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Since xpj_1 + ixoj and xpj_1 — ixy; together generate x,;_; and x;; and
sincep(H) actsasOon x‘gnH, thisequation tells us how to compute p(H)
on any monomial, hence on any polynomial.

It is clear that the subspace of polynomials homogeneous of degree
N is an invariant subspace under the representation. This invariant
subspace is spanned by the weight vectors

(X1 + %)M (X4 — i %)M (Xg + 1 Xa)*2 - -+ (Xon_1 — inn)I”Xl;,D]H,

where > ki + Y1, I; = N. Hence the weights of the subspace are all
expressions Y [, (Ij — kg with 37 okj + >0 1; = N.

2) Let v = A\'C2+1. The element H; of h in the above example acts
On ey +isy by thescalar +i and oney —is, by thescalar —i. Thuse; +ies
and ¢; — i, are weight vectors in C>"+ of respective weights —e; and
+e1. Also en41 hasweight 0. Then the product rule for differentiation
alows us to compute the weights in A'C2'+! and find that they are all
expressions

e, k¢
with
| | < ifl <n
jl<- < and {r§2n+1_| ifl >n.

Motivated by Proposition 4.59 for compact Lie groups, we say that a
member 1 of h* isalgebraically integral if 2(x, «)/|a|? isin Z for each
o € A.

Proposition 5.4. Let g beacomplex semisimpleLiealgebra, leth bea
Cartan subalgebra, let A = A(g, ) betheroots, andlet ho = Y, ., RH,.
If ¢ is arepresentation of g on the finite-dimensional complex vector
space V, then

(@ ¢(h) acts diagonably on V, so that every generalized weight
vector isaweight vector and V isthedirect sum of all theweight
spaces

(b) every weight isreal-valued on by and is algebraically integral

(c) rootsand weights arerelated by ¢(gq)Vi € Viie-

ProoF.
(a, b) If o isaroot and E, and E_, are nonzero root vectorsfor o and
—a, then{H,, E,, E_,} Spansasuba gebrasl, of gisomorphictosi(2, C),

with 2j«|~2H, corresponding to h = ((1) _°1> Then the restriction of ¢
to sl, is afinite-dimensiona representation of sl,, and Corollary 1.69
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is aweight vector with weight . = A — 181 — - - - — gkBk, from which
(c) follows. The number of expressions (5.12) leading to this . isfinite,
and so dimM,, < co. The number of expressions (5.12) leading to 1 is
1, from v itself, and sodim M, = 1.

Before defining Verma modules, we recall some facts about tensor
productsof associativealgebras. (A specia casehasalready beentreated
in 81.3.) Let M; and M, be complex vector spaces, and let A and B be
complex associative algebras with identity. Suppose that M, is aright
B module and M, is aleft B module, and suppose that M; is also aleft
A module in such away that (am;)b = a(m.b). We define

_ M1 ®¢ M2
~ subspace generated by all myb® m; — my @ bm,’

M1 ®g My

and we let A act on the quotient by a(m; ® m;) = (am;) ® m,. Then
M; ®p M, isaleft Amodule, and it hasthe following universal mapping
property: Whenever ¢ : My x M, — E isabilinear map into acomplex
vector space E such that v (m;b, m;) = v (myg, bmy), then there exists a
uniquelinear map ¥ : M;®g M, — E suchthat v (my, mp) = ¥ (my@my).

Now let A be in p*, and make C into a left U(b) module C;_; by
defining

Hz=M—-8)(H)z forHeh, zeC

(5.13) Xz=0 for X en.

(Equation (5.13) defines a 1-dimensional representation of b, and thus
C;—s becomes a left U (b) module.) The algebra U (g) itself is a right
U (b) module and aleft U (g) module under multiplication, and we define
the Verma module V (1) to be the left U (g) module

V() =U(@ Qu Ci-s.

Proposition 5.14. Let A bein p*.

(@) V() isahighest weight module under U (g) and is generated by
1 ® 1 (the canonical generator), which isof weight » — .

(b) The map of U(n™) into V(1) given by u — u(l ® 1) is one-one
onto.

(c) If M is any highest weight module under U (g) generated by a
highest weight vector v # 0 of weight A — §, then there exists one and
only one U (g) homomorphism + of V(1) into M suchthat ¥ (1® 1) = v.
The map ¢ is onto. Also ¢ isone-oneif and only if u £ 0inU@®™)
impliesu(v) #0in M.
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Proposition 5.15. Let A bein p*, and let V(1) = Dzrs VW)
Then every proper U(g) submodule of V(1) is contained in V().
Consequently the sum S of al proper U(g) submodules is a proper
U (g) submodule, and L(A) = V(1)/S is an irreducible U (g) module.
Moreover, L(1) isahighest weight module with highest weight A — §.

Proor. If N isaU () submodule, then N = B, (NN V(x),). Since
V (A),_s is1-dimensional and generatesV (1) (by Proposition 5.14a), the
) — 8 term must be 0 in the sum for N if N isproper. ThusN € V().
Hence Sisproper, and L(A) = V(1)/Sisirreducible. Theimageof 1® 1
inL(x) isnot 0, isannihilated by n, and is acted upon by § according to
A — 8. Thus L(») hasall the required properties.

Theorem 5.16. Suppose that » € b* is real-valued on by and is
dominant and algebraically integral. Then theirreduciblehighest weight
module L (x + 8) isan irreducible finite-dimensional representation of g
with highest weight A.

RemARKs. Theorem 5.16 will complete the proof of the Theorem of
the Highest Weight (Theorem 5.5). The proof of Theorem 5.16 will be
preceded by two lemmas.

Lemmab.17. InU (sl(2, C)), [e, f"] = nf"~1(h — (n — 1)).
Proor. Let
Lf =leftby f inU(sl(2, C))
Rf =right by f
adf =Lf - Rf.

Then Rf = Lf — ad f, and the terms on the right commute. By the
binomial theorem,
(Rf)"e = (U)(Lf)”‘i(—adf)je
2\
nin—-1

= (Lf)"e+nLf)"(—ad fre+ — (Lf)"2(—ad f)%e

since (ad f)3e = 0, and this expression is

= (Lf)"e+nf"th + LZ_D fr-2(-2f)

= (LH)"e+nf"h - (n=1).

Thus
[e, "] = (Rf)"e— (Lf)"e=nf""1(h — (n—1)).
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Infact, if T isafinite-dimensional U (sl,) submodule, then
gT ={) _Xt|XegandteT}
isfinite-dimensional and for Y e sl, and X € g we have
YXt = XYt +[Y, X]Jt = Xt +[Y, X]t € gT.

So ¢T issl, stable, and the claim follows.

Sincethe sum of all finite-dimensional U (sl,) submodulesof L (1 +6)
is g stable, the irreducibility of L(x + §) implies that this sum is all
of L(x +8). By Corallary 1.70, L(» + 8) is the direct sum of finite-
dimensional irreducible U (sl,) submodules.

Let .« be a weight, and let t # 0 be in V,. We have just shown
that t liesin afinite direct sum of finite-dimensional irreducible U (sl,)
submodules. Let uswritet = Y, t witht; in aU(sl,) submodule T
andt; £ 0. Then

D Hati = Hot = u(H)t = ) u(Hot,

2H"‘t=2<M’w>ti for eachi e 1.

and so ;
leef2 ™ |2

If (1, a) > 0, we know that (E_,)2®@/lelt; £ 0 from Theorem 1.63.
Hence (E_,)2w/l«*t £ 0, and we see that

2(u, )

o2

n— o =Su

isaweight. If (u,a) < O instead, we know that (E, )2/« £ 0

from Theorem 1.63. Hence (E,)~2w-/let £ 0, and so

2(u, )

||

m—= o =S
isaweight. If (u,a) = 0, then s, = . Inany case s, is aweight.
So the set of weightsis stable under each reflection s, for « simple, and
Proposition 2.62 shows that the set of weightsis stable under W.

Third we show: The set of weights of L(x + §) is finite, and
L(x + &) isfinite-dimensional. In fact, Corollary 2.68 shows that any
linear functional on ho is W conjugate to a dominant one. Since the
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Theorem 5.75 (Weyl Character Formula). Let V be an irreducible
finite-dimensional representation of thecomplex semisimpleLiealgebra
g with highest weight A. Then

char(V) =d! Z e(w)e? D),

weW

RemaRrks. We shall prove this theorem below after giving three lem-
mas. But first we deduce an alternative formulation of the theorem.

Corollary 5.76 (Weyl Denominator Formula).

e ]_[ l-e9= Z e(w)e™.

aeAT weW

Proor. Take A = 0 in Theorem 5.75. Then V is the 1-dimensiona
trivial representation, and char(v) = €° = 1.

Theorem 5.77 (Weyl Character Formula, alternative formulation).
Let vV beanirreduciblefinite-dimensional representation of the complex
semisimple Lie algebra g with highest weight 1. Then

( 3 e(w)ew‘s)char(V) = e(wer*,

weW weW

Proor. This follows by substituting the result of Corollary 5.76 into
the formula of Theorem 5.75.
Lemmab.78. If Ainp* isdominant, thennow # 1in W fixes A + 6.

Proor. If w # 1 fixes i + §, then Chevalley’s Lemma in the form of
Corollary 2.73 showsthat someroot « has (A +3§, ) = 0. Wemay assume
that « is positive. But then (1, «) > 0 by dominance and (5, o) > O by
Proposition 2.69, and we have a contradiction.

Lemma5.79. The Vermamodule V (1) has a character belonging to
Z{h*), and char(V (1)) = d~1e’.

Proor. Formula (5.67) shows that

char(V(n) =€ ) P(y)e” = Ke™¢,

yeQ*

and thus the result follows by substituting from Lemma5.72.
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Theorem 5.113 (Weyl Character Formula). Let G be a compact
connected Lie group, let T be amaximal torus, let AT™ = A*(g,t) bea
positive system for the roots, and let A € t* be analytically integral and
dominant. Then the character x4, of the irreducible finite-dimensional
representation @, of G with highest weight 1 is given by

Y wew EWEwGrs—s ()

HaeA* (1 - %’,a (t))
at every t € T where no &, takes the value 1 on t. If G is simply
connected, then this formula can be rewritten as

Y wew EW)Ewts) (1) _ Y wew EW)Eypts) ()
3}-8 (t) ]_[aEA+ (1 - E—a (t)) ZweW 8(w)§u18 (t) ’

RemARK. Theorem 4.36 says that every member of G is conjugate to
amember of T. Since characters are constant on conjugacy classes, the
above formulas determine the characters everywhere on G.

Proor. Theorem 5.110 shows that @, exists when i is analytically
integral and dominant. We apply Theorem 5.75 in the form of (5.111).
When we divide (5.111) by €, Lemma 5.112 says that all the expo-
nentials yield well defined functions on T. The first formula follows.
If G is simply connected, then G is semisimple as a consequence of
Proposition 1.99. The linear functiona § is algebraically integral by
Proposition 2.69, hence analytically integral by Theorem 5.107. Thus
we can regroup the formula as indicated. The version of the formula
with an alternating sum in the denominator uses Theorem 5.77 in place
of Theorem 5.75.

Xo, () =

Xo, (1) =

Finally we discuss how parabolic subalgebras play arole in the rep-
resentation theory of compact Lie groups. With G and T given, fix a
positive system A* (g, t) for theroots, definen asin (5.8), andletq = [du
be a parabolic subalgebra of g containing b = § @ n. Corollary 5.101
shows that | = Z,(Hs,), and we can equally well write [ = Z,(i Hs ().
SinceiHsqy iSiNty € go, [ isthe complexification of the subalgebra

lo = Zg,(i Hswy)

of go. Define
L = Zg(i Hsqw)-

This is a compact subgroup of G containing T. Since the closure of
expiRH;q) isatorusin G, L isthe centralizer of atorusin G and is
connected by Corollary 4.51. Thus we have an inclusion of compact
connected Liegroups T € L € G, and T isamaximal torus in both L
and G. Hence analytic integrality isthe samefor L asfor G. Combining
Theorems 5.104 and 5.110, we obtain the following result.
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Problems 3641 concern fundamental representations. Let «q, ..., o be the
simple roots, and define @y, . .., @y by 2(wi, «;)/|«; |2 = 8ij. The dominant
agebraicaly integral linear functionals are then all expressions ) ; njz; with
al nj integers > 0. We cdl =; the fundamental weight attached to the
simple root «;, and the corresponding irreducible representation is called the
fundamental representation attached to that simple root.

36.

37.

38.

39.

40.

41.

Let g = sl(n, C).

(8) Verify that the fundamental weights are Z:(zleK forl<l<n-1.

(b) Using Problem 7, verify that the fundamental representations are the
usual alternating-tensor representations.

Letg=s50(2n+1,C). Letaj =g —g 1 fori <n,andleto; = &,.

(@ Verify that the fundamental weights are @y = Z'k:l e for
l1<l<n-landw,= 3>y ;&

(b) Using Problem 8, verify that the fundamental representations attached
to simple roots other than the last one are alternating-tensor represen-
tations.

(c) Using Problem 35, verify that the fundamental representation attached
to thelast simpleroot is the spin representation.

Letg = s0(2n,C). Letaj =g —g 1 fori <n—1,andlet oy =

€n-1— € andan = €1+ 6.

(@ Verify that the fundamental weights are @y = Z'k:l e for
1<l<n-2mn1=3Y0 & ado, = (X ie — &)

(b) Using Problem 9, verify that the fundamental representations attached
to simple roots other than the last two are alternating-tensor represen-
tations.

() Using Problem 34, verify that the fundamental representations at-
tached to the last two simple roots are the spin representations.

Let » and A’ be dominant agebraically integral, and suppose that
A — A/ isdominant and nonzero. Provethat the dimension of anirreducible
representation with highest weight A is greater than the dimension of an
irreducible representation with highest weight A’.

Given g, prove for each integer N that there are only finitely many
irreducible representations of g, up to equivalence, of dimension < N.

Let g be acomplex simple Lie algebra of type G..

(8 Using Problem 42 in Chapter |1, construct a 7-dimensional nonzero
representation of g.

(b) Let o1 be the long simple root, and let «, be the short simple root.
Verify that @y = 201 + 3o, and that @, = ay + 20.



