
Corrections to
Lie Groups Beyond an Introduction, Second Edition:

Short Corrections, An Addition, A Long Correction, and Some Remarks

Short Corrections

Page 6, line −2. Change “
1X

n=0

” to “
1X

N=0

”.

Page 7, line −1. Change “
1X

N=0

” to “
1X

N=1

” in two places.

Page 42, line 13. Change “Proposition 1 ” to “Proposition 1.10 ”.

Page 56, line 12. Change “of the maximum possible dimension” to “with the
maximum possible dimension”.

Page 64, line 2. Change “π(sl(2, C) ” to “π(sl(2, C)) ”.

Page 72, line −7. Change “the image of Φ ” to “the image of the identity
component of G under Φ ”.

Page 90, last line of statement of Proposition 1.101. Change “D of G ” to
“D of eG ”.

Page 150, table (2.43). With An, change the condition “
P

aiei = 0” to “
P

ai = 0”.

Page 153, line −4. Change “strict equality ” to “strict inequality ”.

Page 172, line 15. Change subscript “αi+1 ” to subscript “αj ”.

Page 232, line 13. Change “H(V ) of ” to “H(V ) on ”.

Page 237, line 10. Change “which another element ” to “which is another
element ”.

Page 241, line 10. Change “V ” to “V 0 ” at the end of the line.

Page 248, line 13. Conrado Lacerda has pointed out that the words “It follows from
Theorem 4.20 that” need some elaboration. Thus change “Theorem 4.20 ” on line
13 to “Corollary 4.21a ”, and insert the statement and proof of Corollary 4.21a,
which are given in the section “An Addition” later in these notes, between lines 3
and 4 on page 248.

Page 259, line −5. Change “of A0, some ” to “of A, some ”.

Page 267. Replace the proof of Proposition 4.67 by the following:
“Proof. Let ϕ : eG → G be the quotient homomorphism, let Z be the kernel, let

eT be a maximal torus of eG, and let T = ϕ(eT ). Corollary 4.47 shows that ϕ
ØØ
eT has

kernel Z. Consequently the mapping ϕ∗ of the group bT of multiplicative characters
of T into the group beT given by ϕ∗(χ) = χ◦ϕ is a one-one homomorphism such that

the index of ϕ∗(T ) in beT is at most the order |Z| of Z. On the other hand, if σ is any
member of the group bZ of multiplicative characters of Z, then some multiplicative
character τ of eT has τ

ØØ
Z

= σ. (This can be seen as follows: The set of restrictions
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τ
ØØ
Z

is a subgroup bZ1 of bZ. If bZ1 is a proper subgroup, then its linear span is a set of

functions on Z of dimension < |Z|. However, the members of beT separate point of eT ,
and the Stone–Weierstrass Theorem implies that their linear span, when restricted
to any finite subset of eT , yields all functions on that set.) Consequently the index of

ϕ∗(bT ) in beT is at least |Z|. Therefore it equals |Z|. Application of Proposition 4.58
translates this conclusion into the desired conclusion about analytically integral
forms.”

Page 278, line 5. Change “(x2j−1 ± x2j) ” to “(x2j−1 ± ix2j) ”.

Page 283, line 5. Change “ϕ(U(g)) ” to “(ϕ⊕ ϕ0)(U(g)) ”.

Page 283, line 6. Change “ϕ ” to “ϕ⊕ ϕ0 ”.

Page 292, proof of Proposition 5.21. At the end of the second display, change the
period to a comma. Change “Then (a) follows from Proposition 1.91, and (b)
follows from Corollary 1.85 ” to “the second inequality following from Proposition
1.91. This proves (a), and (b) follows from Corollary 1.85 ”.

Page 295, line −5. Change “(Proposition 5.1) ” to “(in the formulation of
Corollary 5.2) ”.

Page 300, line −5. Change “∏w(H) = ∏(Hw−1
)) ” to “(w∏)(H) = ∏(w−1H)) ”.

Page 305, line 6. Change “is related in ” to “is related to ”.

Page 306, line 2. Change the displayed line from
“Hm

δ Er1
β1
· · ·Erk

βk mod Um+
P

rj−1(g) ” to “Hm
δ Er1

β1
· · ·Erk

βk
mod Um+

P
rj−1(g) ”.

Page 306, line −4. Change “−βn ” to “−βk ”.

Page 311, line −4. Change “nHn−1
∫ H∫0 to “nHn−1

∫ H∫0 + CHn
∫0 , ”, and insert on

the next line at the left margin the line “where C is the constant
Pn

j=0 cjjn ”.

Page 312, line −1. Change “HW ” to “Z(g) ”.

Page 313, line −6. Change “|∏− δ|2 − |δ|2 ” to “|∏ + δ|2 − |δ|2 ”.

Page 314, line −10. Change “1.65 ” to “1.66 ”.

Page 316, line 8. Change “∫ − ∏0 − µ0 ” to “∏0 + µ0 − ∫ ”.

Page 316, line 10. Change “P(∫ − ∏0 − µ0) ” to “P(∏0 + µ0 − ∫) ”.

Page 318, display (5.70). Change “(V1 ⊗ V2) ” to “char(V1 ⊗ V2) ”.

Page 321, line 11. Change “imageϕ ” to “ϕ(V (µ)m)µ−δ ”.

Page 323, line 5. Change “For H ∈ h∗ ” to “For H ∈ h ”.

Page 336, paragraph 5, line 1. Change “Let eG be the universal covering group of
G ” to Let eG be the universal covering group of G, and identify the Lie algebra of
eG with the Lie algebra g0 of G via the differential of the covering map.”

Page 355, line 4. Change “Let B be ” to “Let g0 be a real semisimple Lie algebra,
and let B be ”.

Page 355, line 11. Change period to comma at the end of the display, and add
afterward the text “the inequality being strict if X 6= 0.”
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Page 366, line 2. Change “Because of (6.37) ” to “Because of (6.38) ”.

Page 379, between the statement of Proposition 6.52 and the proof. Insert the
following:

“Remark. In (b) the existence of a restricted root is actually equivalent with
the existence of a Lie subalgebra of g isomorphic to sl(2, R). Indeed, if there is
no restricted root, then a = 0. Thus p = 0 and g = k. By Proposition 6.28, g
is isomorphic to a Lie subalgebra of some so(n). An analytic subgroup of SO(n)
whose Lie algebra is isomorphic to sl(2, R) would have to be a closed subgroup of
the compact group SO(n) by Proposition 7.9 in the next chapter, and there is no
such subgroup.”

Page 455, line 4 of statement of Proposition 7.29. Change “k ∈ Kss ” to
“k ∈ (K ∩Gss) ”.

Page 488, proof of Proposition 7.90a. Change this so as to read:
“(a) If h0 is maximally noncompact, then a0 is a maximal abelian subspace of
p0, and h0 = a0 ⊕ t0, where t0 = Zk0(a0). If M = ZK(a0) as in Section 5, then
Proposition 7.33 gives G = MG0, and Proposition 7.49 gives M = ZM (t0)M0. The
Cartan subgroup H is reductive and thus has the form H = ZG(a0) ∩ ZG(t0) =
MA∩ZG(t0). Intersecting both sides with K gives H∩K = M ∩ZK(t0) = ZM (t0).
Substituting for ZM (t0) into the formula for M and using the result in the formula
for G gives G = MG0 = ZM (t0)M0G0 = (H ∩K)G0, and (a) follows.”

Page 495, last paragraph. Replace this with:
“We are left with proving that any regular element X0 of h has ZGc(X0) = Hc.
Let x ∈ Gc satisfy Ad(x)X0 = X0. The Bruhat decomposition of Gc given
in Theorem 7.40 shows that there exists an element s in NK(a) with x in the
MAN double coset MANsMAN within G. Write x = (m1a1n1)s(n2a2m2).
Then Ad(m1a1n1)Ad(s)Ad(n2a2m2)X0 = X0, and Ad(s)Ad(n2a2m2)X0 =
Ad(m1a1n1)−1X0. Since Gc is complex, M and A fix X0, and thus Ad(n−1

1 )X0 =
Ad(s)Ad(n2)X0. Theorem 1.127 shows that exp carries n0 onto N , and hence
Ad(n1)−1X0 is a member of X0 + n0. Similarly Ad(s)Ad(n2)X0 is a member of
Ad(s)X0 + Ad(s)n0. Equating the h components of these two expressions gives
Ad(s)X0 = X0. The regularity of X0 implies that no root vanishes on X0, and it
follows that Ad(s) acts as the identity on X0. In other words, x is in MAN . Say
that x = n0a0m0. From Ad(x)X0 = X0, we obtain Ad(n)X0 = X0. On the left side
we write n as an exponential and expand Ad(n) in series. Every root is nonzero on
X0 by regularity, and thus the exponential series collapses to its constant term. In
other words, n = 1, and x is in the subgroup MA = H, as required.”

Page 526, line 16. Change “
R

M f(x) duω(x) ” to “
R

M f(x) dµω(x) ”.

Page 615, lines 2–3. Change “finite-dimensional vector V ” to “finite-dimensional
vector space V ”.

Page 641, line 11. Change “Hom(k, F ) ” to “Homk(k, F ) ”.

Page 641, line 13. Change “spaces, Suppose ” to “spaces. Suppose ”.

Page 703, formula for Σ. Change “Bp ” to “B2p+1 ”, and change “Dp ” to
“D2p+1 ”.

Page 704, formula for Σ. Change “Bp ” to “B2p ”, and change “Dp ” to “D2p ”.
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Page 763, line 4–6. Change the sentence “Goto [1948] proved that a semisimple
matrix group is a closed subgroup of matrices, and the proof of Theorem 4.29 makes
use of some of Goto’s ideas ” to
“Goto [1948] proved that a semisimple matrix group is a closed subgroup of matri-
ces, and the proof of Theorem 4.29 makes use of some of Goto’s ideas; this theorem
had been proved earlier in a slightly different way by Yosida [1938] ”.

Page 767, lines 13–14. Change “Helgason [1978] gives a proof of the classification
that is based on classifying automorphisms in a different way ” to
“Helgason [1978] gives a proof of the classification of real semisimple Lie algebras
that establishes and applies the classification of automorphisms of finite order for
complex semisimple Lie algebras as given by Kac [1969] ”.

Pages 769–770. A long correction to the Historical Notes appears below in the
section “A Long Correction.”

Add the following two items to the section of References:

Kac (Kats), V. G., Automorphisms of finite order of semisimple Lie algebras,
Funktsional’nyi Analiz i Ego Prilozheniya 3 (1969), No. 3, 94–96 (Russian).
English translation: Functional Anal. and Its Appl. 3 (1969), 252–254.

Yosida, K., A theorem concerning the semi-simple Lie groups, Tohoku Math. J. 44
(1938), 81–84.
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An Addition

On page 248, between lines 3 and 4, insert the following corollary, remarks, and
proof.

Corollary 4.21a (Approximation Theorem). If G is a compact group, then
the linear span of all matrix coefficients for all finite-dimensional irreducible repre-
sentations of G is uniformly dense in the set C(G) of continuous complex-valued
functions on G.

Remarks. In the set C(G), let us write khksup for the maximum value of |h(x)|
for x ∈ G. The set C(G) becomes a metric space if we define the distance between
two continuous functions h1 and h2 to be kh1−h2ksup. Convergence of a sequence in
C(G) is uniform convergence of the sequence of functions. The uniform continuity
of a member h of C(G) amounts to the fact that the function y 7→ h(y−1x) of G
into C(G) is continuous.

Proof. If h is in C(G) and f is in L1(G), then the function

F (x) =
R

G h(xy−1)f(y) dy

is continuous as a consequence of the estimate

|F (x1)− F (x2)| ≤ sup
y

|h(x1y
−1)− h(x2y

−1|

and the uniform continuity of h. It is called the convolution of h and f , and we
write h ∗ f for it.

Let ≤ > 0 and h continuous be given. For each neighborhood N of the identity,
let fN be the characteristic function of N divided by the measure |N | of N . Since
fN is nonnegative and has integral 1, |(h ∗ fN )(x)− h(x)| is

=
ØØ|N |−1

R
N h(xy−1) dy − h(x)

ØØ = |N |−1
ØØ R

N (h(xy−1)− h(x)) dx
ØØ

≤ |N |−1
R

N |h(xy−1)− h(x)| dx ≤ supy∈N |h(xy−1)− h(x)|.

The uniform continuity of h implies that the right side can be made small for all x
by choosing N large enough. We can thus choose N such that kh ∗ fN − hksup ≤ ≤.

With N fixed and satisfying this condition, choose by the Peter-Weyl Theorem
a finite linear combination m of matrix coefficients such that km− fNk2 ≤ ≤/khk2.
Then

kh ∗m− hksup ≤ kh ∗ (m− fN )ksup + kh ∗ fN − hksup

≤ khk2km− fNk2 + ≤ ≤ 2≤,

the next-to-last inequality following from the Schwarz inequality.
Going over the proofs of Lemmas 4.18 and 4.19 and replacing k · k2 everywhere

by k · ksup, we see that if the given L2 function in the lemmas is continuous, then
the lemmas remain valid with uniform convergence in place of L2 convergence.

The left translates of m all lie within a finite-dimensional vector subspace V
of C(G), and the modified Lemma 4.19 says that h ∗ m is the uniform limit of a
sequence of functions in V . Since V is finite-dimensional, this limit is in V . Thus
h ∗m is a finite linear combination of matrix coefficients that is uniformly within
2≤ of h, and Corollary 4.21a is proved.
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A Long Correction

Page 769, last two lines, and page 770, lines 1–18. Change
“Theorem 8.49, called Helgason’s Theorem in the text, is from Helgason [1970],
§III.3. Warner [1972a], p. 210, calls the result the “Cartan–Helgason Theorem.”
In fact at least four people were involved in the evolution of the theorem as it is
stated in the text. Cartan [1929b], §§23–32, raised the question of characterizing the
irreducible representations of G with a nonzero K fixed vector, G being a compact
semisimple Lie group and K being the fixed subgroup under an involution. His
answer went in the direction of the equivalence of (a) and (c) but was incomplete.
In addition the proof contained errors, as is acknowledged by the presence of
corrections in the version of the paper in his Œuvres Complètes. Cartan’s work
was redone by Harish-Chandra and Sugiura. Harish-Chandra [1958], §2, worked in
a dual setting, dealing with a noncompact semisimple group G with finite center
and a maximal compact subgroup K. He proved that if ∫ is the highest restricted
weight of an irreducible finite-dimensional representation of G with a K fixed vector,
then h∫,βi/|β|2 is an integer ≥ 0 for every positive restricted root. Sugiura [1962]
proved conversely that any ∫ such that h∫,βi/|β|2 is an integer≥ 0 for every positive
restricted root is the highest restricted weight of some irreducible finite-dimensional
representation of G with a K fixed vector. Thus Harish-Chandra and Sugiura
together completed the proof of the equivalence of (a) and (c). Helgason added the
equivalence of (b) with (a) and (c), and he provided a geometric interpretation of
the theorem. ”
to
“Theorem 8.49, called Helgason’s Theorem in the text, is from Helgason [1970],
§III.3, and the proof in the text is substantially unchanged from Helgason’s. Inspec-
tion of the proof shows that a version of the theorem remains valid for the compact
form U of G relative to GC, as described in Proposition 7.15: if a finite-dimensional
representation of U is given, then the equivalence of (a), (b), and (c) in Theorem
8.49 is still valid; however, the converse assertion that produces a representation
requires a further hypothesis, such as simple connectivity of U , as examples with
U = Adsu(3)(SU(3)) and K = Adsu(3)(SO(3)) show. As a result of the attribution
of Warner [1972a], p. 210, the direct part of the theorem, i.e., the equivalence of (a),
(b), (c) when a representation is given, is sometimes called the “Cartan–Helgason
Theorem.” The inclusion of Cartan’s name is based on work in Cartan [1929b],
§§23–32, which raised the question of characterizing the irreducible representations
of U with a nonzero K fixed vector, U being a compact semisimple Lie group and
K being the fixed subgroup under an involution. Cartan’s answer went in the
direction of the equivalence of (a) and (c) but was incomplete. In addition, the
proof contained errors, as is acknowledged by the presence of corrections in the
version of the paper in Cartan’s Œuvres Complètes. Cartan’s work was addressed
anew by Harish-Chandra and Sugiura. Harish-Chandra [1958], Lemma 1, worked
with a noncompact semisimple group G with finite center and a maximal compact
subgroup K. He proved that the highest weight of an irreducible finite-dimensional
representation of G with a K fixed vector vanishes on tp. Sugiura [1962] worked
with a simply connected compact semisimple group U and the fixed subgroup K
under an involution. He announced for that setting, on the basis of what he later
acknowledged to be an incomplete case-by-case analysis, the equivalence of (a)
and (c) for the highest weight of an irreducible finite-dimensional representation
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of U with a K fixed vector. Thus Helgason’s contribution was to introduce the
equivalence of (b) with (a) and (c), supply proofs for all the equivalences, and add
the converse result; in addition, Helgason provided a geometric interpretation of
the theorem”.
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Remarks

Page 50, Proposition 1.43. Whether or not C is nondegenerate, it is still true that

dimU + dimU⊥ ≥ dimV.

In fact, going over the proof of Proposition 1.43 shows that the equality ker√ = U⊥

is still valid. Hence

dimV = dim(domain(√)) = dim(ker(√)) + dim(image(√))

≤ dimU⊥ + dimU∗ = dimU⊥ + dimU,

and the inequality follows.

Page 50, Corollary 1.44. Whether or not C is nondegenerate, it is still true that
V = U ⊕ U⊥ if and only if C|U×U is nondegenerate. In fact, if V = U ⊕ U⊥, then
U ∩U⊥ = 0 and the equality U ∩U⊥ = rad(C|U×U ) of (1.42) shows that C|U×U is
nondegenerate. Conversely if C|U×U is nondegenerate, then U ∩U⊥ = 0 by (1.42).
From the previous remark we see that

dim(U + U⊥) = dimU + dimU⊥ − dim(U⊥ ∩ U) ≥ dimV − 0 = dimV,

and thus U + U⊥ = V . Hence V = U ⊕ U⊥.

Pages 108, line −2, to page 110, statement of Corollary 1.134. This material proves
that the exponential map is everywhere regular when the Lie algebra is nilpotent.
An alternative approach to this question is to establish the following general formula
for the differential of the exponential map:

(d exp)X = d(Lexp X)1 ◦
1− e−ad X

adX
.

When the Lie algebra is nilpotent, each adX is nilpotent. Consequently 1−e−ad X

ad X
is everywhere nonsingular, and the differential is everywhere one-one onto.
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