L of
Tp(M) is given on Cp(M) by

L =
mX

j=1
L(xj )

h @

@xj

i

p
.

Consequently the m derivations
£

@
@xj

§
p form a vector-space basis of Tp(M).
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PROOF. Let L be a derivation of Cp(M), and let ( f,U) represent a member of
Cp(M), U being an open neighborhood of p in M . Without loss of generality,
we may assume that U ⊆ Mα and that α(U) is an open ball in Rm . Put
u0 = (u0,1, . . . , u0,m) = α(p), let q be a variable point in U , and define
u = (u1, . . . , un) = α(q). Taylor’s Theorem3 applied to f ◦ α−1 on α(U)
gives

f ◦ α−1(u) = f ◦ α−1(u0) +
mP

j=1
(uj − u0, j )

@( f ◦ α−1)

@uj
(u0)

+
P

i, j
(ui − u0,i )(uj − u0, j )Ri j (u)

with each Ri j in C∞(α(U)). Referring this formula to M , we obtain

f (q) = f (p) +
mP

j=1
(xj (q) − xj (p))

h @ f
@xj

i

p

+
P

i, j
(xi (q) − xi (p))(xj (q) − xj (p))ri j (q)

onU , where ri j = Ri j ◦α onU . Because L annihilates constant functions and has
the derivation property and satisfies e(xj ) = xj (p) for 1 ≤ j ≤ m, application of
L yields

L( f ) =
mP

j=1
L(xj )

h @ f
@xj

i

p
+

P

i, j

°
L(xi )(e(xj ) − xj (p))e(ri j )

+ (e(xi )−xi (p))L(xj )e(ri j ) + (e(xi )−xi (p))(e(xj )−xj (p))L(ri j )
¢

=
mP

j=1
L(xj )

h @ f
@xj

i

p
,

as asserted. §

Still with M as a smooth manifold, form the set T (M) of all pairs (p, L)
such that p is in M and L is in Tp(M). The set T (M) can be topologized and
given a smooth manifold structure in a natural way, and then the pair consisting
of T (M) together with the projection-to-the-first-component function is called
the tangent bundle of M . For current purposes we do not need to know what
the topology and manifold structure on T (M) are, and we shall ignore them.4 A
vector field X on M is a function from M into T (M) that selects a member of
Tp(M) for each p in M; in other words, a vector field is any right inverse to the
projection-to-the-first-component function under composition.5 An immediate
consequence of Proposition 1.5 is the following expansion of any vector field.

3In the form of Theorem 3.11 of Basic Real Analysis.
4The construction is a chore to carry out. Not needing it, we skip the details. The reader who

would like to see a careful construction of the tangent bundle may wish to look at Proposition 8.14
and the remarks after it in Section VIII.4 of Advanced Real Analysis.

5In the terminology of tangent bundles, a vector field is any section of the tangent bundle.
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Corollary 1.6. Let M be a smooth manifold of dimension m. If (Mα, α) is
any compatible chart for M , say with α = (x1, . . . , xm), and if X is a vector field
on Mα, then

X f (p) =
mX

i=1

@ f
@xi

(p) (Xxi )(p)

for all p in Mα and f in C∞(Mα).

For vector fields we satisfy ourselves with the following definition of
smoothness: the vector field X on M is defined to be smooth on M if Xxi
is smooth for each coordinate function xi of each compatible chart6 on M . From
Corollary 1.6 it is apparent that the set of smooth vector fields on M is closed
under addition and scalar multiplication and is also closed under multiplication
by members of C∞(M). It is therefore a C∞(M) module.

Next we discuss derivatives. Let F : M → N be a smooth function from
a smooth manifold M of dimension m into a smooth manifold N of dimension
n. For any p in M , the function F carries any tangent vector L in Tp(M)
into a tangent vector (DF)p(L) in TF(p)(N ) by the formula (DF)p(L)(g) =
L(g ◦ F) for g in the space CF(p)(N ) on which a tangent vector in TF(p)(N )
operates. The result is a linear function (DF)p : Tp(M) → TF(p)(N ) called the
derivative of F at p. The name “derivative” and the notation (DF)p are a change
from Advanced Real Analysis.7

Proposition 1.7. Let M and N be smooth manifolds of respective dimensions
m and n, and let F : M → N be a smooth function. Fix p in M , let α =
(x1, . . . , xm) be a compatible chart in M about p, and let β = (y1, . . . , yn) be a
compatible chart in N about F(p). Define Fi = yi ◦ F for 1 ≤ i ≤ n. Relative to

the bases
h @

@xj

i

p
of Tp(M) and

h @

@yi

i

F(p)
of TF(p)(N ), the matrix of the linear

function (DF)p : Tp(M) → TF(p)(N ) has size n by m, and its (i, j)th entry is
h@Fi
@uj

Ø
Ø
Ø
Ø
(u1,...,um)=(x1(p),...,xm(p))

i
.

6Section VIII.4 of Advanced Real Analysis shows that the smooth vector fields are exactly the
sections of the tangent bundle that are smooth. We never need to use this fact.

7In Advanced Real Analysis the name was “differential,” and the notation was (dF)p . The need
for a change may be seen in the case that F is a real-valued function, i.e., N = R. In this case,
(DF)p is a member of HomR(Tp(M), TF(p)(R)), and it is being called the “derivative.” The word
“differential” will acquire a different standard meaning later in this section in such a way that (dF)p
is a member of HomR(Tp(M), R). The two range spaces, TF(p)(R) and R, are isomorphic, but
confusion easily arises when the isomorphism is not made explicit. Some authors use the term
“push-forward” in referring to what is being called the the derivative here.
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REMARKS. In other words the matrix in question is the usual derivative matrix
or Jacobian matrix of the set of coordinate functions of the function obtained
by referring F to Euclidean space. Hence the derivative at a point is the object
for smooth manifolds that generalizes the multivariable derivative at a point for
Euclidean space. Accordingly, let us make the definition

h@Fi
@xj

i

p
=

h@Fi
@uj

Ø
Ø
Ø
Ø
(u1,...,un)=(x1(p),...,xn(p))

i
.

PROOF. Application of the definitions gives

(DF)p

≥h @

@xj

i

p

¥
(yi ) =

h @

@xj

i

p
(yi ◦ F)

=
@(yi ◦ F ◦ α−1)

@uj
(x1(p), . . . , xn(p))

=
@Fi
@uj

Ø
Ø
Ø
(u1,...,um)=(x1(p),...,xm(p))

.

The formula in Proposition 1.5 allows us to express any member of TF(p)(N ) in
terms of its values on the local coordinate functions yi , and therefore

(DF)p

≥h @

@xj

i

p

¥
=

nX

i=1

@Fi
@uj

Ø
Ø
Ø
Ø
(u1,...,um)=(x1(p),...,xm(p))

h @

@yi

i

p
for 1 ≤ j ≤ m.

Thus the matrix is as asserted. §

Proposition 1.8 (chain rule). Let M , N , and R be smooth manifolds, and let
F : M → N and G : N → R be smooth functions. If p is in M , then

(D(G ◦ F))p = (DG)F(p) ◦ (DF)p.

PROOF. If L is in Tp(M) and h is in CG(F(p))(R), then the definitions give

(D(G ◦ F))p(L)(h) = L(h ◦ G ◦ F)

= (DF)p(L)(h ◦ G) = (DG)F(p)(DF)p(L)(h),

as asserted. §

Finallywediscuss differential 1 forms anddifferentials. StillwithM as smooth
manifold, for each p ∈ M , let T ∗

p (M) be the dual vector space of Tp(M), i.e.,
the real vector space of all linear functionals on Tp(M). Members of T ∗

p (M) are
called cotangent vectors at p. Consider the set T ∗(M) of all pairs (p, `) such that
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p is inM and ` is in T ∗
p (M). Aswith T (M), the set T ∗(M) can be topologized and

given a smooth manifold structure in a natural way,8 and then the pair consisting
of T ∗(M) together with the projection-to-the-first-component function is called
the cotangent bundle of M . Once again we do not need to know what the
topology and manifold structure are, and we shall ignore them. A differential
1 form on M is a function from M into T ∗(M) that selects a member of T ∗

p (M)
for each p in M; in other words, a differential 1 form is any right inverse to the
projection-to-the-first-component function under composition.9
To get some first examples of differential 1 forms, fix p ∈ M and let f be

any member of C∞(M). Then f carries any germ L in Cp(M) into the germ
(Df )p(L) in C f (p)(R) by the formula

(Df )p(L)(g) = L(g ◦ f ) for all g ∈ C f (p)(R).

Let us take g to be the identity function g0(t) = t on R, no matter what f is. For
this choice of g, the formula reduces to (Df )p(L)(g0) = L f for all L in Tp(M).
If we suppress g0 in this formula and write (d f )p(L) for the left side, the formula
becomes

(d f )p(L) = L f for all L ∈ Tp(M),

andwe obtain a linear functional on Tp(M). This linear functional (d f )p is called
the differential of f at p. As p varies, the result is a differential 1 form d f on
M .
Let us look more closely at this construction for a moment. For f in C∞(M),

we passed from (Df )p, which is a member of HomR(Tp(M), Tf (p)(R)), to
(d f )p, which is amember ofHomR(Tp(M), R). We did so, in effect, by following
the member of HomR(Tp(M), Tf (p)(R)) by a particular isomorphism of Tf (p)(R)
with R.
We just saw that the differentials at p of members of C∞(M) are examples of

members of T ∗
p (M). The proposition below identifies all members of T ∗

p (M).

Proposition 1.9. Let M be a smooth manifold of dimension m, fix p in M ,
and let (Mα, α) be a compatible chart about p with α = (x1, . . . , xm). Then
the differentials (dx1)p, . . . , (dxm)p form the dual basis in T ∗

p (M) to the basis£
@

@x1

§
p, . . . ,

£
@

@xm

§
p of Tp(M). Also if f : M → R is any smooth function on M ,

then

(d f )p =
mX

i=1

≥ @ f
@xi

¥

p
(dxi )p for all p ∈ Mα.

8The details appear in Section VIII.4 of Advanced Real Analysis.
9In the terminology of cotangent bundles, a differential 1 form is any section of the cotangent

bundle.
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PROOF. Taking f = xi and L =
£

@
@xj

§
p in the formula (d f )p(L) = L f , we

obtain (dxi )p
°£

@
@xj

§
p

¢
=

°
@xi
@xj

¢
p = δi j . Hence (dx1)p, . . . (dxm)p indeed forms

the dual basis to the basis
£

@
@x1

§
p, . . . ,

£
@

@xm

§
p of Tp(M).

To prove the displayed equality in the proposition, it is enough to prove that
equality is maintained when both sides are applied to each basis vector

£
@

@xj

§
p of

Tp(M). On the left side we have

(d f )p
h @

@xj

i

p
=

≥ @ f
@xj

¥

p
,

and on the right side we have

mP

i=1

≥ @ f
@xi

¥

p
(dxi )p

≥≥ @ f
@xj

¥

p

¥
=

mP

i=1

≥ @ f
@xi

¥

p
δi j =

≥ @ f
@xj

¥

p
.

These are equal, and the proof is complete. §

According to Proposition 1.9, any differential 1 form ω(p) on the smooth
manifold M expands as

ω(p) =
mX

i=1
ai (p)(dxi )p

in each compatible chart (Mα, α) with α = (x1, . . . , xm). We say that the
differential 1 form ω is smooth if all coefficient functions ai for all compatible
charts are smooth functions.10 Part of the content of Proposition 1.9 is that every
differential 1 form d f with f ∈ C∞(M) is smooth.11

2. Properties of Exterior Algebras

If one looks carefully at the classical integration theorems stated in the Introduc-
tion, one sees that minus signs play an important role in the theory. Why is it that
the right side of the Fundamental Theorem of Calculus reads F(b) − F(a) and
not F(a)−F(b)? Why is it in Green’s Theorem that the region is to lie on the left
of the boundary curve as the curve is traced out? And what are these “important
questions of orientations” that need to be sorted out in the Divergence Theorem?

10Section VIII.4 of Advanced Real Analysis shows that the smooth sections of the cotangent
bundle are exactly the differential 1 forms that are smooth.

11It turns out that not every smooth differential form on a smooth manifold M need be given as
d f for some smooth f . See Problem 8 at the end of the chapter for an example.
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It turns out that all such questions can be resolved by augmenting the heuristic
interpretation of dx that one is often taught. Instead of its being an element of
numerical length, it is to be a onedimensional vector element of length,with both a
magnitude (the usual notion of length) and direction (its sign). In two dimensions
similarly, dx dy is to be thought of as incorporating information about the angle
between the vector dx and the vector dy, thus akin to the area of the parallelogram
spanned by the two vectors in R2, namely the product of their magnitudes by the
sine of the angle between them. As soon as one makes this adjustment, one is led
to think of dx and dy not as commuting objects but as anticommuting objects.12
This section takes up the algebraic preliminaries for dealing with a multiplication
that is anticommutative but is still associative.
ChapterVI ofBasic Algebra defines the tensor algebra T (V ) of a vector space

V over R to be the direct sum over n ∏ 0 of the n-fold tensor product T n(V ) of
V with itself, the 0-fold tensor product being understood to consists just of the
scalars R. The operation of multiplication is written as ⊗. The space T n(V ) is
a vector space with a universal mapping property relative to n-linear functions
on V . The full tensor algebra T (V ) is an associative algebra with a universal
mapping property relative to any linear mapping of V into an associative algebra
A with identity: the linear map extends uniquely to an algebra homomorphism
of T (V ) into A carrying 1 into 1. We take all this as known.
Chapter VI of Basic Algebra speaks also of multilinear forms that are

alternating in the sense that their value is 0 whenever two of the arguments
are equal. Alternating forms are skew symmetric in the sense that if two of
the arguments are interchanged, then the value of the form is multiplied by −1.
Alternating forms will play an important role in what follows.
We shall introduce “exterior algebras” over the field R. If E is a vector space

overR, the exterior algebra
V

(E) is to be an associative algebra, and the elements
of

V
(E) are to include the members of R and all the members of E itself. The

algebra
V

(E) will be defined as a quotient of the tensor algebra T (E), with all
those members of T (E) mapped to 0 that are to represent 0 in the quotient. Its
product operation is written as∧. To force skew symmetry (i.e., y∧ x = −x ∧ y)
for multiplication in the quotient of the embedded members of E , we require that
v ⊗ v maps to 0 in

V
(E) whenever v is in T 1(E). To arrange that the quotient

algebra is as large as possible, we factor out nothing more than is necessary from
T (E). Thus we define the exterior algebra13 of E by the formula

V
(E) = T (E)/I 0,

I 0 =

µ
two-sided ideal in T (E) generated
by all v ⊗ v with v in T 1(E)

∂
.where

12With this thought in mind, we shall be writing dx ∧ dy instead of dx dy. The notation with
the symbol ∧ was already used in the Introduction.

13Sometimes known as Grassmann algebras for historical reasons.
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Then
V

(E) is an associative algebra with identity.
It is clear that I 0 is homogeneous in the sense that I 0 =

L∞
n=0 (I 0 ∩ T n(E)).

Consequently we can write

V
(E) =

∞L

n=0
T n(E)/(I 0 ∩ T n(E)).

We write
Vn(E) for the nth summand on the right side, so that

V
(E) =

∞L

n=0

Vn(E).

Since I 0 ∩ T 0(E) = 0,
V0(E) consists of just the scalar multiples of the identity.

Since I 0 ∩ T 1(E) = 0, the map of E into first-order elements
V1(E) is one-one

onto and is just a copy of E . The product operation in
V

(E) is called the exterior
product orwedge product and is denoted by∧ rather than⊗. Thus the image inVn(E) of the element v1 ⊗ · · · ⊗ vn of T n(E) can be written as v1 ∧ · · · ∧ vn . If
a is in

Vm(E) and b is in
Vn(E), then a ∧ b is in

Vm+n(E). Moreover,
Vn(E)

is generated by elements v1 ∧ · · · ∧ vn with all vj in
V1(E) ∼= E , since T n(E)

is generated by corresponding elements v1 ⊗ · · · ⊗ vn . The defining relations
for

V
(E) force the condition of skew symmetry, vi ∧ vj = −vj ∧ vi for vi and

vj in
V1(E). Writing members of

V
(E) as linear combinations of monomials

and making repeated use of the skew symmetry of multiplication for members ofV1(E), we obtain the following result.

Proposition 1.10. If E is a vector space over R, then

a ∧ b = (−1)mnb ∧ a for a ∈
Vm(E) and b ∈

Vn(E).

PROOF. By linearity in each variable in wedge product, it is enough the prove
the conclusion when a and b are monomials, say a = a1 ∧ · · · ∧ am and b =
b1 ∧ · · · ∧ bn . We induct on m, the base case for the induction being m = 1.
With a ∈

V1(E), the skew symmetry allows us to start from a ∧ b and commute
a to the right one step at a time, until a is on the right side of b. Then we are
introducing n sign changes, and the base case is established. In the general case
we write a = a0 ∧ am with a0 ∈

Vm−1(E) and am ∈
V1(E). Applying the base

case and then the induction hypothesis, we obtain

a ∧ b = a0 ∧ am ∧ b = (−1)na0 ∧ b ∧ am = (−1)n(−1)(m−1)nb ∧ a0 ∧ am,

and a ∧ b = (−1)mnb ∧ a as required. §
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Proposition 1.11. Let E be a real vector space.
(a)Let ∂be then-multilinear function ∂(v1, . . . , vn) = v1∧· · ·∧vn of E×· · ·×E

into
Vn(E). Then (

Vn(E), ∂) has the following universal mapping property:
whenever l is any alternating n-multilinearmap of E×· · ·×E into a vector space
U , then there exists a unique linear map L :

Vn(E) → U such that the diagram

E × · · · × E l
−−−→ U

∂



y

Vn(E)

L

commutes.
(b) Let ∂ be the function that embeds E as

V1(E) ⊆
V

(E). Then (
V

(E), ∂)
has the following universal mapping property: whenever l is any linear map of
E into an associative algebra A with identity such that l(v)2 = 0 for all v ∈ E ,
then there exists a unique algebra homomorphism L :

V
(E) → Awith L(1) = 1

such that the diagram

E l
−−−→ A

∂



y

V
(E)

L

commutes.

PROOF. In both cases uniqueness is trivial. For existence we use the universal
mapping properties of T n(E) and T (E) to produce eL on T n(E) or T (E). If we
can show that eL annihilates the appropriate subspace so as to descend to

Vn(E)
or

V
(E), then the resulting map can be taken as L , and we are done. For (a), we

have eL : T n(E) → U , and we are to show that eL(T n(E) ∩ I 0) = 0, where I 0 is
generated by all v ⊗ v with v in T 1(E). A member of T n(E) ∩ I 0 is thus of the
form

P
ai ⊗ (vi ⊗ vi ) ⊗ bi with each term in T n(E). Each term here is a sum of

pure tensors
x1 ⊗ · · · ⊗ xr ⊗ vi ⊗ vi ⊗ y1 ⊗ · · · ⊗ ys (∗)

with r + 2+ s = n. Since l by assumption takes the value 0 on

x1 × · · · × xr × vi × vi × y1 × · · · × ys,

eL vanishes on (∗), and it follows that eL(T n(E) ∩ I 0) = 0.
For (b) we are to show that eL : T (E) → A vanishes on I 0. Since kereL

is an ideal, it is enough to check that eL vanishes on the generators of I 0. But
eL(v ⊗ v) = l(v)l(v), and the right side is 0 by hypothesis. Thus L(I 0) = 0. §
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Corollary 1.12. If E and F are real vector spaces, then the vector space
HomR(

Vn(E), F) of linear mappings from
Vn(E) into F is canonically isomor-

phic (via restriction to pure tensors) to the vector space of all F-valued alternating
n-multilinear functions on E × · · · × E .

PROOF. Restriction is linear and one-one. It is onto by Proposition 1.10a. §

Corollary 1.13. If E is a real vector space, then the vector space dual (
Vn(E))0

of
Vn(E) is canonically isomorphic (via restriction to pure tensors) to the real

vector space of alternating n-multilinear forms on E × · · · × E .

PROOF. This is the special case F = R of Corollary 1.12. §

Up until now, it has been immaterial whether E is finite dimensional or infinite
dimensional. That circumstance now changes.

Proposition 1.14. Let E be a real vector space of finite dimension N , and let
n be an integer ∏ 0. Then

(a) dim
Vn(E) =

µ
N
n

∂
for 0 ≤ n ≤ N and = 0 for n > N ,

(b) for each integer n with 1 ≤ n ≤ N , there is a canonical linear mapping
L :

Vn(E 0) →
Vn(E)0 such that ( f1 ∧ · · · ∧ fn)(w1 ∧ . . . wn) =

det{ fi (wj )}ni, j=1 for all fi ∈ E 0 and wj ∈ E ,
(c) whenever u1, . . . , uN is a basis of E , then the monomials ui1 ∧ · · · ∧ uin

with 1 ≤ i1 < · · · < in ≤ N form a basis of
Vn(E),

(d) the linearmapping L :
Vn(E 0) →

Vn(E)0 of (c) is an isomorphismonto,
(e) if u1, . . . , uN is a basis of E and u0

1, . . . , u
0
N is the dual basis of E 0, then

the dual basis for
Vn(E 0) to the basis of monomials ui1 ∧ · · · ∧ uin with

1 ≤ i1 < · · · < in ≤ N as in (b) is the basis of monomials u0
i1 ∧ · · · ∧ u0

in
with 1 ≤ i1 < · · · < in ≤ N .

REMARK. A version of some parts of this proposition remains valid even if E
is infinite dimensional, but we shall not pursue the details.

PROOF. Let u1, . . . , uN be a basis of E . For n = 0,
V0(E) consists of the

scalar multiples of the identity, and dim
V0(E) = 1. We may assume therefore

that n > 0. The monomials of degree n in the uj ’s span T n(E), and the same
thing is therefore true of the quotient

Vn(E). Any such monomial in
Vn(E)

with two equal factors is 0 by the alternating condition and can be disregarded.
For the remaining monomials we can permute the factors, using the identity
b ∧ a = −a ∧ b valid for members of

V1(E), to arrange that the indices on the
factors of the monomial are in increasing order. As a result we see the monomials
of degree n in u1, . . . , uN whose indices are in strictly increasing order spanVn(E). If n > N , there are no such monomials, and

Vn(E) = 0. If 0 < n ≤ N ,
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the number of such monomials in
°N
n
¢
. Thus dim

Vn(E) ≤
°N
n
¢
. This gives part

of (a) and allows us to assume that 1 ≤ n ≤ N from now on. Also it proves that
the monomials in (c) form a spanning set for

Vn(E).
For (b), fix f1, . . . , fn in E 0, let w1, . . . , wn be in E , and define

l f1,..., fn (w1, . . . , wn) = det{ fi (wj )}
n
i, j=1.

Then l f1,..., fn is an alternating n-multilinear form on E × · · · × E and extends
by Proposition 1.10a to a linear functional L f1,..., fn :

Vn(E) → R. Next we
let f1, . . . , fn vary, and the result is that l( f1, . . . , fn) = L f1,..., fn defines an
alternating n-multilinear map of E 0 × · · · × E 0 into

Vn(E)0. Its linear extension
L given by Proposition 1.11a maps

Vn(E 0) into
Vn(E)0. This proves (b).

Before proceedingwith the remaining parts, let us prove the displayed formula
(∗) below. Let {u1, . . . , uN } be a basis of E , and let {u0

1, . . . , u
0
N } be the dual basis

of E 0. Suppose that two strictly increasing sets of n-element indices I = (is)ns=1
and J = ( jt)nt=1 between 1 and N are given. The claim is that

det{u0
is (ujt )}

n
s,t=1 =

Ω
1 if ik = jk for 1 ≤ k ≤ n,
0 otherwise.

(∗)

To see this, assume that ik 6= jk for some k, and let l be the least such k. If il < jl ,
then il 6= jt for all t and it follows that u0

il (ujt ) = 0 for 1 ≤ t ≤ n. The matrix
{u0

is (ujt )}
n
s,t=1 has a row of zeros, and its determinant is 0. On the other hand, if

il > jl , then the matrix {u0
is (ujt )}

n
s,t=1 has a column of zeros, and its determinant

is 0. The only other possibility is that ik = jk for 1 ≤ k ≤ n. Then the matrix
{u0

is (ujt )}
n
s,t=1 is the identity, and its determinant is 1. This proves (∗).

With the sets of indices I = (is)ns=1 and J = ( jt)nt=1 as above, define

u0
I = u0

i1 ∧ · · · ∧ u0
is ∧ · · · ∧ u0

in as a member of
Vn(E 0),

uJ = uj1 ∧ · · · ∧ ujs ∧ · · · ∧ ujn as a member of
Vn(E).

What (∗) says, in terms of the mapping L of conclusion (a), is that L(u0
I )(uJ ) =

δI J . It follows from (∗) that the set of all u0
I as I varies through n-element

sets of indices is linearly independent in
Vn(E 0) and that the set of all uJ as J

varies through n-element set of indices is linearly independent in
Vn(E). This

conclusion for
Vn(E) completes the proof of (a) and (c), spanning having been

proved earlier.
In view of (c), the linearmapping in (d) carries a basis to a basis and is therefore

an isomorphism. This proves (d). Conclusion (e) is then immediate from (∗). §

In our applications of this algebraic theory to manifolds, we shall be interested
in the case that E is a tangent space Tp(M) and its dual is the cotangent space
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T ∗
p (M). Let ξ and η be typical vector fields, so that ξp and ηp are members of the
tangent space Tp(M), and let ω and σ be typical differential 1 forms, so that ωp
and σp are members of the cotangent space T ∗

p (M). Then expressions like ξp 7→
ωp(ξp) and ηp 7→ σp(ηp) are meaningful, and we can multiply them, obtaining
a bilinear form (ξp, ηp) 7→ ωp(ξp)σp(ηp). How is the bilinear form (ξp, ηp) 7→
ωp(ξp)σp(ηp) related to the bilinear form (ξp, ηp) 7→ (ωp ∧ σp)(ξp, ηp)? The
answer is given by the corollary of the following proposition, which strips away
the unnecessary information about manifolds. The corollary will be proved by
applying Proposition 1.15 below with V equal to the dual E 0 of E .
Let V be a finite dimensional real vector space. On V × · · · × V , let us define

an n-multilinear function with values in T n(V ) by

(v1, . . . , vn) 7→
1
n!

X

τ∈Sn

(sgn τ)vτ(1) ⊗ · · · ⊗ vτ(n),

where Sn is the symmetric group on n letters, and let A : T n(E) → T n(E) be
its linear extension. We shall call A the antisymmetrizer operator. The image
ofA in T n(V )will be denoted by eVn

(V ), and the members of this subspace will
be called antisymmetrized tensors.

Proposition 1.15. If V is a finite dimensional real vector space, then the
antisymmetrizer operator A satisfies A2 = A. The kernel of A on T n(E) is
exactly T n(E) ∩ I 0, where I 0 is the two-sided ideal of T (V ) generated by all
elements v ⊗ v with v ∈ T 1(V ). Therefore T n(V ) is the vector-space direct sum

T n(V ) = eVn
(V ) ⊕ (T n(V ) ∩ I 0).

REMARK. In view of this proposition, the quotient map T n(V ) →
Vn(V )

carries eVn
(V ) one-one onto

Vn(V ). Thus eVn
(V ) can be viewed as a copy ofVn(V ) embedded as a direct summand of T n(V ).

PROOF. We have

A2(v1 ⊗ · · · ⊗ vn) =
1

(n!)2
X

σ,τ∈Sn

(sgn στ)vστ(1) ⊗ · · · ⊗ vστ(n)

=
1

(n!)2
X

σ∈Sn

X

ρ∈Sn,
(ρ=στ)

(sgnρ)vρ(1) ⊗ · · · ⊗ vρ(n)

=
1
n!

X

ρ∈Sn

A(v1 ⊗ · · · ⊗ vn)

= A(v1 ⊗ · · · ⊗ vn).
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Hence A2 = A. Consequently T n(E) is the direct sum of imageA and kerA,
and we are left with identifying kerA as T n(V ) ∩ I 0.
The subspace T n(V ) ∩ I 0 is spanned by elements

x1 ⊗ · · · ⊗ xr ⊗ v ⊗ v ⊗ y1 ⊗ · · · ⊗ ys

with r + 2 + s = n, and the antisymmetrizer A certainly vanishes on such
elements. Hence T n(V ) ∩ I 0 ⊆ kerA. Arguing by contradiction, suppose
that the inclusion is strict, say with t in kerA but t not in T n(V ) ∩ I 0. Let q
be the quotient map T n(V ) →

Vn(V ). The kernel of q is T n(V ) ∩ I 0, and
thus q(t) 6= 0. From Proposition 1.14c the monomials T (V ) in members of a
basis of V that have strictly increasing indices map onto a basis of

V
(V ). The

antisymmetrized version of each of these monomials has to map to a multiple
of the initial monomial, and that multiple has to be nonzero because Proposition
1.14d says that the basis maps to a basis. Consequently q carries eVn

(V ) =
imageA onto

Vn(V ). Thus we can choose t 0 ∈ eVn
(V ) with q(t 0) = q(t).

Then t 0 − t is in ker q = T n(V ) ∩ I 0 ⊆ ker A. Since A(t) = 0, we see that
A(t 0) = 0. Consequently t 0 is in kerA∩ imageA = 0, and we obtain t 0 = 0 and
q(t) = q(t 0) = 0, contradiction. §

Corollary 1.16. Let E be a finite dimensional real vector space, and let E 0 be
its dual. If ω1, . . . , ωn are members of E 0 and v1, . . . , vn are members of E , then

(ω1 ∧ · · · ∧ ωn)(v1, . . . , vn) =
1
n!

X

τ∈Sn

(sgn τ)ω1(vτ(1)) · · ·ωn(vτ(n)).

PROOF. Let σ : T (E 0) →
V

(E 0) be the quotient mapping, let I 0 be the kernel,
and letA be the antisymmetrizer mapping of T (E 0) into itself. If ω1, . . . , ωn are
in E 0, then Proposition 1.15 shows that ω1 ⊗ · · · ⊗ ωn −A(ω1 ⊗ · · · ⊗ ωn) lies
in I 0. Since σ(ω1 ⊗ · · ·⊗ωn) = ω1 ∧ · · · ∧ωn and since a similar equality holds
for each of the terms in A(ω1 ⊗ · · · ⊗ ωn), we obtain

ω1 ∧ · · · ∧ ωn =
1
n!

X

τ∈Sn

(sgn τ)ωτ(1) ∧ · · · ∧ ωτ(n).

Restricting to pure tensors, using the isomorphismofCorollary 1.13with E = V 0,
and making a change a variables in the sum, we can write this conclusion as

(ω1 ∧ · · · ∧ ωn)(v1, . . . , vn) =
1
n!

X

τ∈Sn

(sgn τ)ωτ(1)(v1) · · ·ωτ(n)(vn)

=
1
n!

X

τ∈Sn

(sgn τ)ω1(vτ(1)) · · ·ωn(vτ(n)),

as required. §
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EXAMPLES.
(1) Just before Proposition 1.15, this question was raised: If ξ and η are vector

fields and ω and σ are differential 1 forms, how is the bilinear form (ξp, ηp) 7→
ωp(ξp)σp(ηp) related to the bilinear form (ξp, ηp) 7→ (ωp ∧ σp)(ξp, ηp)?
Corollary 1.16 tells us that the formula is supposed to turn out to be

(ω ∧ σ)(ξ, η) = 1
2
°
ω(ξ)σ(η)

¢
− 1

2
°
ω(η)σ(ξ)

¢
. (∗)

On the level of full tensors before passage to the quotient, the formula with ξ and
η suppressed is

ω ⊗ σ = A(ω ⊗ σ) +
°
error

¢

= 1
2 (ω ⊗ σ − σ ⊗ ω) +

° 1
2 (ω ⊗ σ + σ ⊗ ω)

¢

= 1
2 (ω ⊗ σ − σ ⊗ ω) + 1

2
°
(ω + σ) ⊗ (ω + σ) − (ω ⊗ ω) − (σ ⊗ σ)

¢
,

and it is plain that the term called “error” above is in the ideal I 0 and hence maps
to 0 under passage to the quotient. Thus passage to the quotient indeed yields (*).
(2) This example elaborates on the heuristic interpretation near the beginning

of this section concerning expressions like dx . With M = R2 and p equal to
(0, 0), let us use Corollary 1.16 to evaluate

°
(dx)(0,0) ∧ dy(0,0)

¢°
a
£

@
@x

§
(0,0) + b

£
@
@y

§
(0,0), c

£
@
@x

§
(0,0) + d

£
@
@y

§
(0,0)

¢
.

The corollary says that this expression is 12 times the sum of two terms, separated
by a minus sign, namely that it is

= 1
2

≥≥
(dx)(0,0)

°
a
£

@
@x

§
(0,0) + b

£
@
@y

§
(0,0)

¢
× (dy(0,0))

°
c
£

@
@x

§
(0,0) + d

£
@
@y

§
(0,0)

¢¥

−
≥
(dx)(0,0)

°
c
£

@
@x

§
(0,0) + d

£
@
@y

§
(0,0)

¢
× (dy(0,0))

°
a
£

@
@x

§
(0,0) + b

£
@
@y

§
(0,0)

¢¥
.

Since (dx)(0,0)
°£

@
@x

§
(0,0)

¢
= (dy)(0,0)

°£
@
@y

§
(0,0)

¢
= 1 and (dx)(0,0)

°£
@
@y

§
(0,0)

¢
=

(dy)(0,0)
°£

@
@x

§
(0,0)

¢
= 0, the expression reduces to

= 1
2 (ad − bc).

Except for a sign and the factor 12 , this is just the area of the rectangle in R2

spanned by the vectors
° a
c

¢
and

° b
d

¢
. The factor 12 means that the area is in fact

the area of the triangle spanned by the two vectors rather than the rectangle. Thus
the expression evaluates as the signed area of the spanned simplex.
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(3) This example notes the corresponding calculation for Example 2 when
done in Rn for the point p equal to the origin 0. Here we are to evalaute

°
(dx1)0 ∧ · · · ∧ (dxn)0

¢° nP

j=1
a1 j

£
@

@xj

§
0, . . . ,

nP

j=1
anj

£
@

@xj

§
0
¢
,

and a similar computation shows that the corollary gives 1n! det{ai j }
n
i, j=1, aswill be

shown in the proof of Proposition 1.17 below. Again the geometric significance
of the coefficient 1/n! is that n! is the ratio of the volume of the fundamental
parallelepiped to the volume of the fundamental simplex.

3. Differential Forms and Pullbacks

We introduce differential k forms by analogy with howwe introduced differential
1 forms. Still with M as smooth manifold, for each p ∈ M , let

Vk(T ∗
p (M))

be the kth exterior power of the cotangent space T ∗
p (M) at p on M . In view of

Proposition 1.14d, we can regard this space as the vector space of all alternating
k-linear forms on the product of k copies of Tp(M) with itself. Let

VkT ∗(M)

be the set of all pairs (p, η) such that p is in M and η is in
Vk(T ∗

p (M)). As
with T (M) and T ∗(M), the set

VkT ∗(M) can be topologized and given a smooth
manifold structure in a natural way, and then the pair consisting of

VkT ∗(M)
togetherwith the projection-to-the-first-component function is called the exterior
k bundle of M . Once again we do not need to know what this manifold structure
is, and we shall ignore it. For k > 0, a differential k form on M is a function
from M into

VkT ∗(M) that selects, for each p in M , a member of
VkT ∗(M)

with first component p; in other words, a differential k form is any right inverse to
the projection-to-the-first-component function under composition.14 The integer
k is called the degree of the differential form. The wedge product of any k
differential 1 forms is an example of a differential k form. In any compatible
chart (Mα, α) with α = (x1, . . . , xm), it follows from Propositions 1.9 and 1.14
that any differential k form ω has a unique local expansion

ω(p) =
X

1≤i1<···<ik≤m
ai1,...,ik (p)(dxi1)p ∧ · · · ∧ (dxik )p.

The form15 is said to be smooth on M if all the coefficient functions p 7→
ai1,...,ik (p) in all such coordinate systems are smooth. As usual it is enough to

14In the terminologyof vector bundles, a differential k form is any section of the exterior k bundle.
15Theword form as a generalmatter refers to a scalar-valued function of several variables, always

multilinear in this book but sometimes quadratic or homogenous of some other kind elsewhere in
mathematics. In this book we shall follow the practice of freely using the word “form” as shorthand
for “differential form” when there is no chance of ambiguity.
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have smoothness relative to a family of compatible charts that covers M . We
write ƒk(M) for the real vector space of all smooth differential k forms on M .
The space ƒk(M) is a C∞(M) module.
We extend the definition to the case k = 0 by saying that a differential 0 form

on M is simply a real-valued function on M . The differential 0 form is smooth
if is smooth as a real-valued function. We writeƒ0(M) for the space C∞(M) of
all smooth differential 0 forms on M .
Referring to the unique local expansion that differential forms have, we see

that the wedge product of a member of ƒk(M) and a member of ƒl(M) is a
member ofƒk+l(M); in particular, the wedge product of two smooth differential
forms is smooth. Sometimes we shall consider differential forms of all degrees at
once, takingƒ(M) =

Lm
k=0ƒk(M). The spaceƒ(M) is a C∞(M) module and

an associative algebra. As a consequence of Proposition 1.10, wedge product in
ƒ(M) has the property that

ω ∧ σ = (−1)klσ ∧ ω

whenever ω is in ƒk(M) and σ is in ƒl(M).

The theory of differential formsmakes crucial use of “pullbacks” of differential
forms. The formulas for these are akin to, but more general than, certain change-
of-variables formulas in advanced calculus. If8 : M → N is a smooth function
betweenmanifolds, we describe how8 associates to each k formω on N a certain
k form 8∗ω on M that is known as the pullback of ω. In the case k = 0, a 0
form on N is nothing more than a real-valued function ω on N , and the pullback
of the function ω is just the composition 8∗ω = ω ◦ 8, which is a real-valued
function on M .

EXAMPLE 1. Let M be a smooth manifold of dimension m, and let
(Mα, α) be a compatible chart. If (u1, . . . , um) are standard coordinates on Rm ,
then the coordinates (x1, . . . , xm) on Mα given by xj = uj ◦ α have the property
that xj is the pullback of uj . In symbols, xj = α∗(uj ). Similarly just before
Proposition 1.5 we defined derivations

£
@

@xj

§
p of Tp(M) by

h @ f
@xj

i

p
=

@( f ◦ α−1)

@uj

Ø
Ø
Ø
(u1,...,um)=(x1(p),...,xm(p))

for j = 1, . . . ,m.

In the present terminology, @ f
@xj is therefore defined as the partial derivative with

respect to the j th variable of the pullback function f ◦ α−1.

Pullback on 0 forms isR linear and carries smooth 0 forms to smooth 0 forms.
If ω is a smooth 0 form and f is in C∞(M), then

8∗( f ω) = ( f ω) ◦ 8 = f (ω ◦ 8) = f (8∗ω).



3. Differential Forms and Pullbacks 23

Hence pullback on 0 forms is C∞(M) linear.
For k ∏ 1, the notion of pullback involves the derivative of 8. We start with

the case k = 1. Let ω be a 1 form on N . The derivative (D8)p of 8 at a
point p of M is a linear function carrying the tangent space Tp(M) at p into the
tangent space T8(p)(N ) at the point8(p) in N . Thus (D8)p(Xp) is in T8(p)(N )

whenever Xp is in Tp(M). If we apply to this the value ω8(p) of the given 1 form
at 8(p), the result is a linear function from Tp(M) into R, hence a member of
T ∗
p (M). Letting p move, we thus obtain a 1 form8∗ω on M from the definition

(8∗ω)p(Xp) = (ω8(p))
°
(D8)p(Xp)

¢
.

We take 8∗ω as the pullback of the 1 form ω from N to M .
Let us observe that the definition depends only on germs at p, specifically on

8(p) and (D8)p, not otherwise on the behavior of 8 in a neighborhood of p.
To underscore this point, we can introduce a more primitive notion of pullback
as the linear function8#

p : T ∗
8(p)(N ) → T ∗

p (M) defined by

(8#
p(ω8(p)))(Xp) = (ω8(p))

°
(D8)p(Xp)

¢
.

Then the pullback 8∗ω of a differential form ω on N is the differential form on
M given by

(8∗ω)p = 8#
p(ω8(p)).

The definition of8∗ via8# will play a role in Proposition 1.18whenwe assemble
a list of properties of pullback.

EXAMPLE 2. Let8 be a smoothmap from an open subsetU ofRm into an open
subset V ofRn . Let us use the standard Euclidean coordinates (x1, . . . , xm) inRm

and (y1, . . . , yn) in Rn , and let us write the entries of 8 as (81, . . . ,8n). This
situation is an instance of the theorywhereM = U , N = V , and each ofM and N
is coveredbya single chart. We shall compute thepullback8∗(dyi ) for 1 ≤ i ≤ n,
obtaining the result that 8∗(dyi ) = d8i . Since the set {(dy1)q , . . . , (dyn)q} is a
basis of T ∗

q (V ) for each q in V , we will in essence have computed the pullback
of every differential 1 form on V .
By definition,8∗(dyi ) is the 1 form given by

(8∗(dyi ))p(Xp) = (dyi )8(p)((D8)p(Xp)) for every vector field X on U.

The right side is

= (dyi )8(p)((D8)p
° mP

j=1
(Xxj )p

£
@

@xj

§
p

¢
by Proposition 1.5

= (dyi )8(p)
° mP

j=1
(Xxj )p(D8)p

°£
@

@xj

§
p

¢¢
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= (dyi )8(p)
° mP

j=1

nP

k=1
(Xxj )p

°
@8k
@xj

¢
p

£
@

@yk

§
8(p)

¢
by Proposition 1.7

=
mP

j=1
(Xxj )p

°
@8i
@xj

¢
p since (dyi )8(p)

°£
@

@yk

§
8(p)

¢
= δik

= Xp8i by Proposition 1.6
= (d8i )p(Xp) by definition of (d8i )p.

Therefore (8∗(dyi ))p = (d8i )p . In fact, the computation actually showed that
8#
p(dyi )8(p) = (d8i )p. Anyway, the final result is that 8∗(dyi ) = d8i .

EXAMPLE 3. Let 8 : M → N be a smooth map from a smooth manifold
M of dimension m to a smooth manifold N of dimension n. Let p be in M ,
and introduce local coordinates (y1, . . . , yn) about8(p) and (x1, . . . , xm) about
p. The understanding is that (Nβ, β) is a compatible chart about 8(p) with
β = (y1, . . . , yn) and that (Mα, α) is a compatible chart about p with Mα chosen
small enough so that8(Mα) ⊆ Nβ . We compute the pullback8∗(dyi ) to Mα of
the 1 form dyi on Nβ for 1 ≤ i ≤ n.
In fact, once we define 8i = yi ◦ 8, both the result 8∗(dyi ) = d8i and

the computation, step by step, are the same as in Example 2. We have only to
take into account the definitions of partial derivatives

£
@

@xj

§
p and

£
@

@yi

§
8(p) that

were given in Proposition 1.6 and its remark. Observe that as in Example 2, the
computation is actually valid on the more primitive level of8#; we shall use this
observation later in this section in connection with Proposition 1.17.

Let us extend the definition of 8∗ from 1 forms to k forms for all positive
integers k. We still assume that 8 : M → N is a smooth map from a smooth
manifold M of dimension m to a smooth manifold N of dimension n. For fixed
p, the map

ω 7→ 8#
p(ω8(p)) = (8∗ω)p

is linear from T ∗
8(p)(N ) into T ∗

p (M), and we can regard it as a linear function
` from T ∗

8(p)(N ) into the associative algebra
V

(T ∗
p (M)) with the property that

`(v)2 = 0 for all v in T ∗
8(p)(N ). By Proposition 1.11b, ` extends uniquely to

an algebra homomorphism L :
V

(T ∗
8(p)(N )) →

V
(T ∗

p (M)) sending 1 into 1
such that the diagram in Proposition 1.11b commutes. The resulting algebra
homomorphism is the pullback8#

p on the full exterior algebra:

8#
p :

V
(T ∗

8(p)(N )) →
V

(T ∗
p (M)).

By the nature of the construction, 8#
p carries

Vk(T ∗
8(p)(N )) into

Vk(T ∗
p (M))

for each integer k ∏ 0. Letting p vary, we define (8∗ω)p = 8#
p(ω8(p)) for
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ω ∈
Vk(T ∗

8(p)(N )), and we see that 8∗ carries the space ƒk(N ) of differential
k forms on N into the space ƒk(M) of differential k forms on M . For any
differential k form ω on N , we call8∗ω the pullback of ω to a differential form
on M .

EXAMPLE 4. Let notation for a smooth map 8 : M → N be as in Example 3.
As a consequence of Propositions 1.9 and 1.14, any differential k form ω on N
has a unique local expansion

ω(8(p)) =
X

1≤i1<···<ik≤n
ai1,...,ik (8(p)) (dyi1)8(p) ∧ · · · ∧ (dyik )8(p).

The pullback operation 8∗ is an algebra homomorphism of exterior algebras, it
depends only on germs at p, it sends the function ω ◦ 8 into ω, and Example 3
shows that its value on (dyi )p is (d8i )p. Therefore

(8∗ω)(p) =
X

1≤i1<···<ik≤n
(ai1,...,ik ◦ 8)(p) (d8i1)p ∧ · · · ∧ (d8ik )p.

This is a perfectly fine way to write the answer for many purposes. On the
other hand, if we want to involve the differentials (dx1)p, . . . , (dxm)p on the
right side, then we can substitute for each (d8ir )p and use the formula

(d8ir )p =
mP

j=1

£ @8ir
@xj

§
p (dxj )p to expand out the result in terms of expressions

(dxj1)p∧· · ·∧(dxjk ). Finallywe can simplify. As a general rule, this computation
is fairly messy. The following proposition isolates one important case in which
the result is tidy.

Proposition 1.17. If 8 is a smooth map from M into N with dimM =
dim N = n, if p is inM , and if (x1, . . . , xn) and (y1, . . . , yn) are local coordinates
about p and 8(p), then

8∗(dy1 ∧ · · · ∧ dyn)8(p) = det
Ω

@8i

@xj

Ø
Ø
Ø
Ø
p

æ

i, j=1,...,n
(dx1)p ∧ · · · ∧ (dxn)p.

PROOF. Example 4 above shows that

8∗(dy1 ∧ · · · ∧ dyn)8(p) = (d81)p ∧ · · · ∧ (d8n)p, (∗)

and Proposition 1.9 shows that

(d8i )p =
mP

j=1

≥@8i

@xj

¥

p
(dxj )p for all p ∈ Mα. (∗∗)
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Successively we use Corollary 1.16 and (∗∗) to calculate that

(d81)p ∧ · · · ∧ (d8n)p

≥h @

@x1

i

p
, . . . ,

h @

@xn

i

p

¥

=
1
n!

P

τ∈Sn

(sgn τ)(d81)p

≥h @

@xτ(1)

i

p

¥
· · · (d8n)p

≥h @

@xτ(n)

i

p

¥

=
1
n!

P

τ∈Sn

(sgn τ)
≥ @81

@xτ(1)

¥

p
· · ·

≥ @8n

@xτ(n)

¥

p

= det
Ω

@8i

@xj

Ø
Ø
Ø
Ø
p

æ

i, j=1,...,n
. (†)

Since
(dx1)p ∧ · · · ∧ (dxn)p

≥h @

@x1

i

p
, . . . ,

h @

@xn

i

p

¥
= 1

by Proposition 1.14e and since the space of alternating n-linear forms on Tp(M)
is 1 dimensional by Proposition 1.14a, we see from (†) that

(d81)p ∧ · · · ∧ (d8n)p = det
Ω

@8i

@xj

Ø
Ø
Ø
Ø
p

æ

i, j=1,...,n
(dx1)p ∧ · · · ∧ (dxn)p.

The proposition then follows from (∗). §

We conclude this section by giving another application of Example 4.

Proposition 1.18. If8 : M → N is a smoothmap between smoothmanifolds,
then pullbacks to M of differential forms on N have the following properties:

(a) for k ∏ 0, 8∗(ω1 + ω2) = 8∗ω1 + 8∗ω2 whenever ω1 and ω2 are
differential k forms on N ,

(b) for k ∏ 0, 8∗(cω) = c8∗(ω) whenever c is in R and ω is a differential
k form on N ,

(c) for k ∏ 0, 8∗ω is a smooth differential k form on M whenever ω is a
smooth differential k form on N ,

(d) for k ∏ 0, 8∗( f ω) = f8∗ω whenever ω is a differential k form on N
and f : M → R is a real-valued function, and f ω is smooth if f and ω
are both smooth,

(e) for k ∏ 0 and l ∏ 0, 8∗(ω1 ∧ ω2) = 8∗ω1 ∧ 8∗ω2 whenever ω1 is a
differential k form on N and ω2 is a differential l form on N ,

(f) (9 ◦ 8)∗ω = 8∗(9∗ω) whenever 9 : N → R is another smooth map
between smooth manifolds and ω is a differential form on R.
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PROOF. Conclusions (a), (b), and (e) are immediate consequences of the fact
that 8∗ can be defined in terms of 8#, which is an algebra homomorphism.
Conclusion (c) follows from the formula for pullback given in Example 4. In
(d), the equality 8∗( f ω) = f8∗ω reflects the linearity over R of 8# at each
point. The conclusion about smoothness follows from the formula in Example 4.
Conclusion (f) follows immediately by tracking down the definitions. §

4. Exterior Derivative

The exterior derivative is an extension of the operator d, which so far carries
smooth functions (i.e., 0 forms) into smooth 1 forms, to an operator sending
smooth forms of any degree into smooth forms of the next higher degree. The
original motivation for the definition of d on differential forms of degree∏ 1 was
from its appearance in Stokes’s Theorem.
Even though we do not yet have Stokes’s Theorem at hand, let us elaborate a

bit. Recall from elementary calculus that the Fundamental Theorem of Calculus,
saying that Z 1

0
f 0(x) dx = f (1) − f (0),

can be motivated heuristically by the approximations

Z 1

0
f (x) dx ≈

nP

k=1

1
n f 0( kn ) ≈

nP

k=1
[ f ( kn ) − f ( k−1n )] = f (1) − f (0).

Here the first≈ refers to the approximation of the Riemann integral by a Riemann
sum, the second ≈ uses the Mean Value Theorem and the continuity of f 0, and
the equality on the right takes into account the telescoping nature of the sum. The
equality of the Fundamental Theorem says that the aggregate of the infinitesimal
change of f over the interval equals the difference between the values of f at the
endpoints.
Nineteenth century mathematicians and physicists used this kind of reasoning

in three dimensions to compute the total “flux” of a fluid or radiant energy
across a given curve or surface, using an integral to express the aggregate of the
infinitesimal flux and an integral in one less dimension to express the total. The
infinitesimal changeswerewritten in terms of the differential operators grad, curl,
and div. Later it was seen that all three operators were instances of one operator
that could be generalized to more dimensions. The relevant versions of Stokes’s
Theorem appear in the Introduction. The operator in question was the exterior
derivative d, and we shall see its relation to grad, curl, and div momentarily.
Because of this convoluted history it would be somewhat artificial to begin

with simple geometrically motivated axioms for the general operator d, derive
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what d must be, and then prove existence and uniqueness. Instead we shall start
with an explicit formula for d in the context of Rm and its open subsets, derive
certain properties of d, and then show how d can be defined on smoothmanifolds.

Thus for now we work with the smooth manifold Rm , which has an atlas
consisting of one chart (Rm, 1), the mapping 1 being the identity mapping onRm .
We can safely ignore 1 for the time being. The coordinates are (x1, . . . , xm). We
saw in Section 3 for k ∏ 0 that ƒk(Rm) consists exactly of all differential forms

ω(p) =
X

1≤i1<···<ik≤m
ai1,...,ik (p)(dxi1)p ∧ · · · ∧ (dxik )p

with all coefficients ai1,...,ik (p) in C∞(Rm) and that the expansion of ƒ in this
way is unique.16 Let us abbreviate this expansion17 in obvious fashion as

ω =
X

I
aI dxI ,

the sum running over all strictly increasing sequences I of k integers between 1
and m.
We define an R linear operator d : ƒk(Rm) → ƒk+1(Rm) by

d
°X

I
aI dxI

¢
=

X

I
(daI ) ∧ dxI .

This operator is called exterior differentiation. For the special case k = 0, the
operator d reduces to the passage from a smooth function f to its differential d f
as defined in Section 1.
The sumƒ(Rm) =

Lm
k=0ƒk(Rm) is the space of all smooth differential forms

on Rm . It is an associative algebra over R and is also a C∞(Rm) module. When
it is convenient to do so, we can regard d as an R linear function from ƒ(Rm)
into itself.

EXAMPLE 1. InR2, let uswrite (x, y) for the coordinates. TheC∞(R2)module
ƒk(R2) is nonzero for k = 0, 1, 2, and a free basis in the three cases consists of
{1}, {dx, dy}, and {dx ∧ dy}. On 0 forms, d acts by d f = @ f

@x dx + @ f
@y dy, on

1 forms, d acts by

d(p dx + q dy) =
° @q

@x − @p
@y

¢
(dx ∧ dy),

and on 2 forms, d acts as 0.
16For k = 0, the only such increasing sequence (i1, . . . , im) with 1 ≤ i1 < · · · < ik ≤ m is the

empty sequence, and in this case the wedge product (dxi1 )p ∧ · · · ∧ (dxik )p is understood to be the
identity element of ƒ(Rm).

17The existence and uniqueness of this expansion means in the terminology of Section VIII.1 of
Basic Algebra, that ƒk(Rm) is a free C∞(Rm) module with free basis the various dxI .
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EXAMPLE 2. In R3, let us write (x, y, z) for the coordinates. The C∞(R3)
module ƒk(R3) is nonzero for k = 0, 1, 2, 3, and a free basis in the four cases
consists of {1}, {dx, dy, dz}, {dy ∧ dz, dz ∧ dx, dx ∧ dy}, and {dx ∧ dy ∧ dz}.
On 0 forms, d acts by d f = @ f

@x dx+ @ f
@y dy+ @ f

@z dz, and we can identify this with
the vector-valued function

grad f =






@ f
@x
@ f
@y
@ f
@z




 .

On 1 forms, d acts by

d(p dx + q dy + r dz)

=
°

@r
@y − @q

@z
¢
(dy ∧ dz) +

° @p
@z − @r

@x
¢
(dz ∧ dx) +

° @q
@x − @p

@y
¢
(dx ∧ dy),

and we can identify this with the vector-valued function

curl

√ p
q
r

!

=






@r
@y − @q

@z
@p
@z − @r

@x
@q
@x − @p

@y




 .

On 2 forms, d acts by

d
°
a dy ∧ dz + b dz ∧ dx + c dx ∧ dy

¢
=

°
@a
@x + @b

@y + @c
@z

¢
(dx ∧ dy ∧ dz),

and we can identify this with the real-valued function

div

√ a
b
c

!

=
@a
@x

+
@b
@y

+
@c
@z

.

Lemma 1.19. If I is a strictly increasing tuple of k integers from 1 to m and
J is a strictly increasing tuple of l integers from 1 to m, then

dxI ∧ dxJ =

Ω
0 if I and J have an integer in common
ε dxK if I and J have no integer in common,

where ε = ±1 and K is the union of I and J with the terms rearranged to be
strictly increasing.
PROOF. If any factor of dxI matches a factor of dxJ , then dxI ∧ dxJ = 0

by the alternating property. Otherwise we can interchange individual terms of
dxI ∧ dxJ repeatedly until the indices are in increasing order. Each interchange
introduces a minus sign. §
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Proposition 1.20. The operator d on ƒ(Rm) is an antiderivation in the sense
that if ω is in ƒk(Rm) and σ is in ƒl(Rm), then

d(ω ∧ σ) = dω ∧ σ + (−1)kω ∧ dσ.

PROOF. Since d is R linear and wedge product is R linear in each variable, we
may assume that ω = f I dxI and σ = gJ dxJ , where I is a strictly increasing
tuple of k integers from 1 to m and J is a a strictly increasing tuple of l integers
from 1 to m. By Lemma 1.19, dxI ∧ dxJ = εdxK for some strictly increasing
(k + l)-tuple of integers, where ε is 0 or ±1. Then we have

d( f I dxI ∧ gJ dxJ )
= d( f I gJ dxI ∧ dxJ )
= εd( f I gJ dxK ) by Lemma 1.19
= εd( f I gJ ) ∧ dxK by definition of d
= εgJ d fI ∧ dxK + ε f I dgJ ∧ dxK by the product rule

for derivatives
= gJ d fI ∧ dxI ∧ dxJ + f I dgJ ∧ dxI ∧ dxJ
= (d fI ∧ dxI ) ∧ gJ dxJ + (−1)k f I dxI ∧ dgJ ∧ dxJ by Proposition 1.16

= d( f I dxI ) ∧ (gJ dxJ ) + (−1)k f I dxI ∧ d(gJ ∧ dxJ )). §

Lemma 1.21. For k ∏ 1, whenever u1, . . . , uk are members of C∞(Rm), then
d(du1 ∧ · · · ∧ duk) = 0.

PROOF. We induct on k. For k = 1, the fact that u =
P

j
@u
@xj dxj means that

we have
d(du) =

P

j
d
°

@u
@xj dxj

¢
=

P

j,i

@
@xi

@u
@xj dxi ∧ dxj .

On the right side the terms with i = j are 0 since dxi ∧ dxi = 0, and a term with
i < j cancels a term with i > j since @2u

@xi@xj = @2u
@xj@xi and since dxi ∧ dxj =

−dxj ∧ dxi . This proves the lemma for k = 1. Inductively assuming the result
for k = r − 1, we use Proposition 1.20 to write

d(du1∧· · ·∧dur ) = d(du1∧· · · dur−1)∧dur − (du1∧· · ·∧dur−1)∧d(dur ).

The first term on the right side is 0 by the case k = r − 1 of the lemma, and the
second term on the right side is 0 by the case k = 1 of the lemma. This completes
the induction and the proof. §
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Theorem 1.22. The operator d on ƒ(Rm) is independent of coordinates
in the following sense: Let (u1, . . . , um) be any other system of coordinates
on Rm related to (x1, . . . , xm) by a diffeomorphism of Rm . For each strictly
increasing sequence I = {i1, . . . , ik} of k integers between 1 and m, let duI =
dui1 ∧ · · · ∧ duik . If ω =

P
I aI duI is the expansion of a member ω of ƒk(Rm)

for k ∏ 0 in terms of the forms duI , then dω is given by dω =
P

I daI ∧ duI .
PROOF. We have

dω =
X

I
d(aI duI )

=
X

I
daI ∧ duI + d(duI ) by Proposition 1.20

=
X

I
daI ∧ duI by Lemma 1.21. §

The results we have just established for ƒ(Rm) in Lemma 1.19 through
Theorem 1.22 remain valid for any nonempty subset U of Rm in place of Rm

itself, and the proofs need no changes.
Of particular interest is what Theorem 1.22 is saying for the diffeomorphism

that arises between two open subsets of Rm when two compatible charts of an
m dimensional smooth manifold M overlap. Thus let (Mα, α) and (Mβ, β) be
compatible charts of M with Mα ∩ Mβ 6= ∅. The compatibility condition is
that β ◦ α−1 : α(Mα ∩ Mβ) → β(Mα ∩ Mβ) is smooth and so is its inverse
α ◦ β−1 : β(Mα ∩ Mβ) → α(Mα ∩ Mβ). Theorem 1.22 says that d takes the
same form in the coordinate systems of these two open sets. In other words, d
can be consistently defined on Mα and Mβ by the usual formula d

°P
I aI dxI

¢
=P

I (daI ∧ dxI ), and d becomes globally defined on M . In short, d extends to an
operator on the smooth manifold M , carrying ƒk(M) to ƒk+1(M) for all k ∏ 0.
Let us summarize and collect the properties of d that follow at once.

Proposition 1.23. If M is a smooth manifold, then the exterior derivative
operator d is well defined on M and carriesƒk(M) intoƒk+1(M) for all integers
k ∏ 0. It has the properties that

(a) d(ω ∧ σ) = dω ∧ σ + (−1)kω ∧ dσ whenever ω is in ƒk(M) and σ is
in ƒl(N ),

(b) d(dω) = 0 whenever ω is in ƒk(M).

PROOF. Conclusion (a) is an instance of Proposition 1.20. For conclusion (b),
it is enough to consider d2 of a form f dxI . Conclusion (a) gives

d2( f dxI ) = d(d f ∧ dxI ) = d2 f ∧ dxI − f ∧ d(dxI ).

The term d2 f was shown to be 0 in the proof of Lemma 1.21, and the term d(dxI )
equals 0 by the conclusion of Lemma 1.21. §
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We shall need one further property of the exterior derivative.

Proposition1.24. Exterior derivative commuteswith pullback in the following
sense: if 8 : M → N is a smooth map between smooth manifolds and if ω is in
ƒk(N ) with k ∏ 0, then

d(8∗ω) = 8∗(dω).

PROOF. Let (x1, . . . , xm) and (y1, . . . , yn) be local coordinates about p in M
and8(p) in N . We begin with the case k = 0, for which ω reduces to a member
f of C∞(N ). Then

(d(8∗ f ))p = d(( f ◦ 8))p by definition of 8∗ on functions

=
P

j

@( f ◦8)(p)
@xj (dxj )p by Proposition 1.9

=
P

i, j

@ f
@yi (8(p)) @8i

@xj (p) (dxj )p by the chain rule

=
P

i

@ f
@yi (8(p)) (d8i )p by Proposition 1.9

=
P

i

@ f
@yi (8(p))8#

p((dyi )8(p)) by Example 2 in Section 3

= 8#
p
°P

i

@ f
@yi (8(p))(dyi )8(p)

¢
by linearity of 8#

p

= 8#
p((d f )8(p)) by Proposition 1.9

= 8∗(d f )p by definition of 8∗ on 1 forms
in terms of 8#,

and the case k = 0 is proved. For general k ∏ 1, let a member
ω =

P

1≤i1<···<ik≤n
ai1,...,ik (q) (dyi1)q ∧ · · · ∧ (dyik )q

be given in ƒk(N ), and abbreviate it as ω =
P

I
aI (q) (dyI )q . Then

d(8∗ω)p = d
°P

I
aI (8(p)) (d8I )p

¢
by Example 4 in Section 3

=
P

I
(daI )8(p) ∧ (d8I )p by Proposition 1.23

= 8∗
°P

I
(daI )p ∧ (dyI )p

¢
by definition of 8∗

= 8∗(dω)p. §
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5. Smooth Partitions of Unity

A partition of unity on a smoothmanifold is a system of nonnegative real-valued
smooth functions with sum one such that each point has a neighborhood on which
only finitely many of the functions are not identically zero. The existence of this
neighborhood for each point is a condition that removes all questions about limits
from the construction.
Historically partitions of unity arose in an effort to make more flexible the

requirement that a topological space be decomposed into disjoint subsets for some
purpose. Triangulations of manifolds in the subject of topology were notable
examples. A different example from Basic Real Analysis is the rendering in
Section III.13 of an annulus as the union of four quarters of an annulus in order
to be able to apply Green’s Theorem. In any event a decomposition into disjoint
subsets is in effect a system of indicator functions18 with sum identically one.
By allowing the use of other functions with values between 0 and 1, we get less
precision in distinguishing the disjoint sets, but in compensation we are allowed
to insist that the functions be smooth and hence enjoy nicer analytic properties.

Theorem 1.25. Let M be a smooth manifold, let K be a nonempty compact
subset, and let {Ui | 1 ≤ i ≤ r} be a finite open cover of K . Then there exist
functions fi in C∞(M) for 1 ≤ i ≤ r , taking values between 0 and 1 such that

each fi is identically 0 off a compact subset ofUi and
rP

i=1
fi is identically 1 on K .

REMARK. The language that is used as shorthand for the conclusion of this
theorem is that the set { fi } of functions is a smooth partition of unity of M
subordinate to the finite open cover {Ui } of K .

We shall use the following lemma, which was proved for Rn as Lemma 3.15
of Basic Real Analysis but is valid in any locally compact separable metric space
with no essential change in proof.19

Lemma 1.26. In a smooth manifold M ,
(a) if L is a compact set and U is an open set with L ⊆ U , then there exists

an open set V with V cl compact and L ⊆ V ⊆ V cl ⊆ U ,
(b) if K is a compact set and {U1, . . . ,Ur } is a finite open cover of K , then

there exists an open cover {V1, . . . , Vr } of K such that V cli is a compact
subset of Ui for each i .

18Indicator functions are real-valued functions taking only the values 0 and 1.
19A sufficiently large closed ball in the proof of Lemma 3.15 is to be replaced by a member of

the exhausting sequence that is sufficiently far along in the sequence.
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Lemma 1.27. Let M be a smooth manifold, K be a nonempty compact subset
ofM , and letU be an open subset ofM containing K and having compact closure
inM . Then there exists a function f inC∞(M) such that f is everywhere positive
on K and f vanishes off a compact subset of U .

PROOF. For each point p of K , choose a compatible chart (Mα,p, αp) about
p. Without loss of generality, we may assume that Mα,p ⊆ U for all p. Then
choose an open neighborhhood M 0

α,p of p whose compact closure lies in Mα,p.
As p varies in K , the sets M 0

α,p form an open cover of K . By compactness of
K , let {M 0

α,p1, . . . ,M
0
α,pl } be a finite subcover. Applying Lemma 1.3 to each chart

Mα,pj , choose a member f j ofC∞(M) that has values in [0, 1], that vanishes off a
compact subset ofMα,pj , and that is identically 1 on the compact subset (M 0

α,pj )
cl.

Then the sum f = f1 + · · · + fl is everywhere positive on the union of the sets
(M 0

α,pj )
cl, hence is everywhere positive on K . Each f j is 0 off a compact subset

of Mα,pj , hence is 0 off a compact subset of U . Therefore f is 0 off a compact
subset of U . §

Lemma 1.28. Let M be a smooth manifold, and let K , V , L , andU be distinct
nonempty subsets with K and L compact, V andU open, and K ⊆ V ⊆ L ⊆ U .
Then there exists a function g in C∞(M) such that g is identically 0 on K , is
everywhere positive on L − V , and is compactly supported in U .

PROOF. For each point p of L−V , choose a compatible chart (Mα,p, αp) about
p. Since p is not in K , we may without loss of generality assume that Mα,p does
not meet K but is contained in U . Then choose an open neighborhhood M 0

α,p of
p whose closure is compact and lies in Mα,p. As p varies in L−V , the sets M 0

α,p
form an open cover of L − V . By compactness of L − V , let {M 0

α,p1, . . . ,M
0
α,pl }

be a finite subcover.
Applying Lemma 1.3 to each of the charts (Mα,pj , αp), choose a member gj of

C∞(M) that has values in [0, 1], that vanishes off a compact subset of Mα,pj , and
that is identically 1 on the compact set (M 0

α,pj )
cl. Then the sum g = g1+· · ·+ gl

is everywhere positive on the union of the sets (M 0
α,pj )

cl, hence is everywhere
positive on L − V . Each gj is 0 off a compact subset of Mα,pj , and thus g is
identically 0 on K . Each gj is compactly supported in Mα,pj and therefore in U .
Thus g is compactly supported in U . §

PROOF OF THEOREM 1.25. Apply Lemma 1.26b to produce an open cover
{W1, . . . ,Wr } of K such that W cl

i is compact and W cl
i ⊆ Ui for each i with

1 ≤ i ≤ r . Then apply it a second time to produce an open cover {V1, . . . , Vr } of
K such that V cli is compact and V cli ⊆ Wi for each i . Put V = V1 ∪ · · · ∪ Vr and
W = W1 ∪ · · · ∪Wr . Lemma 1.27 produces a function hi ∏ 0 in C∞(M) that is
everywhere positive on V cli and is supported in a compact subset Si of Wi . Then
h = h1+ · · ·+ hr is smooth on M , is everywhere positive on V and hence on K ,
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is ∏ 0 everywhere, and is identically 0 off the compact subset S = S1 ∪ · · · ∪ Sr
of W .
Put L = W cl. Using an exhausting sequence for M , choose an open set

U containing L and having compact closure in M . Application of Lemma 1.28
produces a function g inC∞(M) that is identically 0 on K , is everywhere positive
on L − V , and is compactly supported in U . We wish to define

fi =

Ω
hi/(h + g) on W
0 on Sc.

(∗)

The denominator h+g is nowhere 0 onW since h is everywhere positive on V and
g is everywhere positive on the superset L − V of W − V . The two expressions
for fi in (∗) are both smooth on their respective open domains W and Sc, and
they agree on the overlap W ∩ Sc because hi is identically 0 off S. Finally fi is
defined on all of M by (∗) because S ⊆ W . Therefore (∗) makes fi into a well
defined member of C∞(M).
Plainly each fi is ∏ 0 everywhere and is identically 0 off the compact subset

Si of Wi ⊆ Ui . The sum
rP

i=1
fi equals h/(h + g) on W . Since W ⊇ K and since

g vanishes on K ,
rP

i=1
fi is identically 1 on K . Thus the functions fi have the

required properties. §

Twomore general results are possible, but theywill not really be needed for our
purposes and we shall omit their proofs. They both construct smooth partitions
of unity relative to an open cover {Uα} of a smooth manifold M with an index
set I whose typical member is written as α. The partitions of unity are to be
“locally finite” in the sense that each point p of M has an open neighborhood on
which only finitely many of the functions are not identically 0. The following
two situations are of interest:

(1) The functions in the partition of unity are indexed by the same set I , and
the function fα with index α has (closed) support contained in Uα.

(2) Each function in the partition of unity has compact support in some Uα,
but the index set for the functions is allowed to be larger than the set I .

The example ofM = Rwith cover {R} shows thatwe cannot insist onmaintaining
the same index set I for the members of the smooth of unity if we insist also on
compact support for the functions. But we can insist on either condition (1) or
condition (2). That is the combined conclusion of the two more general results.
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6. Orientation and Integration on Smooth Manifolds

Let M be a smooth manifold of dimension m; we emphasize that M need not
be connected. Our primary interest in this section will be in integrating smooth
differential forms of the top degreem onM , since the content of Stokes’s Theorem
in that two specific integrals of such differential forms are equal. For this purpose
we require an “orientation” on M . The orientation that is chosen can affect the
value of the integral. If M has an orientation, we say that M is orientable.
Orientation refers eventually to a left vs. right kind of decision, or to a number

of such decisions. For a smooth manifold M of dimension m ∏ 0, the notion
of orientation can be defined in a number of equivalent ways,20 and we use a
definition that leads to integration as quickly as possible.
Before getting started, let us observe that any manifold is locally connected

because each point has arbitraily small neighborhoods that are homeomorphic
with open Euclidean balls, hence connected. Consequently the connected com-
ponents of a manifold are necessarily open. Charts about a point p are allowed to
meet more than one component, but it will often be helpful to think of each chart
as small enough so as to be connected and therefore to lie in a single connected
component of M .
Let us set aside the special case m = 0 for now, returning to it after some

examples, since some special remarks are appropriate for it. For M of dimension
m ∏ 1, we say that M is oriented if an atlas {(Mα, α)} of compatible charts
is given with the property that the m-by-m derivative matrix of each coordinate
change

β ◦ α−1 : α(Mα ∩ Mβ) → β(Mα ∩ Mβ)

has everywhere positive determinant. Proposition 1.30 below will show that
M can be oriented if and only if M admits a nowhere vanishing differential
m form. Once that proposition is in hand, an “orientation” will be defined to be
an equivalence class of such forms, two such being equivalent if the one is an
everywhere positive function times the other. But we do not need Proposition
1.30 and the definition of orientation yet.
A smooth manifold that is oriented by some atlas is said to be orientable,

otherwise not orientable. It is often easy to show that a certain manifold is
orientable. Showing that a manifold is not orientable tends to be harder. Below
we shall see examples of both situations.

20Our definition will be given after four examples below. A frequently used definition elsewhere
involves singling out an equivalence class of ordered bases of the tangent space Tp(M) at each
p, two such bases being equivalent if the one is carried to the other by a linear function with
positive determinant. Orientability means that this process can be carried out is a way that depends
continuously on p in M , and an orientation is any such choice of continuously varying equivalence
classes for all points of M .
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When an atlas {(Mα, α)} exhibits M as oriented, a compatible chart (U, ϕ) is
said to be positive relative to {(Mα, α)} if the derivative matrix of ϕ ◦ α−1 has
everywhere positive determinant for allα. We always have the option of adjoining
to the given atlas of charts for an oriented M any or all other compatible charts
(U, ϕ) that are positive relative to all (Mα, α), and M will still be oriented.

EXAMPLE 1. M equal toRm . The standard atlas forRm has just one chart in it,
consisting of the open setRm and the identity mapping. The standard atlas makes
Rm oriented, and the orientation is called the standardorientation. A compatible
chart (U, ϕ) consists of a nonempty open set U of Rm and a diffeomorphism ϕ
of U onto an open subset of Rm . The chart is positive in the sense of the above
definition if the Jacobian matrix

©
@ϕi
@xj

™
has everywhere positive determinant.

EXAMPLE 2. M equal to the circle S1 = {(cos θ, sin θ) ∈ R2 | θ ∈ R}. The
two charts (M1, ϕ1) and (M2, ϕ2) form an atlas under the definitions

M1 = {(cos θ, sin θ) ∈ R2 | −π <θ < π}, ϕ1(x, y) = θ, ϕ1(M1) = (−π, π)

M2 = {(cos θ, sin θ) ∈ R2 | 0 < θ < 2π}, ϕ2(x, y) = θ, ϕ2(M2) = (0, 2π).

With these definitions,
M1 ∩ M2 = {(cos θ, sin θ) ∈ R2 | −π < θ < 0 or 0 < θ < π},

(ϕ2 ◦ ϕ−1
1 )(θ) =

Ω
θ + 2π for − π < θ < 0
θ for 0 < θ < 2π.

The derivative matrix is everywhere the 1-by-1 matrix (1). Thus this atlas of
charts exhibits M as oriented.

EXAMPLE 3. M equal to aMöbius band orMöbius strip. This is a noncompact
2 dimensional manifold that can be visualized in R3. We start from a rectangle
of paper and start to bend it to be taped into the form of a cylinder, but before the
cylinder is taped, we twist one end through half a turn. More precisely theMöbius
band can be parametrized in R3 by two parameters s and t and the equations

x(s, t) = (1+ t
2 cos

s
2 ) cos s

y(s, t) = (1+ t
2 cos

s
2 ) sin s

z(s, t) = t
2 sin

s
2 .

Here s is to vary over a fixed half open interval [c, c+ 2π), and t is to vary over
the open interval (−1, 1). The equations are periodic in the t variable but with a
twist:

(x(s + 2π, t), y(s + 2π, t), z(s + 2π, t)) = (x(s,−t), y(s,−t), z(s,−t)).
Problem 29 at the end of the chapter shows how to define a smooth manifold by
means of two charts from this information, and Proposition 1.33 will lead from
there to a proof that the manifold is not orientable. See Figure 1.2.
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FIGURE 1.2. Möbius band.

EXAMPLE 4. The unit sphere M = Sn in Rn+1. This example was shown to
be a smooth manifold in Section 1. It is orientable for n ∏ 1, as will be deduced
in Problem 15 at the end of the chapter. A general method applies for n ∏ 2, and
a special argument is needed for n = 1.

This is a good time to return to discuss orientation of a manifold M of
dimension 0. In this case M is a discrete set of points, necessarily at most
countable because our manifolds are assumed to be separable. The convention is
that every smooth manifold of dimension 0 is orientable, being oriented by any
atlas, and an orientation on it is the assignment of the scalar +1 or −1 to each
of the points. This case is relevant in seeing how the general version of Stokes’s
Theorem reduces in one dimension to the Fundamental Theorem of Calculus, the
boundary of a finite closed interval of the line being a two-point set. Vacuously
every atlas exhibits a manifold of dimension 0 as oriented, and every chart is
automatically positive.

Let us turn now to integration on smooth manifolds. In the special case that
the manifold is a nonempty open subset U of Euclidean space Rm , we introduce
a notion of integration of smooth m forms. Any such form ω can be written as

ω = F(x1, . . . , xm) dx1 ∧ · · · ∧ dxm,

with F(x1, . . . , xm) equal to some smooth real-valued function of them variables
onU . The integral of this m form, written as

R
U F(x1, . . . , xm) dx1 ∧ · · · ∧ dxm ,

is defined simply to be the Lebesgue integral21
Z

U
F(x1, . . . , xm) dx1 · · · dxm

21Alternatively one can use the Riemann integral if the open setU has a sufficiently well behaved
topological boundary. If the Lebesgue integral is used, there is no restriction on the topological
boundary of the open set U .
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with respect to Lebesgue measure. Notationally we just drop the signs ∧. This
integral raises some convergence questions, but we can avoid them either by
assuming thatω has compact support inU or byworkingwith the linear functional

f 7→
Z

U
f (x1, . . . , xm)F(x1, . . . , xm) dx1 · · · dxm

defined for f in Ccom(U).
When U = Rm , what happens to this definition of integration of m forms on

Rm if the variables are written in a different order? For example, suppose that
the positions of x1 and x2 are interchanged. The coefficient F of ω is unchanged,
but the alternating tensor becomes dx2 ∧ dx1 ∧ dx3 ∧ · · · ∧ dxm , which is the
negative of dx1 ∧ dx2 ∧ dx3 ∧ · · · ∧ dxm . Meanwhile the Lebesgue integral is
unchanged if we replace dx1 dx2 dx3 · · · dxm by dx2 dx1 dx3 · · · dxm . So we are
off by a minus sign. The answer to this seeming contradiction is that orientation
is playing a role in the definition of integration of an m form, a role that does not
show up in the notation.22
Consider now any oriented smooth manifold M in the sense defined earlier

in this section. The theorem below defines a notion of integration of top-degree
differential forms that generalizes the one in open subsets of Rm . After proving
the theorem, we shall relate its statement to the Riesz Representation Theorem.23

Theorem 1.29. If ω is a smooth m form on the oriented smooth manifold M
of dimension m ∏ 0, then there exists a unique linear functional f 7→

R
M f ω

on the space Ccom(M) of continuous functions of compact support on M with
the property that whenever (Mα, α) is a positive compatible chart with local
coordinates α = (x1, . . . , xm) and f is a member of Ccom(M) supported in Mα,
then the value of the linear functional on any f that is compactly supported in
Mα is

Z

M
f ω =

Z

α(Mα)

( f ◦ α−1)(x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm, (∗)

where α is given in local coordinates by (x1, . . . , xm) and the local expression for
ω in the local coordinates of α(Mα) is

(α−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm (∗∗)
with Fα : α(Mα) → R smooth.24 The integral on the right side of (∗) is
understood to be an ordinaryLebesgue integralwith respect to Lebesguemeasure.

22We shall use notation like
R
M f ω in this text, but notation like

R
M,o f ω that indicates an

orientation o alongwithM and the integrand f ω, might serve as a better reminder that the orientation
affects the value.

23Theorem 11.1 of Basic Real Analysis.
24The notation (α−1

i )∗ω is no mystery. It refers to the pullback of ω under α−1, i.e., the “push
forward” of ω from its domain Mα to the open set α(Mα) in Euclidean space. In other words, it is
indeed the “local expression for ω in the local coordinates.”
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REMARKS.
(1) In other words the expression

R
M f ω is being defined by the right side of

(∗). The content of the theorem is that the definition does not depend on the
choice of local coordinates.
(2) Theorem 1.29 remains true if “manifold” in the statement is replaced by

“manifold-with-boundary,” which is a notion to be defined in Chapter II, or by
“manifold-with-corners” or “Whitney manifold,” which are notions to be defined
inChapter III. Theproof requiresno changeother than anupdatingof the reference
to the existence of a partition of unity.
(3) Once again: In the definition of

R
M f ω, the notation “M” includes both M

and its orientation. If the orientation is changed, then the value of the integral may
change. The orientation enters the statement of the theorem in the requirement
that (Mα, α) be a positive compatible chart.
(4) For our purposes themain role of having f present in the formula is to relate

integration of differentialm forms to Lebesgue integration in measure theory. We
shall havemore to say about this point after the end of the proof of the theorem. In
the applications of this theorem after this section in this book, all them forms that
are involved in integrationwill have compact support within the set of integration,
and then inclusion of f in the formula becomes a frill. Accordingly we shall tend
to drop f in applications of this formula after this section.
(5) With f dropped, the formula of the theorem can be written briefly as

Z

M
ω =

Z

Mα

ω =
Z

α(Mα)

(α−1)∗ω

if ω is compactly supported in Mα. Orientations are implicit throughout the three
members of this equation, the orientation on the right side being the standard
orientation on Euclidean space.
PROOF. Let us first dispose of the case m = 0. Then ω is a 0 form, which is

a real-valued function on the points of the discrete space. The integral
R
M f ω is

to be interpreted as the sum over the points of the product of the value of f by
the value of ω times the value of the orientation at the point, namely ±1. This
factor±1 is what by convention Fα(x1, . . . , xm) dx1∧· · ·∧dxm reduces to when
m = 0.
For the remainder of the proof, assume that m > 0. Whenever f is compactly

supported in Mα, then f ◦ α−1 is compactly supported in α(Mα) and the right
side of (∗) is well defined. Thus let us define

Z

Mα

f ω =
Z

α(Mα)

( f ◦ α−1)(x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm .

This definition satisfies a certain consistency condition. To see this, suppose that
f is compactly supported in an intersection Mα ∩Mβ . Then by our definition we
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have also
Z

Mβ

f ω =
Z

β(Mβ)

( f ◦ β−1)(y1, . . . , ym)Fβ(y1, . . . , ym) dy1 · · · dym . (†)

To see that the right sides of (∗) and (†) are equal, we use the change of variables
formula for multiple integrals.25 The change of variables y = β ◦ α−1(x) in (∗)
expresses y1, . . . , ym as functions of x1, . . . , xm , and (†) therefore is

=
Z

α(Mα∩Mβ)

f ◦ β−1 ◦ β ◦ α−1(x1, . . . , xm)

× Fβ ◦ β ◦ α−1(x1, . . . , xm)
Ø
Ø
Ø det

Ω
@yi
@xj

æ

i, j=1,...,m

Ø
Ø
Ø dx1 · · · dxm .

The right side here will be equal to the right side of (∗) if it is shown that

Fα
?
= (Fβ ◦ β ◦ α−1)

Ø
Ø
Ø det

Ω
@yi
@xj

æ

i, j=1,...,m

Ø
Ø
Ø. (††)

Now

Fα dx1 ∧ · · · ∧ dxm = (α−1)∗ω from (∗∗)

= (β ◦ α−1)∗(β−1)∗ω

= (β ◦ α−1)∗(Fβ dy1 ∧ · · · ∧ dym) from (∗∗)

= (Fβ ◦ β ◦ α−1) det
Ω

@yi
@xj

æ

i, j=1,...,m
dx1 ∧ · · · ∧ dxm

by Proposition 1.17.

Thus
Fα = (Fβ ◦ β ◦ α−1) det

Ω
@yi
@xj

æ

i, j=1,...,m
. (‡)

Since det
n

@yi
@xj

o

i, j=1,...,m
is everywhere positive, equality in (††) follows from (‡).

Therefore Z

Mα

f ω =
Z

Mβ

f ω

whenever f is compactly supported in Mα ∩ Mβ .

25Theorem 6.32 of Basic Real Analysis.
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For future reference later in this section and also for use in the next chapter,
we rewrite (‡) in terms of coordinates as

Fα(y1, . . . , ym) = Fβ(x1, . . . , xm) det
Ω

@yi
@xj

æ

i, j=1,...,m
. (‡‡)

To define
R
M f ω for general f in Ccom(M), we select finitely many open

coordinate neighborhoods Mαi that together cover the support of f , and we use
Theorem 1.25 to form a smooth partition of unity {√αi } subordinate to the finite
open cover {Mαi } of the support of f . Then we can define

Z

M
f ω =

X

i

Z

Mαi

(√αi f )ω. (§)

Let us see that this definition is unchanged if the smooth partition of unity is
changed. Indeed, suppose that {Mβj } is a second finite open cover of the support
of f . Let {φβj } be a smooth partition of unity subordinate to the finite open cover
{Mβj } of the support of f . Linearity of the Lebesgue integral allows us to write
the right side of (§) as

=
X

i

X

j

Z

Mαi

( f√αiφβj )ω. (§§)

If f√αiφβj is not identically 0, it is supported in Mαi and also in Mβj . The fact
that (∗) equals (†), which we proved above, means that we get the same result
for

R
M f√αiφβj whether we treat f as a function supported in Mαi or we treat it

as a function supported in Mβj , i.e.,
Z

Mαi

( f√αiφβj )ω =
Z

Mβj

( f√αiφβj )ω.

Thus (§§) is

=
X

j

X

i

Z

Mβj

( f√αiφβj )ω =
X

j

Z

Mβj

( f φβj )ω,

and this is the value of
R
M f ω we get by using the partition of unity {φβj }. §

When ω is fixed, it is apparent from (§) and the integral formula forR
Mαi

(√αi f )ω that the map f 7→
R
M f ω is a linear functional on Ccom(M). In

dimensionm ∏ 1, we say that them formω is everywhere positive relative to the
given atlas if each local expression (∗∗) has Fα(x1, . . . , xm) everywhere positive
on α(Uα). In dimension 0, a 0 form ω is interpreted as everywhere positive if the
pointwise product of ω and the orientation is everywhere positive.
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When ω is everywhere positive, the linear functional f 7→
R
M f ω is positive

in the sense that f ∏ 0 implies
R
M f ω ∏ 0. By the Riesz Representation

Theorem,26 there exists a unique (regular27) Borel measure dµω on M such that
Z

M
f ω =

Z

M
f (x) dµω(x)

for all f ∈ Ccom(M). The next two propositions tell how to create and recognize
everywhere positive m forms ω.

Proposition 1.30. If an m dimensional manifold M with m ∏ 1 admits a
nowhere-vanishing m form ω, then M can be oriented so that ω is everywhere
positive. Conversely if M is oriented, then M admits a nowhere-vanishing m
form ω.

REMARKS. This proposition will allow us to classify the possible ways of
orienting a smooth manifold m of dimension m ∏ 1. An orientation of M
is an equivalence class of nowhere-vanishing m forms on M , two such being
equivalent if each is an everywhere positive function times the other. Indeed, the
constructions in the proof below show that any nowhere-vanishingm form yields
an atlas of compatible charts exhibitingM as oriented, that equivalent such forms
lead to the same atlas, and that inequivalent such forms lead to distinct atlases.
If a given orientation of M comes from a nowhere-vanishing m form ω0, then
the orientation that corresponds to −ω0 is called the opposite orientation to the
given one. In Theorem 1.29, changing matters so that the oriented manifold M
has the opposite orientation has the effect of multiplying

R
M f ω by −1.

PROOF. Suppose thatM admits a nowhere-vanishingm formω. Let {(Mα, α)}
be any atlas for M . The components of each Mα are open and cover Mα, and
there is no loss of generality in assuming that each Mα is connected. For each
Mα, let Fα be the function in (∗∗) of Theorem 1.29 in the local expression for ω
in α(Mα). Specifically

(α−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm

with Fα : α(Mα) → R smooth. Since ω is nowhere vanishing and Mα is
connected, Fα has constant sign on α(Mα). If the sign is positive, we retain
(Mα, α) in the atlas. If the sign is negative, we redefine28 α by following it
with the map (x1, x2, . . . , xm) 7→ (−x1, x2, . . . , xm), and then the redefined Fα

is everywhere positive; in this case we instead include the redefined (Mα, α) in

26Theorem 11.1 of Basic Real Analysis.
27On any separable locally compact Hausdorff space, and in particular on any smooth manifold,

all Borel measures are regular.
28This redefinition is possible since m ∏ 1.
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the atlas. In this way we can arrange that all Fα are everywhere positive on
their domains. Referring to (‡‡) in the proof of Theorem 1.29, we see that each

function det
µ

@yi
@xj

∂
is positive on its domain. Hence M is oriented. Since the Fα

are all everywhere positive, ω is everywhere positive relative to this orientation.
Conversely suppose that M is oriented. Let {(Mα, α)} be an atlas that exhibits

M as oriented. For each α, define a smooth differential m form ωα on Mα by

ωα = α∗(dx1 ∧ · · · ∧ dxm).

If the intersection Mα ∩Mβ is nonempty, then points in the intersection have also

ωβ = β∗(dy1 ∧ · · · ∧ dym)

= (β ◦ α−1 ◦ α)∗(dy1 ∧ · · · ∧ dym)

= α∗(β ◦ α−1)∗(dy1 ∧ · · · ∧ dym) by Proposition 1.18f

= α∗(β ◦ α−1) det
Ω

@yi
@xj

æ
dx1 ∧ · · · ∧ dxm by Proposition 1.17

= det
Ω

@yi
@xj

æ
α∗(dx1 ∧ · · · ∧ dxm)

= det
Ω

@yi
@xj

æ
ωα.

In other words,
ωβ(p) = ∏βα(p)ωα(p) (∗)

for all points p ∈ Mα ∩ Mβ and some everywhere-positive function ∏βα.
Let K be a compact subset of M to be specified. The various open sets Mα

of charts cover K , we let {α1, . . . , αk} be a finite subcover, and we use Theorem
1.25 to choose a smooth partition of unity {√αi , 1 ≤ i ≤ k} of M subordinate to

the finite open cover {Mαi , 1 ≤ i ≤ k} of K . Let ω =
kP

i=1
√αiωαi . The m form

ωαi is nowhere-vanishing on Mαi , being the pullback to Mαi from αi (Mαi ) of a
nowhere-vanishing differential form on αi (Mαi ). We can extend its domain to all
of M by setting it equal to 0 off Mαi , and then the product √αiωαi is a smooth m
form on M . Hence the sum ω is smooth on M .
Consider any point p in K . Since

P
√αi = is identically 1 and each √αi is

∏ 0, some √αi (p) is nonzero. Then also √αiωαi (p) is nonzero. If any other
index j has √αj (p) 6= 0, then (∗) shows that √αjωαj (p) is a positive multiple of
√αiωαi (p). Then it follows that ω(p) is not zero. In other words, the m form ω
is nowhere vanishing on K .
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If M were compact, we would be done at this point. In the general case we
begin with the following observation: if we had specified in advance an open set
U containing K , we could have arranged that ω vanishes at all points outside U
simplybymultiplyingω by a smooth function that is 1 on K and is 0 offU ; Lemma
1.27 provides such a function. That being so, let E0 = ∅ ⊂ E1 ⊂ E2 ⊂ · · ·
be an exhausting sequence of compact subsets of M . Each set Ej is contained in
the interior Eo

j+1 of the next member of the sequence. For each j ∏ 0, repeat the
above procedure for the compact set Ej+1−Eo

j in place of K , obtaining a smooth
differential form ωj , and arrange that the form ωj vanishes off Eo

j+2. The form
ωj is nowhere vanishing on Ej+1 − Eo

j , and the coefficients of the forms all have
the same sign at all points where any of them is nonzero. Each point p has some
j for which p is in Ej+1 − Ej , and then a neighborhood of p lies in Eo

j+2 − Ej .
The points of that neighborhood are all outside Ek+1 − Eo

k for k ∏ j + 2 and
k + 1 ≤ j . Thus that neighborhood meets at most the three sets Ej+2 − Eo

j+1,

Ej+1 − Eo
j , and Ej − Eo

j−1 in the sequence. Consequently ω =
∞P

j=0
ωj is a well

defined smooth m form. The form ω is nonvanishing at least at all points ofS∞
j=0(Ej+1 − Eo

j ); in other words, ω is nowhere vanishing. §

Proposition 1.31. If a connectedmanifoldM is oriented and ifω is a nowhere-
vanishing smooth m form on M , then either ω is everywhere positive or −ω is
everywhere positive.

REMARKS. Thepropositionsays that theproblemoffindingnowhere-vanishing
forms of the top degree m can be solved one connected component at a time: the
manifold M is orientable if and only if each connected component is orientable,
a connected component is orientable if and only if it has two equivalence classes
of nowhere-vanishing m forms rather than just one, and nonvanishing m forms
can be assembled for M one component at a time in arbitrary fashion.

PROOF. At each point p of M , all the functions Fα representing ω locally by
means of a positive compatible chart as in (∗∗) of the statement of Theorem 1.29
have Fα(α(p)) nonzero of the same sign because of (‡‡), the nowhere-vanishing
of ω, and the fact that M is oriented. Let S be the subset of M where this
common sign is positive. Possibly replacing ω by −ω, we may assume that S is
nonempty. We show that S is open and closed. Let p be in S and let (Mα0, α0)
be a positive compatible chart about p. Then Fα0(α0(p)) > 0 since p is in S,
and hence Fα(α(q)) is positive at all points q in the neighborhood Mα0 of p
for the one value α0 of α. Since the sign is the same for the α’s of all positive
compatible charts, Fα(α(q)) > 0 for all α such that q is in Mα0 ∩ Mα. Hence S
is open. Let {pn} be a sequence in S converging to p in M , and let (Mα0, α0) be a
positive compatible chart about p. Then Fα0(α0(pn)) > 0 for large n, and hence
Fα0(α0(p)) ∏ 0 by continuity. Since ω is nowhere vanishing, Fα0(α0(p)) > 0.
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Since the sign is the same for all positive compatible charts, Fα(α(p)) is > 0
for all α. Therefore p is in S, and S is closed. Since M is connected and S is
nonempty open closed, S = M . §

Propositions 1.30 and 1.31 together give us a better understanding of the notion
of positive chart thatwas defined just before the four examples in this section. IfM
is connected and orientable, then there are exactly two possibilities for a nowhere-
vanishing form of top degreem up to equivalence, and these are negatives of each
other. If we fix the orientation, say in terms of the m form ω, then the positive
compatible charts (Mα, α) are exactly the charts for which (α−1)∗ω is a positive
function times dx1 ∧ · · · ∧ dxm . The set of such positive charts is an atlas.

Let us now examine the effect of mappings on orientation. Because orientation
is determined by a differential m form η, we can check the effect of a mapping
8 by examining the pullback 8∗η. The situation is clearest in the case of a
diffeomorphism.
Let M and N be oriented smooth manifolds of dimension m, and let

8 : M → N be a diffeomorphism. If η is a nowhere-vanishing m form on N ,
then8∗η will be an m form on M , and Proposition 1.17 shows that it is nowhere
vanishing. In fact, we can argue locally, writing η in local coordinates as the
wedge product of m nowhere-vanishing 1 forms. Then Proposition 1.17 gives a
local expression for8∗η as the wedge product of nowhere-vanishing 1 forms on
M . Consequently the globally defined m form 8∗η is nowhere vanishing.
We say that 8 is orientation preserving if whenever the nowhere-vanishing

m form η is everywhere positive, then the nowhere-vanishing m form 8∗η is
everywhere positive. Similarly 8 is orientation reversing if whenever the
nowhere-vanishingm form η is everywhere positive, then the nowhere-vanishing
m form8∗η is everywhere negative. If8 is orientation preserving, then for every
positive chart (Mα, α) in the atlas for M , the chart (8(Mα), α ◦ 8−1) is positive
relative to the atlas for N . Consequently the atlas of compatible charts for N canbe
taken to be {(8(Mα), α◦8−1)}. Then the changeof variables formula formultiple
integrals may be expressed using pullbacks as in the following proposition.

Proposition 1.32. Let M and N be oriented manifolds of dimension m, and
let8 : M → N be an orientation-preserving diffeomorphism. Ifω is any smooth
m form on N , then Z

N
f ω =

Z

M
( f ◦ 8)8∗ω

for every f ∈ Ccom(N ).

PROOF. Let the atlas for M be {(Mα, α)}, and take the atlas for N to be
{(8(Mα), α ◦ 8−1)}. It is enough to prove the result for f compactly supported
in a particular8(Mα). For such f , Theorem 1.29 gives
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Z

N
f ω =

Z

α◦8−1(8(Mα))

f ◦ 8 ◦ α−1(x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm,

(∗)

where Fα is the function with

((α ◦ 8−1)−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm . (∗∗)

The function f ◦ 8 is compactly supported in Mα, and Theorem 1.29 gives also

Z

M
( f◦8)8∗ω =

Z

α(Mα)

f ◦8◦α−1(x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm (†)

since

(α−1)∗8∗ω = ((α ◦ 8−1)−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm

by (∗∗). The right sides of (∗) and (†) are equal, and hence so are the left
sides. §

The above discussion of diffeomorphisms and pullbacks extends to “immer-
sions” between two smooth manifolds of the same dimension. If M and N are
smooth manifolds, then an immersion 8 of M into N is a smooth function, not
necessarily one-one, of M into N such that the derivative D8(p) is one-one from
Tp(M) into T8(p)(N ) for each point p in M . In this case when M and N have
the same dimension, then the same argument as above shows for each nowhere-
vanishing m form η on N that 8∗η is a nowhere-vanishing m form on M . The
next proposition is a consequence.

Proposition 1.33. The Möbius band of Example 3 in this section is not
orientable.

PROOF. We assume that the Möbius band M has already been shown to be
a manifold; this step is carried out in Problem 29 at the end of the chapter. To
address orientability, we considerM as defined directly in terms of the parameters
(s, t) in Example 3, rather than as a parametrically defined subset of R3. In the
setup of the example, the subset R × (−1, 1) gets mapped onto M in such a way
that (s, t)maps to the same point ofM as (s+2π,−t), and hence also to the same
point as (s + 4π, t). We carry out this process in two stages. In the first stage
we pass from the manifold R × (−1, 1) to the manifold S1 × (−1, 1) by taking
the remainder modulo 4π in the s variable. Representatives of members of the
image are the pairs (s, t) with 0 ≤ s < 4π and−1 < t < 1. In the second stage
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we identify any pair (s, t)with the pair (s+2π,−t). This carries S1×(−1, 1)
onto M and is a smooth 2-to-1 mapping that we call 8; it is an immersion.
If we write h for the function that interchanges each pair (s, t) in S1× (−1, 1)

with its mate (s + 2π,−t), with s + 2π understood to be adjusted by 4π if
necessary so that it lies in [0, 4π), then h is a diffeomorphism of S1 × (−1, 1)
onto itself that satisfies h∗(ds ∧ dt) = −ds ∧ dt . In other words, h is orientation
reversing. Moreover, we have8 = 8◦h. Arguing by contradiction, suppose that
M is orientable. Then Proposition 1.30 supplies a nowhere-vanishing differential
2 form η on it. Passing to pullbacks from the equation8 = 8 ◦ h, we obtain

8∗η = (8h)∗η = h∗8∗η.

The 2 form 8∗η, being nowhere vanishing, has to equal F ds ∧ dt for some
nowhere-vanishing function F on S1 × (−1, 1). Then we are led to

F ds ∧ dt = h∗(F ds ∧ dt) = h∗(F)h∗(ds ∧ dt) = −(F ◦ h) ds ∧ dt,

which is a contradiction since F has constant sign. §

7. Problems

1. Show that if K1 ⊂ K2 ⊂ K3 ⊂ · · · is an exhausting sequence for a smooth
manifold M and if C is a compact subset of M , then there is some j such that
C ⊆ Kj .

2. The circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1} was defined as a smooth manifold
of dimension 1 in Section 1 by means of two charts (C1, ϕ1) and (C2, ϕ2), where

C1 = S1 − {(0,+1)} and ϕ1(x, y) =
° x
1−y

¢
,

C2 = S1 − {(0,−1)} and ϕ2(x, y) =
° x
1+y

¢
.

In Example 2 in Section 6, it was defined by means of two charts

M1 = S1 − {(−1, 0)} and √1(cos t, sin t) = t for −π < t < π,

M2 = S1 − {(+1, 0)} and √2(cos t, sin t) = t for 0 < t < 2π.

What steps need to be carried out to show that these smooth manifolds are the
same? Carry out one such step.
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3. Set-theoretically, the real n dimensional projective space M = RPn can be
defined as the result of identifying each member x of the unit sphere Sn in Rn+1

with its antipodal point −x . Let [x] ∈ RPn denote the class of x ∈ Sn . Do the
following:
(a) Show that d([x], [y]) = min{|x − y|, |x + y|} is well defined and makes

RPn into metric space such that the function x 7→ [x] is continuous and
carries open sets to open sets.

(b) For each j with 1 ≤ j ≤ n + 1, define

αj [(x1, . . . , xn+1)] =
≥ x1
xj

, . . . ,
xj−1
xj

,
xj+1
xj

, . . . ,
xn+1
xj

¥

on the domain Mαj =
©
[(x1, . . . , xn+1)]

Ø
Ø xj 6= 0

™
. Show that the system©

(Mαj , αj )
Ø
Ø 1 ≤ j ≤ n + 1

™
is an atlas for RPn and that the function

x 7→ [x] from Sn to RPn is smooth.

4. Prove that if p and q are two points in a connected smooth manifold, then there
exists a diffeomorphism of the manifold mapping p to q.

5. The product of two manifolds M and N with respective atlases {(Mα, α)} and
{(Nβ, β)} is the setM×N with an atlas consisting of all charts (Mα×Nβ, α×β).
(a) Show thatM×N is a smoothmanifold and that the projectionsM×N → M

and M × N → N are smooth.
(b) Show that if p is in M and q is in M , then the maps ip : N → M × N and

jq : M → M × N given by ip(n) = (p, n) and jq(m) = (m, q) are smooth
immersions.

6. Prove in R3 that if f is real-valued and F is vector-valued, then div curl F = 0
and that curl grad f = 0.

7. Prove by induction on the dimension that if ω is a smooth differential 1 form on
Rn with dω = 0, then ω = d f for some smooth real-valued function f defined
on Rn .

8. The proof in Problem 7 has to depend on special properties of Rn as the domain
of ω because of the following example: Let ω be the 1 form on R2 − {(0, 0)}
defined by

ω =
−y

x2 + y2
dx +

x
x2 + y2

dy.
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Define a function θ on R2 − {(x, 0) | x ∏ 0} by

θ(x, y) =






arctan y/x if x > 0 and y > 0
π + arctan y/x if x < 0
2π + arctan y/x if x > 0 and y < 0
π/2 if x = 0 and y > 0
3π/2 if x = 0 and y < 0,

where arctan is the inverse function on R to tan on (−π/2, π/2).
(a) Verify that dω = 0 on the domain of ω.
(b) Verify that if f is smooth on the domain of θ and if ω = d f there, then f

and θ have respective first partial derivatives equal on the domain of θ .
(c) Observe that a function f as in (b) has to be f = θ +constant on the domain

of θ and cannot extend continuously to R2 − {(0, 0)}. Conclude that the
equation d f = ω has no smooth solution f on R2 − {(0, 0)}.

9. If E and F are disjoint compact subsets of a smoothmanifoldM , prove that there
exist functions f ∏ 0 and g ∏ 0 in C∞

com(M) such that f is identically 1 on E
and identifically 0 on F and such that g is identically 0 on E and identically 1
on F .

10. Let U be a nonempty connected open set in Rm . Call a smooth k form ω on U
elementary if it can be written as

ω = dϕ1 ∧ · · · ∧ dϕk

for some set of k functions in C∞(U).
(a) Prove that in this case, ω = dη for some smooth k − 1 form η.
(b) Prove that any k form ω on U that can be written as

ω = f1(x1) f2(x2) · · · fk(xk) dx1 ∧ · · · ∧ dxk

is elementary.
11. Let 8 : R3 → R3 be defined by 8(r, s, t) = (r + s + t, rs + st + rt, rst).

Compute8∗(dx ∧ dy) in terms of dr ∧ ds, dr ∧ dt , and ds ∧ dt .

Problems 12–18 introduce the notion of “contraction” (also called “interior multipli-
cation”) of a smooth differential form by a smooth vector field and use it to analyze the
orientability of spheres. Let M be a smooth manifold and let X and X1, . . . , Xk−1 be
smooth vector fields on M . If ω is a smooth differential k form on M , i.e., a member
of ƒk(M), then the contraction cX (ω) of ω by X is defined pointwise on M by

cX (ω)p
°
(X1)p, . . . , (Xk−1)p

¢
= k ωp

°
(X)p, (X1)p, . . . , (Xk−1)p

¢
.
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12. Under the hypotheses above, expand cX (ω) and the smooth vector fields within
each chart by using the methods of Sections 1 and 3, and conclude that cX (ω) is
smooth and therefore cX carries ƒk(M) into ƒk−1(M). Check also that cX (ω)

is C∞(M) linear in the X variable.

13. (a) Prove for k ∏ 1 and for all ω1, . . . , ωk in ƒ1(M) that

cX (ω1 ∧ · · · ∧ ωk) =
kP

i=1
(−1)i−1ωi (X)(ω1 ∧ · · · ∧ bωi ∧ · · · ∧ ωk).

(b) Deduce as a consequence that

cX (ω ∧ η) = cX (ω) ∧ η + (−1)kω ∧ cX (η)

if ω is in ƒk(M) and η is in ƒl(M).

14. Show that if i : S → M a one-one smooth immersion betweenmanifolds and ifω
is inƒk(M), then themember i∗(ω) ofƒk(S) can be regarded as the restriction of
ω to S. (This problem will be applied shortly to the immersion i : Sn → Rn+1.)

15. Show that if a connected smooth manifold M has an atlas with just two charts
and the charts have connected intersection, then M is orientable. Deduce that
the unit sphere Sn in Rn+1 is orientable if n ∏ 2. A separate argument is needed
to see that S1 is orientable. The next three problems will produce an explicit
nowhere-vanishing smooth n form on Sn , which has to exist by Proposition 1.30.

16. Let i : Sn → Rn+1 be the inclusion mapping, which is a one-one smooth
immersion. For any point p = (x1, . . . , xn+1) in Sn and its image i(p) in Rn+1,
check in two ways that Rn+1 is the the direct sum of the tangent space to Sn at
p and the 1 dimensional space Rp:
(a) First check via inner products and linear algebra, using the naive geometric

interpretation of the tangent space as being geometrically tangent to the
sphere at p.

(b) Second check via the definitions in this chapter of notions related to “ tangent
space.” Specifically let r = (r1, . . . , rn+1) be any member of Rn+1 such
that the dot product p ·r equals 0. Define a smooth curve ∞r in Sn for |t | < ≤

with ≤ > 0 sufficiently small by

∞r (t) =
p + tr

|p + tr |
.

Observe that f 7→ d
dt f (∞r (t))|t=0 defines a derivation of the space of germs

of smooth functions at p on Sn and therefore is a member Xr of Tp(Sn).
Show that the mapping r 7→ Xr is linear in r and is one-one, hence is onto
Tp(Sn). By dimensionality, conclude that Tp(Rn+1) = i(Tp(Sn)) ⊕ RX ,

where X = {Xp} is the vector field with Xp =
n+1P

j=1
xj d

dxj in Tp(R
n+1).
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17. With i , p, and X as in the previous problem, let ω = dx1 ∧ · · · ∧ dxn+1 on
Rn+1. Define a smooth n form η on Sn by η = i∗(cX (ω)). Using the results of
Problems 14 and 16, prove that the n form η on Sn is nowhere vanishing.

18. With M = Rn+1 and ω = dx1 ∧ · · · ∧ dxn+1, compute cX (ω) for X =
n+1P

j=1
xj (@/@xj ), showing that

cX (ω) =
n+1X

j=1
(−1) j−1xj dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn+1.

(The differential form η of the previous problem involves also an application
of i∗. Problem 14 observes that this application is just a matter of restricting
domains, and it is customary not to incorporate it into the explicit notation.)

Problems 19–23 treat in a more general setting the orientation question that
Proposition 1.33 settled for theMöbius band. Let M be a connected smoothmanifold
of dimensionm, and let h be a diffeomorphism of M onto itself such that h2 = 1 and
such that h(x) = x for no x .
19. (a) For x and y in M , define x ∼ y if x = y or y = h(x). Show that ∼ is an

equivalence relation.
(b) Write [x] for the equivalence class of x , and let N denote the set of

equivalence classes. If d(x, y) is a metric for M such that d(h(x), h(y)) =
d(x, y), prove that the formula d0([x], [y]) = min{d(x, y), d(x, h(y))}
defines d0 as a metric on N in such a way that the function x 7→ [x] of
M onto N is continuous and open.

(c) Show how to define charts that make the metric space N into a smooth
manifold of dimension m for which that the quotient map h(x) = [x] of M
onto N is smooth and is an immersion.

20. Guided by the proof of Proposition 1.33, prove that if M is oriented and h is
orientation reversing, then N is not orientable.

21. Using the charts constructed in Problem 19c, prove that if M is oriented and h is
orientation preserving, then N is orientable.

22. The real projective space RPn is defined in Problem 3 and also arises from
Problem 19whenM is taken to be the sphere Sn and h is taken to be the antipodal
map h(x) = −x .
(a) Show that the smooth structures defined on RPn by means of Problems 3

and 19c are the same.
(b) The sphere Sn inRn+1 is orientable for n ∏ 1 by Problem 15, and Problems

17–18 exhibited a nowhere-vanishing n form on it. Show that the antipodal
map of h : Sn → Sn is orientation reversing if n is even and is orientation
preserving if n is odd.
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23. Conclude from Problems 20–22 that RPn is orientable if n is odd and ∏ 1 and
that it is not orientable if n is even and ∏ 2.

Problems 24–30 concern graphs, smooth immersions, “submanifolds,” and
“embeddings.” A submanifold of a smooth manifold M is a subset S that has a
smooth manifold structure of its own for which the inclusion i : S → M is a one-
one immersion. A submanifold S of the manifold M is said to be embedded if the
inclusion is a homeomorphism of S onto its image in M , i.e., if the manifold topology
for S coincides with the subspace topology.

24. Let U be a nonempty open set in Rn , and let f : U → Rk be a continuous
function, not necessarily smooth. Thegraphof f , writtenGraph( f ), is the subset
ofRn+k of all points (x, f (x)) for x inU . MakeGraph( f ) into a smoothmanifold
with an atlas having just one chart, defined as (U, α) with α(x) = (x, f (x)).
(a) Verify that the mapping of U onto Graph( f ) given by α(x) = (x, f (x)) is

a diffeomorphism of U onto Graph(f).
(b) Let I : Graph( f ) → U×Rk be the inclusionmapping, and let p : U×Rk →

Rk be the projection to the second coordinate. Then the composition of the
maps

U α
−−−−→ Graph( f ) I

−−−−→ U × Rk p
−−−−→ Rk

is x 7→ f (x), which need not be smooth. What is going on?

25. Let U be a nonempty open set in Rn , and let f : U → R be a smooth function.
Define ϕ : U × Rk → U × Rk by ϕ(x, y) = (x, y − f (x)).
(a) Verify that ϕ is a diffeomorphism.
(b) Observe that ϕ(Graph( f )) = {(u, v) ∈ U × Rk | v = 0}. In other words,

Graph( f ) is exhibited as the level set for level v = 0 in Rk of the smooth
function ϕ.

26. Let ∞ : (−π/2 → 3π/2) → R2 be the function given by ∞ (t) = (sin 2t, cos t).
Its image looks something like the numeral 8 and is pictured in Figure 1.3. Show
that ∞ is a one-one immersion, that its image is compact, and that it is not a
smooth embedding.

FIGURE 1.3. Numeral 8 from a one-one smooth immersion.
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27. View S1 as the set of elements in C of the form eiθ for θ in R, define the
2 dimensional torus T 2 to be the product S1 × S1, and fix an irrational real
number c. This problem observes that ∞ (t) = (e2π i t , e2π ict ) is a one-one
immersion from R into T 2 but is not a smooth embedding. Its image is
therefore a submanifold of T 2 but not an embedded submanifold.
(a) Check that indeed ∞ (t) is one-one and is an immersion.
(b) Show for each ≤ > 0 that some nonzero integer k has |∞ (k) − ∞ (0)| < ≤.
(c) Deduce that ∞ (0) is a limit point of ∞ (Z), and conclude that ∞ is not

a homeomorphism with its image and therefore cannot be a smooth
embedding.

28. This problem gives a mechanism for defining a manifold parametrically, i.e.,
as the image of a vector–valued function of several variables.
(a) Let F be the smooth function from an interval of R into R2 given by

F(t) =
≥ x
y

¥
. Suppose that x 0(t0) 6= 0. Prove that the set of points

≥
x(t)
y(t)

¥

for t near t0 is the embedded graph of a smooth function and is therefore
an embedded submanifold in R2 of dimension 1.

(b) Let U be a nonempty open subset of Rn , let F : U → Rk be a smooth
function with n < k, and let J (x) be the n-by-k Jacobian matrix of F at
x ∈ U with entries @Fi/@xj . Suppose for each x ∈ U that the rank of
the matrix J (x) is n, i.e., that J (x) has n linearly independent columns.
Use the Inverse Function Theorem to show for each x0 in U that the set
of points F(x) in Rk for x near x0 is an embedded submanifold in Rk of
dimension n.

29. This problem constructs the Möbius band of Example 3 in Section 6 as a
smooth 2 dimensional manifold in R3. (See Figure 1.2 for a picture.)
(a) Example 3 of Section 6 explicitly defines three functions x, y, z as

functions of the pair (s, t) for −∞ < s < ∞ and −1 < t < 1. Show
that the Jacobian matrix of the function (s, t) 7→ (x, y, z) has rank two at
every point (s, t), i.e., that the columns of the Jacobianmatrix are linearly
independent for each pair (s, t).

(b) For fixed t , the functions x, y, z are periodic functions of period 4π in
the variable s. Explain why this means that the function (x, y, z) of (s, t)
descends to a smooth function into R3 with domain M = R/4πZ ×
(−1, 1).

(c) Conclude that the image of the smooth function in (b) is a smooth
manifold of dimension 2.

30. This problem gives a mechanism for defining a manifold implicitly, i.e., as
the 0 locus of a vector-valued function of several variables.
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(a) The unit circle in R2 is the set where x2 + y2 = 1. Define F(x, y) =
x2+ y2−1, so that the circle is the set where F(x, y) = 0. The Jacobian
matrix of F is

J (x, y) =
≥@F

@x
@F
@y

¥
= (2x 2y).

Explain how the Implicit Function Theorem implies that near any point
(x0, y0) on the circle for which @F

@x (x0, y0) 6= 0, the intersection of the
circle with a suitable neighborhood of (x0, y0) is the graph of a smooth
function x = x(y). Why is this graph a smooth manifold?

(b) Repeat (a) for the unit sphere Sn in Rn+1.
(c) More generally let U be a nonempty open subset of Rn , let F : U → Rn

be a smooth function with n > k, and let J (x) be the n-by-k Jacobian
matrix of F at x ∈ U , with entries @Fi/@xj . Suppose for each x ∈ U that
the rank of J (x) is k, i.e., that J (x) has k linearly independent columns.
Use the Implicit Function Theorem to show that the subset of points
x ∈ U with F(x) = 0 is a smooth manifold of dimension n − k.



CHAPTER II

Manifolds-with-Boundary

Abstract. This chapter introduces oriented manifolds-with-boundary, obtains Stokes’s Theorem
for them, and shows that the classical theorems of Green, Gauss-Ostrogradsky, and Kelvin–Stokes
fit into this framework.
Section 1 introduces the subject by working with ordinary oriented smooth manifolds, i.e., those

oriented smooth manifolds without boundary. Stokes’s Theorem for this situation reduces to a
theorem about compactly supported differential forms in Euclidean space.
Section 2 introduces smooth manifolds-with-boundary of dimensionm, charts being homeomor-

phisms from nonempty open subsets of the manifold-with-boundary onto relatively open subsets
of the closed half space Hm of Rm . One distinguishes manifold points and boundary points and
observes that the set of manifold points yields a smooth manifold. The section defines smoothness
of real-valued functions and associated objects, and for this setting, it goes through much of the
same kind of development that was done for manifolds in Chapter I.
Section 3 defines orientability of a smooth manifold-with-boundary to mean orientability of the

smoothmanifold of manifold points. If a smoothmanifold-with-boundary is orientable, then so is its
boundary, and a particular choice of orientation of the boundary, known as the induced orientation,
is defined so that the signs will eventually work out properly in Stokes’s Theorem.
Section 4 states and proves Stokes’s Theorem for oriented smooth manifolds-with-boundary,

handling the case of dimension m = 1 separately from the case of dimension m ∏ 2.
Section 5 examines the meaning of Stokes’s Theorem in the settings that give rise to three

classical integration theorems—Green’s Theorem, the Divergence Theorem, and the Kelvin–Stokes
Theorem—and in the setting of line integrals independent of the path.

1. Stokes’s Theorem for Manifolds without Boundary

This section establishesStokes’sTheoremfor oriented “manifoldswithout bound-
ary,” which is to say, for oriented manifolds in the sense of Chapter I.1 It will
always be assumed that the differential forms that appear in integrals have compact

1Terminology differs among mathematicians—whether manifolds are restricted to the kind that
was defined in Chapter I or whether manifolds can have embellishments, such as some kind of
attached boundary. For this section we stick to the kind that was defined in Chapter I. Starting
in Section 2, we shall work with “manifolds-with-boundary,” which are not necessarily manifolds
in the sense of Chapter I. Instead they come with extra points satisfying some special conditions.
The use of hyphens in the name “manifold-with-boundary” will be a continuing reminder that a
manifold-with-boundary is not necessarily a manifold.

56
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support, i.e., that they are 0 outside of some compact subset of the manifold. On
a compact manifold this condition is automatically satisfied.
All forms of Stokes’s Theorem are local theorems in the following sense: The

heart of the matter is to prove the theorem in a “model space,” the model space
for manifolds of dimensionm beingRm . The validity of the theorem in the model
space and the local nature of the result imply the validity of the theorem in any
chart. Finally an orientation allows for the results for single charts to be added
up with the help of a partition of unity.2 It is as if the manifold in question is
divided into pieces, and then the proof of the theorem proceeds one piece at a
time and the results added. The virtue of using a partition of unity is that the
borders between the pieces are smoothed out so as to avoid technical problems
arising from discontinuities.3

Theorem 2.1. If M is a smooth oriented manifold of dimensionm, then every
smooth m − 1 form ω with compact support on M has

Z

M
dω = 0.

REMARKS. The prototype for this theoremwith M noncompact is the case that
M = R1. In this case, d is theusual differentiationoperatoron functions (regarded
as 0 forms), and the statement comes down to the assertion that

R ∞
∞ f 0(x) dx =

0 for any f in C∞
com(R1). This assertion is immediate from the Fundamental

Theorem of Calculus. The prototype for this theoremwith M compact is the case
that M is the circle. We may then think in terms of smooth periodic functions
of period 2π on the line, and the statement comes down to the assertion that any
smooth f of period 2π on the line has

R π

−π f 0(x) dx = 0. Again the Fundamental
Theorem of Calculus applies, giving f (π) − f (−π) = 0 as the value of the
integral.

PROOF. We shall use the same approach in proving each version of Stokes’s
Theorem—the one here for manifolds, the one in Section II.4 for manifolds-
with-boundary, the one in Section III.3 for manifolds-with-corners, and the one
in Section III.6 for Whitney manifolds. The main step is to prove the theorem for
the model space, which in this case is Rm .
Thus we consider the special case M = Rm with the standard orientation. We

may assume that ω is not 0. The support S of ω being compact, we choose real

2In other words, the only potential obstruction to extending Stokes’s Theorem from a local result
to a global result is the possible failure of the underlying manifold to be oriented.

3On the other hand, the shortcoming of using a partition of unity is that the method does not lend
itself to actual computations.
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numbers aj and bj for 1 ≤ j ≤ m such that all points x = (x1, . . . , xm) of S have
aj < xj < bj for all j . The smooth m − 1 form ω necessarily has an expansion

ω =
mP

r=1
Fr (x1, . . . , xm) dx1 ∧ · · · ∧ ddxr ∧ · · · ∧ dxm,

the circumflex indicating a missing term. All the coefficient functions Fr are
smooth and are equal to 0 off the compact set S. Then we have

dω =
mP

r=1

mP

s=1

@Fr
@xs dxs ∧ dx1 ∧ · · · ∧ ddxr ∧ · · · ∧ dxm

=
mP

r=1
(−1)r−1

°
@Fr
@xr

¢
dx1 ∧ · · · ∧ dxm .

Hence the definition of integration of m forms on Rm gives
Z

Rm
dω =

mP

r=1
(−1)r−1

Z

Rm

°
@Fr
@xr

¢
dx1 · · · dxm,

with the integral on the right side equal to an ordinary integral with respect to
Lebesgue measure. Consider the r th term of the sum on the right side. We
can carry out the integration over Rm in any order, and we choose to do the xr
integration first. By the Fundamental Theorem of Calculus, that integral over xr
is

=
Z

R1

°
@Fr
@xr

¢
dxr =

Z br

ar

°
@Fr
@xr

¢
dxr

= Fr (x1, . . . , br , . . . , xm) − Fr (x1, . . . , ar , . . . , xm).

The right side is 0 because Fr vanishes off S. Therefore the r th term is 0 for each
r , and we conclude that Z

Rm
dω = 0. (∗)

The proof is now complete for the model case Rm .
To handle the general case, we proceed as follows: About each point p in M

of the compact support S of ω, we choose a positive compatible chart (Mα, α).
Since the sets Mαj form an open cover of the compact set S, we can choose a
finite subcover {Mα1, . . . ,Mαk }. By Theorem 1.25 let {√1, . . . , √k} be a smooth
partition of unity of M subordinate to this finite open cover. For 1 ≤ i ≤ k, the
m − 1 form √iω is compactly supported in Mαi . Then we have

Z

M
d(√iω) =

Z

Mαi

d(√iω) =
Z

αi (Mαi )

(α−1)∗d(√iω) by Theorem 1.29
and positivity

=
Z

αi (Mαi )

d((α−1)∗(√iω)) by Proposition 1.24.
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Since √iω is compactly supported on Mαi , the m − 1 form (α−1)∗(√iω) is com-
pactly supported in αi (Mαi ) ⊆ Rm . Extending this form to be 0 on the remainder
of Rm and leaving its name unchanged, we obtain

R
αi (Mαi )

d((α−1)∗(√iω)) =
R

Rm d((α−1)∗(√iω)). The right side is 0 by the result (∗) for the model case. In
other words, Z

M
d(√iω) = 0 for all i.

Summing over i from 1 to k and using the fact that
P

i
√i is identically 1, we

obtain
0 =

P

i

Z

M
d(√iω) =

Z

M
d
≥X

i
√iω

¥
=

Z

M
dω,

and the proof of the general case is complete. §

2. Elementary Properties and Examples

Smooth manifolds of dimensionm ∏ 0, as introduced in Chapter I, were defined
as separable Hausdorff spaces that are locally modeled on open subsets of Rm .
In similar fashion the present section and the remainder of this chapter will work
with smooth manifolds-with-boundary in dimensionm ∏ 1, which are separable
Hausdorff spaces that are locallymodeled on open subsets of the closed half space

Hm = {(x1, . . . , xm−1, xm) ∈ Rm | xm ∏ 0}.

The open subsets of Hm are understood to be those subsets that are relatively
open in the relative topology from Rm . We write Hm

+ for the interior of Hm ,
namely the subset

Hm
+ = {(x1, . . . , xm−1, xm) ∈ Rm | xm > 0},

and we write @Hm for the boundary, namely the subset

@Hm = {(x1, . . . , xm−1, 0) ∈ Rm}.

Before coming to the formal definition of smooth manifold-with-boundary,
we need to establish some definitions concerning smooth functions on Hm . A
real-valued function f defined on an open subset U of Hm will be said to be
smooth if there is a smooth function F defined an open subset V of Rm such
U = V ∩ Hm and f is the restriction of F to U . The extending function F need
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not, of course, be unique.4 With this definition of smoothness in place, we can
define the space Cp(Hm) of germs of smooth functions at points p ofHm and the
tangent space Tp(Hm) at p. For p ∈ Rm

+, these definitions are not new, but for
p ∈ @Hm , they are. We obtain facts about them in the same way as in Section I.1.
If U1 and U2 are two open subsets of Hm , a smooth map F : U1 → U2 is

a continuous function whose m component functions are all smooth real-valued
functions on U1. The derivative (DF)p : Tp(U1) → TF(p)(U2) of the smooth
map F at a point is defined just as in Section I.1. The smooth map F is a
diffeomorphism if it is a homeomorphism with inverse G : U2 → U1 such that
the m component functions of each of F and G are smooth real-valued functions
onU1 andU2, respectively. The composition of smooth maps is smooth, and the
derivative of the composition is the composition of the derivatives. It follows that
at each point the derivative of a diffeomorphism is an invertible linear function.
Although the components of a diffeomorphism F extend to be smooth func-

tions on an open subset ofRm and similarly for G, no assertion is made about the
extendability of the identities F ◦ G = 1 and G ◦ F = 1.
Let M be a separable Hausdorff topological space, and fix an integer m ∏ 1.

For purposes of working with manifolds-with-boundary, a chart (Mα, α) on M
of dimension m is a homeomorphism α of a nonempty open subset Mα of M
onto an open subset α(Mα) of Hm ; the chart is said to be about a point p in M
if p is in the domain Mα of α. When it is convenient to do so, we can restrict
attention to charts (Mα, α) for which Mα is connected.
A smoothmanifold-with-boundary of dimensionm is a separable Hausdorff

space M with a family F of charts (Mα, α) of dimension m such that
(i) any two charts (Mα, α) and (Mβ, β) in F are (smoothly) compatible in
the sense that β ◦ α−1, as a mapping of the open subset α(Mα ∩ Mβ) of
Hm to the open subset β(Mα ∩ Mβ) of Hm , is a diffeomorphism,

(ii) the family of compatible charts (Mα, α) is an atlas in the sense that the
open sets Mα cover M , and

(iii) the family F is maximal among families of compatible charts on M .
In the presence of an understood atlas, a chart will be said to be compatible if it
is compatible with all the members of the atlas.
As with smooth manifolds in the sense of Chapter I, any atlas of compatible

charts for a smooth manifold-with-boundary can be extended in one and only one
way to a maximal atlas of compatible charts. Also if U is any nonempty open
subset of an m dimensional smooth manifold-with-boundary M , then U inherits
the structure of a smooth manifold-with-boundary as follows: first define an atlas
ofU to consist of the intersection ofU with all members of the atlas for M , using

4However, two extending functions F1 and F2 do have matching partial derivatives of all orders
at every point of U ∩ @Hm , and we shall quietly make use of this fact.



2. Elementary Properties and Examples 61

the restrictions of the various functions α, and then discard occurrences of the
empty set.
Later in this section we shall use charts to transfer our notions of tangent

space, cotangent space, smooth function, smooth mapping, and derivative from
Hm to general manifolds-with-boundary. But before we look at the details, let
us underscore that manifolds-with-boundary are built from two distinct types of
points.

The points of a smooth manifold-with-boundary divide into two distinct
types—manifold points and boundary points. The manifold points are those
points p for which there is a chart (Mα, α) about p with α(Mα) contained in
Hm

+. The set of them will be denoted by M+. The set M+ is the union for all
compatible charts (Mα, α) of the inverse image α−1(Hm

+), which is open in M
by continuity of α. Thus M+ is a nonempty open subset of M and is a smooth
manifold of dimension m. The other points are called boundary points. One
writes @M for the set of boundary points and calls @M the boundary.5 As the
complement of M+ in M , it is a closed set.

Proposition 2.2. If M is a smooth manifold-with-boundary of dimension m,
then

(a) each manifold point p has the property that every sufficiently small
compatible chart (Mβ, β) about p has β(Mβ) contained in Hm

+,
(b) whenever (Mα, α) is a compatible chart for M , then its restriction to @M ,

namely (Mα ∩ @M, α
Ø
Ø
Mα∩@M), is a chart for @M of dimension m − 1 as

long as Mα ∩ @M is nonempty,
(c) whenever (Mα, α) and (Mβ, β) are two compatible charts forM thatmeet

@M , then the charts (Mα ∩ @M, α
Ø
Ø
Mα∩@M) and (Mβ ∩ @M, β

Ø
Ø
Mβ∩@M) are

compatible for @M ,
(d) @M becomes a smooth manifold of dimensionm−1 if the atlas of charts

is taken as the nonempty restrictions to @M of the charts in an atlas of
compatible charts for M .

PROOF. For (a), suppose that (Mα, α) is a chart about p with α(Mα) ⊆ Hm
+.

If (Mβ, β) is another chart about p, we are to show that β(p) is inHm
+. Consider

β ◦ α−1 as a map from α(Mα ∩ Mβ) to β(Mα ∩ Mβ). This map is smooth in
the ordinary Euclidean sense with domain a Euclidean open set, it carries α(p)
to β(p), and its Jacobian determinant is nonzero at α(p). Therefore it carries a
sufficiently small open set about α(p) onto a Euclidean open set about β(p), by

5This notion of the boundary can differ from the set-theoretic notion, as Example 6 later in this
section will show.
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the Inverse Function Theorem.6 The latter open set cannot be contained in Hm

unless β(p) lies in Hm
+.

For (b), let (Mα, α) be a chart forM . In view of (a), α carriesMα∩@M one-one
onto α(Mα)∩ @Hm . The set Mα ∩ @M is relatively open in @M since Mα is open
in M , and the set α(Mα)∩ @Hm is relatively open in @Hm since α(Mα) is open in
Hm . The restrictions of α and α−1 are continuous. Thus (Mα ∩ @M, α

Ø
Ø
Mα∩@M)

is a chart for @M; its dimension is m− 1 since the Euclidean space in question is
@Hm .
For (c), we are given (Mα, α) and (Mβ, β) as in (b), we may assume that

Mα∩Mβ is nonempty, andwe are told thatβ◦α−1 : α(Mα∩Mβ) → β(Mβ ∩Mβ)

and α ◦ β−1 : β(Mα ∩ Mβ) → α(Mβ ∩ Mβ) are smooth. Put ϕ = β ◦ α−1 =
(ϕ1, . . . , ϕm). The smoothness of ϕ means that each ϕj extends to a smooth real-
valued function on an open neighborhood in Rm of its domain in Hm . Then the
restriction of ϕj to the intersection of that neighborhood with @Hm is certainly
smooth, and hence β ◦α−1 : α(Mα ∩Mβ ∩@M) → β(Mα ∩Mβ ∩@M) is smooth.
Similarly the restriction of α ◦ β−1 is smooth. Thus the restrictions of the charts
are compatible.
For (d), each nonempty restriction of a chart of dimension m for M is a chart

of dimension m − 1 for @M by (b). These charts for @M are compatible with
one another by (c), and they cover @M since the given charts cover M . Thus the
charts for @M form an atlas. §

EXAMPLES.
(1) Any smooth manifold of dimension ∏ 1 is a smooth manifold-with-

boundary, the boundary being the empty set.
(2) In dimension 1, any interval of R, whether open or closed or half open,

is a manifold-with-boundary; the boundary consists of those endpoints that are
present. The circle S1 = {(x, y) ∈ R2 | x2+ y2 = 1} is a manifold of dimension
1 without boundary. The definitions allow no flexibility to declare that some of
the points of the circle are boundary points and the rest are manifold points.
(3) The closed ball Bm = {(x1, . . . , xm) ∈ Rm | x21 + · · · + x2m ≤ 1} is a

manifold-with-boundary of dimensionm, the boundary being the sphere Sm−1 =
{(x1, . . . , xm) | x21 + · · · + x2m = 1}.
(4) The closed unit square {(x, y) ∈ R2 | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1} is

not a manifold-with-boundary because of the presence of the corners. If the four
corners are removed from the set, then the result is a manifold-with-boundary,
the boundary consisting of the remaining points on the four edges.
(5) A closed figure 6 in R2 is not a 1 dimensional manifold-with-boundary

because the point where the 6 closes on itself does not satisfy the definitions.
6Theorem 3.17 of Basic Real Analysis.
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(6) If U is an open subset of Rm whose topological boundary U cl − U is
a smooth manifold of dimension m − 1, then M = (U cl − U) ∪ U = U cl is
a manifold-with-boundary of dimension m. However, if U is the union of the
subsets where |x | < 1 and 1 < |x | < 2 in R2, then the topological boundary of
U cl−U , which is two circles, is different from the boundary @U cl of themanifold,
which is one circle.
(7) It is often possible to define regions in Euclidean space parametrically or

implicitly and end up with a manifold-with-boundary. In R2, for example, the
image of a curve t 7→ (x(t), y(t)) in the plane is smooth if x(t) and y(t) are
smooth and if the Implicit Function Theorem can be invoked around each point
of the image to realize the set in question locally as the graph of a smooth function,
i.e., if x 0(t) and y0(t) are nowhere simultaneously vanishing. When such a curve
is closed, in the sense of taking the same value at the two endpoints of the domain
of definition, and when it is simple, in the sense of being one-one except for the
equality of values at the endpoints, it bounds a region of the plane. The region
and the curve together form a manifold-with-boundary of dimension 2.
(8) The same considerations apply in higher dimensions. It is also of interest to

define smooth manifolds-with-boundary in higher dimensional spaces by using
parametric equations and invoking the Implicit Function Theorem. The Möbius
band, given as Example 3 in Section I.6, is a smooth manifold of dimension 2
defined parametrically inR3 by two parameters. As it was defined in that section,
it is a noncompact smooth manifold without boundary. If the domain in the t
variable is taken to be −1 ≤ t ≤ 1 instead of −1 < t < 1, then we obtain a
compact smooth manifold-with-boundary of dimension 2. The boundary can be
seen to be connected in this case; topologically it is a circle.

A smooth real-valued function f : M → R on the smooth manifold-with-
boundary M of dimensionm is by definition a function such that for each p ∈ M
and each compatible chart (Mα, α) about p, the function f ◦ α−1 is smooth as
a function from the open subset α(Mα) of Hm into R. A smooth real-valued
function is necessarily continuous.
To verify that a real-valued function f on the smooth manifold-with-boundary

M is smooth, it is sufficient, for each point in M , to check smoothness within
only one compatible chart about that point. The reason is the compatibility of the
charts: if (Mα, α) and (Mβ, β) are two compatible charts about p, then f ◦β−1 is
the composition of the smooth function α ◦ β−1, which is smooth between open
subsets of Hm , followed by the smooth real-valued function f ◦ α−1.
If E is a nonempty open subset ofM , the space of smooth real-valued functions

on E will be denoted byC∞(E). The spaceC∞(E) is an associative algebra over
R under the pointwise operations, and it contains the constants. The support of
a real-valued function is, as always, the closure of the set where the function is
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nonzero. We write C∞
com(E) for the subset of C∞(E) of functions whose support

is a compact subset of M .
Transferring our notions of tangent space, cotangent space, smooth function,

smooth mapping, and derivative from Hm to general manifolds-with-boundary
can be done by suitably adjusting the definitions and proofs that we gave above
for Hm . Some care is appropriate, however: Although functions on Hm can be
viewed as restrictions toHm of functions onRm , we have no such global extended
space to use with a general manifold-with-boundary. See Figure 2.1.

@M Hm

α α(Mα ∩ @M)

M Mα

α(Mα)
@Hm

Smooth functions on α(Mα) extend
to be smooth beyond @Hm

FIGURE 2.1. Nature of a chart about a boundary point.

If M is a smooth manifold-with-boundary of dimension m, we already have
definitions of the tangent and cotangent spaces Tp(M) and T ∗

p (M) at manifold
points p, since M+ is a smooth manifold. It is for boundary points p that we need
to do something new. Thus let p be a boundary point. We define a germ at p to
be an equivalence class of locally defined smooth real-valued functions in open
neighborhoods of p. Arithmetic operations on germs mirror the corresponding
operations on functions. The germs at p form an associative algebra Cp(M) over
R with identity, just as in the manifold case. Derivations of Cp(M) are defined
just as in the manifold case.
Observe, however, that in the case of a boundary point of Hm , the open

neighborhoodsof boundary points aremerely relatively open. They are somewhat
one-sided and in particular are not open in Rm .
The tangent space Tp(M) at p is defined to be the real vector space of all

derivations of Cp(M), just as it was in the manifold case in Section I.1. If
a local coordinate system at p is given by means of a chart (Mα, α) with α =
(x1, . . . , xm), thenm examples of members of Tp(M) are given by the derivations£

@
@xj

§
p defined by

h @ f
@xj

i

p
=

@( f ◦ α−1)

@uj

Ø
Ø
Ø
(u1,...,um)=(x1(p),...,xm(p))

for j = 1, . . . ,m.

This is so even if p is a boundary point. In this case one or more of the partial
derivatives may need to be interpreted as a one-sided partial derivative within
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α(Mα). Just as in the manifold case, them derivations
£

@
@xj

§
p form a vector-space

basis of Tp(M), regardless of whether p is a manifold point or a boundary point.
Vector fields and smoothness of them are notions defined in the same way as in
the manifold case.
The derivative DF of a smooth function F : M → N between manifolds-

with-boundary is defined just as in the case of manifolds. If p is in M , then
(DF)(p) is a linear function from Tp(M) to TF(p)(N ). The cotangent space
T ∗
p (M) is defined to be the dual of Tp(M), just as in the manifold case. Differ-
entials of smooth functions provide examples, the differential of f at p being
defined by (d f )p(L) = L f for p in Tp(M), just as in the manifold case. We can
then go on to define differential 1 forms, differential k forms, and smoothness of
differential forms. There are no surprises. The notion ofpullbackof a differential
form is still meaningful.

The final preparatory step for working with manifolds-with-boundary is to
make smooth partitions of unity be available. We begin with analogs of Lemmas
1.2 and 1.3.

Lemma 2.3. If U is a nonempty open subset of a smooth manifold-with-
boundary M and if f is in C∞

com(U), then the function F defined on M so as to
equal f onU and to equal 0 offU is in C∞

com(M) and has support contained inU .

REMARK. This is proved in the same way that Lemma 1.2 was proved for
smooth manifolds. The argument makes use of the Hausdorff property of M .

Lemma2.4. Suppose that p is a point in a smoothmanifold-with-boundaryM ,
that (Mα, α) is a compatible chart about p, and that K is a compact subset of Mα

containing p. Then there is a smooth function f : M → Rwith compact support
contained in Mα such that f has values in [0, 1] and f is identically 1 on K .

PROOF. LetM have dimensionm. The setα(K ) is a compact subset of the open
subset α(Mα) ofHm . LetU be an open subset ofRm such thatU ∩Hm = α(Mα).
Lemma 1.1 produces a function g inC∞

com(U)with values in [0, 1] that identically
1 on α(K ). Let f be the pullback of g to Mα; that is, let f = g ◦α−1. Extending
f to be 0 on the complement of Mα in M and applying Lemma 2.3, we see that
the extended f has the desired properties. §

The notion of a smooth partition of unity of a manifold-with-boundary M
subordinate to the finite open cover {Ui } of a compact subset K of M works
just as in the case of smooth manifolds without boundary. The statement is as
follows.

Proposition 2.5. Let M be a smooth manifold-with-boundary, let K be a
nonempty compact subset, and let {Ui | 1 ≤ i ≤ r} be a finite open cover of K .
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Then there exist functions fi in C∞(M) for 1 ≤ i ≤ r , taking values between 0

and 1 such that each fi is identically 0 off a compact subset of Ui and
rP

i=1
fi is

identically 1 on K .

REMARKS. Except for changes in notation, the proof is the same as forTheorem
1.25. SpecificallyLemmas 1.26 and 1.27 are unchanged except that “manifold” in
each of their statements is to be replaced by “manifold-with-boundary.” Lemma
1.28 is unchanged except that “manifold” in its statement is to be replaced by
“manifold-with-boundary” and the citation of Lemma 1.3 is to be replaced by a
citation of Lemma 2.4. Then the proof of Theorem 1.25 goes through without
further change.

3. Induced Orientation on the Boundary

Let M be an m dimensional manifold-with-boundary with m ∏ 1, let @M be
its boundary, and let M+ be its subset of manifold points. We shall say that M
is orientable (or oriented) if M+ is orientable (or oriented). This definition is
meaningful because M+ is a smooth manifold. The point of this section is to
address the question of determining an orientation on @M from an orientation on
M+. We postpone the case where @M has dimension 0, namely the case m = 1,
until the last example of this section. Thus for now, let m ∏ 2.
The goal of the exercise is to be able to prove Stokes’s Theorem, which gives

the formula
R
@M ω =

R
M dω for any compactly supported smoothm− 1 form on

a manifold-with-boundary M of dimension m. In the formula, the integral over
M is really an integral over the set M+ of manifold points. Both M+ and @M are
smooth manifolds, and they are disjoint. To make sense of the two integrals, we
need orientations for M+ and @M , and they need to be correlated in some way.
As in the special case of Theorem 2.1, Stokes’s Theorem is really a local matter
in the presence of an orientation. It is therefore necessary to understand what is
happening in the model space Hm .

EXAMPLE. M = Hm as a manifold-with-boundary. The manifold points are
those in Hm

+, and the boundary points are those in @Hm . A single chart suffices
for the whole manifold-with-boundary. The atlas for M consists of this one chart;
its restriction to @Hm gives us a single chart for @M , hence an atlas for @M . The
subset M+ of manifold points is Hm

+, which is an open subset of Rm . As such, it
can inherit the standard orientation from Rm , which is the one determined by the
m form dx1∧· · ·∧dxm . To obtain an orientation for @M , we cannot simply let xm
tend to 0 in the latterm form. Instead, we can proceedby declaring somenowhere-
vanishing m − 1 form on the Euclidean space @Hm to be positive. For example,



3. Induced Orientation on the Boundary 67

we could declare that the orientation for @Hm is determined by dx1∧· · ·∧dxm−1
since the variable xm is constantly equal to 0 on @M . Unfortunately this choice
leads to the Stokes formula only up to a sign; specifically it leads to the formula
modified by the inclusion of a factor of (−1)m on one of the two sides. Another
approach is to renumber the variables so that the special variable that gets put
equal to 0 on @M is the first variable. Them form on M+ is still the same, and the
temptation is to declare that the orientation for the Euclidean space where x1 = 0
is determined by dx2 ∧ · · · ∧ dxm . As is shown in Problem 10 at the end of the
chapter, this choice leads to the Stokes formula modified by a single factor of
(−1) on one of the two sides. Or one could try some other way of relating @M to
M+ notationally, and one may expect that we are always led to a parity question,
namely whether we get the desired Stokes formula or we get that formula except
for a minus sign. There is a traditional procedure for orienting @M so that the
signs come out correctly, and we tell what that is momentarily. The point is that
the choice of procedure we make is rather arbitrary. The motivation is to make
the signs come out right at the end, and any geometric justification is secondary.
The traditional procedure is to take an outward-pointing tangent vector to

@M = Rm
0 into account, considering it to be primary. The outward-pointing

vector in question can be−
£

@
@xm

§
. We follow it with the standard basis of tangent

vectors to @Hm , including them in their standard order and obtaining

(−@/@xm, @/@x1, @/@x2, . . . , @/@xm−1).

Then we use the nowhere-vanishing differential m form dx1 ∧ · · · ∧ dxm on Hm

to determine the alternating m − 1 linear form on @Hm given by

(v1, . . . , vm−1) 7→ (dx1 ∧ · · · ∧ dxm)(−@/@xm, v1, . . . , vm−1).

The value of this expression is

=
1
m!

det









dx1
°
− @

@xm

¢
dx1(v1) · · · dx1(vm−1)

...

dxm−1
°
− @

@xm

¢
dxm−1(v1) · · · dxm−1(vm−1)

dxm
°
− @

@xm

¢
dxm(v1) · · · dxm(vm−1)









=
1
m!

det








0 dx1(v1) · · · dx1(vm−1)
...

...
. . .

0 dxm−1(v1) · · · dxm−1(vm−1)

−1 dxm(v1) · · · dxm(vm−1)







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=
(−1)m

m!
det






dx1(v1) · · · dx1(vm−1)
...

. . .

dxm−1(v1) · · · dxm−1(vm−1)






= (−1)mm−1(dx1 ∧ · · · ∧ dxm−1)(v1, . . . , vm−1),

and we see that the above form is nowhere vanishing on @Hm . We take its
equivalence class modulo everywhere positive functions to be the induced
orientation on @Hm . In other words, the induced orientation is determined by
(−1)m(dx1 ∧ · · · ∧ dxm−1) up to a positive factor.

To work with this construction in the context of a general manifold-with-
boundary M of dimension m, we shall make use of a particularly nice atlas of
charts for M . This atlas consists of one compatible chart about each point of M .
Distinct points are allowed to correspond to the same compatible chart.
For a manifold point p, we can use any chart about p that does not meet @M .

For a boundary point p, we start from any compatible chart (Mα, α) about p
such that Mα is connected. The charts are mutually compatible and cover M by
construction. Thus the result is an atlas for M consistent with its manifold-with-
boundary structure. The members of the atlas that do not meet @M are exactly
the charts about boundary points.
The following proposition uses this constructed atlas onM to extend the notion

of induced orientation from Hm and @Hm to M and @M .

Proposition 2.6. Let M be an m dimensional manifold-with-boundary, and
suppose thatm ∏ 2 and thatM+ is oriented. Then the orientation onM+ induces a
nowhere-vanishingm− 1 form η on @M with the property that on any connected
positive chart (Mα, α) about a boundary point, η is the product of a positive
function and the pullback (−1)mα∗(dx1 ∧ · · · ∧ dxm−1).

REMARK. The orientation on @M obtained in this way, i.e., the equiva-
lence class of η modulo everywhere-positive functions, is called the induced
orientation for @M . It is uniquely determined by the orientation of M+. A
version of this proposition valid for m = 1 will be noted after the end of the
proof.

PROOF. We start from the atlas for M constructed just before the statement
of Proposition 2.6. It supplies one compatible chart about each point p of M .
Applying Proposition 2.2 to this atlas, we obtain an atlas of compatible charts
for @M by restriction, provided we discard those charts that do not meet @M .
The ones that do not meet @M are all the charts about manifold points. Thus
our construction has the property that the restrictions to @M of the charts about
boundary points form an atlas of compatible charts for @M .
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p1 p2

Mαp1
Mαp2 p3

Mαp3

FIGURE 2.2. Some charts used in proving Proposition 2.6.

Since M+ is orientable, Proposition 1.30 associates to each orientation of
M+ a nowhere-vanishing smooth m form on M . This m form is unique up to
multiplication by a real-valued function that is everywhere positive. Fix such an
ω for the given orientation ofM+. Before workingwith the atlas for @M , we shall
make an adjustment to the charts about boundary points that we are including in
the atlas for M .
For each p in @M , let Fαp : αp(Mαp) → R be the smooth function such that

(α−1
p )∗ω = Fαp(x1, . . . , xm) dx1 ∧ · · · ∧ dxm .

The right side is the local expression for ω in the image in Hm of the chart
(Mαp , αp). Since ω is nowhere vanishing and αp(Mαp) is assumed to be con-
nected, Fαp has constant signonαp(Mαp). If the constant sign is positive, we retain
(Mαp , αp) for the adjusted atlas. If the sign is negative, we take advantage of the
fact that m > 1 to redefine αp by following it with the linear map T : Rm → Rm

given by T (x1, x2, . . . , xm) = (−x1, x2, . . . , xm). In this case we instead include
(Mαp , T ◦ αp) in the adjusted atlas. Since

((T ◦ αp)
−1)∗ω = ((α−1

p ) ◦ T−1)∗ω = (T−1)∗(α−1
p )∗ω

by Proposition 1.18f and since T−1 = T , we have

((T ◦ αp)
−1)∗ω = −Fαp(−x1, x2, . . . , xm) dx1 ∧ · · · ∧ dxm .

With this change the coefficient of dx1∧· · ·∧dxm is now everywhere positive on
its domain α(Mαp). This completes our adjustment to the charts about boundary
points that we are including in our atlas.
Referring to (‡‡) in the proof of Theorem 1.29, we see that each function

det
Ω

@yi
@xj

æ

i, j=1,...,m
arising from a coordinate change between two of the charts

about boundary points in the adjusted atlas for M is positive on its domain.
We now want to interpret this information for the atlas on @M . The members

of the atlas for @M are obtained by restricting to @M the charts about boundary
points. We want to see that this atlas for @M exhibits @M as oriented.7 Thus

7It indeed exhibits @M as oriented, but sadly the resulting orientation on @M is not quite the one
we seek.
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suppose we have two such charts, say (Mα, α) and (Mβ, β), with the property
that Mα ∩ Mβ ∩ @M is not empty. It is enough to consider

β ◦ α−1ØØ
@Hm : α(Mα ∩ Mβ ∩ @M) → β(Mα ∩ Mβ ∩ @M).

This is the same as the full map β ◦ α−1 but restricted to the set where xm = 0,
and we know from Proposition 2.2a that ym = 0 for such points. Since the mth
coordinate function is 0, the Jacobian matrix has all entries equal to 0 in its mth
row except for the diagonal entry, which is @ym

@xm . If we write J (x1, . . . , xm) for the
full Jacobian determinant and J@M(x1, . . . , xm−1) for the Jacobian determinant
of the upper left m − 1 by m − 1 block, we obtain

J (x1, . . . , xm−1, 0) =
@ym
@xm

(x1, . . . , xm−1, 0) J@M(x1, . . . , xm−1).

We have seen that the left side is everywhere positive. If we can show that
@ym
@xm (x1, . . . , xm−1, 0) is everywhere ∏ 0, then it will follow that every Jacobian
determinant J@M(x1, . . . , xm−1) is everywhere positive, and we will have proved
that the adjusted atlas exhibits @M as oriented. But this is just one-variable
calculus: the mth component of ym is ∏ 0 for xm ∏ 0 and takes the value 0 at
xm = 0; its first derivative must then be ∏ 0 at xm = 0.
Thuswehave constructed an orientationon @M . It is not exactly the orientation

we seek. We define the induced orientation on @M to be the constructed
orientation if m is even and to be the opposite of the constructed orientation
if m is odd. In symbols if η1 is a nonvanishing m − 1 form on @M defining the
constructed orientation, we can use η = (−1)mη1 in every case as a nowhere-
vanishing m − 1 form on @M defining the induced orientation. §

The proof of Proposition 2.6 breaks down when m = 1. The smooth function
Fαp : α(Mαp) → R of the third paragraph of the proof still makes sense. Since
m = 1, it involves just one variable:

(α−1
p )∗ω = Fαp(x) dx .

It is still true that the function Fαp necessarily has constant sign on αp(Mαp). But
if that sign is negative, no variables are available to make use of the reflection
function T . Thus we leave Fαp as it is, positive or negative, and we make no
adjustment to the charts about boundary points. Nevertheless, the restrictions
of these charts to @M still exhibit @M as oriented. We just take the orientation
of a point p to be the sign of Fαp(0), and there is no contradiction. Following
through for m = 1 on the sign convention in our definition above of the induced
orientation for m > 1, we define the contribution of a point p to the value of an
integral over @M of a 0 form in the induced orientation to be −Fαp(0).
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4. Stokes’s Theorem for Manifolds-with-Boundary

Now we come to Stokes’s Theorem, working with an oriented manifold-with-
boundary M of dimension m ∏ 1. Proposition 2.6 has shown how to obtain an
induced orientation of @M when starting from a given orientation of M .

Theorem 2.7. Let M be an oriented manifold-with-boundary of dimension
m ∏ 1, and give its boundary @M the induced orientation. If ω is any smooth
m − 1 form on M of compact support, then

Z

@M
ω =

Z

M
dω.

PROOF. The model space is Hm , and we first prove the theorem in this special
case. The smooth m − 1 form ω necessarily has an expansion

ω =
mP

r=1
Fr (x1, . . . , xr , . . . , xm) dx1 ∧ · · · ∧ ddxr ∧ · · · ∧ dxm, (∗)

the circumflex indicating a missing term. All the coefficient functions Fr are
smooth and are equal to 0 off the compact support S of ω, and we have

dω =
mP

r=1

mP

s=1

@Fr
@xs dxs ∧ dx1 ∧ · · · ∧ ddxr ∧ · · · ∧ dxm

=
mP

r=1
(−1)r−1

°
@Fr
@xr

¢
dx1 ∧ · · · ∧ dxm . (∗∗)

The support of ω being compact, we choose real numbers aj and bj for
1 ≤ j ≤ m − 1 and a real number c such that all points x = (x1, . . . , xm)
of S have aj < xj < bj for 1 ≤ j ≤ m − 1 and 0 ≤ xm < c.
On @Hm , where xm is identically 0 and dxm is in effect 0, all the terms of (∗)

drop out except for the term with r = m, and thus

ω = Fm(x1, . . . , xm−1, 0) dx1 ∧ · · · ∧ dxm−1.

We want to integrate ω over @Hm , taking into account the orientation. Suppose
for the moment thatm ∏ 2. Since (−1)mdx1∧· · ·∧dxm−1 is positively oriented
on @Hm in the induced orientation, application of Theorem 1.29 gives

Z

@Hm
ω = (−1)m

Z

@Hm
Fm(x1, . . . , xm−1, 0) dx1 ∧ · · · ∧ dxm−1

= (−1)m
Z b1

a1
· · ·

Z bm−1

am−1

Fm(x1, . . . , xm−1, 0) dxm−1 · · · dx1. (†)
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Special remarks are appropriate here whenm = 1. Then @Hm reduces to a single
point (0), and the differential form ω is the scalar F1(0) attached to that point.
When it comes to integration, our convention about the induced orientation at the
point 0 for this value of m, which was spelled out in the final paragraph of the
previous section, is that we multiply F1(0) by −1. That is

Z

@H1
ω = −F1(0),

and thus (†) still holds form = 1. Therefore we take (†) as known for allm ∏ 1.
Meanwhile, dω is given on Hm for all m ∏ 1 by (∗∗), and application of

Theorem 1.29 and its Remark (2) yields
Z

Hm
dω =

Z

Hm

mP

r=1
(−1)r−1

°
@Fr
@xr

¢
dx1 ∧ · · · ∧ dxm

=
mP

r=1
(−1)r−1

Z

Hm

°
@Fr
@xr

¢
dx1 · · · dxm (††)

with the integral on the right side equal to an ordinary integral with respect to
Lebesgue measure. On the right side of (††) in the r th term, the integration is
taking place in m variables, and we choose to do the integration in the variable
xr first. Since the set of integration is a product set, the inside integral in the case
that r < m is Z br

ar

°
@Fr
@xr

¢
dxr .

The function Fr in its dependence on xr is smooth and compactly supported in
the open interval ar < xr < br . By the Fundamental Theorem of Calculus, the
integral in the variable xr is 0. For r = m, the inside integral on the right side of
(††) is

Z c

0

°
@Fm
@xm

¢
dxm = Fm(x1, . . . , xm−1, c) − Fm(x1, . . . , xm−1, 0)

with Fm(x1, . . . , xm−1, c) = 0 by the support condition. Therefore the whole
expression (††) boils down to

= (−1)m
Z b1

a1
· · ·

Z bm−1

am−1

Fm(x1, . . . , xm−1, 0) dxm−1 · · · dx1,

which exactly equals (†). We conclude that
Z

@Hm
ω =

Z

Hm
dω. (‡)
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in the special case that M = @Hm .
To handle the general case, we proceed in the same manner as in the proof of

Theorem 2.1: About each point p in M of the compact support S ofω, we choose
a positive compatible chart (Mα, α). Since the sets Mαj form an open cover of the
compact set S, we can choose a finite subcover {Mα1, . . . ,Mαk }. By Proposition
2.5 (instead of Theorem 1.25), let {√1, . . . , √k} be a smooth partition of unity of
M subordinate to this finite open cover. For 1 ≤ i ≤ k, the m − 1 form √iω
is compactly supported in Mαi , and the m − 1 form (α−1)∗(√iω) is compactly
supported in αi (Mαi ) ⊆ Hm . Let us extend it to all of Hm by setting it equal to 0
off αi (Mαi ) ⊆ Hm , leaving its name unchanged. Then

Z

M
d(√iω) =

Z

Mαi

d(√iω) =
Z

αi (Mαi )

(α−1
i )∗(d(√iω)) by Theorem 1.29

=
Z

Hm
(α−1

i )∗(d(√iω)) after extension by 0

=
Z

Hm
d((α−1

i )∗(√iω)) by Proposition 1.24

=
Z

@Hm
(α−1

i )∗(√iω) by (‡)

=
Z

@Mαi

√iω =
Z

@M
√iω by Theorem 1.29.

Summing over i from 1 to k and using the fact that
kP

i=1
√i is identically 1, we

obtain Z

M
dω =

kP

i=1

Z

M
d(√iω) =

Z

@M

° kP

i=1
√iω

¢
=

Z

@M
ω,

and the proof of the general case is complete. §

EXAMPLE. Suppose M is the closed bounded interval [a, b] of R1. This
manifold-with-boundary has M+ = (a, b) and @M = {a, b}. We can cover M
with an atlas of two charts about boundary points, namely (Mα, α) and (Mβ, β)
with

Mα = [a, b), α(x) = x − a, α(Mα) = [0, b − a),
Mβ = (a, b], β(x) = b − x, β(Mβ) = [0, b − a).

Proposition 2.6 does not modify this atlas before we restrict matters to @M . Fix
a function √ in C∞

com([a, b)) taking values in [0, 1] and having √(x) = 1 near
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x = a and √(x) = 0 near x = b. Our partition of unity on [a, b] can be taken as
{√, 1− √}.
The orientation on M+ is given by the nowhere-vanishing 1 form η = dx ; in

other words, it is right to left as usual. The pullbacks of dx into the charts are
given by (α−1)∗(dx) = dx and (β−1)∗(dx) = −dx . So the functions Fα and Fβ

in the proof of Proposition 2.6 are given by Fα = 1 and Fβ = −1. The induced
orientation is obtained by multiplying these by −1 since m is odd. Thus we get
a total contribution of −1 at the point a of @M and +1 at the point b.
Let ω be the 0 form x 7→ f (x), f being a C∞ function on [a, b]. Then

R
@M ω =

R
@M √ω +

R
@M(1− √)ω = − f (a) + f (b).

Meanwhile, R
M dω =

R
(a,b)

d
dx ( f (x)) dx =

R b
a f 0(x) dx .

So the conclusion of the theorem, namely
R
@M ω =

R
M dω, reduces to the

Fundamental Theorem of Calculus, namely f (b) − f (a) =
R b
a f 0(x) dx .

5. Classical Vector Analysis

Vector analysis refers to the part of multivariable calculus in R2 and R3 that uses
techniques of geometry and calculus to provide tools helpful in applications to
science and engineering. These tools include

• vector notation for R2 and R3,
• dot product and vector product,
• various differentiation operators and notation for them,
• double and triple integrals,
• descriptions of curves and surfaces,
• tangent vectors and normal vectors,
• line integrals and surface integrals,
• arc length and surface area,
• Green’s Theorem, the Divergence Theorem, and the Kelvin–Stokes
Theorem.

Most of what is said in this section will be simply alternative notation for notions
that are already known. Though the mathematics will not be new, it is important
for good communication to be able to recognize this alternative notation and to
be able to work with it.
The emphasis in this book has been and continues to be on the unified

treatment of Green’s Theorem, the Divergence Theorem, and the Kelvin–Stokes
Theorem that was introduced by E. Cartan. The Cartan approach has led us to a
certain amount of differential geometry (tangents vectors, tangent spaces, vector
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fields, differentials, derivatives, differential forms, pullbacks, integration of top-
degree differential forms, and so on), and at the same time it has avoided making
essential use of orthogonality anywhere. It avoided using orthogonality by being
cast as a theory about general smooth manifolds with no additional structure.
Some of the tools in vector analysis do make considerable use of orthogonality
inherited from Euclidean space, and we shall touch on these tools only lightly.
In vector analysis one works with scalar-valued functions and vector-valued

functions in two or three dimensions. To fix the ideas, let us work with dimen-
sion 3; dimension 2 van be handled by simply taking the third component to
be 0. For a mathematician, R3 is often viewed as a space of column vectors of

real numbers, such as
µ a
b
c

∂
. Mathematicians allow themselves to write such a

column vector horizontally with commas, as in (a, b, c), to save space, and the
subject of vector analysis sometimes uses the same horizontal notation. Often
in vector analysis, however, a different kind of abbreviation appears, in which

one gives names to the three standard basis vectors, namely i =
µ 1
0
0

∂
, j =

µ 0
1
0

∂
,

and k =

µ 0
0
1

∂
. Then the vector (a, b, c) becomes ai + bj + ck. Sometimes a

vector ai + bj + ck = (a, b, c) is associated geometrically with an arrow that
extends from the origin (0, 0, 0) to the point (a, b, c). Vectors are often written
with boldface symbols as in v = ai+bj+ck = (a, b, c), or with symbols having
arrows over them as in −→v = a−→i + b−→j + c−→k , but we shall usually not follow
either of these conventions.
Functions into R3 with domain in R1 are called curves if they satisfy some

additional properties, functions with domain in R2 are called surfaces if they
satisfy some additional properties, and functions with domain in R3 are called
“vector fields” in this language. The case of values in R3 requires some special
comments. Such a function F , carrying part of R3 into R3, can be viewed
conveniently as a system of arrows in R3, one such arrow having its tail is at the
point (a, b, c) of the domain and having its tip is at (a, b, c) + F(a, b, c). The
arrows show how each point (a, b, c) moves under the function. Just as with
vectors themselves, vector-valued functions are sometimes denoted by boldface
symbols or by symbols with arrows over them, but we shall often not follow this
convention.
Dot product inR3 is familiar to the reader from elementary linear algebra. The

dot product of vectors u = (u1, u2, u3) and v = (v1, v2, v3) is written u · v in the
language of vector analysis, and its value is u · v = u1v1+ u2v2+ u3v3. which is
a scalar. As a function fromR3×R3 intoR, dot product is linear in each variable,
and it satisfies u · u ∏ 0 with equality if and only if u = 0. The length of a vector
u = (u1, u2, u3), written |u|, is given by |u| =

p
u · u =

q
u21 + u22 + u23. Dot

product has the geometric interpretation that u · v = |u||v| cos θ , where θ is the
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angle that u and v make with the origin.
The cross product, also known as the vector product, of two vectors may be

less well known. Cross product is defined reasonably only in R3 and does not
generalize well to other dimensions. The cross product or vector product of
vectors u = (u1, u2, u3) and v = (v1, v2, v3) in R3 is the vector in R3 given by

u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Fortunately there is a mnemonic for this definition, the formal expression being
either

u × v = det

√ i j k
u1 u2 u3
v1 v2 v3

!

or u × v = det

√ i u1 v1
j u2 v2
k u3 v3

!

,

whichever ismore convenient. As a function fromR3×R3 intoR3, vector product
is linear in each variable. It is 0 if and only if u and v are collinear.
Letw = (w1, w2, w3) be a third vector. The triple productw · (u×v) is given

by substituting into the mnemonic the coordinates of w for i, j, and k. From this
fact it is clear that u × v is orthogonal to u and v. Moreover, a little computation
shows that |u×v|2+(u ·v)2 = |u|2|v|2. Therefore |u×v| = |u||v|| sin θ |, where
θ is again the angle that u and v make with the origin. Consequently we know the
magnitude of u × v (namely |u||v|| sin θ |) and the direction up to sign, namely
orthogonal to both u and v; that final sign can be determined from easy geometric

considerations.8 Finally if u, v, and w are three vectors, then det
µ u1 u2 u3

v1 v2 v3
w1 w2 w3

∂
, up

to sign, is the volume of the parallelepipedwith sides u, v, andw. (See Problem 2
at the end of the chapter.)
Vector analysis makes use of three differential operators on functions on R3,

known as gradient, divergence, and curl. They are defined by

grad f =
@ f
@x
i+

@ f
@y
j+

@ f
@z
k for f scalar-valued,

div F =
@F1
@x

+
@F2
@y

+
@F3
@z

for F = (F1, F2, F3) vector-valued,

and

curl F =
≥@F3

@y
−

@F2
@z

¥
i+

≥@F1
@z

−
@F3
@x

¥
j+

≥@F2
@x

−
@F1
@y

¥
k

for F = (F1, F2, F3) vector-valued. Observe that grad f and curl F are vector-
valued, but div F is scalar-vaued. The symbolic vector ∇ = @

@x i +
@
@y j +

@
@zk,

8That sign is determined by the right-hand rule or the left-hand rule, whichever applies to the
valid formula i× j = k,
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pronounced “nabla,” allows us to write these definitions more economically as
follows:

grad f = ∇ f, div F = ∇ · F, and curl F = ∇ × F.

These operators may be interpreted as special cases of the exterior derivative
operator d, as was shown in Example 2 in Section I.4.
Double and triple integrals are familiar fromChapter III ofBasicReal Analysis,

and it is not necessary to say any more about them now except that dx dy
is sometimes abbreviated as d A in dimension 2 and dx dy dz is sometimes
abbreviated dV is dimension 3.
Curves and surfaces were discussed somewhat in problems at the end of

Chapter I, and the reader may wish to refer to that material. In the present
chapter we are interested only in smooth curves and smooth surfaces, which are
often given either “parametrically” or “implicitly.” Parametric curves are usually
given by a function of 1 parameter intoR3, while parametric surfaces are usually
given by a function of 2 parameters intoR3. In both cases the defining function is
assumed to satisfy a certain nondegeneracy condition so that the Inverse Function
Theorem can be applied. In the implicit case, curves and surfaces are usually
given as the set of simultaneous solutions of some (nonlinear) equations, usually
n−1 equations in n variables in the case of a curve or n−2 equations in n variables
in the case of a surface. In addition, the defining equations are assumed to satisfy
a certain nondegeneracy condition so that the Implicit Function Theorem can be
applied. Nothing more needs to be added to these remarks at this time.
Oneway that a curve can arise in physics and engineering is as the trajectory of

a particle in space. The position is often written as r(t) = x(t)i+ y(t)j+ z(t)k,
in which case the velocity is v(t) = r0(t) = x 0(t)i+ y0(t)j+ z0(t)k. The velocity
vector is always tangent to the curve. The nondegeneracy condition that was
mentioned in the previous paragraph is that the velocity vector is nowhere the
0 vector. This condition ensures that the curve is locally a smooth manifold of
dimension 1.
A surface can arise, for example, as amembrane throughwhichfluid is flowing,

or as the two dimensional boundary of an open subset ofR3. Say that the surface is
given in terms of two parameters s and t by three functions x(s, t), y(s, t), z(s, t).
We write r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k. The nondegeneracy condition
that was mentioned above is that the surface has two linearly independent tangent
vectors at each point, hence a genuine tangent plane at each point that varies nicely
with the point. Avector orthogonal to this tangent plane is called anormal vector,
and such a vector of length 1 is often denoted by n. A unit normal vector at a
particular point is determined up to sign. A smoothly embedded surface need
not have a continuously varying unit normal vector; the Möbius band does not.
A surface in R3 has a continuously varying unit normal vector if and only if it is
orientable. Orientability is often disposed of quickly in physics and engineering
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applications, often by a phrase such as “with the region on the left” or “with an
outward pointing unit normal vector.” We shall see examples in the next section.
In the language of differential forms, line integrals are integrals of 1 forms

over oriented manifolds of dimension 1, and surface integrals are integrals of 2
forms over oriented manifolds of dimension 2. In a sense, that fact remains true
in the notation used in physics and engineering, but the differential forms are
somewhat concealed. In the notation of physics and engineering, a line integral
is an expression like Z

C
F · ds.

where C is a curve. We are to think of F = F1i + F2j + F3k as a force field,
assigning a quantity of force to a particle at any particular point ofC or perhaps at
anypoint of anopen set containingC . Alsoweare to thinkofds as idx+jdy+kdz.
The integral represents the limit of a sumof infinitesimal displacementsmultiplied
by values ofF, each summand of force times displacement representing a quantity
of work (energy). A rigorous definition using a limiting process appears in
Chapter III of Basic Real Analysis, but we need not be concerned with that
point at present. Operationally we evaluate

R
C F · ds the same way we evaluate

the integral of the 1 form F1 dx + F2 dy + F3 dz, namely by parametrizing the
oriented curve with a parameter t , substituting for dx , dy, and dz in terms of dt ,
and evaluating an ordinary Riemann integral.
Similarly in the notation of physics and engineering, a surface integral is an

expression like Z

S
F · dS,

where

dS =

√ dy ∧ dz
dz ∧ dx
dx ∧ dy

!

.

The integral
R
S F · dS is evaluated in the same way as the integral of the 2 form

F1 dy ∧ dz + F2 dz ∧ dx + F3 dx ∧ dy. The interpretation of the integral is of
the total “flux” crossing the surface, with F telling how much flux per unit area
is crossing the surface at each point and with dS representing infinitesimal area
of the surface. “Flux” is a term in physics whose exact meaning depends on the
particular application. In hydrodynamics it is a quantity of fluid. The term is used
also in electromagnetic theory. Since we know how to work with the integral of a
smooth 2 form, we need not be concerned with incorporating a rigorous passage
to the limit into our definition of surface integral.
Let us turn to arc length and surface area. Arc length was defined rigorously

in Chapter III of Basic Real Analysis by a passage to the limit. For surface area,
however, we found that an approach by taking a limit of areas of inscribed surfaces
does not work, and consequently the surface area of a manifold of dimension 2
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requires extra structure for a meaningful definition. It would be enough to have
the surface smoothly embedded inR3, and then unit normal vectors to the surface
are available. This concept takes us beyond the mathematics needed for Stokes’s
Theorem, and we shall not pursue it after this paragraph except to say that a unit
normal vector to the surface in R3 defined parametrically by r(s, t) is

n =
Ø
Ø
Ø
@r(s, t)

@s
×

@r(s, t)
@t

Ø
Ø
Ø
−1≥@r(s, t)

@s
×

@r(s, t)
@t

¥

and that the total surface area of a surface is given by integration of a scalar
quantity dS over the surface, dS being related to the vector quantity dS by the
formulas

dS =
@r(s, t)

@s
×

@r(s, t)
@t

ds dt

dS =
Ø
Ø
Ø
@r(s, t)

@s
×

@r(s, t)
@t

Ø
Ø
Ø ds dt

Finally we want to see in some detail how Green’s Theorem, the Divergence
Theorem, and the Kelvin–Stokes Theorem arise as special cases in dimensions 2
and 3 of Stokes’s Theorem. That is the topic for the next section.

6. Low Dimensional Cases of Stokes’s Theorem

Let us examine the meaning of Stokes’s Theorem for compact manifolds-with-
boundary that are subsets of Euclidean spaces in dimensions 2 and 3. In every
case we need to pay particular attention to orientations. In each case we shall
state the classical result that comes from Theorem 2.7, explain the choices that
are being made, and give a simple example. More complicated examples appear
in the problems at the end of the chapter.
We have already handled the case of a closed interval in R1 as an example at

the end of the previous section; it yields the Fundamental Theorem of Calculus on
a closed bounded interval ofR1. In dimensions 2 and 3, the situations to examine
are those of Green’s Theorem in R2, the Divergence Theorem in R2 and R3, the
Kelvin–Stokes Theorem in R3, and integration of a differential along a curve in
R2 or R3.
Before coming to the analysis of cases, let us summarize what we know

about orientations from the previous section and Section I.6. Orientation of
a smooth manifold M of dimension m amounts to a parity condition and is
constant on connected components. One way of expressing it is as the sign of
a nowhere-vanishing form of the top degree m. The standard orientation on Rm

corresponds to them form dx1∧ · · ·∧dxm . Permuting the variables corresponds
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to permuting an ordered basis, and the effect on orientation is given by the sign
of the determinant of the change-of-basis matrix, which is the same as the sign
of the permutation. An orientation on a smooth manifold-with-boundary is given
by an orientation on the set of manifold points, and this induces an orientation
on the boundary points. This process of inducing an orientation may or may not
seem natural; primarily it is designed to make the signs come out right in Stokes’s
Theorem. One way of describing the process is the following: One works with
the tangent space to M , starts with an outward pointing vector from the boundary,
and extends that one-element set of vectors to an ordered basis of the tangent
space by adjoining tangent vectors to the boundary. Then one takes that basis
into account in parametrizing the boundary.

a. Green’s Theorem. Rather than try to make the above general description
more precise all at once, let us see how it is to work in increasingly complex
examples. We begin with Green’s Theorem, whose statement in the current
setting is as follows.

Theorem 2.8 (GREEN’S THEOREM). Let M be a compact oriented smooth
manifold-with-boundary of dimension 2 within R2. If P and Q are smooth
functions on an open subset of R2 containing M , then

Z

@M
P dx + Q dy =

Z

M

≥@Q
@x

−
@P
@y

¥
dx dy,

provided @M is given the induced orientation.

Here Theorem 2.7 is being applied on M to the 1 form ω = P dx + Q dy.
According to Example 1 in Section I.4, dω equals

°
@Q
@x − @P

@y
¢
dx ∧ dy. The

manifold M+ is understood to be given the standard orientation from R2, which
is determinedby the 2 form dx∧dy. Evaluation of the integral

R
M dω can be done

by using Theorem 1.29; since dx ∧ dy corresponds to the standard orientation of
R2, dx ∧ dy is to be replaced by dx dy in a double integral.
According to Theorem 2.8, @M is to be given the induced orientation. This

means informally that a parametrization of the boundary curve @M is to trace out
the curve “with the region on the left.” More formally let the parametrization be
t 7→

≥
x(t)
y(t)

¥
. The derivative is

≥
x 0(t)
y0(t)

¥
; it is assumed that x 0(t) and y0(t) never

vanish simultaneously, so that at each point the Inverse Function Theorem applies
either in x or in y and shows that locally one of the variables x and y is a smooth
function of the other. At the point of the curve where t = t0, the tangent space in
R2 has an ordered basis

°
v,

≥
x 0(t0)
y0(t0)

¥ ¢
, where v is a vector pointing outward from

the boundary. This basis can be transformed into the standard basis of R2 by a
linear map of nonzero determinant. In terms of orientations, the determinant is
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positive if and only if the parametrization of the curve at t0 is consistent with the
induced orientation of the boundary,9 and it remains consistent for all t while the
parametrization is in force.

EXAMPLE. Let M be the closed annulus {(x, y) ∈ R2 | 1 ≤ x2+ y2 ≤ 4}. The
boundary consists of two circles, the outer circle being traversed counterclockwise
(so thatM+ is on the immediate left) and the inner circle being traversed clockwise
(so that M+ is on the immediate left). Let ω = P dx + Q dy = y dx . Then
dω = −dx ∧ dy. So

R
dω =

R
M −1 dx dy = −Area(M+) = −3π . We can

parametrize the boundary by two circles, one being t 7→ (2 cos t, 2 sin t) for
0 ≤ t ≤ 2π and the other being t 7→ (cos t,− sin t) for 0 ≤ t ≤ 2π . Then

R
@M x dx =

R 2π
0 2 sin t d(2 cos t) − sin t d(cos t)

=
R 2π
0 (−4 sin2 t + sin2 t) dt = −3π.

b. Divergence Theorem. The Divergence Theorem works for manifolds-
with-boundary in any number of dimensionsm ∏ 2. Let us begin with dimension
3. We state the theorem in that case, remark about orientation, and give an
example. Then we make remarks about the case of general dimension m and
say how the result in dimension 2 compares with Green’s Theorem. Finally we
restate the Divergence Theorem in dimension 3 in the notation of the previous
section that is often used in physics and engineering.

Theorem 2.9 (DIVERGENCE THEOREM). Let M be a compact oriented smooth
manifold-with-boundary of dimension 3 within R3. If F1, F2, F3 are smooth
real-valued functions on an open subset of R3 containing M , then
Z

@M
F1 dy∧dz+F2 dz∧dx+F3 dx∧dy =

Z

M

≥@F1
@x

+
@F2
@y

+
@F3
@z

¥
dx dy dz,

provided @M is given the induced orientation.

Theorem 2.9 is the special case of Theorem 2.7 applied to the 2 form

F1 dy ∧ dz + F2 dz ∧ dx + F3 dx ∧ dy.

According to Example 2 in Section I.4, dω =
°

@F1
@x + @F2

@y + @F3
@x

¢
dx ∧ dy ∧ dz.

M is oriented by the standard orientation of R3, the one determined by
dx ∧ dy ∧ dz. To sort out the meaning of the induced orientation, we start with a

9Positive determinant means that the tangent vector to the curve points to the left of the outward-
pointing vector v; thus the inward-pointing vector−v points to the left of the tangent vector, and the
region is on the left of the curve.



82 II. Manifolds-with-Boundary

parametrization of the surface @M , say (s, t) 7→

µ x(s,t)
y(s,t)
z(s,t)

∂
. This parametrization

doesnot have towork everywhereonM at once. Consistent local parametrizations
will be good enoughbecause of the assumedorientability. The derivativematrix is

the 3-by-2 matrix
µ

@x/@s @x/@t
@y/@s @y@t
@z/@s @z/@t

∂
. The assumption on the parametrization to make

it locally invertible is that this derivative matrix has rank 2 everywhere. Then
about every point of the surface, one can in principle solve for one of the variables
x, y, z in terms of the other two, according to the Inverse Function Theorem. At
the point of the surface where (s, t) = (s0, t0), the tangent space in R3 has an

ordered basis
≥
v,

µ
@x/@s
@y/@s
@z/@s

∂

(s0,t0)
,

µ
@x/@t
@y/@t
@z/@t

∂

(s0,t0)

¥
, where v is a vector pointing

outward from the boundary. This basis can be transformed into the standard basis
of R3 by a linear map of nonzero determinant. If the determinant is positive,
then the parametrization of the surface near (s0, t0) is consistent with the induced
orientation of the boundary. Conversely if the determinant is negative, then
the parametrization of the surface is consistent with the opposite of the induced
orientation.

EXAMPLE. Let M be the closed unit ball

M = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1}.

Theboundary is the unit sphere @M = {(x, y, z) ∈ R3 | x2+y2+z2 = 1}, and it is
to be given the induced orientation. Letω = z dx∧dy. Then dω = dx∧dy∧dz.
So

R
M dω =

R
M dx dy dz = Volume(M+) = 4π/3.

To evaluate
R
@M z dx ∧ dy directly and check Theorem 2.7 in this case, we

need to parametrize the sphere. We can use ordinary spherical coordinates (ϕ, θ)
near most points for this purpose:

µ x(ϕ,θ)

y(ϕ,θ)

z(ϕ,θ)

∂
=

µ cosϕ
sinϕ cos θ
sinϕ sin θ

∂

for 0 < ϕ < π and −π < θ < π . The derivative matrix is
µ − sinϕ 0
cosϕ cos θ − sinϕ sin θ

cosϕ sin θ sinϕ cos θ

∂
.

This derivative matrix is convenient to examine at (ϕ, θ) = (π/2, 0), which

corresponds to (x, y, z) = (0, 1, 0). At this point,
µ 0
1
0

∂
is an outward pointing

vector from the closed unit ball. The derivative matrix at this point is
µ

−1 0
0 0
0 1

∂
.
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If the outward pointing vector is adjoined to this matrix as its first column, the
determinant of the resulting 3-by-3 matrix is+1, positive. Thus our parametriza-
tion gives us the induced orientation, not its opposite. To evaluate

R
@M z dx ∧dy,

we compute

dx ∧ dy =
° @(x,y)

@(ϕ,θ)

¢
dϕ ∧ dθ

= det
≥

− sinϕ 0
cosϕ cos θ − sinϕ sin θ

¥
dϕ ∧ dθ = sin2 ϕ sin θ dϕ ∧ dθ.

Then
Z

@M
z dx ∧ dy =

Z π

ϕ=0

Z π

θ=−π

sinϕ sin θ sin2 ϕ sin θ dθ dϕ = π

Z π

ϕ=0
sin3 ϕ dϕ.

One readily checks that the ϕ integral equals 4/3, and thus the surface integral
equals 4π/3, in agreement with the statement of the Divergence Theorem.
REMARK. It may at first appear that Theorem 2.9 applies to many familiar

regions ofR3. But one has to remember that the hypotheses require the closure of
the region to be a smoothmanifold-with-boundary. In particular the boundary has
to be smooth. A solid hemisphere does not fit the hypotheses. Often the region
between two smooth surfaces suffers the same drawback, having “corners” where
the two surfaces meet. The relevant setting to handle this situation is that of a
“smooth manifold-with-corners.” Such objects will be discussed in Chapter III.

In general dimension m, Theorem 2.7 gives
Z

@M

mX

i=1
(−1)i−1Fi dx1 ∧ · · · ∧ cdxi ∧ · · · ∧ dxm =

Z

M

mX

i=1

@Fi
@xi

dx1 · · · dxm,

where the circumflex indicates a missing factor. In dimension 2, the formula
reduces to Z

@M
F1dy − F2 dx =

Z

M

≥@F1
@x

+
@F2
@y

¥
dx dy.

This matches the formula of Green’s Theorem if we put F2 = −P and F1 = Q.

In the notation of the previous section that often arises in physics and engineer-
ing, the integral formula in the Divergence Theorem can be written more briefly
as Z

@M
F · dS =

Z

M
(div F) dV

or as
R
@M F ·dS =

R
M(∇ ·F) dV , where dV is shorthand for the volume element.

The manifold-with-boundary M has dimension 3 and is assumed to lie in R3. It
follows that its set M+ of manifold points is an open subset of R3. Then M+

inherits the standard orientation from R3, and it is understood that @M gets the
induced orientation. Thus nothing explicit needs to be said about orientations or
normal vectors.
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c. Kelvin–Stokes Theorem. The classical form of Stokes’s Theorem, also
known as the Kelvin–Stokes Theorem, applies to a manifold-with-boundary of
dimension 2 realized inR3. First we state the theorem and relate it to Theorem2.7
for differential forms, and wemake a few general comments about orientations in
the Kelvin–Stokes Theorem. Second we work through a simple example, paying
particular attention to orientations. Third we look at the example in the light of
the notation in the previous section.

Theorem 2.10 (KELVIN–STOKES THEOREM). Let M be a compact oriented
smoothmanifold-with-boundaryof dimension2withinR3. If P, Q, R are smooth
real-valued functions on an open subset of R3 containing M , then
ZZ

S

≥@R
@y

−
@Q
@z

¥
dy ∧ dz +

≥@P
@z

−
@R
@x

¥
dz ∧ dx +

≥@Q
@x

−
@P
@y

¥
dx ∧ dy

=
Z

∞

P dx + Q dy + R dz.

provided @M is given the induced orientation.

Here Theorem 2.7 is being applied to the 1 form

ω = P dx + Q dy + R dz.

According to Example 2 in Section I.4,

dω =
°

@R
@y − @Q

@z
¢
dy ∧ dz +

°
@P
@z − @R

@x
¢
dz ∧ dx +

°
@Q
@x − @P

@y
¢
dx ∧ dy.

About orientations for this setting, M+ is not an open subset of the Euclidean
space R3 is which it lives; thus it does not automatically inherit an orientation
from R3. By assumption, M+ is orientable, and we must actually choose an
orientation. One way to do so is to make use of a local parametrization, since
a local parametrization allows us to identify part of M+ with an open subset of
the Euclidean space of parameters and transfer the standard orientation from that
Euclidean space to M+. Once that step is done, then the orientation of M+ can
be pieced together, @M acquires the induced orientation, and we can proceed.
Observe that an orientation of R3 plays no role in this construction.

EXAMPLE. Let M be the cylinder in Figure 2.3 given by

M = {(x, y, z) ∈ R3 | x2 + y2 = 1, z2 ≤ 1}.
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Boundary circle
at z = 1

FIGURE 2.3. M and @M in an example for the Kelvin–Stokes Theorem.

The boundary @M consists of two circles:

@M = {(x, y, z) ∈ R3 | x2 + y2 = 1 and z = ±1},

and it is to be given the induced orientation from M+, whatever the orientation
of M+ might mean. To get at such an orientation locally, we can parametrize the
cylinder locally with a pair (r, θ) of parameters, r for the z component and θ for
the angle made with (x, y). One parametrization of M+ is

α(r, θ) =

µ x(r,θ)

y(r,θ)

z(r,θ)

∂
=

µ cos θ
sin θ

r

∂
,

valid for −1 < r < 1 and −π < θ < π , let us say. The space of all parameters
(r, θ), being anopen subset ofR2, contains a standardorientationgivenbydr∧dθ ,
and we move this over to M+ by the pullback of α−1. Thus we obtain a nowhere-
vanishing 2 form on an open set of M+. We can argue similarly with different
parameters for a second open subset of M+, and the two open sets together cover
M+. The assumption that M+ is orientable implies that these nowhere-vanishing
2 forms can be chosen consistently from the one open set to the other, and then
we have realized our orientation of M+ more or less concretely. To use this
information, we form the derivative matrix of α, which is

Dα(r, θ) =

µ 0 − sin θ

0 cos θ
1 0

∂
.

Its columns span the tangent space of M+ at the point of M corresponding to
(r, θ).
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We can parametrize the boundary circles one at a time, the one at z = 1 being
given by

µ x(t)
y(t)
z(t)

∂
=

µ cos t
sin t
1

∂
, with derivative

µ
− sin t
cos t
0

∂
.

Toorient this component of @M , we seek a tangent vector toM that points outward
from @M . Consider a single point of @M , say (1, 0, 1), which arises when r = 1

and θ = 0. The tangent space at this point has basis
©
µ 0
0
1

∂
,

µ 0
1
0

∂
™
. An example

of an outward pointing tangent vector at this point is
µ 0
0
1

∂
, since the vector

µ 0
0
1

∂

is in the span of the two columns of the derivative matrix and is not a multiple
of the second vector in the basis. Working with the induced orientation of @M
means that when @M is parametrized, the derivative vector of the parametrization
points in a direction that is a positive multiple of the second column. In other
words the above parametrization of the circle at z = 1 is consistent with the
induced orientation on @M .
The candidates for such a vector are± any vector that is in the span of the two

columns of the full derivative matrix but is not a multiple of the second column,
and (0, 0, 1) will do fine. To have the vector point outward, we can use (0, 0, 1)
at z = 1. In our ordering of basis vectors yielding an orientation for M , this
vector is to precede a tangent vector to @M , and that situation is already the case
with the columns of the derivative matrix as is. Thus the above parametrization
of the circle at z = 1 is consistent with the induced orientation.
Now let us orient the boundary circle10 at z = −1. We select a single point

of this part of the boundary to examine. The point (0, 1,−1), which arises when
θ = π/2, will do fine. An outward pointing tangent vector can be taken to beµ 0

0
−1

∂
. If wewrite v for the second vector in a basis purporting to give the induced

orientationon @M , then the linearmap that carries the tangent space to itself, sendsµ 0
0

−1

∂
to

µ 0
0
1

∂
, and sends v to

µ 0
1
0

∂
must have positive determinant. This means

that v is a negative multiple of
µ 0
1
0

∂
. In other words the parametrization of @M

as
µ x(t)

y(t)
z(t)

∂
=

µ cos t
sin t
−1

∂
is inconsistent with the induced orientation on @M . So we

10An observant readerwill say thatwe aremerely ensuring that the circlewith z = −1 is traversed
with the region on its left, just as the circle with z = 1 was. Resorting to familiar geometric intuition
is all very well in this case, but the method being discussed here works even in higher dimensional
cases when @M need not be 1 dimensional.
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should use its opposite as in Figure 2.4, parametrizing the circle by
µ x(t)

y(t)
z(t)

∂
=

µ cos t
− sin t

−1

∂
with derivative

µ
− sin t
− cos t
0

∂
.

Boundary circle
at z = 1

Boundary circle
at z = −1

FIGURE 2.4. Tangent planes at points on the boundary circles in the example.
The indicated planes are the respective tangents at (1, 0, 1) and (0, 1,−1).

Now letω = yz dx . Havingparametrizedboth componentsof @M consistently
with the induced orientation, we shall evaluate

R
@M ω =

R
@M yz dx in the two

ways that Theorem 2.10 says should give the same answer. The signs will be
crucial. One way is directly as the sum of two line integrals, namely as

=
R
z=1 yz dx +

R
z=−1 yz dx

=
R π

−π(sin t)(+1)(− sin t) dt +
R π

−π(sin t)(−1)(sin t) dt = −2π.

The other way is as
R
M dω =

R
M d(yz) ∧ dx

=
R
M z dy ∧ dx +

R
M y dz ∧ dx

= −
R
M z dx ∧ dy +

R
M y dz ∧ dx .

Referring to the derivative matrix Dα(r, θ), we have

dx ∧ dy = @(x,y)
@(r,θ)

= det
≥
0 − sin θ

0 cos θ

¥
= 0

and
dz ∧ dx = @(z,x)

@(r,θ)
= det

≥
1 0
0 − sin θ

¥
= − sin θ.
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Therefore
R
M dω =

R
M y dz ∧ dx =

R 2π
0

R 1
−1 sin θ(− sin θ) dr dθ

= −2
R 2π
0 sin2 θ dθ = −2π.

Thus indeed the two computations give the same answer.

Finally let us review the example in the light of the other systems of notation.
The vector-valued function that we have been using is F = (yz, 0, 0) or F = yzi

or F =

µ yz
0
0

∂
, and

curl F = det






i @
@x yz

j @
@y 0

k @
@z 0




 = −k

° @(yz)
@y

¢
+ j

° @(yz)
@z

¢
= yj− zk.

Then

curl F · dS =

√ 0
y

−z

!

·

√ dy ∧ dz
dz ∧ dx
dx ∧ dy

!

= y dz ∧ dx − z dx ∧ dy.

d. Integration of a differential along a curve. In many applications of
Stokes’s Theorem, we are given

R
@M ω and we want to compute

R
M dω.

Occasionally an application arises in which one wants to go in the other direction.
In this case we are evaluating an integral

R
M η for some m form η on M , where

m is the dimension of M , and we recognize η as d of something, say η = dω.
Then we can use the equality

R
M η =

R
M dω =

R
@M ω.

This is what happens in the last low dimensional instance of Stokes’s Theorem
mentioned at the beginning os this section, namely the integration of a differential
along a curve in R2 or R3. We are to compute a line integral

R
C η, where η is

a 1 form and C is a smooth curve with endpoints A and B in R2 or R3. A
smooth curve with endpoints present is an example of a 1 dimensional manifold-
with-boundary, and the above theory can apply. The only case in which Stokes’s
Theorem applies in straightforward fashion, however, is the case that the 1 form
η is d of something, specifically d of a smooth function f . Thus suppose that the
1 form η that we are integrating is equal to a differential d f . Then we have

Z

C
η =

Z

C
d f = f (B) − f (A).

This formula is an instance of Stokes’s Theorem, but it is really easier than that. If
the curve C is parametrized as ∞ (t) for a ≤ t ≤ b with ∞ (a) = A and ∞ (b) = B,
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then an application of the Fundamental Theorem of Calculus to the composition
f ◦ ∞ immediately gives

Z

C
d f =

Z b

a
f (∞ (t)) dt = f (∞ (b)) − f (∞ (a)) = f (B) − f (A).

e. Final remarks. In many authors’ formulations of versions of Stokes’s
Theorem, inner products and normal vectors play a role in the statements of the
theorems and in the proofs. This is so in the formulations of the classical theorems
of the Introduction, for example. In the text we have systemically avoided this
extra layer of structure. Stokes’s Theorem is really something about the exterior
derivative and integration of differential forms, not about orthogonality, and the
text has sought to emphasize this point. The cost has been small. We have had to
work with “outward pointing tangent vectors” from the boundary of a manifold-
with-boundary rather than outward “normal vectors.” The inner product focuses
attention on one good choice of an outward vector, but it does not help otherwise
in the theory.

7. Problems

1. In R3, show that |u × v|2 + (u · v)2 = |u|2|v|2.
2. If u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3) are vectors in R3,

show that det
µ u1 u2 u3

v1 v2 v3
w1 w2 w3

∂
, up to sign, is the volume of the parallelepiped with

sides u, v, and w.
3. If u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3) are vectors in R3,

which of the six expressions u · (v × w), u · (w × v), v · (u × w), v · (w × u),
w · (u × v), and w · (v × u) are equal to the first one. What is the relationship
of the first one to the others?

4. (a) Compute div F and curl F for F = x2yi− (z3 − 3x)j+ 4y2k.
(b) Compute div F and curl F for F = (3x + 2z2)i+ x3y2j− (z − 7x)k.

5. Let M be a smooth compact orientable manifold without boundary of dimension
m. Proposition 1.30 showed that M has a nowhere-vanishing smooth m form
ω. Use Stokes’s Theorem to show that ω cannot be obtained as dη for a smooth
m − 1 form η.

6. (a) Exhibit a smooth differential 2 form ω on R4 such that ω ∧ ω 6= 0.
(b) Suppose that M is a compact orientable smooth manifold of dimension 2n

without boundary. Suppose that α is a smooth differential 1 form on M , so
that dα is a 2 form. Can the n fold wedge product ω = dα ∧ · · · ∧ dα be
nowhere vanishing? If so, exhibit such an ω for some M . If not, prove that
such an ω can never be nowhere vanishing.
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7. (a) Show that

ω =
x dy ∧ dz + y dz ∧ dx + z dx ∧ dy

(x2 + y2 + z2)3/2

has dω = 0 in R3 − {0}.
(b) Let T be the torus in R3 given by rotating the unit circle in the x-z plane

about the line where x = 2 and y = 0. It is the locus where

≥q
(x − 2)2 + y2 − 2

¥2
+ z2 = 1.

Evaluate the integral
R
T ω, where ω is as in (a) and where T is oriented so

that the unbounded component of R3 − T is “outside” the torus.

8. Let M be the subset ofR3 lying between the sphere S1 of radius 1 and the sphere
Sa of positive radius a with a < 1

2 . Regard M as a manifold-with-boundary that
inherits its orientation from the standard orientation ofR3, and give its boundary
S = S1 ∪ Sa the induced orientation. Let F be the vector-valued function
F(x) = |x |−3x .
(a) Show that div F = 0 on M .
(b) Why is

R
S1 F · dS =

R
Sa F · dS?

9. Generalize the formula in (a) of the Problem 7a by finding a smooth n − 1 form
ω = f (x1, . . . , xn)−1η onRn −{0} such that dη = dx1∧· · ·∧dxn and dω = 0.

10. By examining the example of Hm in Sections 3 and 4, show for every m ∏ 1
that if @Hm is made to correspond to x1 = 0 and if @Hm gets its orientation from
dx2 ∧ · · · ∧ dxm , then one is led to Stokes formula for Hm with a single minus
sign (rather than (−1)m) on one of the two sides of the formula.

Problems 11–15 concern surface integrals and the Kelvin–Stokes Theorem in R3.

11. Evaluate the surface integral
R
S xi · dS, where S is the surface in R3 given by

z = x2 + y2 for z ≤ 4 and S is oriented by an outward/downward pointing
normal vector.

12. Use the Kelvin–Stokes Theorem to compute
R
S curl F · dS, where F(x, y, z) =

yzi+xyk and S is the part of sphere x2+ y2+ z2 = 4 that lies inside the cylinder
x2 + y2 = 1 and above the x-y plane. The surface is oriented by an outward
pointing normal vector.

13. Let F be the vector-valued function F = (−yz, 4y+1, xy+ez), and letC be the
oriented curve s(t) = (3 cos t, 4, 3 sin t). This is the circle of radius 3 given by
x2 + y2 = 9 and y = 4. With the help of the Kelvin–Stokes Theorem, evaluate
the line integral

R
C F · ds.
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14. Use the Kelvin–Stokes Theorem to evaluate
R
S curl F · dS if F = (y,−x, yx3)

and S is the portion of the sphere of radius 4 about the origin having z ∏ 0 and
the upward orientation.

15. Evaluate
R
C F · ds, where F(x, y, z) = –y2i+ xj+ z2k, and C is the curve of

intersection of the plane y+ z = 2 and the cylinder x2+ y2 = 1. The curve C is
to be oriented counterclockwise when the x-y plane is viewed as horizontal and
the curve is viewed from above. Do this in two ways, as follows:
(a) directly by parametrizing the curve by the angle θ in the x-y plane,
(b) by using the Kelvin–Stokes Theorem, taking C to be the boundary of the

filled ellipse in the plane where y + z = 2.
Problems 16–20 establish the Brouwer Fixed-Point Theorem, which says that when-
ever a continuous function f carries the closed unit ball B = {x ∈ Rn Ø

Ø |x ≤ 1} of
Rn into itself, then there is some x in the ball with f (x) = x . Let

B = {x ∈ Rn Ø
Ø |x < 1} and @B = {x ∈ Rn Ø

Ø |x = 1}.

A retraction of B into @B is a continuous function r : B → @B such that r is the
identity on @B. The line of proof will be to show that there is no smooth retraction,
that the fixed-point theorem follows in the smooth case from the nonexistence of a
smooth retraction, and that the fixed-point theorem in the smooth case implies the
fixed-point theorem in the general case.
16. This problem and the next show that there is no smooth retraction of B onto @B.

In fact, suppose that a smooth retraction r : B → @B exists. Letω be a nowhere-
vanishing n− 1 form on @B; this has to exist on @B by Proposition 1.30 because
Problem 15 at the end of Chapter I showed that all spheres are oriented. Justify
the following steps in a computation for the smooth manifold-with-boundary B:

0 <
R
@B ω =

R
@B r

∗(ω) =
R
B dr

∗(ω) =
R
B r

∗(dω).

17. Explain why the right side is 0 in the displayed line of the previous problem and
why the retraction r cannot exist.

18. Show that if f : B → B is a smooth function such that f (x) 6= x for all x in
B, then one can construct from f a smooth retraction r of B onto @B. Since the
previous two problems have shown that there is no such smooth retraction, every
smooth f : B → B has a fixed point.

19. If f : B → B is a continuous function, show that there exists a sequence { fk}
of smooth functions from B into B that converges uniformly to f on B.

20. If f : B → B is a continuous function, choose by the previous problem a
sequence { fk} of smooth functions carrying B → B and converging uniformly
to f on B. Using Problem 18, let xk be a point in B with fk(xk) = xk . If x0 is
a limit point of {xk} in B, show that f (x0) = x0. Consequently f has a fixed
point in B.



CHAPTER III

Whitney’s Setting for Stokes’s Theorem

Abstract. This chapter looks for a single setting in which Stokes’s Theorem applies at once to all
situations of practical interest. It begins by developing the theory in the setting of manifolds-with-
corners and continues with a theory in a more general setting studied by H. Whitney.
Section 1 introduces the model space Qm for m ∏ 2, in terms of which manifolds-with-corners

are defined. The section contains one result that is relatively hard to prove: the index of a point ofQm

is taken to be the number of coordinates that are equal to 0, and it is shown that any diffeomorphism
between open sets in Qm maps points of one index into points of the same index. Consequently
the notion of index is well defined for the points of a manifold-with-corners. Other definitions
concerning manifolds translate easily into corresponding definitions for manifolds-with-corners.
These include smooth real-valued function, support, germ, tangent space, cotangent space, smooth
differential forms, pullbacks of differential forms, and the derivative of a smooth map between
manifolds-with-corners.
Section 2 introduces strata, the stratum Sk(M) consisting of all points of index k in a manifold-

with-corners M . Strata have a number of useful properties, one of which is that the strata of index
0 and 1 combine to yield a manifold-with-boundary.
Section 3 gives a version of the Stokes’s Theorem for manifolds-with-corners, saying

R
@M ω =R

M dω as usual. In this equality the integral on the left is over the stratum of all points of index
1, and the integral on the right is over the stratum of all points of index 0. Simple examples show
that this theorem is not a trivial consequence of the theorem about manifolds-with-boundary when
applied to the manifold-with-boundary consisting of all points of index 0 and 1 in M .
Section 4 establishes a version of the Divergence Theorem due to Whitney that applies to any

bounded region of Rm for m ∏ 2 when most of the topological boundary behaves as it does for a
manifold-with-boundary and when the set of exceptional points of the topological boundary is small
in a specific technical sense. Such a region will be called aWhitney domain. If the set of exceptional
points is finite, then it is small in the technical sense.
Section 5 examines in some detail the technical condition in Section 4. That condition becomes:

the set of exceptional points is compact and either is empty or has m − 1 dimensional Minkowski
content 0. It is shown that the condition that a compact set has ` dimensionalMinkowski content 0 is
intrinsic to the set as a subset of aEuclidean space anddoesnot dependon its embedding. Furthermore
any function from one Euclidean space to another that satisfies a Lipschitz condition always carries
compact subsets of ` dimensionalMinkowski content 0 to compact sets of ` dimensionalMinkowski
content 0. Consequently the notion “` dimensionalMinkowski content 0” iswell defined for compact
subsets of smooth manifolds and is preserved under smooth mappings into Euclidean spaces. The
section concludes with examples ofWhitney domains constructed from the zero loci of polynomials.
Section 6 extends the scope of Stokes’s Theorem to Whitney manifolds, a class of spaces that

includes all manifolds-with-corners and that allows all Whitney domains as additional model cases.
The result is that the Stokes formula applies in what seems to be the full set of practical situations
of interest to mathematicians, physicists, and engineers.

92
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1. Definition and Examples of Manifolds-with-Corners

Smooth manifolds of dimensionm ∏ 0, as introduced in Chapter I, were defined
as separable Hausdorff spaces that are locally modeled on open subsets of Rm .
In similar fashion smooth manifolds-with-boundary of dimension m ∏ 1, as
introduced in Chapter II, were defined as separable Hausdorff spaces that are
locally modeled on open subsets of the closed half space

Hm = {(x1, . . . , xm−1, xm) ∈ Rm | xm ∏ 0}.

In the first part of this chapter, we work with smooth manifolds-with-corners of
dimensionm ∏ 2 as separable Hausdorff spaces that are locally modeled on open
subsets of the closed generalized quadrant

Qm = {(x1, . . . , xm) ∈ Rm | xj ∏ 0 for 1 ≤ j ≤ m}.

The open subsets of Qm are understood to be those subsets that are relatively
open in the relative topology from Rm . The goal of the first three sections of this
chapter is to prove an extension of Stokes’s Theorem to manifolds-with-corners.
At the least such a theorem will simultaneously handle balls and rectangular
solids in Rm . The failure of the theorems of Chapters I and II to handle balls
and rectangular solids at the same time was a weakness of the earlier theory
that we shall now be able to remedy. We can do much better, and we begin the
development of an improved theory in Section 4.
Before coming to the formal definition of smooth manifold-with-corners, we

need to establish some definitions concerning smooth functions on Qm , just as
we did with Hm in Section II.2. A real-valued function f defined on an open
subsetU ofQm will be said to be smooth if there is a smooth function F defined
an open subset V of Rm such U = V ∩ Qm and f is the restriction of F to U .
The extending function F need not, of course, be unique. With this definition
of smoothness in place, we can define the space Cp(Qm) of germs of smooth
functions at points p of Qm and the tangent space Tp(Qm) at p.
We write Qm

+ for the interior of Qm , namely the subset

Qm
+ = {(x1, . . . , xm) ∈ Rm | xj > 0 for 1 ≤ j ≤ m}.

and we write @Qm for the topological boundary, namely the subset

@Qm = {(x1, . . . , xm) ∈ Qm | xj = 0 for at least one j with 1 ≤ j ≤ m}.

The definitions of Cp and Tp are not new for p inQm
+, but for p in @Qm , they are.

We obtain facts about Cp and Tp in the same way as in Section I.1.
If U1 and U2 are two open subsets of Qm , a smooth map F : U1 → U2 is

function whose m component functions are all smooth real-valued functions on
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U1. The derivative (DF)p : Tp(U1) → TF(p)(U2) of the smooth map F at a
point is defined just as in Section I.1. The smooth map F is a diffeomorphism
if it is a homeomorphism with inverse G : U2 → U1 such that the m component
functions of each of F and G are smooth real-valued functions on U1 and U2,
respectively. The composition of smooth maps is smooth, and the derivative of
the composition is the composition of the derivatives. It follows that at each point
the derivative of a diffeomorphism is an invertible linear function.
In the study ofmanifolds-with-boundary, we distinguished two kinds of points,

manifold points and boundary points, and the distinction was straightforward. In
a corresponding but more subtle fashion for manifolds-with-corners, we define1
the index of a point (x1, . . . , xm) in Qm to be the number of indices j for which
xj = 0. The points in Qm

+ have index 0 and the points in @Qm have index
∏ 1. For this notion to be usable with a general manifold-with-corners, we need
Proposition 3.1 below, whose proof will make use of a lemma.

Proposition 3.1. If F : U → V is a diffeomorphism of one nonempty open
subset ofQm onto another, then every p ∈ U has the property that the index of p
equals the index of F(p).

Lemma 3.2. Let A = (ai j )mi, j=1 be a square matrix with real entries. If there
is an integer k with 1 ≤ k ≤ m such that ai j = 0 whenever i ≤ k and j ∏ k, then
det A = 0.

PROOF OF LEMMA 3.2. The proof is by induction on k simultaneously for all
m. The base case of the induction is k = 1. In this case, ai j = 0 for i = 1 and
all j . In other words, the first row of A is 0. Hence det A = 0.
Suppose that the lemma has been proved for the integer k − 1 ∏ 1 and that

we are to consider a matrix A for the integer k. We expand det A in cofactors
about the first row, obtaining an alternating sum of terms with a coefficient a1 j
that multiplies the determinant of a matrix of size m − 1. The upper left entry of
that matrix is a22 for the first term and is a21 for the subsequent terms. Since the
coefficient a1 j is 0 for j ∏ k, we need only consider the first k − 1 terms in the
expansion. Each of those terms corresponds to a matrix of the form in the lemma
but with k replaced by k − 1. By inductive hypothesis, each such determinant is
0. Therefore det A = 0, and the induction is complete. §

PROOF OF PROPOSITION 3.1. Possibly replacing F by F−1, we see that it is
enough to prove that the index I of F(p) is ≤ the index J of p. It will simplify
the ideas if we think ofU and V as lying in distinct copies ofQm , so that the order
of the variables inU does not affect the order of the variables in V . Let us write p

1Some authors use the term “depth” in place of “index.”
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as (x1, . . . , xm) and F as (F1, . . . , Fm), and let us concentrate on a single point p
of Qm , say p = p0 = (x1,0, . . . , xm,0). The function F being a diffeomorphism,
the m-by-m Jacobian matrix A of the derivative DF(p0) is invertible.
We reorder the variables of U so that the first J of the entries of p0 are

0 and the others are > 0. Then we reorder the variables of V so that the
first I of the entries of F(p0) are 0 and the others are > 0. Consider the
restriction of F1, . . . , FI to points (x1,0, . . . , xJ,0, xJ+1, . . . , xm) as a function
of several variables (xJ+1, . . . , xm). This function is ∏ 0 everywhere in a
Euclidean neighborhood of (xJ+1,0, . . . , xm,0) and takes on its minimum value 0
at (xJ+1,0, . . . , xm,0). Thus the first partial derivatives of F1, . . . , FI with respect
to (xJ+1, . . . , xm) must be 0 at any point where the minimum value is attained.
In symbols,

≥@Fi
@xj

¥
(p0) = 0 for i ≤ I and j ∏ J + 1. (∗)

Arguing by contradiction, suppose that I > J . If i ≤ I and j ∏ I , then we
have j ∏ I > J and hence j ∏ J + 1. In view of (∗), the Jacobian matrix A
of DF(p0), whose (i, j)th entry is ai j =

°
@Fi/@xj

¢
(p0), has ai j = 0 for i ≤ I

and j ∏ I . Taking k = I in Lemma 3.2, we see that the matrix A has det A = 0,
in contradiction to the fact that A is invertible. This contradiction shows that we
must after all have had I ≤ J . §

Now we can introduce manifolds-with-corners. Let M be a separable Haus-
dorff topological space, and fix an integer m ∏ 2. For purposes of working with
manifolds-with-corners, a chart (Mα, α) on M of dimension m is a homeomor-
phism α of a nonempty open subset Mα of M onto an open subset α(Mα) ofQm ;
the chart is said to be about a point p in M if p is in the domain Mα of α. When
it is convenient to do so, we can restrict attention to charts (Mα, α) for which Mα

is connected.
A smooth manifold-with-corners of dimension m is a separable Hausdorff

space M with a family F of charts (Mα, α) of dimension m such that
(i) any two charts (Mα, α) and (Mβ, β) in F are (smoothly) compatible in
the sense that β ◦ α−1, as a mapping of the open subset α(Mα ∩ Mβ) of
Qm to the open subset β(Mα ∩ Mβ) of Qm , is a diffeomorphism,

(ii) the family of compatible charts (Mα, α) is an atlas in the sense that the
open sets Mα cover M , and

(iii) the family F is maximal among families of compatible charts on M .
In the presence of an understood atlas, a chart will be said to be compatible if it
is compatible with all the members of the atlas.
Because of Proposition 3.1, we can unambiguously transfer the definition of

“index” from Qm to any smooth manifold-with-corners M: if (Mα, α) is a chart
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about a point p in M , then the index of p in M is defined to be the index of α(p)
in Qm . The points of index 0 are the manifold points, the points of index ∏ 1
are sometime called boundary points, and the points of index ∏ 2 are sometimes
called corner points.
Aswith smoothmanifolds in the sense ofChapter I andwith smoothmanifolds-

with-boundary inChapter II, any atlas of compatible charts for a smoothmanifold-
with-corners can be extended in one and only one way to a maximal atlas of
compatible charts. Also if U is any nonempty open subset of an m dimensional
smooth manifold-with-corners M , then U inherits the structure of a smooth
manifold-with-corners as follows: first define an atlas of U to consist of the
intersection of U with all members of the atlas for M , using the restrictions of
the various functions α, and then discard occurrences of the empty set.

We turn to examples. Some of these will be examples of (smooth) manifolds-
with-corners, and somewill be nearly-but-not-quite examples of manifolds-with-
corners. For some of the latter, there will be a simple way of subdividing or
triangulating the given space that exhibits it as a finite union of manifolds-with-
corners. In any case the theorem in Section 3 is going to be that the Stokes
formula,

R
@M ω =

R
M dω, holds for all manifolds-with-corners. In this equality

the integral on the left side is carried on the points of index 1, and the integral
on the right side is carried on the points of index 0. Our decompositions of some
of the near manifolds-with-corners as finite unions of genuine manifolds-with-
corners will have the Stokes formula holding on each piece, and we shall be able
to add these formulas for the pieces to obtain the Stokes formula for the union.

EXAMPLES.
(1) Any smooth manifold-with-boundary of dimension ∏ 2 is a smooth

manifold-with-corners, there being no corner points. Any filled compact convex
polygon in dimension 2 is a manifold-with-corners, as a consequence of the
definition.
(2) No manifold-with-corners has any phantom corner points, in which a

boundary point can be interpreted either as a corner or not. In dimension 2,
for example, the boundary changes direction at each corner point, and there are
no angles of 0 or 360 degrees. This is a consequence of Proposition 3.1 and the
fact that index is well defined. See Figure 3.1.

FIGURE 3.1. Manifolds-with-corners have no angles of 0 or 360 degrees.
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(3) Amanifold-with-corners has a certain local convexity to it. In dimension 2,
for example, no interior angle of more than π can occur at a boundary point. This
is a consequence of the fact that Qm has this property at its boundary points.
(4) In dimension2, a space that looks like thefilled space inFigure3.2, although

not itself a manifold-with-corners (according to Example 3), can be subdivided
into two adjacent pieces that are manifolds-with-corners by inserting an auxiliary
line that becomes part of the boundary of each piece. (The auxiliary line is dashed
in the figure.) An orientation on the set of manifold points yields by restriction an
orientation on each of the two adjacent components and then yields an induced
orientation on the boundaries of each piece. Since a single reflection is involved
in passing from the induced orientation for the one component to the induced
orientation for the other component, the two orientations on the auxiliary line
will cancel in the computation of integrals over the boundary. Thus the validity
of the Stokes formula

R
@M ω =

R
M dω for each of the constituents will imply the

validity of the Stokes formula for the whole space.

FIGURE 3.2. Triangulation available for angles greater than π .

(5) A filled closed cube inR3 is a smooth manifold-with-corners. The interior
points have index 0, the points on the interiors of the six faces have index 1, the
points on the interiors of the eight edges have index 2, and the eight vertices have
index 3. The subset consisting of the faces, edges, and vertices is not a manifold-
with-corners because no open neighborhood of a vertex is diffeomorphic to an
open subset of any Qm .
(6) A filled closed tetrahedron in R3 is a manifold-with-corners, but a filled

closed square pyramid in R3 is not. In the latter case, the pyramid can be
subdivided into two adjacent pieces that are manifolds-with-corners (tetrahedra
actually) by inserting an auxiliary triangle whose base is a diagonal of the square

= ∪

FIGURE 3.3. Square pyramid subdivided into two tetrahedra.
The vertex of the pyramid appears at the top of each solid.
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base of the pyramid andwhose vertex is the vertex of the pyramid. See Figure 3.3.
The relevant diagonal of the base is showndashed. The auxiliary triangle becomes
part of the boundary of each piece. As in Example 4, the two induced orientations
on the added triangle are opposite and then cancel when computing integrals over
boundaries. Thus the validity of the Stokes formula

R
@M ω =

R
M dω for each of

the constituents will imply the validity of the Stokes formula for the whole space.
(7) A solid cylinder in R3 is a manifold-with-corners. Its surface, which

consists of two closed disks for the ends and the product of a circle and a closed
interval for the side of the cylinder, is a manifold-with-boundary. A solid cone in
R3 such as z2 ≤ x2 + y2 ≤ 25 is not a manifold-with-corners because the cone
point at the origin has no open neighborhood diffeomorphic to an open subset of
Q3; no simple way is evident for decomposing this solid cone into the union of
nonoverlapping manifolds-with-corners.
(8) Whenever M is a smooth manifold-with-corners, then the points of index

0 form a smooth manifold, the points of index 0 or 1 form a smooth manifold-
with-boundary, and the points of index 0 through 2 form a smoothmanifold-with-
corners. This example will be amplified in the next section when we introduce
“strata” for smooth manifolds-with-boundary.
(9) The numeral 8 in Figure 3.4, once it has been filled, is not a manifold-with-

corners because it has no neighborhood of the crossing point that is diffeomorphic
to an open subset ofQ2. However, the top half of the filled numeral is a manifold-
with-corners, there being just the one corner at the crossing point. Similarly
the bottom half is a manifold-with-corners. The whole space is thus the union
of two manifolds-with-corners whose intersection is simply the crossing point.
Accordingly the Stokes formula applies to each half. Since the crossing point
has index 2 in both cases, it plays no role in integrations. Thus the validity of the
Stokes formula for each piece will imply the validity of the Stokes formula for
the whole filled numeral.

FIGURE 3.4. Numeral 8 centered at the origin, to be regarded as filled.

Finally we are in a position to introduce the notion of a smooth function and
various related constructs for smooth manifolds-with-corners. A smooth real-
valued function f : M → R on the smoothmanifold-with-corners of dimension
m is by definition a function such that for each p ∈ M and each compatible chart
(Mα, α) about p, the function f ◦ α−1 is smooth as a function from the open
subset α(Mα) of Qm into R. This is the expected definition, and there are no
surprises. A smooth real-valued function is necessarily continuous.
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If E is a nonempty open subset ofM , the space of smooth real-valued functions
on E will be denoted byC∞(E). The spaceC∞(E) is an associative algebra over
R under the pointwise operations, and it contains the constants. The support of
a real-valued function is, as always, the closure of the set where the function is
nonzero. We write C∞

com(E) for the subset of C∞(E) of functions whose support
is a compact subset of M .
Relative to a point p of the manifold-with-corners M , we define a germ at p,

the tangent space Tp(M) at p, and the cotangent space at p in the same way as
in the manifold case. For the manifold points of M , the definition is completely
unchanged. The only difference occurs in the case of boundary points: when
matters are referred back to the model spaceQm , the open sets ofQm do not need
to be open in the underlying Euclidean space Rm . The space Cp(M) of germs at
p is an associative algebra over R with identity.
The nature of Tp(M) and that of T ∗

p (M) are unchanged from themanifold case.
If (Mα, α) is a chart about p, and if α = (x1, . . . , xm), then a basis of Tp(M)

consists of them first partials
£
@/@xj

§
evaluated at p. If p has j th coordinate 0 in

Qm , then
£
@/@xj

§
p can be computed as a one-sidedpartial derivative. Examples of

members of T ∗
p (M) are the differentials of smooth functions at p, the differential

of f at p being defined by (d f )p(L) = L f for L in Tp(M), just as in themanifold
case.
We can then go on to define differential 1 forms, differential k forms, and

smoothness of differential forms. There are no surprises. The notion of pullback
of a differential form is still meaningful.
The derivative DF of a smooth function between manifolds-with-corners

is defined just as in the case of manifolds. Let F : M → N be a smooth
function from a smooth manifold-with-corners M of dimension m into a smooth
manifold-with-corners N of dimension n. For any p ∈ M , the function F
allows any germ g ∈ CF(p)(N ) to be pulled back to a germ g ◦ F in Cp(M).
Then any tangent vector L in Tp(M) is carried into a tangent vector (DF)p(L) in
TF(p)(N ) by the formula (DF)p(L)(g) = L(g◦F). The result is a linear function
(DF)p : Tp(M) → TF(p)(N ) called the derivative of F at p.
The final preparatory step for working with manifolds-with-corners is to make

smooth partitions of unity be available. We proceed exactly as at the end of
Section II.2, beginning with analogs of Lemma 2.3 and 2.4.

Lemma 3.3. If U is a nonempty open subset of a smooth manifold-with-
corners M and if f is in C∞

com(U), then the function F defined on M so as to
equal f onU and to equal 0 offU is in C∞

com(M) and has support contained inU .
REMARK. This is proved in the same way that Lemma 1.2 was proved for

smooth manifolds. The argument makes use of the Hausdorff property of M .

Lemma 3.4. Suppose that p is a point in a smooth manifold-with-corners M ,
that (Mα, α) is a compatible chart about p, and that K is a compact subset of Mα



100 III. Whitney’s Setting for Stokes’s Theorem

containing p. Then there is a smooth function f : M → Rwith compact support
contained in Mα such that f has values in [0, 1] and f is identically 1 on K .

REMARK. Except for changes in notation, this is proved in the same way as
Lemma 2.4.

The notion of a smooth partition of unity of a manifold-with-corners M
subordinate to the finite open cover {Ui } of a compact subset K of M works just
as in the case of smooth manifolds-with-boundary. The statement is as follows.

Proposition 3.5. Let M be a smooth manifold-with-corners, let K be a
nonempty compact subset, and let {Ui | 1 ≤ i ≤ r} be a finite open cover
of K . Then there exist functions fi in C∞(M) for 1 ≤ i ≤ r , taking values
between 0 and 1 such that each fi is identically 0 off a compact subset of Ui and
rP

i=1
fi is identically 1 on K .

REMARK. Except for changes in notation, this is proved in the same way as
Proposition 2.5.

2. Index and Strata

Let M be a smooth manifold-with-corners of dimension m. If p is in M and
(Mα, α) is a chart about p, we have defined the index of p to be the number of
integers k for which the member α(p) of Qm has kth coordinate 0. Proposition
3.1 showed that this number is independent of the chart, hence depends only on
M and p. It is denoted by indexM(p). It satisfies 0 ≤ indexM(p) ≤ m.
The set M+ of all points p of M with indexM(p) = 0 is a smooth manifold

of dimension m, and we have defined those points to be manifold points. The
remaining points, those with indexM(p) ∏ 1, are sometimes called boundary
points, and those with indexM(p) ∏ 2 are sometimes called corner points.
We define Sk(M) = {p ∈ M | indexM(p) = k} for 0 ≤ k ≤ m, calling it the

stratum of points in M of index k. It is plain that M is the disjoint union of its
strata. Strata satisfy the additional conditions listed in the following proposition.

Proposition 3.6. If M is a smooth manifold-with-corners of dimension m,
then its strata are such that

(a) each nonempty stratum Sk(M) has the structure of smooth manifold of
dimension m − k,

(b) for each k for which Sk(M) is nonempty, the union of all strata Sl(M) for
l ≤ k is a manifold-with-corners of dimension m,

(c) the closure of Sk(M) is the union of all strata Sl(M) for l ∏ k,
(d) M is a smooth manifold if and only Sk(M) is empty for all k > 0, and
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(e) M is a smooth manifold-with-boundary if and only Sk(M) is empty for
all k > 1, and in this case the boundary is S1(M).

REMARKS. An example to bear in mind is that of a solid cube M in R3.
The stratum S0(M) is the interior, S1(M) is the union of the six faces but
without edges and vertices, S2(M) is the union of the eight edges but without
the vertices, and S3(M) is the set of eight vertices. It might seem unfortunate that
S1(M) ∪ S2(M) ∪ S3(M) and S2(M) ∪ S3(M) are not manifolds-with-corners,
but such features will not affect us because our concern is only with Stokes’s
Theorem.
WARNING. Although those unfortunate features do not concern us, they do

affect some authors who have different goals. Often those authors will change
one or another definition in the theory to achieve their purposes. For exam-
ple, counting each vertex twice allows one to make S2(M) ∪ S3(M) into the
disjoint union of four closed intervals; in this way S2(M) ∪ S3(M) becomes a
manifold-with-boundary. It is therefore necessary always to be alert to an author’s
definitions of manifold-with-corners and related concepts.
PROOF. In (a) for the case that M = Qm , Sk(Qm) is the set of points that lie on

exactly k hyperplanes {xi = 0}. This is a smooth manifold, being diffeomorphic
to the disjoint union of Euclidean spaces of dimension m − k. For general M , if
p is a point in Sk(M) and (Mα, α) is a compatible chart of dimension m about
p ∈ M , then the set Sk(M)∩Mα and the restriction ofα form a chart of dimension
m − k about p ∈ Sk(M). These charts in Sk(M) are compatible and provide an
atlas for Sk(M).
Conclusions (b), (d), and (e) follow directly from the definitions.
In (c), the result is clear for the case that M isQm or is a nonempty open subset

ofQm . Hence if (Mα, α) is a compatible chart for M , then the closure of Sk(Mα)
in Mα is the union of all strata Sl(Mα) for l ∏ k. Consequently the closure of
Sk(M) in M contains the union of all strata Sl(Mα) for l ∏ k. This being so
for all α, the closure of Sk(M) contains the union of all strata Sl(M) for l ∏ k.
Arguing by contradiction, suppose that the closure contains a point p that is not
in the union. This p must be a limit point of Sk(M). Choose a chart (Mα, α)
about p. Since the complement of Mα in M is closed, p must be a limit point of
Sk(Mα). By what we have already proved, p must be in some Sl(Mα) for l ∏ k.
Then also p lies in the larger set Sl(M), in contradiction to the assumption that
p is not in the union of the Sl(M) for l ∏ k. §

3. Stokes’s Theorem for Manifolds-with-Corners

A version of Stokes’s Theorem is valid for manifolds-with-corners, the formula
being

R
@M ω =

R
M dω as usual. Proposition 3.1b, which says that M+ ∪ S1(M) is
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a manifold-with-boundary, gives us the proper framework. The integration over
M is really to be an integral over the manifold M+, and the integration over @M
is to be an integration over S1(M). Just as M+ is a dense open manifold in M ,
so too S1(M) is a dense open manifold of the topological boundary @M of M ,
according to Propositions 3.6c and 3.6a.
Accordingly it is a reasonable question to ask why Stokes’s Theorem for

manifolds-with-corners is not just a special case of Theorem 2.7. The answer
is that Theorem 2.7 assumes that the given m − 1 form ω has compact sup-
port in the manifold-with-boundary. An example will illustrate. Let M be the
closed filled unit square in R2. This is a compact manifold-with-corners, but
the associated manifold-with boundary omits the four corners, each of which has
index 2. Theorem 2.7 thus asks that the given ω have compact support in the
space consisting of the square with the four corners deleted. Running through
the usual argument would thus show us that the formula of Green’s Theorem,
namely, Z

@M
P dx + Q dy =

Z

M

≥@Q
@x

−
@P
@y

¥
dx dy,

is valid whenever P and Q are smooth functions on the square that vanish in
a neighborhood of each of the corners. Attempting to derive the theorem for
general smooth P and Q on the square from this special case requires a passage
to the limit that is more difficult to justify than the complete proof of Stokes’s
Theorem for manifolds-with-corners that we give later in this section. We shall
not abandon the thought of handling matters by a passage to the limit, however,
but shall merely postpone consideration of it until Section 4. A close look at the
passage to the limit lies behind the theory of Whitney’s that we develop starting
in Section 4.
Let M be an m dimensional manifold-with-corners with m ∏ 2, let @M be

its boundary, and let M+ be its subset of manifold points. We shall say that M
is orientable (or oriented) if M+ is orientable (or oriented). This definition is
meaningful because M+ is a smooth manifold. Then S1(M) acquires an induced
orientation as in Section II.3, since M+ ∪ S1(M) is a manifold-with-boundary.

Theorem 3.7. Let M be an oriented manifold-with-corners of dimension
m ∏ 2, regard its boundary @M as S1(M), and give the boundary the induced
orientation. If ω is any smooth m − 1 form on M of compact support, then

Z

@M
ω =

Z

M
dω.

PROOF. The model space is Qm , and we first prove the theorem in this special
case. The smooth m − 1 form ω necessarily has an expansion

ω =
mP

j=1
Fj dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxm,
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the circumflex pointing to a missing term. All the coefficient functions Fj are
smooth, and we have

dω =
mP

j=1

@Fj
@xj

dxj∧dx1∧· · ·∧ddxj∧· · ·∧dxm =
mP

j=1
(−1) j−1

@Fj
@xj

dx1∧· · ·∧dxm .

Since the support of ω is compact, we may assume that each Fj vanishes outside
[0, R]m for some number R. Theorem 1.29 gives

Z

Qm
dω = (−1) j−1

mP

j=1

Z

[0,R]m

@Fj
@xj

(x1, . . . , xm) dx1 · · · dxm

becauseQm has the standard orientation forRm . We can evaluate the j th integra-
tion by the Fundamental Theorem of Calculus, obtaining
Z R

0

@Fj
@xj

(x1, . . . , xm) dxj = Fj (x1, . . . , R, . . . , xm) − Fj (x1, . . . , 0, . . . , xm)

= −Fj (x1, . . . , 0, . . . , xm).

Therefore
Z

Qm
dω = (−1) j−1

mP

j=1

Z

[0,R]m−1
(−Fj )(x1, . . . , 0, . . . , xm) dx1 · · · ddxj · · · dxm .

(∗)
To compute

R
@M ω =

R
S1(Qm) ω, we have to sort out the orientation of each

component of S1(Qm). There are m components, the j th one being given by

Zj = {(x1, . . . , xm) | xj = 0 and all other xi > 0}.

To orient Z1, for example, we take an outward pointing vector like (−1, 0, . . . , 0),
follow it by the standard basis for the subspace where z1 = 0, and see what is
needed to transform it into the standard basis of the whole space. The change
requires one sign change and the identity permutation, and hence Z1 has the
opposite orientation from the standard one. For Zj , we argue similarly, and its
orientation is (−1) j times the standard one. Meanwhile, dxj equals 0 on Zj , and
only one term of ω survives in the integration. Thus Theorem 1.29 gives

Z

S1(Qm)

ω =
mP

j=1

R
Zj ω

= (−1) j
mP

j=1

R
[0,R]m−1 Fj (x1, . . . , 0, . . . , xm) dx1 · · · ddxj · · · dxm .

(∗∗)
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From (∗) and (∗∗), we conclude that
Z

Qm
dω =

Z

S1(Qm)

ω, (†)

and the proof of the theorem is complete when M = Qm .
To handle the general case, we proceed in the same manner as in the proof

of Theorem 2.7: About each point p in M of the compact support S of ω, we
choose a positive compatible chart (Mα, α). Since the sets Mαj form an open
cover of the compact set S, we can choose a finite subcover {Mα1, . . . ,Mαk }.
By Proposition 3.5 (instead of Proposition 2.5), let {√1, . . . , √k} be a smooth
partition of unity of M subordinate to this finite open cover. For 1 ≤ i ≤ k, the
m−1 form√iω is compactly supported in Mαi , and them−1 form (α−1)∗(√iω)
is compactly supported in αi (Mαi ) ⊆ Qm . Let us extend it to all ofQm by setting
it equal to 0 off αi (Mαi ) ⊆ Qm , leaving its name unchanged. Then

Z

M
d(√iω) =

Z

Mαi

d(√iω) =
Z

αi (Mαi )

(α−1
i )∗(d(√iω)) by Theorem 1.29

=
Z

Qm
(α−1

i )∗(d(√iω)) after extension by 0

=
Z

Qm
d((α−1

i )∗(√iω)), by Proposition 1.24

=
Z

@Qm
(α−1

i )∗(√iω) by (†)

=
Z

@Mαi

√iω =
Z

@M
√iω by Theorem 1.29.

Summing over i from 1 to k and using the fact that
kP

i=1
√i is identically 1, we

obtain Z

M
dω =

kP

i=1

Z

M
d(√iω) =

Z

@M

° kP

i=1
√iω

¢
=

Z

@M
ω,

and the proof of the general case is complete. §

4. Whitney’s Generalization of the Divergence Theorem

Although Theorem 3.7 handles many situations of practical interest for Stokes’s
Theorem, it by nomeans handles all. In Section 1we saw at least five examples of
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spaces of geometric interest that could almost be handled by Theorem 3.7 but did
not fit the hypotheses completely. In four of those examples, we identified ad hoc
techniques that reduced those examples to ones that could be handled directly.
Those techniques all essentially amounted to introducing a specific triangulation
to subdivide the space into simpler spaces for which Theorem 3.6 could apply
directly.2 The sum of the Stokes formulas for the simpler spaces yielded the
Stokes formula for the given space.
Working with triangulations is hard and asks for more of a geometric grasp of

the space globally than we often have. In addition, we had no technique at all
for handling the circular cone in Example 7. So we need a new device. The new
device will come down to justifying the kind of passage to the limit that we tried
to avoid early in the previous section. The main theorem that will incorporate
that passage to the limit is Hassler Whitney’s form of Stokes’s Theorem.
In this section let us concentrate on situations where the underlying manifold

or generalized manifold is a subset ofRm of full dimensionm. This is the core of
the problem. Effectively we are thus working on generalizing the m dimensional
Divergence Theorem, which handled this case for manifolds-with-boundary and
manifolds-with-corners when the space in question can be realized as a subset
of Rm . We shall see how one theorem of Whitney’s handles all situations in Rm

without further effort. We postpone to Section 6 a general theorem about cases
of Stokes’s Theorem that are not embedded in Rm .

An example to keep in mind is the one in Example 7 that we could not handle,
namely that of a filled ice-cream cone. So that we can concentrate on the vertex,
let us think of the cone as infinite in size. The thought that suggests itself is that
we might be able to handle the cone as a manifold-with-corners if we were to
remove some of it near the vertex, and perhaps then we could pass to the limit.
Thus we return to the question we set aside early in Section III.3. If we have

an exceptional set E on the boundary that we do not have tools to handle, can we
discard the exceptional set so as to obtain a noncompactmanifold-with-boundary,
apply Theorem 2.7 to any compactly supported m − 1 form ω on the manifold-
with-boundary, and then pass to the limit to eliminate the support restriction onω?
Whitney’s answer is yes as long as the exceptional set is not too large in a technical
sense.
To fix the ideas, let U be a nonempty bounded open set in Rm with (compact)

topological boundary B, and let E be a compact subset of B that we think of as
small and exceptional. We shall impose conditions on B so that (B− E)∪U is a
noncompact manifold-with-boundary. We are to be given a smoothm−1 formω
on B∪U , with smoothnessmeaning as usual that in an open neighborhoodof each
point of B ∪ U , ω extends to a smooth m − 1 form on the open neighborhood.

2We have not sought techniques for handling general roughness of the differential forms that are
involved. We work only with smooth forms and regard rough ones as not of practical interest.
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We want to prove the Stokes formula
R
(B−E) ω =

R
U dω without making any

assumption about the support of ω.
Write D(x, E) for the distance from a point x inRm to the compact set E . The

key to quantifying the smallness of E is the order of magnitude of the Lebesgue
measure of the open set where D(x, E) < δ when δ > 0 is small; we may think
of this open set as a thickened version of E . For example if m = 2 and E is a
one-point set, then the set where D(x, E) < δ is a disk of radius δ, whosemeasure
is πδ2. Still in R2 if E instead is a line segment of length 1, then the set where
D(x, E) < δ has the shape of a filled racetrack, and its measure is 2δ + πδ2. In
other words a one-point set leads us to the order of magnitude of δ2, whereas a
line segment leads us to the order of magnitude of δ. This distinction is what will
allow us to handle each missing corner of a square in Green’s Theorem, but we
would not be able to handle a whole missing side.
More generally let |A| be the Lebesgue measure of a Borel subset A of Rm .

Whitney’s generalization of the Divergence Theorem in dimension m, given as
Theorem 3.8 below,3 will say that the condition

lim
δ↓0

δ−1|{x ∈ R2 | D(x, E) < δ}| = 0

is just the right hypothesis to allow us to ignore the exceptional set E and treat the
whole generalized manifold as an ordinary manifold-with-boundary. We shall
investigate sets E with this property in the next section.
In the meantime let us observe that a one-point set E in dimension m always

satisfies this condition because δ−1|{x ∈ R2 | D(x, E) < δ}| is approximately a
constant times δm−1 for small δ. We already saw a number of cases in Section 1
where E consists of just a single point, and we shall recall them after proving the
theorem. They will furnish our first examples where the theorem applies.

Theorem 3.8. Let U be a nonempty bounded open set in Rm with m ∏ 2, let
B be its topological boundary, and let E be a closed subset of B. Suppose further
that (B − E) ∪ U is a smooth manifold-with-boundary of dimension m in the
following sense:

to each point p of B − E , there exists a unit vector v(p) such that if
axes inRm are chosen with v(p) in the x1 direction, then the set of points
of B − E in some neighborhood of p is given by a smooth function
x1 = h(x2, . . . , xn) and the set of points of U in this neighborhood is
given by the inequality x1 < h(x2, . . . , xm).

3This is Theorem 14A in Whitney’s book listed in the Selected References. The theorem here is
what Whitney’s published theorem says in case the differential form ω has no smoothness problems
up to and including the boundary. The published theorem allows the differential form to have a
certain amount of roughness.
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Suppose further that E has the property that either E is empty or

lim
δ↓0

δ−1|{x ∈ Rm | D(x, E) < δ} = 0. (∗)

Let U be given the standard orientation from Rm , and let B − E be given the
induced orientation. If ω is a compactly supported smoothm−1 form on B ∪U ,
then the Stokes formula holds in the sense that

Z

B−E
ω =

Z

U
dω. (∗∗)

REMARKS.
(1) Let us refer to the triple (U, B, E) in the theorem as aWhitney domain

in Rm . In his book Whitney himself referred to such triples with U connected
as “standard domains.” In our case, on the one hand, we want to treat certain
examples with U disconnected, such as a filled numeral 8, as Whitney domains,
and on the other hand, connectedness plays no role in the proof of Theorem 3.8.
Thus we have deviated from Whitney’s treatment and dropped the hypothesis of
connectedness.
(2) The inset condition in the theorem describes certain charts about points of

B − E and tells how to orient them relative to the orientation of the underlying
space Rm . It really amounts to the condition that (B − E) ∪ U is a smooth
manifold-with-boundary, saying in addition that all the charts are positively
oriented with the induced orientation.
(3) If E is empty, condition (∗) is to be ignored, and the theorem still applies.

In this case it amounts to them dimensional Divergence Theorem for the compact
smoothmanifold-with-boundaryM = U∪B and is a special case of Theorem2.7.
(4) The condition that ω is smooth is to be understood to mean that about each

point of U ∪ B, the differential form ω extends to a smooth differential form in
an open set of Rm . Concretely this means that in a neighborhood of the point,

ω has an expansion
mP

j=1
Fj (x, . . . , xm) dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxm with each Fj

smooth in a neighborhood of the point.
PROOF. Fix a closed ball X in Rm large enough to contain all the points of

interest. We shall approximate ω by smooth forms ωk that have compact support
in (B − E) ∪U , apply Theorem 2.7 to each ωk , and then pass to the limit.
Let Ik be the indicator function of the subset of x ∈ X where D(x, E) ∏ 2−k ,

i.e., let Ik(x) be 1 on that subset and 0 off the subset. Let Jk be the indicator
function of the set of x where D(x, E) < 2−k . Then Ik(x) = 1 − Jk(x) for
x ∈ X . Fix a smooth function ϕ ∏ 0 on Rm that is supported on the closed unit
ball and has

R
Rm ϕ dx = 1, and let ϕk+1 = 2(k+1)mϕ(2(k+1)x). The function ϕk+1

is ∏ 0, has total integral 1, and is supported on the ball where |x | ≤ 2−(k+1).
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The function Ik ∗ ϕk+1 is smooth and vanishes off the set where D(x, E) ∏
2−(k+1). The differential formωk = (Ik ∗ϕk+1)ω is smooth on B∪U and vanishes
off the set where D(x, E) ∏ 2−(k+1). Consequently it is a compactly supported
form on the manifold-with-boundary (B − E) ∪U , and Theorem 2.7 applies to
it. The theorem gives Z

B−E
ωk =

Z

U
dωk

for all k. We shall prove that

lim
k

Z

B−E
ωk =

Z

B−E
ω and lim

k

Z

U
dωk =

Z

U
dω, (†)

and then we will have proved (∗∗) and the theorem.
Let us examine the difference

ω − ωk = ω(1− (Ik ∗ ϕk+1))

= ω(1− (1− Jk) ∗ ϕk+1)

= ω(Jk ∗ ϕk+1). (††)

The function Jk ∗ ϕk+1 vanishes off the set where D(x, E) > 2−(k−1) and is ≤ 1
everywhere. Thus limωk = ω pointwise in the complement of E , and dominated
convergence applies to yield the first formula of (†).
Toward the second formula of (†), let us use Proposition 1.23a to write

dω − dωk = d(Jk ∗ ϕk+1) ∧ ω + (Jk ∗ ϕk+1) dω

and
Ø
Ø
Ø
Z

U
dω −

Z

U
dωk

Ø
Ø
Ø ≤

Ø
Ø
Ø
Z

U
d(Jk ∗ ϕk+1) ∧ ω

Ø
Ø
Ø +

Ø
Ø
Ø
Z

U
(Jk ∗ ϕk+1) dω

Ø
Ø
Ø. (‡)

The easy term to handle in (‡) is the second term. In it the form dω, being smooth
on B∪U , is integrable onU , and we saw in the previous paragraph that Jk ∗ϕk+1
tends to 0 pointwise off E , always being ≤ 1. Thus

lim
k

R
U (Jk ∗ ϕk+1)dω = 0

by dominated convergence, i.e., the second term of (‡) tends to 0.
The first term of (‡) involves a sum of terms (@/@xj )(Jk ∗ ϕk+1)(dxj ∧ ω).

Since dxj ∧ω is smooth on the compact set B ∪U , integration with it operates as
the product of a bounded function by Lebesgue measure. Thus to show that the
first term of (‡) tends to 0, it is enough to show that the integral of the coefficient
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function (@/@xj )(Jk ∗ ϕk+1) with respect to Lebesgue measure tends to 0. Let us
abbreviate @/@xj as∇j and consider the coefficient∇j (Jk ∗ϕk+1) = Jk ∗∇jϕk+1.
By the chain rule,∇jϕk+1(x) = 2(k+1)2m(k+1)(∇jϕ)(2(k+1)x), andwe canwrite

this as ∇jϕk+1(x) = 2k+1(∇jϕ)k+1 if we continue to use subscript notation for
dilations by powers of 2. With k · k1 denoting the L1 norm with respect to
Lebesgue measure, we have

∇j (Jk ∗ ϕk+1) = Jk ∗ ∇jϕk+1 = Jk ∗ 2k+1(∇jϕ)k+1

k∇j (Jk ∗ ϕk+1)k1 ≤ 2k+1kJkk1k(∇jϕ)k+1k1and

= 2k+1k∇jϕk1
Ø
Ø{x ∈ Rm | D(x, E) < 2−k}

Ø
Ø.

The right side is a multiple of δ−1
Ø
Ø{x ∈ Rm | D(x, E) < δ}

Ø
Ø for δ = 2−k , and

it tends to 0 by hypothesis (∗). Thus the first term of (‡) tends to 0, and this
completes the proof of the second formula of (†). §

EXAMPLES. We have observed that the exceptional set certainly satisfies
condition (∗) if it consists of just finitely many points, provided m ∏ 2. The
following were potential examples in dimension 2 in this situation that were
mentioned in Section 1. We now see that they are all Whitney domains and that
Theorem 3.8 is therefore applicable:
(1) any manifold-with-corners of dimension m = 2 embedded in R2, and in

particular any filled compact convex polygon in dimension 2,
(2) any filled simple polygon in dimension 2, convex or not,
(3) any filled simple region in dimension 2with finitelymany curved sides even

if those curved sides make angles of 0, 180, or 360 degrees with one another,
(4) a filled numeral 8 in R2.

In the next section we shall examine condition (∗) more closely, and we shall be
led to examples with more complicated exceptional sets.

5. Sets with ` Dimensional Minkowski Content Zero

Let us examine more closely the condition (∗) on the exceptional set E so that
Theorem 3.8 applies, namely that

lim
δ↓0

δ−1|{x ∈ Rm Ø
Ø D(x, E) < δ}| = 0.

For 0 ≤ ` ≤ m and m ∏ 1, we define the ` dimensional Minkowski content of
a nonempty compact set E in Rm to be

M`(E) = lim
δ↓0

Ø
Ø{x ∈ Rm Ø

Ø D(x, E) < δ}
Ø
Ø±(αm−`δ

m−`)
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if this limit exists. Here αm−` is the m − ` dimensional volume of the unit ball
in Rm−` if ` < m, and we take αm−` to be 1 if ` = m. If the limit does not exist,
then one refers to the lim sup and lim inf as the “upper ` dimensional Minkowski
content” and “lower ` dimensional Minkowski content” of E , respectively. If
` = m, the m dimensional Minkowski content of a compact set exists and equals
the Lebesgue measure of the set.
In the setting of Theorem 3.8, ` equals m − 1, and the assumption (∗) in the

theorem is that the limit exists and equals 0. Thus the assumption (∗) is that the
m − 1 dimensional Minkowski content of E is 0.
In what follows it will simplify statements to adopt the convention that the `

dimensional Minkowski content of the empty set is 0.
It is useful to keep in mind the following example. With ` ≤ m, suppose

that E is an ` dimensional cube of side 1 positioned in m dimensional space as
the product [0, 1]` × {0}m−`. To compute the volume of the δ neighborhood of
E , we can integrate 1 over that neighborhhood. The integration then extends in
each of the first ` variables over an interval of length between 1+ δ and 1+ 2δ,
while in the lastm−` variables it extends over the ball of radius δ centered at the
origin in Rm−`, whose volume is αm−`. The result of the integration thus has to
be something between αm−`δ

m−`(1 + δ)` and αm−`δ
m−`(1 + 2δ)`. Dividing by

αm−`δ
m−` and letting δ tend to 0, we obtainM`(E) = 1. Thus the ` dimensional

cube E in Rm has ` dimensional Minkowski content 1; the Minkowski content
of that cube is 0 in dimensions larger than ` and is infinite in dimensions smaller
than `.
The set functionM`(E) is not asserted to be defined on all compact subsets

of Rm , but when it is defined, it is anyway nonnegative, and it has the property
that if A and B are compact sets, then

M`(E ∪ F) ≤M`(E) +M`(F)

with equality if E and F are disjoint. In fact, the containment

{x ∈ Rm Ø
Ø D(x,E ∪ F)< δ} ⊆ {x ∈ Rm Ø

Ø D(x,E)< δ}∪{x ∈ Rm Ø
Ø D(x,F)< δ}

is valid for all δ; if E and F are disjoint and nonempty, then they are at a positive
distance δ0 from one another and the above containment is an equality for δ ≤ δ0.
Because of condition (∗) in Theorem 3.8, our main interest is in what happens

when the ` dimensional Minkowski content exists and equals 0 for a compact
subset of Rm when ` ≤ m. Let us record three easy facts about that situation:

(1) If E1 and E2 are compact inRm with E2 ⊆ E1 and if E1 has ` dimensional
Minkowski content 0, then so does E2.

(2) If E1 and E2 are compact in Rm with E1 and E2 having ` dimensional
Minkowski content 0, then the same thing is true of E1 ∪ E2.

(3) If the compact set E in Rm has finite ` dimensional Minkowski content,
then E has k dimensional Minkowski content 0 for every k with ` < k ≤
m, as follows by comparing the definitions ofMk(E) andM`(E).
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Let us pause and assess what this little theory tells us for Theorem 3.8. A
Whitney domain inRm was defined in effect as the closure of a nonempty bounded
open set U in Rm such that the topological boundary B can be written as B =
(B − E) ∪ E , whereU ∪ (B − E) is an m dimensional manifold-with-boundary
and E is a compact subset of B of m − 1 dimensional Minkowski content 0.
However E is definedas a compact subset of B, thehope is that E hasdimension

m−2 or less and that consequently it hasm−1 dimensionalMinkowski content 0.
The reality is that E is often hard to deal with. Accordingly we shall introduce
some tools for working with the notion of ` dimensional Minkowski content 0.
To begin with, the definition of Minkowski content of a nonempty compact

set E supplies a value that depends on external information about E . We shall
establish an equivalent definition that depends only on internal information about
E . Define

Eδ = {x ∈ Rm Ø
Ø D(x, E) > δ} and Bδ = {x ∈ Rm Ø

Ø |x | < δ}.

Since E is compact, only finitely many open balls of radius < δ are needed to
cover E . Let

N (E, δ) =
nminimum number of open balls of
diameter < δ needed to cover E

o

and
Nsep(E, δ) =

nmaximum number of points of E
at distance ∏ δ from one another

o
.

Lemma 3.9. For E compact and nonempty in Rm ,
(a) N (E, δ) ≤ Nsep(E, δ).
(b) Nsep(E, δ) ≤ N (E, δ/2),
(c) |Eδ| ≤ N (E, δ)|Bδ|, and
(d) |Eδ| ∏ Nsep(E, δ)|Bδ/2|.

PROOF. Write Br (x) for the open ball of all points y in Rm with |y − x | < r .
For (a), if k = Nsep(E, δ), choose a set S = {x1, . . . , xk} of points of E such

that |xi − xj | ∏ δ for all i 6= j . The balls B2δ(x1), . . . , B2δ(xk) must cover E
because otherwise some point y of E has |xi − y| ∏ 2δ for all i and S ∪ {y}
is a set of k + 1 points of E at distance ∏ δ from one another. Thus some
system of k open balls of radius 2δ covers E . Shrinking each of these balls a
sufficiently small amount still leaves them covering E but having radius < 2δ,
therefore diameter < δ. The number N (E, δ) is by definition ≤ this number k,
and therefore N (E, δ) ≤ Nsep(E, δ).
For (b), if k = Nsep(E, δ), choose a set S = {x1, . . . , xk} of points of E with

|xi − xj | ∏ δ for all i 6= j . If C is a collection of balls Br1(y1), . . . , Brn (yn) of
radius< δ/4 that cover E , then we can associate to each index j of the members
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of S some index i = i( j) of the members of C such that Bri (yi ) contains xj . No
two members of S can be in any single Bri (yi ) because the diameter of Bri (ui )
is less than 2ri , which is less than δ/2. Thus the function j 7→ i( j) is one-one
from S into C. This proves that the number of balls is ∏ the number of points in
S. Hence the minimum possible number of balls is ∏ Nsep(E, δ).
For (c), if k = N (E, δ), let C = {Br1(x1), . . . , Brk (xk)} be a collection of k

open balls of radius < δ/2 in Rm that cover E . If x is in Eδ, the compactness of
E implies that there is a point y in E with |x − y| = δ. The point y must lie in
some Brj (xj ), and thus |x − xj | ≤ |x − y| + |y − xj | ≤ δ/2+ rj < δ. Thus the
collection of balls Bδ(x1), . . . Bδ(xk) covers Eδ, and we must have |Eδ| ≤ k|Bδ|,
as asserted.
For (d), if k = Nsep(E, δ), choose a set S = {x1, . . . , xk} of points of E such

that |xi − xj | ∏ δ for all i 6= j . The balls Bδ/2(xj ) are pairwise disjoint and
lie completely in Eδ. Thus |Eδ| ∏ |Bδ/2(x1)| + · · · + |Bδ/2(xk)| = k|Bδ/2| =
Nsep(E, δ)|Bδ/2|. §

Proposition 3.10. If ` ≤ m, a nonempty compact set E in Rm has ` dimen-
sional Minkowski content equal to 0 if and only if

lim
δ↓0

δ`N (E, δ) = 0,

where
N (E, δ) =

nminimum number of open balls of
diameter < δ needed to cover E

o
.

REMARK. In view of parts (a) and (b) of Lemma 3.9, it would be equivalent to
write the condition as limδ↓0 δ`Nsep(E, δ) = 0. This equality depends only on
E as a metric space and does not make use of any embedding. However, we will
find the formulation of the condition as limδ↓0 δ`N (E, δ) = 0 to be more useful.
PROOF. Applying (a), (d), and (c) of Lemma 3.9 in turn, we obtain

N (E, δ)|Bδ/2| ≤ Nsep(E, δ)|Bδ/2| ≤ |Eδ| ≤ N (E, δ)|Bδ| = 2mN (E, δ)|Bδ/2|,

and thus
2−mδmN (E, δ)|B1| ≤ |Eδ| ≤ δmN (E, δ)|B1|.

The proposition follows. §.

A function F fromanonempty subset ofRa intoRb is said to satisfy aLipschitz
condition on a set E with constantC if |F(x)− F(y)| ≤ C|x− y| for all x and y
in E . It follows from Taylor’s Theoremwith integral remainder4 that any smooth
function from an open convex set in Ra into Rb satisfies a Lipschitz condition
when restricted to any compact subset of the domain.

4Theorem 3.11 of Basic Real Analysis.



5. Sets with ` Dimensional Minkowski Content Zero 113

Proposition 3.11. Let F be a function from a compact subset E ofRa intoRb

that satisfies a Lipschitz condition, and suppose that ` ∏ 0 is an integer. If E has
` dimensional Minkowski content equal to 0 inRa , then F(E) has ` dimensional
Minkowski content equal to 0 in Rb.

REMARK. No relationship between a and b is assumed.

PROOF. Decomposing F as the composition of a dilation followed by a
function satisfying a Lipschitz condition with Lipschitz constant 1, we see that
it is enough to prove the corollary in the case that the Lipschitz constant is 1.
Under this assumption let E be a compact subset of Ra that has ` dimensional
Minkowski content 0. Wemay assume that E is nonempty. In view of Proposition
3.10, we are assuming that limδ δ`N (E, δ) = 0, and we want to prove that
limδ δ`N (F(E), δ) = 0.
Let E be covered by N open balls of diameter < δ, say

E ⊆ Br1(x1) ∪ · · · ∪ Brk (xk).

Then
F(E) ⊆ F(Br1(x1)) ∪ · · · ∪ F(Brk (xk)),

and the right side is

⊆ Br1(F(x1)) ∪ · · · ∪ Brk (F(xk))

because F satisfies a Lipschitz condition with Lipschitz constant 1. This shows
that

N (F(E), δ)) ≤ N (E, δ),

and Proposition 3.11 follows from Proposition 3.10. §

Proposition 3.11 allows us to introduce a well defined notion of ` dimensional
Minkowski dimension0 for compact subsetsof any smoothmanifoldof dimension
∏ ` and to show that smooth mappings of these manifolds into any Euclidean
space of dimension ∏ ` carry these sets into compact sets of ` dimensional
Minkowski content 0 in the Euclidean space. The details are as follows.

Corollary 3.12. Let M be a smooth manifold of dimensionm, let ` ∏ 0 be an
integer, and let E be a nonempty compact subset of M . Suppose that {Mα, α)}
is an atlas for M such that some finite open cover {Mα1, . . . ,Mαr } of E has the
property that for each j with 1 ≤ j ≤ r , each compact subset S of Mαj ∩ E has
αj (S) of ` dimensionalMinkowski content 0 inRn . Then for every (Mβ, β) in the
atlas, each compact subset T of Mβ ∩ E has β(T ) of ` dimensional Minkowski
content 0 in Rn .
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REMARKS.
(1) When a finite open cover of E exists as in the lemma, we say that the

compact subset E of M has ` dimensional Minkowski content 0.
(2) With this definition the finite union of compact subsets of ` dimensional

Minkowski content 0 in a smoothmanifold of dimension n ∏ ` has ` dimensional
Minkowski content 0. This is a consequence of the corresponding fact about
compact subsets of Euclidean space.
(3) With only cosmetic changes in the proof, this corollary remains valid

if “smooth manifold” in the statement is replaced by “smooth manifold-with-
boundary” or “smooth manifold-with-corners.”

PROOF. Fix the open cover {Mα1, . . . ,Mαr } of E , and choose by Lemma 1.26b
an open subcover {Pα1, . . . , Pαr } of E such that Pclαj

⊆ Mαj for each j . Suppose
that Mβ is any member of the atlas and that T is a compact subset of Mβ ∩ E .
Then T = (Pclα1

∩ T ) ∪ · · · ∪ (Pclαr
∩ T ) exhibits T as the union of respective

compact subsets Pclαj
∩ T of Mαj ∩ E . The set αj (Pclαj

∩ T ) is a compact subset of
αj (Mαj ∩ E) and by hypothesis has ` dimensional Minkowski content 0 in Rm .
Let us apply Proposition 3.11 to the smooth mapping F = β ◦α−1

j , which is a
diffeomorphism from the open set αj (Mαj ∩Mβ) onto the open set β(Mαj ∩Mβ).
Since αj (Pclαj

∩ T ) is a compact subset of αj (Mαj ∩ Mβ) of ` dimensional
Minkowski content 0, its image β(Pclαj

∩ T ) under F is a compact subset of
β(Mαj ∩ Mβ) ⊆ Rm of ` dimensional Minkowski content 0. Taking the union
over j , we see that β(T ) has ` dimensional Minkowski content 0 in Rm . §

It is now easy to extend certain results about ` dimensionalMinkowski content
0 fromEuclidean space to smoothmanifolds. Some extensions of this kind appear
in the problems at the end of the chapter.

GEOMETRIC EXAMPLES.
(1) The above results allowus to see that various polyhedral setsmeet condition

(∗) for exceptional sets in Theorem 3.8. A filled square pyramid in R3 has
four vertices, eight edges, five faces, and the solid part. The Stokes formula
involves the solid part and the faces. All other potential contributions are compact
of dimension ≤ 1, which is two less than the ambient dimension, and there
are only finitely many of them. Corollary 3.14 says that each of them has 2
dimensional Minkowski content 0, and the finite union of compact sets of 2
dimensionalMinkowski content 0 hasMinkowski content 0. Therefore condition
(∗) in Theorem 3.8 is satisfied, and the Stokes formula holds for a solid square
pyramid.
(2) More generally any closed convex polytope in Rm , i.e., the generalization

to dimension m of a closed convex polyhedron in R3, fits this description. Aside
from the solid and the faces, all other potential contributions can be taken to
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be compact of dimension ≤ m − 2, and there are only finitely many of them.
Corollary 3.14 says that each of them has m− 1 dimensional Minkowski content
0, and the finite union of compact sets of m − 1 dimensional Minkowski content
0 has Minkowski content 0. Thus again condition (∗) is satisfied, and theorem
3.8 applies.
(3) In anymanifold-with-cornersof dimensionm that is embedded inEuclidean

space Rm , the exceptional set that arises in Theorem 3.8 consists of all points of
index ∏ 2, i.e., of all corner points. The subset of corner points that lies within
the support of a given smoothm−1 form is compact, and Corollary 3.14 says that
this subset satisfies condition (∗). Thus Theorem 3.7 is a special case of Theorem
3.8 if the given manifold-with-corners embeds in Rm . A filled ice cream cone
in R3 is an example. The full version of Stokes’s Theorem that we give in the
next section will apply to all Whitney manifolds and in particular will apply to
all smooth manifolds-with-corners, whether embedded in Rm or not.

A further class of examples for Theorem 3.8 is of an algebraic nature and arises
from zero loci of real polynomials in several real variables x1, . . . , xm . We shall
assume that a given polynomial F is a function of m variables and is irreducible
over R. Guided by Theorem 3.8, we consider the region in Rm where F < 0.
The statement of that theorem gives us a clue what to expect with the boundary.
At a point on the topological boundary, if @F/@Xj is nonzero for some j , then
the Implicit Function Theorem allows us to solve locally for xj in terms of the
other variables, obtaining a smooth function f of m − 1 variables, and locally
a part of the boundary of the region will be the graph of f with the part of Rm

below the graph corresponding to the interior of the region under study. The
subset of the boundary for which this condition holds is thus part of the boundary
of a manifold-with-boundary in the familiar sense. The subset of the boundary
for which the condition fails is called the singular set of F and is taken as the
exceptional set E in the theorem.
When we are applying Theorem 3.8, it is helpful for our regions in Rm to be

bounded, so that integrals are well defined, and we think of intersecting our set
of interest with a large closed ball {x

Ø
Ø |x | ≤ C} for some C . Since the goal is

to have a theorem for differential forms of compact support, we take always take
C large enough so that every point of the support has |x | ≤ C , and the part of
the boundary where |x | = C does not enter the Stokes formula. The adjustment
of requiring |x | ≤ C results in temporarily enlarging the boundary so that some
points with |x | = C are included. These new boundary points are uninteresting
for our current purposes, since they play no role at the end.5

5This description is not quite good enough. To avoid problems from the sharp edge of the region
where |x | = C , we actually work with the region where F < 0 and a specific smooth auxiliary
function in C∞

com(Rm) is > 0. The auxiliary function can be taken to be ϕ(C−1x), where ϕ is a
function ∏ 0 in C∞

com(Rm) that is identically 1 for |x | ≤ 1
2 and is identically 0 for |x | ∏ 1. This

auxiliary function is smooth and equals 0 for |x | ∏ C .
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ALGEBRAIC EXAMPLES.
(1) With two variables, let F(x, y) = x4 + y4 − 1. Our region becomes the

set where x4 + y4 < 1. This is a bounded region of R2. The respective first
partial derivatives of F are 4x3 and 4y3, and they do not simultaneously vanish
at any point of our locus. Thus the exceptional set E is empty, and Theorem
3.8 for this case reduces to the ordinary Divergence Theorem for R2, hence to
Green’s Theorem in the plane if we adjust notation suitably. The business with
introducing a large closed ball is unnecessary since our region is already bounded.
(2) Let the underlying space be R4, which we can identify with the space of

2-by-2 real matrices
≥
a b
c d

¥
if we want. We take F to be the determinant function

ad − bc, and we consider the set of all matrices x for which det x ≤ 0. To a first
approximation the open setU in Theorem 3.8 will be the set of all matrices x for
which det x < 0, and the topological boundary B will be the set where det x = 0.
However, we are not interested in effects from considering large matrices, and
we therefore consider only those matrices x for which |x | ≤ C for some positive
constant C , where |x |2 is the sum of the squares of the entries. Thus the actual
U is the set of x with det x < 0 and |x | < C . The actual topological boundary B
consists of an interesting part where det x = 0 and |x | < C and an uninteresting
part where |x | = C . The first partial derivatives of det are d, −b, −c, and a,
respectively, and they vanish simultaneously only when x = 0. The point with
x = 0 happens to be one of the points on the locus det x = 0. Thus the singular
set consists of x = 0 alone.
Thus the interesting part of the boundary B consists of the all points where

det x = 0. Points x in its nonsingular part have x 6= 0, and the exceptional set
E consists of 0 alone.6 Since a one-point set satisfies condition (∗) of Theorem
3.8, (U, B, E) is a Whitney domain, and the Stokes formula is applicable in this
situation.
(3) Let the underlying Euclidean space be R9 realized as the space of all

3-by-3 real matrices. We study the set where det x ≤ 0. Again we want to
know where det x = 0, and we want to identify the singular set. Each matrix
entry function x 7→ xi j is a coordinate function, and we want to examine the first
partial derivative @(det x)/@xi j . Thus let ei j be thematrix forwhich xi j (ei j ) = δi j .
By definition,

@(det x)
@xi j

=
d
dt
det(x + t xi j )

Ø
Ø
t=0 = lim

t→0
t−1(det(x + tei j ) − det x).

Since det is an alternating multilinear function of its columns, the expression
within the outer parentheses on the right equals the determinant of a matrix

6The uninteresting part of B consists of all points with |x | = C . No point with |x | = C has all
four first partial derivatives equal to 0, and therefore the singular set for this example is completely
contained in the interesting part of the boundary.
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that equals x in all but the j th column and there equals the j th column of tei j .
Expanding the determinant by cofactors, we see that the limit collapses to (−1)i+ j

times the (i, j)th minor7 of x . So the partial derivative that we seek is just a
2-by-2 minor of x . The set where all first partial derivatives vanish is exactly
the set where all 2-by-2 minors are 0, which is the set of all matrices of rank at
most 1. The condition on the minors implies that det x = 0, and consequently
the singular set of the locus where det x = 0 is the set of matrices of rank ≤ 1.
Let E be this set.
We shall want to apply Theorem 3.8. The open set U has dimension 9, and

the nonsingular part B − E of the boundary has dimension 8. What we might
expect is that somehow the singular set E has dimension at most 7, and then
condition (∗) ought to be satisfied in the theorem. The set E is not a manifold,
however, and some care is needed. What we really want is for the compact set
E to have 8 dimensional Minkowski content 0. To see this, we shall write E
as the union of 9 compact subsets of 5 dimensional vector subspaces of R9, and
each of these compact subsets will have 8 dimensionalMinkowski content 0; then
Remark 2 after Corollary 3.12 will allow us to conclude that E has 8 dimensional
Minkowski content 0. For the moment fix attention on the first row and column
of matrices, and consider a member x of E with x11 6= 0. Since each x in E has
rank ≤ 1, the second and third columns of this x must be multiples of the first
column. The set of matrices for which the second and third columns are multiples
of the first is a linear subspace of R9 of dimension 5, and x lies in this subspace.
(The first column contributes 3 to the dimension, and each multiple contributes
one more.)
We can argue similarly with each of the nine pairs of indices (i, j), not just

(1, 1). If a member x of E has xi j 6= 0, then x lies in a certain (different)
5 dimensional vector subspace of R9. The member 0 of E lies in all of these
subspaces. The conclusion is that E lies in the union of nine specific subspaces
of R9 of dimension 5. The intersection of E with each subspace is closed, hence
compact, and thus E is exhibited as the finite union of compact sets lying in 5
dimensional subspaces. We have seen that any compact subset of Rk has m − 1
dimensional Minkowski content 0 if k < m−1. Here we have k = 5 andm = 9,
and the conclusion is that E has 8 dimensional Minkowski content 0.
Therefore condition (∗) is met, and Theorem 3.8 applies. Once again we

are skipping lightly over the uninteresting part of the boundary where |x | = C .
We may do so because we are interested only in differential forms of compact
support.8 Anyway the Stokes formula applies to differential forms of degree 9
with U as the set of 3-by-3 matrices of negative determinant, with B − E as the

7The (i, j)th minor of an n-by-n matrix is the determinant of the matrix of size n − 1 obtained
by deleting the i th row and j th column.

8In this example, there are matrices in the set E that lie on the sphere |x | = C , but they can be
ignored because of the smoothing technique mentioned in an earlier footnote.
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set of 3-by-3 matrices x of rank 2, and with E as the set of 3-by-3 matrices of
rank ≤ 1.

6. Whitney’s Global Form of Stokes’s Theorem

For the final stage in our work with Stokes’s Theorem, we shall expand our
repertory of model cases. Then we can piece together local results to get the
global form of Stokes’s Theorem that we seek. The setting will be a “Whitney
manifold” of dimension m, an object that we define below. In the end we will
allow three types of model cases: Rm ,Hm , andWhitney domains inRm , Whitney
domains having been defined in the remarks with Theorem 3.8. It would be
enough to use Whitney domains themselves as the sole kind of model, but it will
help us to include Rm and Hm so that we can easily handle manifold points and
well behaved boundary points withmodels that do not involvesWhitney domains.
There is one subtle qualitative difference between the settings of manifolds-

with-boundary and manifolds-with-corners vs. the setting of Whitney manifolds.
In the earlier settings, there were different kinds of points: manifold points and
boundary points in the case of manifolds-with-boundary, and points of different
index in the case of manifolds-with-corners. Telling one kind of point apart
from another was a question intrinsic to the point. With a Whitney domain
(U, B, E) and therefore also with Whitney manifolds, the distinction between
different kinds of points is no longer intrinsic. Indeed, we shall still havemanifold
points corresponding to U , ordinary boundary points corresponding to B − E ,
and exceptional boundary points corresponding to E , but it is always possible
to change the label of one boundary point in B from ordinary to exceptional
without affecting the validity of Theorem3.8. Thus identifying exceptional points
depends at least partly on how we label them. In order to have a theory that
parallels the theories of manifolds-with-boundary and manifolds-with-corners,
it will be necessary to carry along this information about labels in some of our
definitions. As we make the definitions, it will be helpful to keep one nontrivial
example in mind.

EXAMPLE. The surface S of an ice-cream cone in R3. The curved part of the
surface can be realized as

{(x, y, z) | x2 + y2 = z2 and 0 ≤ z ≤ 1},

let us say. The points {(x, y, z) | x2 + y2 = 1 and z = 1} can be taken to be
ordinary points of the boundary, and the point (0, 0, 0) is an exceptional point
of the boundary. This example is not a smooth manifold-with-boundary because
of the behavior near the origin, and it is not covered by Theorem 3.8 because
the surface is not a subset of dimension 3 in R3. Thus at this stage we do not
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know whether the Stokes formula is valid for S or not. Theorem 3.12 will affirm
that it is indeed valid. In the statement of the formula, the integration over the
boundary turns out to be limited to the 1 dimensional part of the boundary; the
point (0, 0, 0) plays no role.

Fix an integer m ∏ 2. A local Whitney domain in Rm is the intersection
of a Whitney domain W = (U, B, E) in Rm with an open set O of Rm under
the assumption that U ∩ O is nonempty. The subset of Rm of interest is then
(U ∪ B)∩O , and the triple isW ∩O = (U ∩O, B ∩O, E ∩O). The set B ∩O
is relatively closed in the closure of U , and E ∩ O is relatively closed in B ∩ O .
Observe that the set E ∩ O need not be compact.
We shall define “Whitney manifolds” M of dimension m. Let M be a locally

compact separable metric space, let @M be a closed subset of M , and let @0M be
a closed subset of @M . The points of @M will be called the boundary points of
M , and the points of @0M will be called the exceptional points. Either of @M or
@M0 is allowed to be empty. For purposes of defining M as a Whitney manifold,
a Whitney chart (Mα, α) on M of dimension m is a homeomorphism α of a
nonempty open subset Mα of M onto some local Whitney domain Wα ∩ Oα in
Rm , say with Wα = (Uα, Bα, Eα), such that the restriction of α to Mα ∩ @M
is a homeomorphism onto Bα ∩ Oα and the restriction of α to M ∩ @0M is a
homeomorphismonto Eα∩Oα. The imageofα is understood tobe (Uα∪Bα)∩Oα.
When the local Whitney domain has no exceptional points, i.e., when Eα ∩ Oα

is empty, a Whitney chart is just an ordinary chart.
The Whitney chart (Mα, α) is said to be about a point p in M if p is in the

domain Mα of α.
On such a space M , two charts (Mα, α) and (Mβ, β) for which Mα ∩ Mβ is

nonempty will be said to be smoothly compatible if β ◦ α−1, as a mapping of
the subset α(Mα ∩ Mβ) of Rm to the subset β(Mα ∩ Mβ) of Rm , is smooth and
its inverse α ◦ β−1 is smooth. As usual, smoothness at a boundary point means
that the function extends to a smooth function in a neighborhood of the boundary
point.
The locally compact separable metric space M is said to be a Whitney

manifold of dimension m if a system F of Whitney charts (Mα, ϕα) on M of
dimension m is specified such that

(i) any two charts (Mα, α) and (Mβ, β) in F are smoothly compatible,
(ii) the system of compatible charts (Mα, α) is an atlas in the sense that the

sets Mα together cover M , and
(iii) F is maximal among families of compatible charts on M .
The next step is to review for Whitney manifolds all the constructions of

smooth functions, tangent spaces, differential forms, etc. that we did for smooth
manifolds, then for smooth manifolds-with-boundary, and finally for smooth
manifolds-with-corners and check that the whole theory goes through with no
surprises. This step is repetitious, and we omit it.
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Let M be a Whitney manifold of dimension m. We say that M is oriented if
the smooth manifold M − @M is oriented. In this case, @M − @0M is the finite
or countably infinite union of its open components, each of which is a connected
smooth manifold of dimension m − 1. We give each component the orientation
induced from M − @M , and the result is that @M − @0M becomes an oriented
smooth manifold of dimension m − 1.

Theorem 3.12. Suppose thatM is an orientedWhitneymanifold of dimension
mwith boundary@M and exceptional set @0M , and suppose further that @M−@0M
is given the induced orientation. Ifω is a compactly supported smooth differential
m − 1 form on M , then the Stokes formula holds for M in the sense that

Z

@M−@0M
ω =

Z

M−@M
dω.

REMARKS. This theorem is based on Theorem 18A of Whitney’s book in the
Selected References. What we have stated here is mostly formalism, the deep
result being Theorem 3.8 above. However, Theorem 3.12 is not a tautology, since
as we shall see, it does say something new about the surface of an ice-cream cone
in R3.

The notion of a smooth partition of unity of a Whitney manifold M
subordinate to the finite open cover {Ui } of a compact subset K of M works
just as in the cases of smooth manifolds, smooth manifolds-with-boundary, and
smooth manifolds-with-corners. This step too requires a little checking, and we
omit it. The statement is as follows.

Lemma 3.13. Let M be an Whitney manifold, let K be a nonempty compact
subset, and let {Ui | 1 ≤ i ≤ r} be a finite open cover of K . Then there exist
functions fi in C∞(M) for 1 ≤ i ≤ r , taking values between 0 and 1, such that

each fi is identically 0 off a compact subset ofUi and
rP

i=1
fi is identically 1 on K .

PROOF OF THEOREM 3.12. About each point p in M of the compact support S
of ω, we choose a positive compatible Whitney chart (Mα, α). This is possible
since the positive compatible charts form an atlas, M being oriented. Since the
setsMαj form an open cover of the compact set S, we can choose a finite subcover
{Mα1, . . . ,Mαk }. By Lemma 3.13 let {√1, . . . , √k} be a smooth partition of unity
of M subordinate to this finite open cover.
For each i with 1 ≤ i ≤ k, αi (Mαi ) is open in one of the model spaces Rm ,

Hm , or a Whitney domain (U, B, E), and √iω is compactly supported within
that open subset of the model space. Since the model space is Hausdorff, the
extension of√iω by 0 on the complement of αi (Mαi ) is compactly supported and
smooth on the whole model space.
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For 1 ≤ i ≤ k, the m − 1 form √iω is compactly supported in Mαi , and the
m − 1 form (α−1)∗(√iω) is compactly supported in the open subset αi (Mαi ) of
one of the model spaces. Let us extend it to the whole model space by setting it
equal to 0 off αi (Mαi ), leaving its name unchanged. The computation is then the
same in all cases, but the notation has to be interpreted a little differently when
the model space is a Whitney domain. When the model space is Rm or Hm , the
computation is
Z

M
d(√iω) =

Z

Mαi

d(√iω) =
Z

αi (Mαi )

(α−1
i )∗(d(√iω)) by Theorem 1.29

=
Z

model
(α−1

i )∗(d(√iω)) after extension by 0

=
Z

model
d((α−1

i )∗(√iω)), by Proposition 1.24

=
Z

@(model)
(α−1

i )∗(√iω) by Stokes for model

=
Z

@Mαi

√iω =
Z

@M
√iω by Theorem 1.29.

In the above computation the first five integrations are understood to extend over
the set ofmanifold points, not the full space indicated, andwith that understanding
we get the desired equality

R
M d(√iω) =

R
@M √iω. The expression “Stokes for

model” refers to Theorem 2.1 or 2.7.
When themodel space is aWhitney domain, the expression “Stokes formodel”

refers to Theorem 3.8. The first five lines of the above display again extend over
the set of manifold points, and that is the way that Theorem 3.12 writes them.
The integrations over the boundary extend only over the ordinary points of the
boundary, according to Theorem 3.8, and an adjustment to the above notation
needs to be made to take this fact into account.
In short we obtain the formula

Z

M−@M
d(√iω) =

Z

@M−@0M
√iω

in every case. Summing over i from 1 to k and using the fact that
kP

i=1
√i is

identically 1, we obtain
Z

M−@M
dω =

kP

i=1

Z

M−@M
d(√iω) =

Z

@M−@0M

° kP

i=1
√iω

¢
=

Z

@M−@0M
ω,

and the proof of the theorem is complete. §
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EXAMPLE. The surface S of an ice-cream cone in R3, continued. Let us see
that the surface is aWhitneymanifold of dimension 2with just oneWhitney chart.
The image of the chart is the Whitney domain in R2 given by the punctured unit
disk, with the puncture considered as an exceptional point of the boundary. Thus
U = {(a, b) ∈ R2 | 0 < a2 + b2 < 1}, B = {(0, 0)} ∪ {(a, b) | a2 + b2 = 1},
and E = {(0, 0)}. The chart is (S, ϕ) with the mapping ϕ : S → U ∪ B given by

(a, b) = ϕ(x, y, z) = (x, y) for 0 ≤ x2 + y2 ≤ 1.

Since E consists of a single point, we have seen E satisfies the key hypothesis
(∗) in Theorem 3.8, and therefore (U, B, E) is a Whitney domain.9 The function
ϕ is a homeomorphism of S onto the closed unit disk U ∪ B. Since there is just
one chart, no compatibility of charts needs to be proved. Theorem 3.12 applies.
According to the theory, computations proceed just as with Green’s Theorem for
the unit disk; the exceptional point (0, 0) plays no role in the integrations.

7. Problems

1. (a) A compact convex polyhedron in R3 is a compact set that does not lie in a
single plane and that is the intersection of finitely many closed half planes.
It has a number F of 2 dimensional faces, a number E of 1 dimensional
edges, and a number V of 0 dimensional vertices. According to a formula
due to Euler, these numbers are related by F+V = E+2. Assume that the
polyhedron is nondegenerate in the sense that no three vertices are collinear,
and for simplicity assume that it is in “general position,” which means that
no four vertices are coplanar. Prove that the polyhedron can be triangulated,
i.e., that it can be be written as the union of tetrahedra in such a way that
each vertex of a tetrahedron is a vertex of the original polyhedron and that
any two tetrahedra either are disjoint or intersect in a single face.

(b) Deduce Stokes’s Theorem for compact convex polyhedra in R3 from the
result for tetrahedra, which is an instance of Theorem 3.7. Handle the nec-
essary cancellation in the boundary integral in the sameway as in Example 4
of Section 1.

2. Show that a compact manifold-with-corners of dimension m that is embedded
in Rm is an example of a Whitney domain of dimension m, the exceptional set
consisting of all points of index ∏ 2.

9It is possible to verify (∗) using the more sophisticated theory of Section 5 rather than the
direct computation that appeared in Section 4. In the terminology of Section 5, E has 1 dimensional
Minkowski content equal to 0 because, for example, it has finite nonzero 0 dimensional Minkowski
content.
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3. Guided by the third algebraic example in Section 5, show that a bounded portion
of the subset of the space of 4-by-4 real matrices where det x ≤ 0 can be made
into a Whitney domain for which the exceptional set E is the set of all matrices
of rank ≤ 2.

4. For which of the following functions and vector spaces of matrices does the
procedure of the algebraic examples of Section 5 lead to a Whitney domain
(U, B, E)? Describe B and E in each case.
(a) F(x, y, z) = z(z − xy) and the space R4,
(b) F(x) = Re(det(x)) and the space of all 2-by-2 complex matrices.
(c) F(x) = det(x) and the space of all skew-symmetric 4-by-4 real matrices,

Problems 5–9 concern the Divergence Theorem.
5. Let V be the solid in R3 given by

{(x, y, z) | x2 + y2 + (z − 2)2 ≤ 4 and x2 + y2 + (z + 1)2 ≤ 1}.

(a) Check that V is a manifold-with-corners.
(b) If S is the surface of V , evaluate

R
S x

2 dy ∧ dz, where S is oriented via an
outward pointing vector.

6. Evaluate
R
S F · dS, where F = 3yi+ 2xj+ (z − 8)k and S is the surface of the

solid in R3 bounded by the coordinate planes x = 0, y = 0, and z = 0, and by
the plane 4x + 2y + z = 8. Again S is oriented by an outward pointing vector.

7. Let S be the surface in R3 defined by

x4 + y4 + z4 = a4,

where a > 0 is chosen so that the region V enclosed by S has volume 7. Let
ω = x dy∧dz+ ydz∧dx + zdx ∧dy, and let S be oriented toward the outside.
Evaluate the integral

R
S ω.

8. Let F(x, y, z) be the vector field

F(x, y, z) = z2 log(1+ y2)i+ (5y + 2x2)j+ (cos4 x + 3y)k.

If S is the surface of the half ball where x2 + y2 + z2 ≤ 4 and z ∏ 0, computeR
S F · dS if S is oriented with an outward pointing vector.

9. Let M be a compact manifold-with-boundary embedded inR2, and suppose that
f : M → R and g : M → R are smooth functions such that f < g everywhere.
(a) Show that the subset

V = {(x, y, z) ∈ R3 | (x, y) ∈ M and f (x, y) ≤ z ≤ g(x, y)}

is a manifold-with-corners.
(b) Identify subsetsU , B, and E of R3 so that V can be viewed as the Whitney

domain (U, B, E).
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Problems 10-12 concern integration over piecewise C∞ curves and other geometric
objects that lend themselves to a canonical decomposition into pieces.

10. Let f be a (continuous) piecewise smooth function from a closed interval
I = [a, b] into R. Specifically there is to be a partition, say

a = t0 < t1 < · · · < tk = b with k ∏ 1

such that f (t) is a continuous function on [a, b] and is of class C∞ on each of
Ij = [tj−1, tj ] for 1 ≤ j ≤ k. Put f j = f |[tj−1,tj ] for 1 ≤ j ≤ k.
(a) Taking into account all the assumptions on f , verify that

R
Ij f

0(t) dt =

f (tj )− f (tj−1) for 1 ≤ j ≤ k and conclude that
R
I f

0(t) dt = f (b)− f (a).
(b) Interpret the results of (a) via Section II.6d as saying that Stokes’s Theorem

holds for the 0 form ω = f on [a, b] and the 1 form dω = f 0(t) dt even
though ω is only piecewise smooth. (Educational note: In other words,
Stokes’s Theorem readily extends in R1 from smooth 0 forms to piecewise
smooth 0 forms.)

(c) Relate the cancellation that occurred in (a) to a question about orientations,
and say what abstract hypothesis on orientations to impose in order to ensure
this cancellation.

11. Proceeding similarly with objects in one higher dimension, introduce a notion of
a piecewise smooth function on the faces and edges of a tetrahedron, and derive
a version of Stokes’s Theorem for the surface of a tetrahedron, the boundary
integral being an integral of a 1 form on the union of the edges, all consistently
oriented.

12. If the same procedure is followed with a square pyramid, is there any substantial
difference in what happens?

Problems 13–19 primarily concern the notion of ` dimensional Minkowski content
M`(E).

13. Let ` ∏ 0 be an integer, and let F : M → N be a smooth mapping between
smooth manifolds of dimension ∏ `. Prove that if E is a compact subset of
` dimensional Minkowski content 0 in M , then F(E) is a compact subset of `

dimensional content 0 in N . (The notion of ` dimensional Minkowski content 0
in the setting of a smooth manifold is defined in Corollary 3.12 and its remarks.)

14. Let M be a smooth manifold of dimension m ∏ 2. Prove that the smooth image
in M of any compact subset of a smooth manifold of dimension ≤ m − 2 has
m − 1 dimensional Minkowski content 0.

15. Show that any compact m dimensional manifold-with-corners, not necessarily
embedded in Rm , is an example of a Whitney manifold of dimension m.
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16. In his bookWhitney defined a set E inRm to be of zero ` extent if the following
is true: For each ≤ > 0, there is some ≥0 > 0 such that for any ≥ ≤ ≥0 there are
balls B1, . . . , Bk for some k such that

E ⊆ B1 ∪ · · · ∪ Bk, diam(Bi ) ≤ ≥ for all i, k≥ ` < ≤.

In his formulation of the result given as Theorem 3.8 here, he required that the
exceptional set E be of zerom− 1 extent. Prove that a nonempty compact set of
Rm is of zero ` extent if and only if it has ` dimensional Minkowski content 0.

17. If E1 and E2 are nonempty compact subsets ofRa1 andRa2 , respectively, so that
E1 × E2 is a subset of Ra1+a2 , prove that

N (E1 × E2, δ) ≤ N (E1, δ/2)N (E2, δ/2),

where N (E, δ) is as in Section 5.
18. If E is a nonempty compact subset of Ra and N (E, δ) is as in Section 5, prove

that lim supδ↓0 δaN (E, δ) is finite.
19. Suppose that E1 and E2 are compact subsets of Ra1 and Ra2 , respectively, and

suppose further that E1 has `1 dimensionalMinkowski content 0, where `1 ≤ a1.
(a) Prove that if E2 is a compact subset of Ra2 with `2 dimensional Minkowski

content 0, where `2 ≤ a2, then E1 × E2 is a compact subset of Ra1+a2 of
`1 + `2 dimensional Minkowski content 0.

(b) Prove that if E2 is a compact subset ofRa2 , then E1×E2 is a compact subset
of Ra1+a2 of `1 + a2 dimensional Minkowski content 0.

20. Let (U1, B1, E1) be a Whitney domain in Rm1 , and let M be a compact smooth
manifold-with-boundary of dimension m2 in Rm2 . Write M+ for the set of
manifold points in M and @M for the boundary.
(a) Under the special assumption that (U1, B1, E1) arises as in the geometric

examples of Section 5 from a bounded portion of the subset of Rm where
a real-valued polynomial F of m variables is < 0, prove that the product
(U, B, E) = (U1, B1, E1)×M has the natural structureof aWhitney domain
in Rm1+m2 if one defines

U = U1 × M+,

B = (U1 × @M) ∪ (B1 × M+),

and
E =

°
E1 × M

¢
∪

°
B1 × @M

¢
.

(b) Does the conclusion of (a) still hold without the special assumption that
(U1, B1, E1) arises from a bounded portion of the subset of Rm where a
real-valued polynomial takes on negative values?



HINTS FOR SOLUTIONS OF PROBLEMS

Chapter I

1. The interior of Kj+1 contains Kj for all j , and the union of the Kj equals M .
The interiors of the sets Kj+1 therefore form an open cover of C . A finite subcover
suffices by compactness of C , and a single Kj+1 suffices because the sets are nested.
2. The smooth manifolds will be the same if it is shown that their maximal atlases

coincide, and this will happen if it is shown that the charts C1 and C2 are smoothly
compatible with the atlas {M1,M2} and that the charts M1 and M2 are smoothly
compatible with the atlas {C1,C2}. One step in the verification is to check that
ϕ1 ◦√−1

1 is smooth from√1(M1∩C1) to ϕ1(M1∩C1). The function ϕ1 ◦√−1
1 carries

t to (cos t, sin t) and then to (cos t)/(1− sin t)) for−π < t < −π and t 6= π/2, and
the result is a smooth function.
3. For (a), the triangle inequality needs to be checked. Thus we are to show that

min{|x − y|, |x + y|} ≤ min{|x − z|, |x + z|} +min{|z − y|, |z + y|}.

Since

|x − y| ≤ |x − z| + |z − y| and |x + y| ≤ |x − z| + |z + y|,

we have
min{|x − y|, |x + y|} ≤ |x − z| +min{|z − y|, |z + y|}.

Replacing z by −z yields

min{|x − y|, |x + y|} ≤ |x + z| +min{|z − y|, |z + y|}.

Then it follows that

min{|x − y|, |x + y|} ≤ min{|x − z|, |x + z|} +min{|z − y|, |z + y|},

as required. The continuity of x 7→ [x] is immediate from the inequalityd([x], [y]) ≤
|x − y|. If x is given, then the image of the set of y such that |x − y| < ε is the set
of [y] with d([x], [y]) < ε, and thus open sets map to open sets.
For (b), the checking of the compatibility of the charts is similar to that in Section 1

for the sphere. The continuity of x 7→ [x] was proved in (a), and the smoothness is
straightforward.

126
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4. Let the manifold be M . Fix a point p0 in M and consider the set of all points
p in M for which there is a diffeomorphism of M carrying p0 to p. This set is
nonempty since it contains p0, and we prove it is open and closed. Matters come
down to considering an open neighborhood of a single point p, which may assume
in local coordinates is a cube centered at the origin. It is then enough to produce
a diffeomorphism of the open unit cube that is the identity near the boundary and
carries the origin to any other point. We give the construction in R1, and then the
general case follows by using a product of the functions of one variable. Thus we are
to produce a smooth monotone function carrying (−1, 1) onto itself, fixing all points
near−1 and 1, and carrying 0 to some specified point p0 in (−1, 1). Subtracting the
function g(x) = x , we see that it is enough to produce a smooth function f of compact
support in (−1, 1) such that −1 < f 0(x) < 1 everywhere and such that f (0) = p0.
The assumption about p0 is that p0 is in the interval (−1, 1). Constructing such a
function out of standard smooth functions of compact support is easy.
5. This is elementary.
6. These are special cases of the formula d2 = 0 of Proposition 1.23b. See

Example 2 in Section 4.
7. This problem was addressed in Basic Real Analysis in another guise. Let

ω =
P

j Pj dxj . The condition that dω = 0 is the condition that @Pj/@xi = @Pi/@xj
for all i and j . In the language of Section III.12 of Basic Real Analysis, the function
F = (P1, . . . , Pm) is a conservative vector field, and Proposition 3.48 of that book
shows that F is the gradient of a function f , proceedingby inductionon the dimension.
This f is the required function.
8. Part (a) comes down to observing that @

@x
°
x/(x2 + y2)

¢
= − @

@y
°
y/(x2 + y2)

¢

away from (0, 0). Part (b) is a routine computation with several cases. The domain of
θ is the complement in R2 of the nonnegative x-axis. For (c), it has been shown that
f and θ have matching first partial derivatives on the complement of the nonegative
real axis. This set is connected, and therefore f and θ differ by a constant there.
Since this set is dense in R2 − {(0, 0)}, the existence of a smooth f on R2 − {(0, 0)}
of this type would imply that θ has a continuous extension to R2 − {(0, 0)}. There is
no continuous extension, and therefore no smooth solution f to d f = ω exists.
9. Choose disjoint open sets A and B such that E ⊆ A and F ⊆ B. Next choose

by Theorem 1.25 a smooth partition of unity { f, g} subordinate to the open cover
{A, B} of E ∪ F . Then f and g take values in [0, 1], f equals 0 off a compact subset
of A, g equals 0 off a compact subset of B, and f + g = 1 on E ∪ F . Hence f and
g have the required properties.
10. For (a), take η = ϕ1 dϕ2 ∧ · · · ∧ dϕk , for example. In (b), for each j with

1 ≤ j ≤ k, the function f j is a smooth function of one variable defined on the subset
of xj ∈ R1 such that (x1, . . . , xm) is in U for some value of the variables other than
xj . This subset is a union of open sets in R1 and is therefore open. For such an open
set in R1, we define a function Fj component by component so that F 0

j = f j on each
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component. Then the expansion ω = dF1 ∧ · · · ∧ dFk exhibits ω as elementary.
11. We refer to Examples 2 and 3 in Section 3 and find that ϕ∗(dx) = d81 =

d(r + s+ t) = dr + ds+ dt and ϕ∗(dy) = d82 = d(rs+ st + rt) = r ds+ s dr +
s dt + t ds + r dt + t dr . Thus ϕ∗(dx ∧ dy) equals ϕ∗(dx) ∧ ϕ∗(dy), which is

= (dr + ds + dt) ∧ (r ds + s dr + s dt + t ds + r dt + t dr)
= (r+ t− s −t)(dr ∧ ds) + (r+ s− r− t)(ds ∧ dt) + (s+ r− s− t)(dr ∧ dt)
= (r − s)(dr ∧ ds) + (s − t)(ds ∧ dt) + (r − t)(dr ∧ dt).

12. This is straightforward.
13. For (a), the left side on (X2, . . . , Xk) equals k(ω1∧· · ·∧ωk)(X, X2, . . . , Xk),

which by Corollary 1.16 equals

k
k!
det







ω1(X) ω2(X) · · · ωk(X)

ω1(X2) ω2(X2) · · · ωk(X2)
...

ω1(Xk) ω2(Xk) · · · ωk(Xk)





 .

When this determinant is expanded in cofactors about the first row and account is
taken of the coefficient, the i th term of the expansion is exactly

(−1)i−1ωi (X)(ω1 ∧ · · · ∧ bωi ∧ · · · ∧ ωk)(X2, . . . , Xk).

The result follows.
For (b), we may assume without loss of generality that ω = ω1∧· · ·∧ωk and that

η = ωk+1 ∧ · · · ∧ ωk+l . Applying (a) to each yields

cX (ω) =
kP

i=1
(−1)i−1ωi (X)(ω1 ∧ · · · bωi ∧ · · · ∧ ωk)

and

cX (η) =
lP

j=1
(−1) j−1ωk+ j (X)(ωk+1 ∧ · · · [ωk+ j ∧ · · · ∧ ωk+l)

=
k+lP

m=k+1
(−1)m−k−1ωm(X)(ωk+1 ∧ · · · cωm ∧ · · · ∧ ωk+l).

Therefore

cX (ω) ∧ η + (−1)k(ω ∧ cX (η)) =
k+lP

i=1
(−1)i−1ωi (X)(ω1 ∧ · · · bωi ∧ · · · ∧ ωk+l)

= cX (ω ∧ η).
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14. The expanded formula for i∗(ω) is

i∗(ω)p((X1)p, . . . , (Xk)p) = ωi(p)
°
(Di)p X1)i(p), . . . , (Di)p Xk)i(p)

¢
,

where (X1)p, . . . , (Xk)p are in Tp(S), (Di)p is the derivative of i at p, ω is an
alternating kmultilinear formonM , and i∗(ω) is the pullback alternating kmultilinear
form on S. The derivative (Di)p may be regarded as an inclusion of Tp(S) into
Ti(p)(M), and the arguments of ωi(p) within Ti(p)(M) are obtained by taking the
arguments of i∗(ω)p and regarding them as included in Ti(p)(M). Inclusions and
restrictions are the same thing from a different point of view.
15. We go back to the definition of “orientable” near the beginning of Section 6.

Let the two charts be (M1, ϕ1) and M2, ϕ2). The condition of orientability is that
det(ϕ2 ◦ ϕ−1

1 ) and det(ϕ1 ◦ ϕ−1
2 ) are both positive. The second determinant is the

reciprocal of the first. If they are positive, we are done. If they are negative, then
we redefine ϕ1 by following ϕ1 with the map (x1, x2, . . . , xm) 7→ (−x1, x2, . . . , xm);
use of the composition changes the determinants from negative to positive.
16. For (a), a point in Sn may be identified with a vector in Rn+1. As a vector,

p = (x1, . . . , xn+1) is orthogonal to the tangent space at the point of tangency p on
the sphere. Thus the tangent space consists of all p + x ∈ Rn+1 with x · p = 0.
Viewed as through the origin, the tangent space is simply {x ∈ Rn+1 | x · p = 0}, i.e.,
the orthogonal complement (Rp)⊥ of the 1 dimensional space Rp. Any subspace
of a finite dimensional inner product vector space is the direct sum of itself and its
orthogonal complement. With these identifications, Rn+1 = (Rp)⊥ ⊕ Tp(Sn).
In (b), the derivation property of f 7→ d

dt f (∞r (t))
Ø
Ø
t=0 is immediate from the

one-variable rule for differentiating products. Write ∞r (t) in coordinates as ∞r (t) =°
(x1(t), . . . , xn+1(t)

¢
, and expand the derivative in question as

d
dt

(∞r (t))
Ø
Ø
t=0 =

@ f
@x1

(p)
dx1
dt

(0) + · · · +
@ f

@xn+1
(p)

dxn+1
dt

(0).

To compute this, we write

∞r (t) =
p + tr

|p + tr |
=

p + tr
p

(p + tr) · (p + tr)
.

Since p · p = 1 and p · r = 0, ∞r (t) simplifies to p+trp
1+t2|r |2

, whose derivative at t = 0
is r since there are no first-order terms in t in the denominator. The result follows.
17. For (X1)p, . . . , (Xn)p in Tp(Sn), we have

i∗(cX (ω))p((X1)p, . . . , (Xn)p) = ωi(p)(X, i(X1)p, . . . , i(Xn)p),

where i(Xj )p means the effect of the derivative Di on (Xj )p, namely (Di)p(Xj )p.
Take {(X1)p, . . . , (Xn)p} at p to be a basis of Tp(Sn). Then {i(X1)p, . . . , i(Xn)p} is
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a basis of the vector space iTp(Sn), which we know from Problem 16 to equal (Rp)⊥.
Since Xp = p, {Xp, i(X1)p, . . . , i(Xn)p} at p is a basis of iTp(Sn) ⊕ Rp = Rn+1.
Since the given ω is nonzero at p, its value at p does not vanish on any basis ofRn+1.
Therefore i∗(cX (ω))p((X1)p, . . . , (Xn)p) 6= 0.
18. Corollary 1.16 yields

cX (ω) = (n + 1)(dx1 ∧ · · · ∧ dxn+1)(X, X1, . . . , Xn)

=
n + 1

(n + 1)!
det






dx1(X) dx1(X1) · · · dx1(Xn)
dx2(X) dx2(X1) · · · dx2(Xn)

· · ·
dxn+1(X) dxn+1(X1) · · · dxn+1(Xn)




 .

We can evaluate the entries in the first column as follows. For the i th entry we have
dxi (X) =

P

k
xk dxi

°
@

@xk

¢
= xi . Then we expand the whole determinant by cofactors

about the first column. With the coefficient (n!)−1 in place, the expansion gives a sum
over i of an alternating sign (−1)i−1 times the coefficient xi , times the complementary
determinant, which is

(dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn+1)(X1, . . . , Xn).

Thus cX (ω) =
P

i (−1)i−1 (dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn+1) as required.
19. In (a), symmetry of ∼ follows from the fact that h2 = 1. For the transitive

property, we observe that if y = h(x) and z = h(y), then z = h2(x) = x and hence
z ∼ x . In (b), the argument is similar to that for Problem 3, which deals with a special
case. In (c) to define a chart about x in M , use the open ball about x of each radius
less than half the distance from x to h(x),
20. With the proof of Proposition 1.33 as a guide, this is easy.
21. With the proof of Proposition 1.33 as a guide, this is easy.
22. For (b), a nowhere vanishing n form for Sn can be taken to be a restriction of

n+1P

j=1
xj dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn+1.

The anitpodal map has the effect of sending each xi into its negative and each dxj
into its negative. Thus it has the effect of introducing n+ 1 minus signs in each term,
thus of multiplying the whole expression by (−1)n+1. Consequently the n form is
preserved by the antipodal map if n is odd and is reversed if n is even. The n form
gives the orientation, up to an everywhere positive factor, and so the orientation is
preserved if n is odd and is reversed if n is even.
23. This is immediate.
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24. In (a), the mapping α and its inverse are continuous because f is continuous.
For smoothness of σ and its inverse, we are to compose before and after with the chart
mappings, and we end up with the identity, which is smooth. In (b), the mappings α

and p are smooth, and so is the composition α ◦ I ◦ p; thus the inclusion map I must
not be smooth.
25. In (a), ϕ is smooth, and its inverse is ϕ−1(u, v) = (u, v + f (u)), which is

smooth. Then (b) is an observation.
26. The derivative is (2 cos 2t,− sin t). For this to be (0, 0), sin t must be 0, which

means that t is a multiple of π . Then 2t is a multiple of 2π , and cos 2t = 1. Thus
both entries cannot be 0 for the same t , and ∞ is an immersion. It is easy to check
that ∞ is one-one over an interval of length 2π . Finally its image is compact, being
closed and bounded. Specifically it contains all its limit points, since the only point
that needs checking is (0, 0), which is ∞ (π/2) = (0, 0) and is therefore already in
the image. The topology of the domain of ∞ is that of an open interval, which is not
compact, and the topology of the image is compact. Thus the two topologies do not
coincide, and the immersion is not an embedding.
27. In (a), ∞ 0(t) = (2π ie2π i t , 2π ice2π ict ), and neither coordinate is ever 0. So

∞ 0(t)nowherevanishing, and∞ is an immersion. If∞ (t1) = ∞ (t2), then e2π i t1 = e2π i t2
and e2π ict1 = e2π ict2 . Hence t1 − t2 is an integer, and so is c(t1 − t2). Since c is
irrational, this is possible only if t1 − t2 = 0. Hence ∞ is one-one.
For (b), it follows from (a) that {∞ (k) | k ∈ Z} is an infinite set. Thus it has a limit

point in C, say z. Choose a sequence {kn} such that limn ∞ (kn) = z. Given ε > 0,
choose two distinct integers r and s in the sequence such that |∞ (r) − ∞ (s)| < ε.
Then k = r − s is a nonzero integer with |∞ (k) − ∞ (0)| < ε.
For (c), repeating this construction for a sequence of values of ε tending to 0 shows

that there is a sequence of points in ∞ (Z) tending to 1 but not equal to 1. Hence ∞ (Z)

does not have the discrete topology, and ∞ is not an embedding.
28. In (a), since the function x(t) is smooth near t0 and its derivative is nonzero

there, the one-variable Inverse Function Theorem says that near the point t0, x(t) can
in principle be inverted to give a unique smooth inverse function t = t (x). This result
can be substituted into the expression y(t) to yield y(t) = y(t (x)) as a function of
x near x(t0). More specifically put x(t0) = x0. Then the set of points

≥
x(t)
y(t)

¥
in a

suitably small rectangle in R2 about
≥
x(t0)
y(t0)

¥
is the embedded graph of the smooth

function g( f (t)).
In (b), fix x0, and suppose that n of the columns of J (x0) are linearly independent.

Possibly by permuting the variables, we may assume that the first n columns are
linearly independent. Write F =

≥
F1
F2

¥
, so that the n-by-n square matrix

©° @(F1)i
@xj

¢™

is invertible at x = x0. By the Inverse Function Theorem, we can in principle solve
uniquely in a neighborhood of (x0, F(x0)) to write x as a smooth function x = x(F1)
there. Then the set of points in a suitably small rectangular neighborhood of

≥ x0
F(x0)

¥
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in Rn+k is the embedded graph of the smooth function F2(x(F1)).
29. For (a), the Jacobian matrix of (x, y, z) with respect to (s, t) is




− sin s − 1

2 t cos(s/2) sin s − 1
4 t sin(s/2) cos s

1
2 cos(s/2) cos s

cos s + 1
2 t cos(s/2) cos s − 1

4 t sin(s/2) sin s
1
2 cos(s/2) sin s

1
4 t cos(s/2)

1
2 sin(s/2)



 .

The 2-by-2 determinant from the first two rows is

= − 1
2 cos(s/2) sin

2 s − 1
4 t cos

2(s/2) sin2 s − 1
8 t sin(s/2) cos(s/2) sin s cos s

− 1
2 cos(s/2) sin

2 s − 1
4 t cos

2(s/2) cos2 s + 1
8 t sin(s/2)

= − 1
2 cos(s/2) − 1

4 t cos
2(s/2)

= − 1
2 cos(s/2)

°
1− 1

2 t cos(s/2)
¢
,

and this has the same sign as − 1
2 cos(s/2). When cos(s/2) = 0, the Jacobian matrix

simplifies to 


− sin s − 1

4 t sin(s/2) cos s 0
cos s − 1

4 t sin(s/2) sin s 0
0 1

2 sin(s/2)



 .

When cos(s/2) = 0, we see that sin(s/2) is ±1, sin s is 0, and cos s is ±1. Thus the
determinant from the first and third rows equals (± 1

2 )(±
1
4 t), which is nonzero unless

t = 0. When cos(s/2) = 0 and t = 0, then the determinant from the second and
third rows equals (± 1

2 ) cos s, which is not zero. Thus the Jacobian matrix has rank
two for every pair (s, t) under consideration.
Part (b) is clear. For (c), the image of the smooth function is locally a smooth

function, by the Inverse Function Theorem. Since the function is only two-to-one, it
is locally invertible. Hence the image is a smooth manifold.
30. In (a), the function F(x, y) = x2 + y2 − 1 is smooth near the point (x0, y0),

which has F(x0, y0) = 0, and the assumption is that @F
@x (x0, y0) 6= 0. That is, the

1-by-1 matrix with entry @F
@x (x0, y0) 6= 0 is invertible. The theorem says that in a

suitable rectangular neighborhood I × J of (x0, y0)with I ⊆ R1 and J ⊆ R1, each y
value yields a unique x value with F(x, y) = 0 and the resulting function x = f (y)
for x ∈ I is smooth and satisfies F( f (y), y) = 0 for all y in J . Then the open subset
I × J of R2 contains the embedded graph of a smooth function, as in Problem 25.
In (b), the same procedure is to be applied to the function F(x1, . . . , xn+1) − 1

and the point ((x1)0), . . . , (xn+1)0) on Sn under the assumption that
°

@F
@x1

¢
((x1)0, . . . , (xn+1)0),

namely 2(x1)0, is nonzero. The Implicit Function Theorem yields a rectangular open
neighborhood I × J of ((x1)0, . . . , (xn+1)0)with I ⊆ R1 and J ⊆ Rn such that each
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value of (x2, . . . , xn+1) in J yields a unique x1 in I with F(x1, . . . , xn+1) = 0 and
the resulting function x1 = f (x2, . . . , xn+1) is smooth and satisfies

F( f (x2, . . . , xn+1), x2, . . . , xn+1) = 0 for all (x2, . . . , xn+1) ∈ J.

Then the open subset I × J of Rn+1 contains the embedded graph of a smooth
function, as in Problem 25.
In (c), fix x0, and suppose that k of the columns of J (x0) are linearly independent.

Possibly by permuting the variables, we may assume that the first k of the columns
are linearly independent. Regard F as a function of n variables whose entries
(F1, . . . , Fk) are members of Rk . The assumption is that the matrix

©
@Fi
@xj (x0)

™
is

nonsingular. The Implicit Function Theorem yields a rectangular set I × J ⊆
Rk × Rn−k centered at ((x1)0, . . . (xn)0) and a smooth function f (xk+1, . . . , xn)
defined in J such that for each (xk+1, . . . , xn) in J , there is a unique (x1, . . . , xk) in I
with F(x1, . . . , xn) = 0 and the resulting function (x1, . . . , xk) = f (xk+1, . . . , xn)
is smooth and satisfies F( f (xk+1, . . . , xn), xk+1, . . . , xn) = 0 for all (x2, . . . , xn+1)
in J . Then the open subset I × J of Rn contains the embedded graph of a smooth
function, as in Problem 25.

Chapter II
1. Straightforward calculation.
2. Two ways of proving this result that generalize to all dimensions are to make

use of Corollary 1.16 of the present text and to proceed via row reduction of matrices
as outlined in Section III.10 of Basic Real Analysis.
For dimension 3 an argument is available that makes use of cross product, as

follows: We compute the volume of the parallelepiped spanned by u, v, and w as the
area of the base spanned by u and v, times the height. The area of the base we know
to be |u × v| = |u||v|| sin θ |. The height is the magnitude of the projection of w in
the direction perpendicular to the base, i.e., in the direction of u× v. Thus the height

is
Ø
Ø
Ø
w · (u × v)

|u × v|2
(u × v)

Ø
Ø
Ø =

|w · (u × v)|

|u × v|
. Then the product of the base and height is

|w · (u × v)|, which is the determinant in question.
3. The first, fourth, and fifth are equal. The second, third, and sixth are the negative

of these.
4. For (a), div F = 2xy and curl F = (8y − 3z2)i− (x2 + 3x)k.
For (b), div F = 2+ 2x3y and curl F = (4z − 7)j+ (3x2y2)k.
5. Without loss of generality we may assume that M is connected. If a smooth

m−1 form η exists with dη = ω, then Stokes’s Theorem says that
R
@M η =

R
M dη =R

M ω. In a connected compatible chart α = (x1, . . . , xm), α∗(ω) can be written as
Fα dx1 ∧ · · · ∧ dxm for some nowhere-vanishing smooth function Fα . Then Fα does
not change sign, and

R
M ω is not zero. Consequently

R
@M η 6= 0. But this contradicts

Theorem 2.1 since @M is a smooth manifold without boundary.
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6. For (a), we can take ω = (dx1 ∧ dx2) + (dx3 ∧ dx4).
For (b), we have ω = dη with η = α ∧ dα ∧ · · · ∧ dα since d2 = 0. Then the

previous problem shows that ω has to vanish somewhere.
7. In (a), the value of dω is the sum of (@/@x)

°
x(x2+ t2+ z2)−3/2) (dx∧dy∧dz)

and two similar terms. The coefficient of dx ∧ dy ∧ dz is

(x2 + y2 + z2)−3/2 + x(−3/2)(x2 + y2 + z2)−5/2(2x)

= (x2 + y2 + z2)−5/2(x2 + y2 + z2 − 3x2)(x2 + y2 + z2)−1.

The contributions from the other two terms are similar except that x is to be replaced
by y and then z. The sum of the three terms is then

(x2 + y2 + z2)−5/2(3(x2 + y2 + z2) − 3x2 − 3y2 − 3z2) = 0.

In (b), letM be the “inside” of T . We can apply Stokes’s Theorem (Theorem4.7) to
T since ω is smooth everywhere inside and on T . Then we have

R
T ω =

R
M dω = 0.

8. Part (a) is a restatement of Problem 7a.
In (b), the Divergence Theorem gives

R
S F · dS = 0 since div F = 0. The

orientation on S is given by an outward normal from M , which is then outward on S1
and in toward the origin on Sa . Hence 0 =

R
S F · dS =

R
S1 F · dS−

R
Sa F · dS.

9. Take ω = 1
n

nP

j=1
(−1) j−1dx1 ∧ · · · ∧ ddxj ∧ · · · ∧ dxn and f (x1, . . . , xn) =

(x21 + · · · + x2n)n/2.
10. In Section 3 the paragraph beginning “The traditional procedure” is irrelevant

and can be omitted. In the statement of Proposition 2.6, (−1)mα∗(dx1∧· · ·∧dxm−1)
is to be replaced by−α∗(dx1∧· · ·∧dxm). (Note the sign!) The proof of Proposition
2.6 is unchanged down to the paragraph beginning “Thus we have constructed.” For
the case m = 1, we still have Fαp as it is, positive or negative. The orientation at p
is still the sign of Fαp (0).
In Section 4, formulas (∗) and (∗∗) are unchanged. In the paragraph beginning

“On @Hm ,” some changes are needed. We have

ω = F1(0, x2, . . . , xm) dx2 ∧ · · · ∧ dxm .

For the casem ∏ 2 the proof becomes, “Since−dx2∧· · ·∧dxm is positively oriented
in the orientation of the boundary that we are using, application of Theorem1.29 gives

R
@Hm ω = −

R
@Hm F1(0, x2, . . . , xm) dxm · · · dx2

= −
R b2
a2 · · ·

R bm
am F1(0, x2, . . . , xm) dxm · · · dx2. (†)

For m = 1, we get
R
@Hm ω = −F1(0). So (†) holds for all m ∏ 1.
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Formula (††) is still valid, and we still do the integration in the variable xr first.
For r ∏ 1, we get 0 from the inside integral. For r = 1, the inside integral is

R c
0

°
@F1
@x1

¢
dx1 = F1(c, x2, . . . , xm) − F1(0, x2, . . . , xm)

with F(c, x2, . . . , xm) = 0 by the support condition. Therefore (††) boils down to

−
R b2
a2 · · ·

R bm
am F1(0, x2, . . . , xm) dxm · · · dx2,

which equals (†). Thus we get (‡), and the remainder of the proof is unchanged.
11. We can parametrize the surface by using s and t as parameters, with s standing

for x and t standing for y. Then the parametrization is (s, t) 7→

µ s
t

s2+t2

∂
with

derivative
µ 1 0
0 1
2s 2t

∂
. Then we have

@(x, y)
@(s, t)

= 1,
@(y, z)
@(s, t)

= −2s, and
@(z, x)
@(s, t)

= −2t .

The integrand F = xi · dS is x dy ∧ dz = x(−2s) ds dt = −2s2 ds dt . There
is no natural orientation on the surface, but we are told to orient the surface by
using an outward/downward vector. That is, we are to consider the basis of the
tangent space at a point of the surface, include an outward/downward vector before
it (a vector with third component negative), and see whether our parametrization is
consistent with this basis of R3. To fix the ideas, take (s, t) = (0, 0). Then the

basis we choose of R3 can be
µ 0

0
−1

∂
,

µ 1
0
0

∂
,

µ 0
1
0

∂
. The matrix formed from these

basis vectors has determinant−1, and our parametrization is the opposite of what we

need. Let us therefore start over, using (s, t) 7→

µ t
s

s2+t2

∂
with derivative

µ 0 1
1 0
2s 2t

∂

as parametrization. Then
@(y, z)
@(s, t)

= 2t . With this parametrization the integrand

becomes F = xi · dS = x dy ∧ dz = x(2t) ds dt = 2t2 ds dt . The integration
extends over the set where s2 + t2 ≤ 4. Switching to polar coordinates in the s-t
plane shows that the integral is

R 2
0

R 2π
0 2r2(sin2 θ) r dr dθ = π

R 2
0 2r

3 dr = 8π .
As it should, this orientationgivesminus the answerwewould getwith the opposite

orientation. Had we not taken the orientation into account properly, we would have
integrated −2s2 ds dt over the set where s2 + t2 ≤ 4 and gotten −8π as the answer.
12. The boundary curve of S is given by the subset of points (x, y, z) that satisfy

both conditions, namely x2 + y2 + z2 = 4 and x2 + y2 = 1, and have z ∏ 0.
Substitution gives z2 = 3. Thus the intersection is the circle with z =

p
3 and

x2+ y2 = 1. Stokes’s Theorem says that the integral is equal to
R
C F · ds, but we have

to orientC properly. Since the orientation of S is upward, this situation is like looking
at the ordinary unit circle in the x-y plane. The circle is therefore to be traversed with
S on the left, and the parametrization can be taken as t 7→ (

p
3 cos t,

p
3 sin t,

p
3).
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The derivative is (−
p
3 sin t,

p
3 cos t, 0). On the circle the value of F in terms of

the parameter t is (yz, 0, xy) = (3 sin t, 0, cos t sin t) Thus the integral is

=
R 2π
0 (3 sin t, 0, 3 cos t sin t) · (−

p
3 sin t,

p
3 cos t, 0) dt

=
R 2π
0 −3

p
3 sin2 t dt = −3π

p
3

13. A direct attack on the line integral leads to an unpleasant term e3 sin t because of
the presence of ez of F . In preparation for using the Kelvin–Stokes Theorem, direct
computation gives curl F = (x,−2y, y) with the ez gone. By the Kelvin–Stokes
Theorem the integral equals

R
S(curl F) · dS when S is any oriented smooth surface

with boundary curve C , provided the orientations match properly. An example of
such a surface is the disk given by x2+ y2 ≤ 9 and y = 4 with a suitable orientation.
By the same token the surface integral equals the line integral

R
C G · ds, where

G = (−yz, 0, xy), since curlG = curl F . (In changing F into G, we can drop pure
x terms from the first entry, pure y terms from the second entry, and pure z terms
from the third entry without changing the curl.) Since s0(t) = (−3 sin t, 0, 3 cos t),
the given line integral is

=
R 2π
0

£
(−4(3 sin t))(−3 sin t) + 4(3 cos t)(3 cos t)

§
dt

=
R 2π
0 (36 sin2 t + 36 cos2 t) dt =

R 2π
0 36 dt = 72π

14. The boundary is the circle C in the plane z = 0 with x2 + y2 = 16. Since S
is oriented upward, the induced orientation on C is clockwise (with the hemisphere
on the left). Thus C can be parametrized as t 7→ (4 cos t, 4 sin t, 0) with derivative
−4 sin t, 4 cos t, 0). The given integral is therefore

=
R
f ·ds =

R 2π
0

°
y(−4 sin t)− x(4 cos t)+0

¢
dt =

R 2π
0 (−16 sin2 t−16 cos2 t) dt,

which equals −32π

15. In (a), the circle can be parametrized as θ 7→

µ cos θ
sin θ

2−sin θ

∂
for 0 ≤ θ ≤ 2π . We

are given F(x, y, z) = –y2i+ xj+ z2k, and we have

ds = − sin θ i+ cos θ j+ (− cos θ)k.

Then
R
C F ·ds =

R 2π
0 (− sin2 θ)(− sin θ)+ (cos θ)(cos θ)+ (2− sin θ)2(− cos θ) dθ = π.

In (b), the filled ellipse is to be oriented upward. We can parametrize it as (r, θ) 7→µ r cos θ
r sin θ

2−r sin θ

∂
with derivative

µ cos θ −r sin θ

sin θ r cos θ
− sin θ −r cos θ

∂
. Then

@(x, y)
@(r, θ)

= r,
@(x, z)
@(r, θ)

= r(sin2 θ − cos2 θ),
@(y, z)
@(r, θ)

= 0.
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Direct calculation gives curl F = (1+2y)k, and then curl F ·dS = (1+2y) @(x,y)
@(r,θ) =

r(1 + 2r sin θ) = r + 2r2 sin θ . Thus the integral is
R 1
0

R 2π
0 (r + 2r2 sin θ) dθ dr =

2π
R 1
0 r dr = π .
16. The leftmost inequality sign follows from the fact thatω is nowhere vanishing,

the argument being like the one for Problem 5. The first of the three equalities follows
because the fact that r is a retraction shows up on the level of pullbacks as meaning
that r∗ is the identity on forms located where r is the identity, i.e., on @B. The second
equality is by Stokes’s Theorem, Theorem 4.7. The third equality is by Proposition
1.24, which says that exterior derivative commutes with pullback.
17. In the previous problem, there is some virtue in making explicit the role of the

inclusion i : @B → B is the computation. The fact that r is a retraction means that
f ◦ i = 1@B , and this translates into the identity i∗ f ∗ = 1 on forms of each degree.
The computation is less ambiguous if it is written as

0 <
R
@B ω =

R
@B i

∗r∗(ω) =
R
B dr

∗(ω) =
R
B r

∗(dω).

Remembering that pullbacks preserve degree and that r∗ therefore carries ƒk(@B)

into ƒk(B) for each k, we can track down the degrees of the various forms in the
computation. The ω on the left is in ƒn−1(@B), i∗r∗(ω) is in ƒn−1(@B), dr∗(ω) is
in ƒn(B) by Stokes’s Theorem, and r∗(dω) is in ƒn(B). Since r∗(dω) ends up in
ƒn(B), r∗ must have been acting on something inƒn(@B). This space is 0 since @B
has dimension n − 1, and thus r∗(dω) = r∗(0) = 0.
18. For any point p in B, the fact that f (p) 6= p implies that there is a unique

line passing through p and f (p). This line meets the sphere @B in two points, and
we define r(p) to be the point that is closer to f (p). (To complete the definition,
we define r to be the identity on points of @B.) Let us write the definition of r is
symbols, and then we can see that f is smooth. The parametrically defined line
t 7→ (1− t)p + t f (p) passes through p when t = 0 and passes through f (p) when
t = 1. From the geometry it is evident that it meets @B twice, once for some negative
value of t and once for some value of t greater than 1. We seek an expression for the
value of t greater than 1. Thus we set |(1− t)p+ t f (p)|2 = 1 and solve the resulting
quadratic equation for t . The coefficient of t2 is

|p|2 − 2p · f (p) + | f (p)|2 = |p − f (p)|2,

and this is positive since f (p) 6= p. The constant term is |p|2 − 1, which is negative
since p is in B. Thus the two roots t have opposite sign, and our desired root t is
the one with the plus sign in the quadratic formula. Consequently we can obtain an
explicit formula for r(p), and its dependence on p is smooth if f is smooth. The
function r is a smooth retraction, which the previous problem shows cannot exist.
Therefore f must have a fixed point.
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19. Regard f as extended toRn by extending it as 0 outside B. Choose a member
ϕ ∏ 0 of C∞

com(Rn) of total integral 1, let ϕε(x) = ε−nϕ(ε−1x) for ε > 0, and
convolve the scalar-valued function ϕε with each entry of f . Then ϕε ∗ f converges
uniformly to f on Rn as ε tends to 0. Thus the sequence { fk} may be taken to be the
sequence of restrictions to B of the functions ϕ1/k ∗ f .
20. We are assuming that { fk} is a sequence of smooth functions carrying B to

itself such that fk(xk) = xk for all k and such that { fk} converges uniformly to f on
B. The Bolzano-Weierstrass Theorem produces a limit point x0 in B for the sequence
{xk}. Passing to a subsequence and renumbering, we may assume that limk xk = x0.
Then we have

| f (x0) − x0| ≤ | f (x0) − f (xk)| + | f (xk) − fk(xk)| + | fk(xk) − xk | + |xk − x0|.

On the right side, the first term tends to 0 by continuity of f , the second term tends
to 0 by the uniformity of the convergence, the third term is 0 because xk is a fixed
point of fk , and the fourth term tends to 0 since limk xk = x0. Since the left side is
independent of k, it must be 0.

Chapter III

1. For (a), let S be the set of vertices. We proceed by induction on the cardinality
V of S, the base case of the induction being the case V = 4 of a tetrahedron.
For a tetrahedron the assertion is clear. Let a polyhedron be given with n ∏ 5
faces, and assume that a triangulation exists whenever a compact convex polyhedron
has ≤ n − 1 faces. We shall attempt to introduce a plane that divides S into two
proper but overlapping subsets; if we can do this, then by induction we can do the
triangulation for the polyhedron associated to each subset of vertices, and the union
of the triangulations will be a triangulation of the given polyhedron. We fix attention
on any three vertices and consider the unique plane that contains them. Let this plane
be the set where some linear functional L is 0. One subset of S will consist of those
vertices for which L ∏ 0, and the other subset will consist of those vertices for which
L ≤ 0. We have seen that we are done if both these subsets are proper.
Thus suppose that one or the other of the subsets is all of S. Then the plane that

passes through our three vertices is completely on one side of our polyhedron and
those three vertices must span a face. In other words, we have associated a unique
face to to each triple of vertices. On the other hand, if a face is given, then the vertices
of that (triangular) face are a triple of vertices. We conclude the F equals the number
of triples of vertices, which is 16V (V − 1)(V − 2).
Meanwhile to each edge we can associate two vertices, and distinct edges yield

distinct pairs of vertices. Thus E ≤ 1
2V (V − 1). Substituting into Euler’s formula,

we obtain 1
6V (V − 1)(V − 2) + V = F + V = E + 2 ≤ 1

2V (V − 1) + 2, and
we are led to the inequality V 3 − 6V 2 + 11V − 12 ≤ 0. The derivative of the
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polynomial P(V ) on the left is 3V 2 − 12V + 11, whose larger root is 16 (12+
p
23),

which is less than 4. Thus P(V ) is an increasing function for V ∏ 4. Computation
gives P(4) = 0. Therefore P(V ) > 0 for V > 4, and we cannot have our required
inequality P(V ) ≤ 0 for V > 4. Tracing back, we see we are forced to conclude that
when V ∏ 5, it is possible to divide S into two proper subsets by some plane and
thereby to complete the induction.
2. For each p in M , let (Mp, αp) be a compatible chart about p for the manifold-

with-corners M of dimensionm; here Mp is an open neighborhood of p, and αp(Mp)
is open in Qm . We may assume that no point of Mp has larger index than p does.
Now let F : M → Rm be an embedding. Since F is continuous and M is compact,
F(M) is bounded. Since F is an embedding, F is a homeomorphism of M+ onto its
image in Rm . DefineU to be the open set F(M+), let B = U cl−U , and let E be the
image under F of all points in M of index ∏ 2. We are to see that U ∪ (B − E) is a
smoothmanifold-with-boundary, that E is compact, and that E hasm−1 dimensional
Minkowski content 0 in Rm . Proposition 3.6c shows that the set of points of index
∏ 2 is closed in M . Hence it is compact, and its image E in Rm is compact. We
have arranged that F(M+) = U , and hence F carries the set of points of index 1 onto
B − E .
For each point p inM of index 0 or 1, the open subsetMp ofM consists completely

of points of index 0 or 1. Hence F carries Mp into U ∪ (B − E). The pairs
(F(Mp), αp ◦ F−1) form an atlas for U ∪ (B − E) and exhibit U − (B − E) as a
manifold-with-boundary.
Finally we are to see that E has m − 1 dimensional Minkowski content 0 in Rm .

This step follows from Corollary 3.12.
3. This is a routine adaptation of the argument for Example 3. The condition for

the first partial derivative of the (i, j)th entry of x to vanish is that the (i, j)th minor of
x should vanish. The set where all these 3-by-3 minors vanish is the set of matrices
of rank ≤ 2. Call this set E .
We shall exhibit E as the union of 16 compact subsets of vector subspaces of R16

of dimension 12. Each of these will have 15 dimensional Minkowski content 0; then
we can conclude that E has 15 dimensional Minkowski content 0, and the set where
det x ≤ 0 is a Whitney domain.
Consider a matrix x for which the upper left 2-by-2 determinant is nonzero.

The vector subspace of R16 corresponding to this choice of entries has dimension
8 + 2 + 2 = 12, and x lies in this subspace. Thus all matrices of rank 2 lie in the
union of 16 vector subspaces of R16 of dimension 12. The matrices of rank < 2 lie
in this same finite union, and we see that E has 15 dimensional Mnkowski content 0.
Thus the set where det x ≤ 0 is a Whitney domain in R16.
4. All of them. In (a), the respective first partial derivatives are −yz, −xz, and

2z − xy. If these are simultaneously all 0, then z = 0 and also x = 0 or y = 0; also
the converse is true. Thus U is the set where z(z − xy) < 0, i.e., the set where z and
z − xy are nonzero quantities of the same sign. Also B is the set where z = 0 or
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z = xy, and E is the set where z = 0 and xy = 0.
In (b), write x =

≥
a b
c d

¥
, so that det(x) = ad− bc. The setU in question is where

Re (ad − bc) < 0. There are eight variables, namely the real and imaginary parts of
a, b, c, d. If all eight first partial derivatives are 0, we are led to a = b = c = d = 0.
Thus b is the set where Re (ad − bc) = 0, and E = {0}.

In (c), we proceed somewhat as in Algebraic Example 3 in Section 5. We study
the set of 4-by-4 skew-symmetric matrices with det x ≤ 0. We want to know where
det x = 0, and we want to identify the singular set. We can use each entry function
above the diagonal as coordinates. The partial derivative in question with respect to
the variable in the first row and second column is

d
dt
det




0 x12+t x13 x14

−x12−t 0 −x23 x24
−x13 −x23 0 a34
−x14 −x24 −x34 0




Ø
Ø
Ø
t=0

In this expression will appear constant terms, terms with t , and terms with t2. We
use the multilinearity of the determinant to isolate the cofficient of t and find that it
equals the sum of two 3-by-3 determinants. Some of the terms cancel, and we find
that the derivative at t = 0 is the determinant of the 2-by-2 matrix in positions 3 and
4. At any singular point all such derivatives at t = 0 have to be 0. The bottom line is
that the only singular point is x = 0. So again E = {0}.
5. For (a), V is the intersection of two closed balls. Each of them is a manifold-

with-boundary. Then for each point where one or both of the inequalities are strict
has an open neighborhood of the kind in a manifold-with-boundary. Each point
where both equalities hold has an open neighborhood diffeomorphic to an open
neighborhood of (1, 0, 0) in Q3, and thus we have a manifold-with-corners.
For (b), we are working with F = x2i, for which div F = 2x . The Divergence

Theorem (Theorem 3.7) gives
R
S x

2y dy ∧ dx =
R
V 2x dx dy dz. Since V is sym-

metric about 0 in the x variable and the integrand is odd in the x variable, the integral
is 0.

6. For F = 3yi + 2xj + (z − 8)k, div F = 1. Thus the given surface integral
equals the volume of the tetrahedron that is decribed. The maximum values of x , y,
and z subject to 4x + 2y+ z = 8 with all variables∏ 0 are x = 2, y = 4, and z = 8.
The volume in question is 1/6 of the volume of a parallelepiped with sides 2, 4, and
8. It is therefore 64/6 = 32/3 .

7. Here F = xi+ yj+ zk and div F = 3. Thus the integral equals 3 · 7 = 21 .

8. For this F , div F = 5. Since the volume of a closed half ball of radius 2 is
2
3π2

3, the integral equals 5 · ( 23π2
3) = 80π/3 .

9. In (b),
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U = {(x, y, z)
Ø
Ø (x, y) ∈ M+ and f (x, y) < z < g(x, y)},

B = {(x, y, z)
Ø
Ø (x, y) ∈ @M and f (x, y) ≤ z ≤ g(x, y)}

∪ {(x, y, z)
Ø
Ø (x, y) ∈ M+ and z = f (x, y)}

∪ {(x, y, z)
Ø
Ø (x, y) ∈ M+ and z = g(x, y)},

E = {(x, y, z)
Ø
Ø (x, y) ∈ @M and z = f (x, y)}

∪ {(x, y, z)
Ø
Ø (x, y) ∈ @M and z = g(x, y)}.

10. In (a), we apply the Fundamental Theorem of Calculus on each subinterval
Ij , completely ignoring the other subintervals, and there is no problem. Then we
add the results and obtain

R b
a f 0(t) dt =

Pk
j=1

R
I f

0(t) dt =
Pk

j=1
R
Ij f

0
j (t) dt =

Pk
j=1( f j (tj )− f j (tj−1)) = fk(tk)− f0(t0) = f (b)− f (a) because the (finite) series

before the next-to-last equality sign telescopes.
In (b) and (c), we can indeed interpret the j th equality as saying the 0 form f j

and the 1 form d fj = f 0
j (t) dt together satisfy

R
{aj ,bj } f j =

R
Ij d fj under a certain

orientation. Combining these equalities into a single equality for f requires a certain
consistency for the orientations, so that the series in (a) can be seen to telescope at the
last step. The orientations on the two-point sets {aj , bj } are the induced orientations
from the various intervals [aj , bj ], and these are arranged so that each intermediate
point a1, . . . , ak−1 occurs with opposite orientations the two times it occurs.
When this framework is applied to a closed triangle—that is, when the t interval

is regarded as parametrizing the edge of the triangle—consistent orientations are
obtained by orienting the triangle and giving each edge the induced orientation. In
this case the expression f (b)− f (a) on the right is 0, since a = b. Thus the theorem
is that the integral of the derivative is 0; in other words, the result is a version of
Theorem 2.1.
11. The definition of a piecewise smooth 1 form on the (closed) faces and edges

of a tetrahedron can be taken to be that it is continuous function from the union of the
faces and edges of the tetrahedron whose restriction to each face is a smooth 1 form
on the closed face. Stokes’s Theorem applies to each face as a manifold-with-corners,
and we obtain the usual formula

R
edges ω =

R
face dω. The 3 dimensional part of the

tetrahedron is not present, but if it were and if we were to orient it, then we could
use the induced orientation on each face. With this choice when we take all the faces
into account, we again have cancellation in pairs for the contributions from the lower
dimensional integrals, and the conclusion is that

PR
faces dω = 0.

12. No.
13. Since E is compact and F is continuous, F(E) is compact. Choose compatible

charts (Mα1, α1), . . . , (Mαr , αr ) in M such that E ⊆ Mα1 ∪ · · · ∪ Mαr , and choose
by Lemma 1.26b an open cover {Pα1, . . . , Pαr } of E such that Pclαi

⊆ Mαi for each i .
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Then E = (Pclα1
∩ E) ∪ · · · ∪ (Pclαr

∩ E) exhibits E as the union of the respective
compact subsets Pclαi

∩ E of Mαi ∩ E . The set αi (Pclαi
∩ E) is a compact subset of

αi (Mαi ∩ E) and by hypothesis has ` dimenional Minkowski content 0 in Rm . It is
enough to show that the compact set F(Pclαi

∩ E) = (F ◦ α−1
i )(αi (Mαi ∩ E)) has `

dimensional Minkowski content 0 in N .
In other words we may assume from the outset that M is an open subset of Rm ,

that we are given a compact subset E of M of ` dimensional Minkowski content 0,
and that we are to show that F(E) has ` dimensional Minkowski content 0 in N .
Choose charts (Nβ1, β1), . . . , (Nβs , βs) in N so that F(E) ⊆ Nβ1 ∪ · · ·∪ Nβs , and

then choose by Lemma 1.26b an open cover {Qβ1, . . . , Qβs } of F(E) such that each
Qclj is compact and Q

cl
βj

⊆ Nβj for each j .
For each p in E , choose an open neighborhood Mp of p such that F(Mp) is

contained in a single Qβj . These open neighborhoods cover E , and finitely many of
them, say Mp1, . . . ,Mpt , suffice to cover E . Choose by Lemma 1.26b an open cover
{Rp1, . . . , Rpt } of E such that Rclpk ⊆ Mpk for each k.
The restriction F

Ø
Ø
Mpk

of F is smooth from Mpk into some Qβj , say Qβj (k) . When
it is followed by βj (k), the result is a smooth function from an open subset of Rm

into a Eucldiean space. Proposition 3.11 applies to this function and shows that it
carries compact sets of ` dimensional Minkowski content 0 into compact sets of `

dimensional Minkowski content 0. From the inclusions

(βj (k) ◦ F)(Rpk ) ⊆ (βj (k) ◦ F)(Rclpk ) ⊆ βj (k)(Qβj (k) ),

we see that (βj (k) ◦ F)(Rclpk ) has ` dimensional Minkowski content 0 in Euclidean
space. Thus F(Rclpk ) has ` dimensional Minkowski content 0 in N . We combine this
fact with the chain of inclusions

F(E) ⊆ F(Rp1 ∪ · · · ∪ Rpt ) = F(Rp1) ∪ · · · ∪ F(Rpt ) ⊆ F(Rclp1) ∪ · · · ∪ F(Rclpt ),

and we conclude that F(E) has ` dimensional Minkowski content 0 in N .
14. Arguing as in Problem 13, we see that it is enough to see that the smooth image

in N of any compact subset E of a Euclidean space Rd of dimension d ≤ n − 2 has
n−1 dimensionalMinkowski content 0. A compact subset E ofRd has d dimensional
Minkowski content equal to its Lebesgue measure, and then E has d+1 dimensional
Minkowski content equal to 0. Since d + 1 ≤ n − 1, E has n − 1 dimensional
Minkowski content 0. Problem 13 then allows us to conclude that that the smooth
image of E in any smooth manifold of dimension ∏ n − 1 has n − 1 dimensional
Minkowski content 0.
15. This is similar to Problem 2. The relevance of the assumption of compactness

is in proving that the (closed) set of points of index ∏ 2 is compact.
16. This equivalence is essentially the content of Proposition 3.10. In one

direction suppose that E has ` dimensional Minkowski content 0 and therefore that
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lim
δ↓0

δ`N (E, δ) = 0. Then for any ≤ > 0, there is a δ0 such that δ < δ0 implies

δ`N (E, δ) < ≤. Take k = N (E, δ), and let B1, . . . , Bk have diam(Bi ) < δ. Then
kδ` < ≤, and E is of zero ` extent. In the converse direction suppose E is of zero
` extent. Let ≤ > 0 be given, and choose ≥0 according to that condition. Whenever
≥ < ≥0 is given, choose k so that E ⊆ B1 ∪ · · · ∪ Bk , diam(Bi ) ≤ ≥ , and k≥ ` < ≤.
Then ≥ `N (E, ≥0) < ≤, and ≥ `

0 N (E, ≥0) ≤ ≤. In other words, lim
≥0↓0

≥ `
0 N (E, ≥0) = 0,

and then E has ` dimensional Minkowski content 0 by Proposition 3.10.
17. As in Section 5, let

Nsep(E, δ) =
nmaximum number of points of E
at distance ∏ δ from one another

o
.

Suppose we have a configuration of N1 points x1 of E1 that are at distance ∏ δ from
one another, and suppose also that we have a configuration of N2 points x2 of E2 that
are at distance ∏ δ from one another. Then the corresponding set of points (x1, x2)
in E1 × E2 has the property that any two distinct members of the product set have

|(x1, x2) − (x 0
1, x

0
2)| ∏ max{|x1 − x 0

1|, |x2 − x 0
2|} ∏ δ.

Therefore there exist N1N2 points of E1 × E2 at distance ∏ δ from one another, and
the definition of Nsep gives

Nsep(E1 × E2, δ) ≤ N1N2.

Taking the minimum over all such configurations allows us to conclude that

Nsep(E1 × E2, δ) ≤ Nsep(E1, δ)Nsep(E2, δ).

Combining ths inequality with the first two conclusions of Lemma 3.9 yields

N (E1 × E2, δ) ≤ Nsep(E1 × E2, δ)
≤ Nsep(E1, δ)
≤ Nsep(E2, δ)
≤ N (E1, δ/2)N (E2, δ/2),

and the result follows.
18. We know that a dimensional Minkowski content coincides with Lebesgue

measure for compact subsets of Ra . Also Lemma 3.9 shows that |Eδ| is comparable
in size to δaN (E, δ). As δ tends to 0, |Eδ| tends to |E | by complete additivity of
Lebesgue measure, and this limit is finite since E is compact. Thus δaN (E, δ) is
bounded as δ tends to 0.
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19. In both parts of the problem, Problem 17 gives

N (E1 × E2, δ) ≤ N (E1, δ)N (E2, δ). (∗)

We multiply through by δ`1+`2 for (a) and by δ`1+m2 for (b). Then we let δ tend to 0.
In (a), Proposition 3.10 shows that δ`1N (E1, δ) and δ`2N (E2, δ) tend to 0. By

(∗), δ`1+`2N (E1× E2, δ) tends to 0. Thus the converse direction of Proposition 3.10
shows that E1 × E2 has `1 + `2 dimensional Minkowski content 0.
For (b), we argue in the same way except that we use Problem 18 to see that

δa2N (E2, δ) is bounded as δ tends to 0. This bounded quantity is multiplied by
δ`1N (E1, δ), which tends to 0, and the product thus tends to 0. We conclude that
δ`1+m2N (E1× E2, δ) tends to 0, and it follows that E1× E2 has `1+m2 dimensional
Minkowski content 0.
20. For (a), we are to show that (U, B, E) has the properties of a Whitney domain

in Rm1+m2 . The set U is open in Rm1+m2 because its factors are open in Rm1 and
Rm2 , and B is closed and is the boundary ofU because B equalsU cl−U . The setU
is bounded in Rm1+m2 becauseU1 is bounded in Rm1 and M is compact in Rm2 . The
set E is compact as the product of two compact sets. What needs to be shown is that
E has m1 + m2 − 1 dimensional Minkowski content 0.
It is enough to prove that each of E1×M and B1×@M hasm1+m2−1 dimensional

Minkowski content 0. Consider E1×M . Since E1 hasm1−1 dimensionalMinkowski
content 0 and M is compact inRm2 , Problem 19b shows that E1×M hasm1+m2−1
dimensional Minkowski content 0.
Consider B1 × @M . The subset B1 of Rm1 by assumption is a closed bounded

portion of the set in Rm1 where a nonzero real-valued polynomial in m1 variables
equals 0. Problem 10 of Chapter VI of Basic Real Analysis shows that the compact
set B1 has m1 dimensional Lebesgue measure 0. It therefore has m1 dimensional
Minkowski content 0. The set @M is a compact manifold of dimension m2 − 1.
Using the style of argument in Problems 13 and 14 and applying Problem 19, we see
that B1 × @M is a compact set of m1 + m2 − 1 dimensional Minkowski content 0.
At this writing, the author does not know the answer to (b).
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INDEX OF NOTATION

This list indexes recurring symbols introduced in Chapters I through III (pages
1–125). In the list below, each piece of notation is regarded as having a key
symbol. The first group consists of those items for which the key symbol is a
fixed Latin letter, and the items are arranged roughly alphabetically by that key
symbol. The next group consists of those items for which the key symbol is a
Greek letter. The final group consists of those items for which the key symbol is
a variable or a nonletter, and these are arranged by type. To locate an item below,
first proceed on the assumption that the key symbol is a Latin or Greek letter; if
the item does not appear to be in the list, then treat it as if its key symbol is a
variable or a nonletter.

A, 18
Bδ, 111
cX (ω), 50
C∞, 4, 63, 99
C∞
com, 5, 64, 99
Cp(M), 7, 64, 99
curl, 29, 76
d, 28
d f, 11
(d f )p, 11
D, 9, 65, 99
(DF)p, 9, 99
D(x, E), 106
div, 29, 76
grad, 29, 76
Hm, 59
Hm

+, 59
I 0, 13
i, j, k, 75
M`(E), 109

n, 77
N (E, δ), 111
Nsep(E, δ), 111
Qm, 93
Qm

+, 93
@Qm, 93
Sn, 2
Sk(M), 100
Sn, 18
T (V ), 13
T n(V ), 13
Tp(M), 7, 64, 99
T ∗
p (M), 10, 65, 99

Greek
8∗, 22
8∗ω, 23
8#
p, 23

ƒk(M), 22
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Unary operations
M+, 61
@M, 61
∇, 76
| · |, 106

Binary operations
⊗, 13
∧, 13
×, 76

Other symbolsV
(E), 13Vn(E), 13

eVn
(E), 18

£
@

@xj

§
p, 7, 64, 99R

M f ω, 39
Eδ, 111
(Mα, α), 2, 60, 95, 119
(U, B, E), 107
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alternating, 13
antisymmetrized tensor, 18
antisymmetrizer operator, 18
atlas, 2, 60, 95, 119

boundary, 61
boundary point, 61, 96, 119
Bourbaki, xiii
Brouwer Fixed-Point Theorem, 91
bundle
cotangent, 11
exterior k, 21
tangent, 8

Cartan, Elie, xiii
Cartan, Henri, xii
chart, 2, 60, 95
about a point, 60, 95, 119
compatible, 2, 60, 95, 119
positive compatible, 37

circle, 48
compact convex polyhedron, 122
compatible chart, 2, 60, 95, 119
positive, 37

contraction, 50
convex polyhedron, 122
coordinate system, local, 4
corner point, 96
cotangent bundle, 11
cotangent space, 65, 99
cotangent vector, 10
countable, xvi
cross product, 76
curl, 29, 76
curve, 75

degree of differential form, 21
derivation, 7
derivative, 65, 99

exterior 28
of smooth function, 9
smooth map, 9

diffeomorphism, 6, 60, 94
differential, 11
of function, 65

differential form, 21
degree of, 21

differential 0 form, 22
differential 1 form, 11
smooth, 12

differential k form, 21
differential m form, everywhere positive, 42
differentiation, exterior, 28
dimension, 2, 60, 95, 119
distance to set, 106
divergence, 29, 76
Divergence Theorem, xi, 81, 123
Whitney’s form, 106

elementary smooth k form, 50
embedded submanifold, 53
embedding, 53
everywhere positive m form, 42
exceptional point, 119
exhausting sequence, 3, 48
extent, 125
exterior algebra, 13
exterior derivative, 28
exterior differentiation, 28
exterior k bundle, 21
exterior product, 14

flux, 27
function, smooth, 4, 6
Fundamental Theorem of Calculus, x, 74

Gauss–Ostrogradsky Theorem, xi
generalized quadrant, 93
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germ, 7, 64, 99
gradient, x, 29, 76
graph, 53
Grassmann algebra, 13
Green’s Theorem, x, 80

half space, 59

immersion, 47
implicitly, 54
index of a point, 94, 96
indicator function, 33
induced orientation, 68, 70, 102
integration of differential along a curve, 88
integration of smooth m form, 39

Kelvin–Stokes Theorem, xii, 84, 90
Kronecker delta, xvi

line integral, x
Lipschitz condition, 112
local coordinate system, 4
local Whitney domain, 119
locally finite, 35

manifold, 2
defined implicitly, 54
defined parametrically, 54
smooth, 2
-with-boundary, 60
-with-corners, 95

manifold point, 61, 96, 100
map, 6
smooth, 6

Minkowski content, 109, 124
Minkowski content zero, 114
minor, 117
Möbius band, 37, 47
Möbius strip, 37
negative, xvi
normal vector, 77
not orientable, 36

on the left, 78
open subset, 59, 93
opposite orientation, 43
orientable, 36, 66, 102
orientation, 36, 38, 43
induced, 68, 70

opposite, 43
orientation preserving, 46
orientation reversing, 46
oriented, 36, 66, 102, 120
outward pointing unit normal, 78

parametrically, 54
partition of unity, 33, 65, 100, 120
piecewise smooth function, 124
polyhedron, compact convex, 122
polytope, 114
positive, xvi
positive compatible chart, 37
product of manifolds, 49
projective space, 49
pullback of 1 form, 23
pullback of differential form, 65
pullback of function, 22
pullback of k form, 25, 99

quadrant, 93

retraction, 91

separable, 2
singular set, 115
skew symmetry, 14
smooth differential form, 21
smooth differential 1 form, 12
smooth function, 4, 6, 59
derivative of, 9
piecewise, 124

smooth manifold, 2
smooth map, 6, 60, 93
derivative of, 9

smooth partition of unity, 33, 65, 100, 120
smooth real-valued function, 63, 93, 98
smooth structure, 2
smooth vector field, 9
sphere, 2
Stokes’s Theorem, xii
for manifold without boundary, 57
for manifold-with-boundary, 71
for manifold-with-corners, 102
for Whitney manifold, 118

stratum, 100
submanifold, 53
subordinate, 33, 100, 120
support, 5, 63, 99
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surface, 75
surface integral, 78

tangent bundle, 8
tangent space, 7, 64, 99
Taylor’s Theorem, 8
tensor algebra, 13
triangulation, 33, 96, 97

unit normal to a subspace, 79
universal mapping property
of exterior algebra, 15
of exterior power, 15

vector field, 8, 75
smooth, 9

vector product, 76

wedge product, 14
Weil, André, xii
Whitney, Hassler, xiv
Whitney chart, 119
Whitney domain, 107
Whitney’s form of Divergence Theorem, 106
Whitney’s form of Stokes’s Theorem, 118

zero ` extent, 125
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