Corrections and Clarifications to Basic Real Analysis, Digital Second Edition

Page 2, line -16. Change "subtraction" to "negative".
Page 2, line -15 . Delete "or difference".
Page 2, line -14 . Insert after "respective cuts" the clause
", and the negative of a cut r is the set of all rationals q such that there exists a rational $q^{\prime}>0$ with $-q-q^{\prime}$ not in $r "$.

Page 3, line 7. Change "Then $-x$ is" to "Then $-\sup _{x \in-E} x$ is".
Page 8, proof of (c), line 2. Change "choose $N \geq n_{l-1}$ " to "choose $N>n_{l-1}$ ".
Page 8, proof of (c), line 3. Change "choose $n_{l}>n_{l-1}$ " to "choose $n_{l} \geq N$ ".
Page 8 , line -1 . Change "finitely many a " to "finitely many n ".
Page 11, proof of Theorem 1.10, line -2. Change " $\delta_{x_{n_{k}}} \geq \frac{1}{2} \delta_{x^{\prime}}\left(\frac{\epsilon}{2}\right)$ " to
" $\delta_{x_{n_{k}}}(\epsilon) \geq \frac{1}{2} \delta_{x^{\prime}}\left(\frac{\epsilon}{2}\right)$ ".
Page 22, line -10 . Change "Choose" to "Arguing by contradiction, choose".
Page 22, line -9 . Change ". Then" to ", and then".
Page 22, line -8. Change " $\sup _{n} K_{n}$ in \mathbb{R}^{*} " to ${ }^{\prime} \sup _{n} K_{n}=+\infty$ in \mathbb{R}^{*} ".
Page 22 , line -1 . Change " $1+M_{x_{0}}$ is a uniform bound for the functions f_{n} " to " $1+M_{x_{0}}$ is a (finite) uniform bound for the functions f_{n}, contradiction".

Page 23 , line -5 of proof of (a). To simplify the notation, change " $\delta^{\prime} / 2$ " to " δ^{\prime} " in two places.

Page 24, line 6 of Example. Change " x is in the closed interval $[a, b]$ and t is in the open interval (a, b) " to " x and t are distinct members of the closed interval $[a, b]$ ".

Page 30, lines 2 and 3 of Remarks. For easier reading, change " $\int_{b}^{a} f d x=-\int_{a}^{b} f d x$ when $b<a$ " to " $\int_{a}^{b} f d x=-\int_{b}^{a} f d x$ when $a>b$ ".

Page 30, proof of Lemma 1.27, lines 3 and 4. Change "the larger of the numbers of times c occurs in P_{1} and P_{2} " to "one less than the sum of the number of times that c occurs in P_{1} and the number of times that c occurs in P_{2} ".

Page 35. lines 2 to 4 . Delete the sentence "It follows ... say by M."
Page 35, line 4. Change " $|f(x)| \leq M$ " to " $|f(x)| \leq M_{N}+1$ ".
Page 39, proof of Theorem 1.35, line 5. Change "types" to "kinds" for consistency of terminology.

Page 40 , line 11. Change " ϵ " to " 3ϵ " in the middle, and change " 3ϵ " to " 4ϵ " at the right end.
Page 40, line 13. Change " 3ϵ " to " 4ϵ ".
Page 40, line 15. Change " 3ϵ " to " 4ϵ " twice.
Page 40 , line 16. Change " 3ϵ " to " 4ϵ ".
Page 40, first line of last display. Change " $\left|U(P, f)-{\overline{\int_{a}}}^{b} f d x\right|$ " to
" $\left|\int_{a}{ }^{b} f d x-U(P, f)\right| "$ for easier reading.
Page 41, line -3 . Change $" \max \{\operatorname{Re} w, \operatorname{Im} w\}$ " to " $\max \{|\operatorname{Re} w|,|\operatorname{Im} w|\} "$ on both sides of the inequality.

Page 45 , lines $12-13$. Change "see examples both where the limit is identically 0 and where it is" to
"see convergent examples where this limit is identically 0 and where this limit is".
Page 45 , line -5 . Change " $\sum_{n=0}^{\infty} c_{n} z^{n} "$ to $" \sum_{n=0}^{\infty}\left|c_{n} z^{n}\right| "$.
Page 46, line -5 . Change "of f " to "of f about $x=a$ ".
Page 48, line -5 . Change " $\epsilon G(z)+\epsilon F(z)$ " to " $\epsilon F(z)+\epsilon G(z)$ " for parallelism with the previous line.
Page 50, just before Corollary 1.43. Insert a one-sentence paragraph saying, "With Corollary 1.42 in place, we define $a^{z}=e^{z \log a}$ for $a>0$ and $z \in \mathbb{C}$."

Page 51, line - 8 . Change " $[0,2 \pi)$ " to " $[0,2 \pi)$ and $x_{1} \geq x_{2}$ ".
Page 51, lines -7 and -6 . Change " $(-2 \pi, 2 \pi)$ " to " $[0,2 \pi)$ ".
Page 58, line -17 . Change" $\left|\sigma_{k}-s\right| \leq \epsilon^{2}$ " to " $\left|\sigma_{k}-s\right|<\epsilon^{2}$ ".
Page 60 , lines -12 and -10 . Change $" \delta \leq x \leq 1 "$ to " $\delta \leq|x| \leq 1$ ".
Page 61, line 1. Change " $Q(c x)$ " to " $Q(c x)$ on $[0,1]$ ".
Page 86, line -2 of (2). Change "the Hermitian inner product" to
"the real part of the Hermitian inner product".
Page 113, line 5 of the proof of Theorem 2.42. Change "Choosing $R=R_{0} "$ to
"Choosing $R_{0} \geq R$ ".
Page 190, line 5 of proof in the middle of the page. Change
" $\left|\sum_{j=1}^{m}\right| \gamma^{\prime}\left(t_{j}\right)\left|\left(t_{j}-t_{j-1}\right)-\int_{a^{\prime}}^{b^{\prime}}\right| \gamma^{\prime}(t) d t \mid<\varepsilon "$ to
$"\left|\sum_{j=1}^{m}\right| \gamma^{\prime}\left(t_{j}\right)\left|\left(t_{j}-t_{j-1}\right)-\int_{a^{\prime}}^{b^{\prime}}\right| \gamma^{\prime}(t)|d t|<\varepsilon "$.
Page 190, line 10 of proof in the middle of the page. Change
" $\left|\sum_{j=1}^{m}\right| \gamma^{\prime}\left(t_{j}\right)\left|\left(t_{j}-t_{j-1}\right)-\int_{a^{\prime}}^{b^{\prime}}\right| \gamma^{\prime}(t) d t \mid<\epsilon "$ to
" $\left|\sum_{j=1}^{m}\right| \gamma^{\prime}\left(t_{j}\right)\left|\left(t_{j}-t_{j-1}\right)-\int_{a^{\prime}}^{b^{\prime}}\right| \gamma^{\prime}(t)|d t|<\epsilon$ ".
Page 191, two lines below " $(\dagger \dagger)$ " change the left member of the inequality from
" $\left|\ell\left(\gamma_{\left[a^{\prime}, b^{\prime}\right]}\right)-\int_{a^{\prime}}^{b^{\prime}}\right| \gamma^{\prime}(t) d t \mid "$ to " $\left|\ell\left(\gamma_{\left[a^{\prime}, b^{\prime}\right]}\right)-\int_{a^{\prime}}^{b^{\prime}}\right| \gamma^{\prime}(t)|d t| "$.
Page 201, line 1. Change " q by a piecewise" to " p by a piecewise".
Page 554, proof of Proposition 11.17. The phrase "it follows that $\mathcal{B}_{0}(X) \times \mathcal{B}_{0}(Y) \subseteq$ $\mathcal{B}_{0}(X \times Y)$ " in the first sentence of the proof needs some justification. Thus replace the first sentence of the proof with the following paragraphs:
"If K_{X} and K_{Y} are compact G_{δ} 's in X and Y, then $K_{X} \times K_{Y}$ is a compact G_{δ} in $X \times Y$. Consequently $K_{X} \times K_{Y}$ is a member of $\mathcal{B}_{0}(X \times Y)$. More generally let K_{X} and L_{X} be compact G_{δ} 's in X with $L_{X} \subseteq K_{X}$, and let K_{Y} and L_{Y} be compact G_{δ} 's in Y with $L_{Y} \subseteq K_{Y}$. Then $\left(K_{X}-L_{X}\right) \times\left(K_{Y}-L_{Y}\right)$ is a member of $\mathcal{B}_{0}(X \times Y)$.
"We need to observe that if $\mathcal{K}_{0}(X)$ is the collection of all finite disjoint unions in X of sets $K-L$, where K and L are compact sets of type G_{δ} in X with $L \subseteq K$, then $\mathcal{K}_{0}(X)$ is a ring of sets. To verify this observation, one argues exactly as in the proof of Lemma 11.2. A similar observation applies to Y, and we conclude thet every set $E \times F$ with E in $\mathcal{K}_{0}(X)$ and F in $\mathcal{K}_{0}\left(Y\right.$ is in $\mathcal{B}_{0}(X \times Y)$.
"Fix a member E of $\mathcal{K}_{0}(X)$. The class of subsets F of Y for which $E \times F$ is in $\mathcal{B}_{0}(X \times Y)$ is a monotone class that contains all members of $\mathcal{K}_{0}(Y)$. Since $\mathcal{K}_{0}(Y)$ is a ring of sets, the Monotone Class Lemma (Lemma 5.43) allows us to conclude that the class contains $\mathcal{B}_{0}(Y)$. A second application of the Monotone Class Lemma shows that every set $E \times F$ with E in $\mathcal{B}_{0}(X)$ and F in $\mathcal{B}_{0}(Y)$ is in $\mathcal{B}_{0}(X \times Y)$. We can therefore conclude that $\mathcal{B}_{0}(X) \times \mathcal{B}_{0}(Y) \subseteq \mathcal{B}_{0}(X \times Y) . "$

Page 593, line 10. Change "closed sets in Y " to "closed sets in \mathbb{R} ". 3/28/2023

