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PREFACE

Inthekind of analysis accomplished by representation theory, unitary
representations play a particularly important role because they are the
most convenient to decompose. However, only in rare cases does one
useaclassification toidentify candidatesfor theirreducible constituents.
More often one or more particular constructions will suffice to produce
enough candidates.

In 1978 lectures, Gregg Zuckerman introduced a new construction,
now called cohomological induction, of representations of semisimple
Lie groups that were expected often to be irreducible unitary. Philo-
sophically, cohomological induction is based on complex analysis in
the same sense that George Mackey’s construction of induced represen-
tationsis based on real analysis. Zuckerman’'s construction thus serves
as a natural complement to Mackey's, and it was immediately clear
that the new method might go a long way toward explaining the most
mysterious features of unitary representation theory. Zuckerman used
his construction to produce algebraic models of the Bott-Borel-Weil
Theorem, of Harish-Chandra's discrete series representations, of some
special representations arising in mathematical physics, and of many
more representations that are neither induced nor familiar.

Although Zuckerman's construction is based on complex analysis,
it isin fact completely algebraic. In the complex-analysis setting the
representation spaceis supposed to be aspace of Dol beault-cohomology
sections over a nhoncompact complex homogeneous space of the group
in question. But this setting turned out to be difficult to study in detail,
and Zuckerman created an algebraic analog by abstracting the notion
of passing to Taylor coefficients. If K isamaximal compact subgroup
of the semisimple group G, the representation of G of interest is to be
replaced by its subspace of vectors that transform in finite-dimensiona
spacesunder K. Thissubspace, knownasa(g, K) module, iscompatibly
arepresentation space for K and the complexified Lie algebra g of G.

Whether the construction is complex analytic or algebraic, thegoa is
to produce irreducible unitary representations. Zuckerman's represen-
tations, however, carry no obvious inner products, and construction of
a candidate for the inner product is a serious project. By contrast, in
Mackey’srea -analysistheory of induced representations, the space of a
representation isalwaysthe Hilbert space of square-integrable functions
on some measure space, and the inner product isimmediately at hand.

Xi



Xii PREFACE

This book is an exposition of five fundamental theorems about co-
homological induction, all related directly or indirectly to such inner
products. Wecall themtheDuality Theorem, thelrreducibility Theorem,
the Signature Theorem, the Unitarizability Theorem, and the Transfer
Theorem. The Introduction explains these theorems in the context of
their history and mativation.

A chapter-by-chapter list of prerequisites for the book appears on
p. Xv. Roughly speaking, it is assumed for the first three chapters that
thereader knowsabout elementary Lietheory, universal envelopingage-
bras, the abstract representation theory of compact groups, distributions
on manifoldsasin Appendix B, and elementary homological algebraas
in Appendix C. Later chapters assume also the Cartan-Weyl theory for
semisimple Lie algebras and compact connected Lie groups, somebasic
factsabout real formsand parabolic subalgebras, and spectral sequences
asin Appendix D.

Zuckerman introduced the Duality Theorem (8111.2 below) as a con-
jecture, showing how it could be used to construct (possibly indefinite)
Hermitian forms on cohomologically induced representations. With
P. Trauber, he proposed several ideas toward proofs. Among other
things, Zuckerman and Trauber showed how to write down the pairing
in the Duality Theorem; what was not obvious was that the pairing
wasinvariant under the representation. Enright-Wallach [1980]* gavea
proof of thisinvariance, and therefore of the Duality Theorem.

Zuckerman'’s algebraic construction of (g, K) modules via Taylor co-
efficients uses a functor I' that defines away the question of conver-
gence. The functor T is not exact, only left exact, and the degrees
of its derived functors play the role of the degrees of the Dolbeault
cohomology classes. The initial definition of an invariant Hermitian
form on a cohomologically induced representation involved a mixture
of the derived functors of I" and another algebraic construction (“ind” in
Chapter 6 of Vogan [19814]) that did not fit well. Zuckerman recognized
that this combination was incongruous and searched for a right-exact
functor IT to replace I'. His search was unsuccessful, and afirst version
of IT was not announced until Bernstein [1983]. The use of a properly
defined IT iscritical tothe approach taken in thisbook, and our definition
isin terms of achange of rings.

We begin, following a 1970s idea of Flath and Deligne that was
developed in Knapp-Vogan [1986], by introducing a “Hecke algebra’
R(g, K), which may beregarded asthe set of bi-K finite distributionson

* A name followed by a bracketed year is an alusion to the list of References at the end
of the book.
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the underlying group G with support in the compact subgroup K. Theset
R(g, K) is a complex associative algebra with an approximate identity,
and (g, K) modules coincide with “approximately unital” modules for
R(g, K). From this point of view the Zuckerman functor I becomes a
Hom type change-of-ring functor of the kind studied in Cartan-Eilenberg
[1956]. Thisfact immediately suggests using the corresponding tensor
product change-of-ring functor as I1.

In fact, from the Hecke algebra point of view, the functors “ind” and
“pro” in Chapter 6 of Vogan [19814] are also change-of-ring functors
constructed from ® and Hom, respectively, and the same thing is true
of the functors “coinvariants’ and “invariants,” whose derived functors
give Lie agebra homology and cohomology. Thus there are realy
just two master functors in the theory, having to do with changes of
rings by ® and Hom. These functors are called P and | in this book
because of their effect on projectives and injectives. Many fundamental
results (including versions of Frobenius reciprocity) are conseguences
of standard associativity formulas for ® and Hom.

With these general resultsin hand, Chapter V takes up the definition
and first properties of conomological induction. Thefunctors R consid-
ered in Vogan [19814] are built from I' and pro, thus from the master
functor | mentioned above. To construct Hermitian forms, it is essential
to useinstead £, constructed analogously from IT and ind, thusfrom the
master functor P.

Onceinvariant Hermitian forms have been constructed with the aid of
the Duality Theorem, the question arises whether the forms are definite
and henceareinner products. The Signature Theorem, provedin Chapter
VI, addresses this question on that part of the cohomologically induced
representation that is most easily related to the inducing representation.
(Thesubspacein questionisthe“bottom layer” first considered in Speh-
Vogan [1980].) The theorem says that cohomological induction always
preserves a part of the signature of a Hermitian form. More precisely it
identifies subspaces of theinducing and cohomol ogically induced repre-
sentationsand saysthat the Hermitian forms on these two subspaceshave
the same signature. An important feature of the Signature Theorem is
that it makes no positivity assumption on the parameters of theinducing
representation.

By contrast, the remaining three main theorems do include some
positivity hypothesis. The Irreducibility Theorem (Chapter VIII) gives
conditionsunder which cohomol ogical induction carriesirreduciblerep-
resentationsto irreducibl e representations, and the Unitarizability Theo-
rem (Chapter | X) givesconditionsunder which cohomological induction
carries unitary representations to unitary representations. Zuckerman
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visualized the Irreducibility Theorem as a consequence of the Duality
Theorem and gave a number of the ideas needed for a proof; all of the
ideas are in place in Vogan [1981a]. The Unitarizability Theorem is
newer and wasfirst proved in Vogan [1984]. Together the Irreducibility
Theorem and Unitarizability Theorem finally give confirmation that
cohomological inductionisactually aconstruction of irreducible unitary
representations.

Once cohomologica induction has constructed irreducible unitary
representations, the question is what these representations are and how
they can be related to each other. This topic is addressed in Chapter
XI. A key tool in the investigation is the last of the five main theo-
rems, the Transfer Theorem, which permits analysis of the effect of a
“change of polarization” in constructionslike cohomological induction.
Consequently one can compare cohomological induction with Mackey
induction and locate many cohomologically induced representationsin
the Langlands classification.

A few words are in order about the origins of this book. David Vogan
sketched a proof of the Signature Theorem as early as 1984. Anthony
Knapp began to study this sketch in 1985, in order to be able to use the
result in somejoint work with M. W. Baldoni-Silva. Thisstudy revealed
various gaps and difficulties in the proof and in the literature on which
it was based, and the first fruit of the study was Knapp-Vogan [1986].
Among other things, this preprint gave a rigorous development of the
functor . The expected publication of the Signature Theorem was
delayed because of other developments in the theory, and the authors
eventually decided on a more complete treatment of cohomological
induction. The present work may beregarded asarevision and extension
of Knapp [1988] and Vogan [19814].

For the most part, attributions of theorems appear in the end Notes.
That section also mentionsrelated papersandtellsof somefurther results
beyond those in the text.

The authors are grateful to Renée Burton for reading and criticizing
extensive portions of the manuscript. The typesetting was by .Ap4S-
TeX. Knapp received financial support from a visiting position at the
Massachusetts | nstitute of Technology and from National Science Foun-
dation Grants DMS 85-01793 and DM S 91-00367, and Vogan received
financial support from National Science Foundation Grants DMS 85-
04029 and DM 'S 90-11483.
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PREREQUISITESBY CHAPTER

This book assumes knowledge of first-year graduate linear algebra,
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STANDARD NOTATION

Meaning

number of elementsin S

empty set

complement of set, contragredient module
n>0

integers, rationals, reals, complex numbers
real and imaginary parts of z
complex conjugate of z
multiplicative identity

identity matrix

dimension of vector space

dual of vector space
complexification of vector space
trace of A

transpose of A

index or multiplicity of B in A
direct sum of the V,

linear span of S

conjugate transpose of A

identity component of group G
general linear, special linear
orthogonal, specia orthogonal
unitary, specia unitary

symplectic

infinitely differentiable

R linear maps of A into B

R linear maps of A into itself
automorphism group of Vv

adjoint representation of group
adjoint representation of Lie agebra
semidirect product

universal enveloping algebra

n™ member of filtration of U (g)
symmetric algebra

n" homogeneous summand of S(g)
symmetrization from S(g) to U (g)
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