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CHAPTER II

Wedderburn–Artin Ring Theory

Abstract. This chapter studies finite-dimensional associative division algebras, as well as other
finite-dimensional associative algebras and closely related rings. The chapter is in two parts that
overlap slightly in Section 6. The first part gives the structure theory of the rings in question, and
the second part aims at understanding limitations imposed by the structure of a division ring.

Section 1 briefly summarizes the structure theory for finite-dimensional (nonassociative) Lie
algebras that was the primary historical motivation for structure theory in the associative case. All
the algebras in this chapter except those explicitly called Lie algebras are understood to be associative.

Section 2 introduces left semisimple rings, defined as ringsR with identity such that the left
R moduleR is semisimple. Wedderburn’s Theorem says that such a ring is the finite product of
full matrix rings over division rings. The number of factors, the size of each matrix ring, and the
isomorphism class of each division ring are uniquely determined. It follows that left semisimple
and right semisimple are the same. If the ring is a finite-dimensional algebra over a fieldF , then the
various division rings are finite-dimensional division algebras overF . The factors of semisimple
rings are simple, i.e., are nonzero and have no nontrivial two-sided ideals, but an example is given
to show that a simple ring need not be semisimple. Every finite-dimensional simple algebra is
semisimple.

Section 3 introduces chain conditions into the discussion as a useful generalization of finite
dimensionality. A ringR with identity is left Artinian if the left ideals of the ring satisfy the
descending chain condition. Artin’s Theorem for simple rings is that left Artinian is equivalent to
semisimplicity, hence to the condition that the given ring be a full matrix ring over a division ring.

Sections 4–6 concern what happens when the assumption of semisimplicity is dropped but some
finiteness condition is maintained. Section 4 introduces the Wedderburn–Artin radical radR of a
left Artinian ring R as the sum of all nilpotent left ideals. The radical is a two-sided nilpotent ideal.
It is 0 if and only if the ring is semisimple. More generallyR/ radR is always semisimple ifR is
left Artinian. Sections 5–6 state and prove Wedderburn’s Main Theorem—that a finite-dimensional
algebraR with identity over a fieldF of characteristic 0 has a semisimple subalgebraSsuch thatR
is isomorphic as a vector space toS⊕ radR. The semisimple algebraS is isomorphic toR/ radR.
Section 5 gives the hard part of the proof, which handles the special case thatR/ radR is isomorphic
to a product of full matrix algebras overF . The remainder of the proof, which appears in Section 6,
follows relatively quickly from the special case in Section 5 and an investigation of circumstances
under which the tensor product overF of two semisimple algebras is semisimple. Such a tensor
product is not always semisimple, but it is semisimple in characteristic 0.

The results about tensor products in Section 6, but with other hypotheses in place of the condition
of characteristic 0, play a role in the remainder of the chapter, which is aimed at identifying certain
division rings. Sections 7–8 provide general tools. Section 7 begins with further results about tensor
products. Then the Skolem–Noether Theorem gives a relationship between any two homomorphisms
of a simple subalgebra into a simple algebra whose center coincides with the underlying field of
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1. Historical Motivation 77

scalars. Section 8 proves the Double Centralizer Theorem, which says for this situation that the
centralizer of the simple subalgebra in the whole algebra is simple and that the product of the
dimensions of the subalgebra and the centralizer is the dimension of the whole algebra.

Sections 9–10 apply the results of Sections 6–8 to obtain two celebrated theorems—Wedderburn’s
Theorem about finite division rings and Frobenius’s Theorem classifying the finite-dimensional
associative division algebras over the reals.

1. Historical Motivation

Elementary ring theory came from several sources historically and was already in
place by 1880. Some of the sources are field theory (studied by Galois and others),
rings of algebraic integers (studied by Gauss, Dirichlet, Kummer, Kronecker,
Dedekind, and others), and matrices (studied by Cayley, Hamilton, and others).
More advanced general ring theory arose initially not on its own but as an effort
to imitate the theory of “Lie algebras,” which began about 1880.

A brief summary of some early theorems about Lie algebras will put matters
in perspective. The term “algebra” in connection with a fieldF refers at least to
an F vector space with a multiplication that isF bilinear. This chapter will deal
only with two kinds of such algebras, the Lie algebras and those algebras whose
multiplication is associative. If the modifier “Lie” is absent, the understanding is
that the algebra is associative.

Lie algebras arose originally from “Lie groups”—which we can regard for
current purposes as connected groups with finitely many smooth parameters—
by a process of taking derivatives along curves at the identity element of the
group. Precise knowledge of that process will be unnecessary in our treatment,
but we describe one example: The vector spaceMn(R) of all n-by-n matrices over
R becomes a Lie algebra with multiplication defined by the “bracket product”
[X, Y] = XY − Y X. If G is a closed subgroup of the matrix group GL(n, R)

andg is the set of all members ofMn(R) of the form X = c′(0), wherec is a
smooth curve inG with c(0) equal to the identity, then it turns out that the vector
spaceg is closed under the bracket product and is a Lie algebra. Although one
might expect the Lie algebrag to give information about the Lie groupG only
infinitesimally at the identity, it turns out thatg determines the multiplication rule
for G in a whole open neighborhood of the identity. Thus the Lie group and Lie
algebra are much more closely related than one might at first expect.

We turn to the underlying definitions and early main theorems about Lie alge-
bras. LetF be a field. A vector spaceA overF with anF bilinear multiplication
(X, Y) �→ [X, Y] is aLie algebra if the multiplication has the two properties

(i) [ X, X] = 0 for all X ∈ A,
(ii) (Jacobi identity) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 for all

X, Y, Z ∈ A.
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Multiplication is often referred to asbracket. It is usually not associative. The
vector spaceMn(F) with [X, Y] = XY − Y X is a Lie algebra, as one easily
checks by expanding out the various brackets that are involved; it is denoted by
gl(n, F).

The elementary structural definitions with Lie algebras run parallel to those
with rings. ALie subalgebraSof A is a vector subspace closed under brackets,
anideal I of A is a vector subspace such that [X, Y] is in I for X ∈ I andY ∈ A,
a homomorphism ϕ : A1 → A2 of Lie algebras is a linear mapping respecting
brackets in the sense thatϕ[X, Y] = [ϕ(X), ϕ(Y)] for all X, Y ∈ A1, and an
isomorphism is an invertible homomorphism. Every ideal is a Lie subalgebra.
In contrast to the case of rings, there is no distinction between “left ideals” and
“right ideals” because the bracket product is skew symmetric. Under the passage
from Lie groups to Lie algebras, abelian Lie groups yield Lie algebras with all
brackets 0, and thus one says that a Lie algebra isabelian if all its brackets are 0.

Examples of Lie subalgebras ofgl(n, F) are the subalgebrasl(n, F) of all
matrices of trace 0, the subalgebraso(n, F) of all skew-symmetric matrices, and
the subalgebra of all upper-triangular matrices.

The elementary properties of subalgebras, homomorphisms, and so on for Lie
algebras mimic what is true for rings: The kernel of a homomorphism is an
ideal. Any ideal is the kernel of a quotient homomorphism. IfI is an ideal in
A, then the ideals ofA/I correspond to the ideals ofA containing I , just as
in the First Isomorphism Theorem for rings. IfI and J are ideals inA, then
(I + J)/I ∼= J/(I ∩ J), just as in the Second Isomorphism Theorem for rings.

The connection of Lie algebras to Lie groups makes one want to introduce
definitions that lead toward classifying all Lie algebras that are finite-dimensional.
We therefore assume for the remainder of this section that all Lie algebras under
discussion are finite-dimensional overF . Some of the steps require conditions
on F , and we shall assume thatF has characteristic 0.

Group theory already had a notion of “solvable group” from Galois, and this
leads to the notion of solvable Lie algebra. InA, let [A, A] denote the linear span
of all [X, Y] with X, Y ∈ A; [ A, A] is called thecommutator ideal of A, and
A/[ A, A] is abelian. In fact, [A, A] is the smallest idealI in A such thatA/I
is abelian. Starting fromA, let us form successive commutator ideals. Thus put
A0 = A, A1 = [ A0, A0], . . . , An = [ An−1, An−1], so that

A = A0 ⊇ A1 ⊇ · · · ⊇ An ⊇ · · · .

The terms of this sequence are all the same from some point on, by finite dimen-
sionality, and we say thatA is solvableif the terms are ultimately 0. One easily
checks that the sumI + J of two solvable ideals inA, i.e., the set of sums, is
a solvable ideal. By finite dimensionality, there exists a unique largest solvable
ideal. This is called theradical of A and is denoted by radA. The Lie algebra
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A is said to besemisimpleif rad A = 0. It is easy to use the First Isomorphism
Theorem to check thatA/ radA is always semisimple.

In the direction of classifying Lie algebras, one might therefore want to see how
all solvable Lie algebras can be constructed by successive extensions, identify
all semisimple Lie algebras, and determine how a general Lie algebra can be
constructed from a semisimple Lie algebra and a solvable Lie algebra by an
extension.

The first step in this direction historically concerned identifying semisimple
Lie algebras. We say that the Lie algebraA is simple if dim A > 1 and if A
contains no nonzero proper ideals.

Working with the field C but in a way that applies to other fields of
characteristic 0, W. Killing proved in 1888 thatA is semisimple if and only
if A is the (internal) direct sum of simple ideals. In this case the direct summands
are unique, and the only ideals inA are the partial direct sums.

This result is strikingly different from what happens for abelian Lie algebras,
for which the theory reduces to the theory of vector spaces. A 2-dimensional
vector space is the internal direct sum of two 1-dimensional subspaces in many
ways. But Killing’s theorem says that the decomposition of semisimple Lie
algebras into simple ideals is unique, not just unique up to some isomorphism.

É. Cartan in his 1894 thesis classified the simple Lie algebras, up to isomor-
phism, for the case that the field isC. The Lie algebrassl(n, C) for n ≥ 2 and
so(n, C) for n = 3 andn ≥ 5 were in his list, and there were others. Killing had
come close to this classification in his 1888 work, but he had made a number of
errors in both his statements and his proofs.

E. E. Levi in 1905 addressed the extension problem for obtaining all finite-
dimensional Lie algebras overC from semisimple ones and solvable ones. His
theorem is that for any Lie algebraA, there exists a subalgebraS isomorphic to
A/ radA such thatA = S⊕ radA as vector spaces. In essence, this result says
that the extension definingA is given by a semidirect product.

The final theorem in this vein at this time in history was a 1914 result of Cartan
classifying the simple Lie algebras when the fieldF is R. This classification is a
good bit more complicated than the classification whenF is C.

With this background in mind, we can put into context the corresponding
developments for associative algebras. Although others had done some earlier
work, J. H. M. Wedderburn made the first big advance for associative algebras in
1905. Wedderburn’s theory in a certain sense is more complicated than the theory
for Lie algebras because left ideals in the associative case are not necessarily two-
sided ideals. Let us sketch this theory.

For the remainder of this section until the last paragraph,A will denote a finite-
dimensional associative algebra over a fieldF of characteristic 0, possibly the 0
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algebra. We shall always assume thatA has an identity. Although we shall make
some definitions here, we shall repeat them later in the chapter at the appropriate
times. For many results later in the chapter, the fieldF will not be assumed to be
of characteristic 0.

As in Chapter X ofBasic Algebra, a unital leftA moduleM is said to be simple
if it is nonzero and it has no proper nonzeroA submodules, semisimple if it is the
sum (or equivalently the direct sum) of simpleA submodules. The algebraA is
semisimpleif the left A moduleA is a semisimple module, i.e., ifA is the direct
sum of simple left ideals;A is simple if it is nonzero and has no nontrivial two-
sided ideals. In contrast to the setting of Lie algebras, we make no exception for
the 1-dimensional case; this distinction is necessary and is continually responsible
for subtle differences between the two theories.

Wedderburn’s first theorem has two parts to it, the first one modeled on Killing’s
theorem for Lie algebras and the second one modeled on Cartan’s thesis:

(i) The algebraA is semisimple if and only if it is the (internal) direct sum
of simple two-sided ideals. In this case the direct summands are unique,
and the only two-sided ideals ofA are the partial direct sums.

(ii) The algebraA is simple if and only ifA ∼= Mn(D) for some integern ≥ 1
and some division algebraD over F . In particular, ifF is algebraically
closed, thenA ∼= Mn(F) for somen.

E. Artin generalized the Wedderburn theory to a suitable kind of “semisimple
ring.” For part of the theory, he introduced a notion of “radical” for the associative
case—theradical of a finite-dimensional associative algebraA being the sum of
the “nilpotent” left ideals ofA. Here a left idealI is callednilpotent if I k = 0
for somek. The radical radA is a two-sided ideal, andA/ radA is a semisimple
ring.

Wedderburn’s Main Theorem, proved later in time and definitely assuming
characteristic 0, is an analog for associative algebras of Levi’s result about Lie
algebras. The result for associative algebras is thatA decomposes as a vector-
space direct sumA = S⊕ radA, whereS is a semisimple subalgebra isomorphic
to A/ radA.

The remaining structural question for finite-dimensional associative algebras
is to say something about simple algebras when the field is not algebraically
closed. Such a result may be regarded as an analog of the 1914 work by Cartan.
In the associative case one then wants to know what theF isomorphism classes of
finite-dimensional associative division algebrasD are for a given fieldF . We now
drop the assumption that the fieldF has characteristic 0. In asking this question,
one does not want to repeat the theory of field extensions. Consequently one
looks only for classes of division algebras whose center isF . If F is algebraically
closed, the only suchD is F itself, as we shall observe in more detail in Section 2.
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If F is a finite field, one is led to another theorem of Wedderburn’s, saying thatD
has to be commutative and hence thatD = F ; this theorem appears in Section 9.
If F is R, one is led to a theorem of Frobenius saying that there are just two such
D’s up toR isomorphism, namelyR itself and the quaternionsH; this theorem
appears in Section 10. For a general fieldF , it turns out that the set of classes
of finite-dimensional division algebras with centerF forms an abelian group.
The group is called the “Brauer group” ofF . Its multiplication is defined by the
condition that the class ofD1 timesD2 is the class of a division algebraD3 such
that D1 ⊗F D2

∼= Mn(D3) for somen; the inverse of the class ofD is the class
of the opposite algebraDo, and the identity is the class ofF . The study of the
Brauer group is postponed to Chapter III. This group has an interpretation in terms
of cohomology of groups, and it has applications to algebraic number theory.

2. Semisimple Rings and Wedderburn’s Theorem

We now begin our detailed investigation of associative algebras over a field. In
this section we shall address the first theorem of Wedderburn’s that is mentioned
in the previous section. It has two parts, one dealing with semisimple algebras
and one dealing with finite-dimensional simple algebras. The first part does not
need the finite dimensionality as a hypothesis, and we begin with that one.

Let R be a ring with identity. The ringR is left semisimple if the left R
module R is a semisimple module, i.e., ifR is the direct sum of minimal left
ideals.1 In this caseR = ⊕

i ∈S Ii for some setS and suitable minimal left
ideals Ii . SinceR has an identity, we can decompose the identity according to
the direct sum as 1= 1i1 + · · · + 1in for some finite subset{i1, . . . , in} of S,
where 1i k is the component of 1 inIik . Multiplying by r ∈ R on the left, we
see thatR ⊆ ⊕n

k=1 Iik . ConsequentlyR has to be afinite sum of minimal left
ideals. A ringR with identity is right semisimple if the right R moduleR is a
semisimple module. We shall see later in this section that left semisimple and
right semisimple are equivalent.

EXAMPLES OF SEMISIMPLE RINGS.

(1) If D is a division ring, then we saw in Example 4 in Section X.1 ofBasic
Algebra that the ringR = Mn(D) is left semisimple in the sense of the above
definition. Actually, that example showed more. It showed thatR as a leftR
module is given byMn(D) ∼= Dn ⊕ · · · ⊕ Dn, where eachDn is a simple leftR
module and thej th summandDn corresponds to the matrices whose only nonzero
entries are in thej th column. The leftR moduleMn(D) has a composition series
whose terms are the partial sums of then summandsDn. If M is any simple
left Mn(D) module and ifx �= 0 is in M , then M = Mn(D)x. If we set
I = {r ∈ Mn(D) | r x = 0}, thenI is a left ideal inMn(D) andM ∼= Mn(D)/I

1By convention, a “minimal left ideal” always means a “minimal nonzero left ideal.”
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as a leftMn(D) module. In other words,M is an irreducible quotient module
of the left Mn(D) moduleMn(D). By the Jordan–H¨older Theorem (Corollary
10.7 ofBasic Algebra), M occurs as a composition factor. HenceM ∼= Dn as
a left Mn(D) module. Hence every simple leftMn(D) module is isomorphic to
Dn. We shall use this style of argument repeatedly but will ordinarily include
less detail.

(2) If R1, . . . , Rn are left semisimple rings, then the direct productR =∏n
i =1 Ri is left semisimple.2 In fact, each minimal left ideal ofRi , when included

into R, is a minimal left ideal ofR. HenceR is the sum of minimal left ideals
and is left semisimple. By the same kind of argument as for Example 1, every
simple leftR module is isomorphic to one of these minimal left ideals.

Lemma 2.1. Let D be a division ring, letR = Mn(D), and letDn be the
simple left R module of column vectors. Each member ofD acts onDn by
scalar multiplication on theright side, yielding a member of EndR(Dn). In turn,
EndR(Dn) is a ring, and this identification therefore is an inclusion of the members
of D into the rightD module EndR(Dn). The inclusion is in fact an isomorphism
of rings: Do ∼= EndR(Dn), whereDo is the opposite ring ofD.

PROOF. Let ϕ : D → EndR(Dn) be the function given byϕ(d)(v) = vd.
Thenϕ(dd′)(v) = v(dd′) = (vd)d′ = ϕ(d′)(vd) = ϕ(d′)(ϕ(d)(v)). Since the
order of multiplication inD is reversed byϕ, ϕ is a ring homomorphism ofDo

into EndR(Dn). It is one-one becauseDo is a division ring and has no nontrivial
two-sided ideals. To see that it is onto EndR(Dn), let f be in EndR(Dn). Put

f


 1

0
...
0


 =




d
d2

...
dn


. Since f is anR module homomorphism,

f




a1

a2

...
an


 = f





 a1 0 ··· 0

a2 0 ··· 0
...

an 0 ··· 0





 1

0
...
0





 =


 a1 0 ··· 0

a2 0 ··· 0
...

an 0 ··· 0


 f


 1

0
...
0




=

 a1 0 ··· 0

a2 0 ··· 0
...

an 0 ··· 0







d
d2

...
dn


 =


 a1d

a2d
...

and


 = ϕ(d)




a1

a2

...
an


 .

Thereforeϕ(d) = f , andϕ is onto. �
2Some comment is appropriate about the notationR = ∏n

i =1 Ri and the terminology “direct
product.” Indeed,

∏n
i =1 Ri is a product in the sense of category theory within the category of rings

or the category of rings with identity. Sometimes one viewsRalternatively as built fromn two-sided
ideals, each corresponding to one of then coordinates; in this case, one may say thatR is the “direct
sum” of these ideals. This direct sum is to be regarded as a direct sum of abelian groups, or perhaps
vector spaces orR modules, but it is not a coproduct within the category of rings with identity.
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Theorem 2.2(Wedderburn). IfR is any left semisimple ring, then

R ∼= Mn1(D1) × · · · × Mnr (Dr )

for suitable division ringsD1, . . . , Dn and positive integersn1, . . . , nr . The num-
berr is uniquely determined byR, and the ordered pairs(n1, D1), . . . , (nr , Dr )

are determined up to a permutation of{1, . . . , r } and an isomorphism of each
Dj . There are exactlyr mutually nonisomorphic simple leftR modules, namely
(D1)

n1, . . . , (Dr )
nr .

PROOF. Write R as the direct sum of minimal left ideals, and then regroup
the summands according to theirR isomorphism type asR ∼= ⊕r

j =1 nj Vj , where
nj Vj is the direct sum ofnj submodulesR isomorphic toVj and whereVi � Vj

for i �= j . The isomorphism is one of unital leftRmodules. PutDo
i = EndR(Vi ).

This is a division ring by Schur’s Lemma (Proposition 10.4b ofBasic Algebra).
Using Proposition 10.14 ofBasic Algebra, we obtain an isomorphism of rings

Ro ∼= EndR R ∼= HomR

( r⊕
i =1

ni Vi ,
r⊕

j =1
nj Vj

)
. (∗)

Define pi :
⊕r

j =1 nj Vj → ni Vi to be thei th projection andqi : ni Vi →⊕r
j =1 nj Vj to be thei th inclusion. Let us see that the right side of(∗) is iso-

morphic as a ring to
∏

i EndR(ni Vi ) via the mappingf �→ (p1 f q1, . . . , pr f qr ).
What is to be shown is thatpj f qi = 0 for i �= j . Here pj f qi is a member
of HomR(ni Vi , nj Vj ). The abelian group HomR(ni Vi , nj Vj ) is the direct sum
of abelian groups isomorphic to HomR(Vi , Vj ) by Proposition 10.12, and each
HomR(Vi , Vj ) is 0 by Schur’s Lemma (Proposition 10.4a).

Referring to(∗), we therefore obtain ring isomorphisms

Ro ∼=
r∏

i =1
HomR(ni Vi , ni Vi ) =

r∏
i =1

EndR(ni Vi )

∼=
r∏

i =1
Mni (EndR(Vi )) by Corollary 10.13

∼=
r∏

i =1
Mni (Do

i ) by definition ofDo
i .

Reversing the order of multiplication inRo and using the transpose map to
reverse the order of multiplication in eachMni (Do

i ), we conclude thatR ∼=∏r
i =1 Mni (Di ). This proves existence of the decomposition in the theorem.
We still have to identify the simple leftR modules and prove an appropriate

uniqueness statement. As we recalled in Example 1, we have a decomposition
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Mni (Di ) ∼= Dni
i ⊕ · · · ⊕ Dni

i of left Mni (Di ) modules, and each termDni
i is a

simple leftMni (Di ) module. The decomposition just proved allows us to regard
each termDni

i as a simple leftR module, 1≤ i ≤ r . Each of these modules
is acted upon by a different coordinate ofR, and hence we have produced at
leastr nonisomorphic simple leftR modules. Any simple leftR module must
be a quotient ofR by a maximal left ideal, as we observed in Example 2, hence
a composition factor as a consequence of the Jordan–H¨older Theorem. Thus
it must be one of theVj ’s in the previous part of the proof. There are only
r nonisomorphic suchVj ’s, and we conclude that the number of simple leftR
modules, up to isomorphism, is exactlyr .

For uniqueness suppose thatR ∼= Mn′
1
(D′

1) × · · · × Mn′
s
(D′

s) as rings. Let

V ′
j = (D′

j )
n′

j be the unique simple leftMn′
j
(D′

j ) module up to isomorphism, and
regardV ′

j as a simple leftR module. Then we haveR ∼= ⊕s
j =1 n′

j V
′
j as left

R modules. By the Jordan–H¨older Theorem we must haver = s and, after a
suitable renumbering,ni = n′

i andVi
∼= V ′

i for 1 ≤ i ≤ r . Thus we have ring
isomorphisms

(D′
i )

o ∼= EndMn′
i
(D′

i )
(V ′

i ) by Lemma 2.1

∼= EndR(V ′
i )

∼= EndR(Vi ) sinceVi
∼= V ′

i

∼= Do
i .

Reversing the order of multiplication givesD′
i
∼= Di , and the proof is complete.

�

Corollary 2.3. For a ringR, left semisimple coincides with right semisimple.

REMARK. Therefore we can henceforth refer to left semisimple rings unam-
biguously assemisimple.

PROOF. The theorem gives the form of any left semisimple ring, and each ring
of this form is certainly right semisimple. �

Wedderburn’s original formulation of Theorem 2.2 was for algebras over a
field F , and he assumed finite dimensionality. The theorem in this case gives

R ∼= Mn1(D1) × · · · × Mnr (Dr ),

and the proof shows thatDo
i

∼= EndR(Vi ), whereVi is a minimal left ideal of
R of the i th isomorphism type. The fieldF lies inside EndR(Vi ), each member
of F yielding a scalar mapping, and hence eachDi is a division algebra over
F . EachDi is necessarily finite-dimensional overF , sinceR was assumed to be
finite-dimensional.
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We shall make occasional use in this chapter of the fact that ifD is a finite-
dimensional division algebra over an algebraically closed fieldF , thenD = F .
To see this equality, suppose thatx is a member ofD but not ofF , i.e., is not an
F multiple of the identity. Thenx andF together generate a subfieldF(x) of D
that is a nontrivial algebraic extension ofF , contradiction. Consequently every
finite-dimensional semisimple algebraR over an algebraically closed fieldF is
of the form

R ∼= Mn1(F) × · · · × Mnr (F),

for suitable integersn1, . . . , nr .
As we saw, the finite dimensionality plays no role in decomposing semisim-

ple rings as the finite product of rings that we shall call “simple.” The place
where finite dimensionality enters the discussion is in identifying simple rings
as semisimple, hence in establishing a converse theorem that every finite direct
product of simple rings, each equal to an ideal of the given ring, is necessarily
semisimple. We say that a nonzero ringR with identity is simple if its only
two-sided ideals are 0 andR.

EXAMPLES OF SIMPLE RINGS.

(1) If D is a division ring, thenMn(D) is a simple ring. In fact, letJ be a
two-sided ideal inMn(D), fix an ordered pair(i, j ) of indices, and let

I = {x ∈ D | some memberX of J hasXi j = x}.
Multiplying X in this definition on each side by scalar matrices with entries in
D, we see thatI is a two-sided ideal inD. If I = 0 for all (i, j ), thenJ = 0.
So assume for some(i, j ) that I �= 0. ThenI = D for that (i, j ), and we may
suppose that someX in J hasXi j = 1. If Ekl denotes the matrix that is 1 in
the(k, l )th place and is 0 elsewhere, thenEii X Ej j = Ei j has to be inJ. Hence
Ekl = Eki Ei j Ejl has to be inJ, andJ = Mn(D).

(2) Let R be theWeyl algebraoverC in one variable, namely

R =
{ ∑

n≥0

Pn(x)
( d

dx

)n ∣∣∣ eachPn is in C[x], and the sum is finite
}
.

To give a more abstract construction ofR, we can viewR asC
[
x, d

dx

]
subject to

the relation d
dx x = x d

dx + 1; this is not to be a quotient of a polynomial algebra
in two variables but a quotient of a tensor algebra in two variables. We omit the
details. We shall now prove that the ringR is simple but not semisimple.

To see thatR is a simple ring, we easily check the two identities

(i) d
dx

(
xm dn

dxn

) = mxm−1 dn

dxn + xm dn+1

dxn+1 by the product rule,

(ii) dn

dxn x = n dn−1

dxn−1 +x dn

dxn by induction when applied to a polynomialf (x).
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Let I be a nonzero two-sided ideal inR, and fix an elementX �= 0 in I . Let xm

be the highest power ofx appearing inX, and let dn

dxn be the highest power ofddx
appearing in terms ofX involving xm. Let l andr denote “left multiplication by”
and “right multiplication by,” and apply

(
l
(

d
dx

) − r
(

d
dx

))m
to X. Since (i) shows

that (
l
(

d
dx

) − r
(

d
dx

))
xk

(
d

dx

)l = kxk−1
(

d
dx

)l
,

the result of computing
(
l
(

d
dx

) − r
(

d
dx

))m
X is a polynomial in d

dx of degree
exactlyn with no x’s. Application of (r (x) − l (x))n to the result, using (ii),
yields a nonzero constant. We conclude that 1 is inI and therefore thatI = R.
HenceR is simple.

To show thatR is not semisimple, first note thatC[x] is a natural unital leftR
module. We shall show thatR has infinite length as a leftR module, in the sense
of the length of finite filtrations. In fact,

R ⊇ R
(

d
dx

) ⊇ R
(

d
dx

)2 ⊇ · · · ⊇ R
(

d
dx

)n
(∗)

is a finite filtration of left R submodules ofR. If R
(

d
dx

)k = R
(

d
dx

)k+1
, then(

d
dx

)k = r
(

d
dx

)k+1
for somer ∈ R. Applying these two equal expressions for

a member ofR to the memberxk of the left R moduleC[x], we arrive at a
contradiction and conclude that every inclusion in(∗) is strict. ThereforeR has
infinite length and is not semisimple.

The extra hypothesis that Wedderburn imposed so that simple rings would
turn out to be semisimple is finite dimensionality. Wedderburn’s result in this
direction is Theorem 2.4 below. This hypothesis is quite natural to the extent
that the subject was originally motivated by the theory of Lie algebras. E. Artin
found a substitute for the assumption of finite dimensionality that takes the result
beyond the realm of algebras, and we take up Artin’s idea in the next section.

Theorem 2.4 (Wedderburn). LetR be a finite-dimensional algebra with
identity over a fieldF . If R is a simple ring, thenR is semisimple and hence
is isomorphic toMn(D) for some integern ≥ 1 and some finite-dimensional
division algebraD over F . The integern is uniquely determined byR, andD is
unique up to isomorphism.

PROOF. By finite dimensionality,R has a minimal left idealV . For r in R,
form the setVr . This is a left ideal, and we claim that it is minimal or is 0. In
fact, the functionv �→ vr is R linear fromV onto Vr . SinceV is simple as a
left R module,Vr is simple or 0. The sumI = ∑

r with Vr �=0 Vr is a two-sided
ideal in R, and it is not 0 becauseV1 �= 0. SinceR is simple,I = R. Then the
left R moduleR is exhibited as the sum of simple leftR modules and is therefore
semisimple. The isomorphism withMn(D) and the uniqueness now follow from
Theorem 2.2. �
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3. Rings with Chain Condition and Artin’s Theorem

Parts of Chapters VIII and IX ofBasic Algebramade considerable use of a
hypothesis that certain commutative rings are “Noetherian,” and we now extend
this notion to noncommutative rings. A ringR with identity isleft Noetherian if
the leftR moduleR satisfies the ascending chain condition for its left ideals. It is
left Artinian if the left R moduleR satisfies the descending chain condition for
its left ideals. The notions ofright Noetherian andright Artinian are defined
similarly.

We saw many examples of Noetherian rings in the commutative case inBasic
Algebra. The ring of integersZ is Noetherian, and so is the ring of polynomials
R[X] in an indeterminate over a nonzero Noetherian ringR. It follows from the
latter example that the ringF [X1, . . . , Xn] in finitely many indeterminates over
a field is a Noetherian ring. Other examples arose in connection with extensions
of Dedekind domains.

Any finite direct product of fields is Noetherian and Artinian because it has a
composition series and because its ideals therefore satisfy both chain conditions.
If p is any prime, the ringZ/p2Z is Noetherian and Artinian for the same reason,
and it is not a direct product of fields.

In the noncommutative setting, any semisimple ring is necessarily left Noe-
therian and left Artinian because it has a composition series for its left ideals and
the left ideals therefore satisfy both chain conditions.

Proposition 2.5.Let Rbe a ring with identity, and letM be a finitely generated
unital left R module. If R is left Noetherian, thenM satisfies the ascending
chain condition for itsR submodules; ifR is left Artinian, thenM satisfies the
descending chain condition for itsR submodules.

PROOF. We prove the first conclusion by induction on the number of generators,
and the proof of the second conclusion is completely similar. The result is trivial
if M has 0 generators. IfM = Rx, thenM is a quotient of the leftR module
R and satisfies the ascending chain condition for itsR submodules, according to
Proposition 10.10 ofBasic Algebra. For the inductive step with≥ 2 generators,
write M = Rx1 + · · · + Rxn and N = Rx1 + · · · + Rxn−1. ThenN satisfies
the ascending chain condition for itsR submodules by the inductive hypothesis,
andM/N is isomorphic toRxn/(N ∩ Rxn), which satisfies the ascending chain
condition for itsRsubmodules by the inductive hypothesis. ThereforeM satisfies
the ascending chain condition for itsRsubmodules by application of the converse
direction of Proposition 10.10. �

Artin’s theorem (Theorem 2.6 below) will make use of the hypothesis “left
Artinian” in identifying those simple rings that are semisimple. The hypothesis
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left Artinian may therefore be regarded as a useful generalization of finite dimen-
sionality. Before we come to that theorem, we give a construction that produces
large numbers of nontrivial examples of such rings.

EXAMPLE (triangular rings). LetR andS be nonzero rings with identity, and
let M be an(R, S) bimodule.3 Define a setA and operations of addition and
multiplication symbolically by

A =
(

R M
0 S

)
=

{(
r m
0 s

) ∣∣∣∣ r ∈ R, m ∈ M, s ∈ S

}

with

(
r m
0 s

) (
r ′ m′
0 s′

)
=

(
rr ′ rm′ + ms′
0 ss′

)
.

Then A is a ring with identity, the bimodule property entering the proof of
associativity of multiplication inA. We can identifyR, M , and S with the

additive subgroups ofA given by
(

R 0
0 0

)
,
(

0 M
0 0

)
, and

(
0 0
0 S

)
. Problems 8–11 at

the end of the chapter ask one to check the following facts:

(i) The left ideals inA are of the formI1 ⊕ I2, whereI2 is a left ideal inS
and I1 is a left R submodule ofR ⊕ M containingM I2.

(ii) The right ideals inA are of the formJ1 ⊕ J2, whereJ1 is a right ideal in
R andJ2 is a rightSsubmodule ofM ⊕ ScontainingJ1M .

(iii) The ring A is left Noetherian if and only ifR andS are left Noetherian
andM satisfies the ascending chain condition for its leftR submodules.
The ringA is right Noetherian if and only ifR andSare right Noetherian
andM satisfies the ascending chain condition for its rightSsubmodules.

(iv) The previous item remains valid if “Noetherian” is replaced by “Artinian”
and “ascending” is replaced by “descending.”

(v) If A =
(

R R
0 S

)
is a ring such as

(
Q Q

0 Z

)
in which S is a (commutative)

Noetherian integral domain with field of fractionsR and if S �= R, then
A is left Noetherian and not right Noetherian, andA is neither left nor
right Artinian.

(vi) If A =
(

R R
0 S

)
is a ring such as

(
Q(x) Q(x)

0 Q

)
in whichRandSare fields with

S ⊆ R and dimS R infinite, thenA is left Noetherian and left Artinian,
andA is neither right Noetherian nor right Artinian.

From these examples we see, among other things, that “left” and “right” are
somewhat independent for both the Noetherian and the Artinian conditions. We

3This means thatM is an abelian group with the structure of a unital leftR module and the
structure of a unital rightS module in such a way that(rm)s = r (ms) for all r ∈ R, m ∈ M , and
s ∈ S.
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already know from the commutative case that Noetherian does not imply Artinian,
Z being a counterexample. We shall see in Theorem 2.15 later that left Artinian
implies left Noetherian and that right Artinian implies right Noetherian.

Theorem 2.6(E. Artin). If R is a simple ring, then the following conditions
are equivalent:

(a) R is left Artinian,
(b) R is semisimple,
(c) R has a minimal left ideal,
(d) R ∼= Mn(D) for some integern ≥ 1 and some division ringD.

In particular, a left Artinian simple ring is right Artinian.

REMARK. Theorem 2.4 is a special case of the assertion that (a) implies
(d). In fact, if R is a finite-dimensional algebra over a fieldF , then the finite
dimensionality forcesR to be left Artinian.

PROOF. It is evident from Wedderburn’s Theorem (Theorem 2.2) that (b) and
(d) are equivalent. For the rest we prove that (a) implies (c), that (c) implies (b),
and that (b) implies (a).

Suppose that (a) holds. Applying the minimum condition for left ideals inR,
we obtain a minimal left ideal. Thus (c) holds.

Suppose that (c) holds. LetV be a minimal left ideal. Then the sumI =∑
r ∈R Vr is a two-sided ideal inR, and it is nonzero because the term forr = 1

is nonzero. SinceR is simple,I = R. Then the leftR moduleR is spanned by
the simple leftR modulesVr , andR is semisimple. Thus (b) holds.

Suppose that (b) holds. SinceR is semisimple, the leftR module R has a
composition series. Then the left ideals inR satisfy both chain conditions, and it
follows thatR is left Artinian. Thus (a) holds. �

4. Wedderburn–Artin Radical

In this section we introduce one notion of “radical” for certain rings with identity,
and we show how it is related to semisimplicity. This notion, the “Wedderburn–
Artin radical,” is defined under the hypothesis that the ring is left Artinian. It is
not the only notion of radical studied by ring theorists, however. There is a useful
generalization, known as the “Jacobson radical,” that is defined for arbitrary rings
with identity. We shall not define and use the Jacobson radical in this text.

Fix a ring R with identity. A nilpotent element in R is an elementa with
an = 0 for some integern ≥ 1. A nil left ideal is a left ideal in which every
element is nilpotent; nil right ideals and nil two-sided ideals are defined similarly.
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A nilpotent left ideal is a left idealI such thatI n = 0 for some integern ≥ 1,
i.e., for whicha1 · · · an = 0 for all n-fold products of elements fromI ; nilpotent
right ideals and nilpotent two-sided ideals are defined similarly.

Lemma 2.7. If I1 andI2 are nilpotent left ideals in a ringR with identity, then
I1 + I2 is nilpotent.

PROOF. Let I r
1 = 0 andI s

2 = 0. Expand(I1 + I2)
k as

∑
Ii1 Ii2 · · · Iik with each

i j equal to 1 or 2. Takek = r + s. In any term of the sum, there are≥ r indices 1
or ≥ s indices 2. In the first case let there bet indices 2 at the right end. Since
I2I1 ⊆ I1, we can absorb all other indices 2, and the term of the sum is contained
in I r

1 I t
2 = 0. Similarly in the second case if there aret ′ indices 1 at the right end,

then the term is contained inI s
2 I t ′

1 = 0. �

Lemma 2.8. If I is a nilpotent left ideal in a ringR with identity, thenI is
contained in a nilpotent two-sided idealJ.

PROOF. Put J = ∑
r ∈R I r . This is a two-sided ideal. For any integerk ≥ 0,

Jk = ( ∑
r ∈R I r

)k ⊆ ∑
r1,...,rk

I r 1I r 2 · · · I r k ⊆ ∑
rk

I krk. If I k = 0, then
Jk = 0. �

Lemma 2.9. If R is a ring with identity, then the sum of all nilpotent left ideals
in a nil two-sided ideal.

PROOF. Let K be the sum of all nilpotent left ideals inR, and leta be a member
of K . Write a = a1 + · · · + an with ai ∈ Ii for a nilpotent left idealIi . Lemma
2.7 shows thatI = ∑n

i =1 Ii is a nilpotent left ideal. Sincea is in I , a is a nilpotent
element.

The setK is certainly a left ideal, and we need to see thataR is in K in order to
see thatK is a two-sided ideal. Lemma 2.8 shows thatI ⊆ J for some nilpotent
two-sided idealJ. Then J ⊆ K becauseJ is one of the nilpotent left ideals
whose sum isK . Sincea is in I and therefore inJ and sinceJ is a two-sided
ideal,aR is contained inJ. ThereforeaR is contained inK , andK is a two-sided
ideal. �

Theorem 2.10. If R is a left Artinian ring, then any nil left ideal inR is
nilpotent.

REMARK. Readers familiar with a little structure theory for finite-dimensional
Lie algebras will recognize this theorem as an analog for associative algebras of
Engel’s Theorem.

PROOF. Let I be a nil left ideal ofR, and form the filtration

I ⊇ I 2 ⊇ I 3 ⊇ · · · .
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SinceR is left Artinian, this filtration is constant from some point on, and we
haveI k = I k+1 = I k+2 = · · · for somek ≥ 1. PutJ = I k. We shall show that
J = 0, and then we shall have proved thatI is a nilpotent ideal.

Suppose thatJ �= 0. SinceJ2 = I 2k = I k = J, we haveJ2 = J. Thus the
left ideal J has the property thatJ J �= 0. SinceR is left Artinian, the set of left
idealsK ⊆ J with J K �= 0 has a minimal elementK0. Choosea ∈ K0 with
Ja �= 0. SinceJa ⊆ J K0 ⊆ K0 and J(Ja) = J2a = Ja �= 0, the minimality
of K0 implies thatJa = K0. Thus there existsx ∈ J with xa = a. Applying
powers ofx, we obtainxna = a for every integern ≥ 1. But x is a nilpotent
element, being inI , and thus we have a contradiction. �

Corollary 2.11. If R is a left Artinian ring, then there exists a unique largest
nilpotent two-sided idealI in R. This ideal is the sum of all nilpotent left ideals
and also is the sum of all nilpotent right ideals.

REMARKS. The two-sided idealI of the corollary is called theWedderburn–
Artin radical of Rand will be denoted by radR. This exists under the hypothesis
that R is left Artinian.

PROOF. By Lemma 2.9 and Theorem 2.10 the sum of all nilpotent left ideals in
R is a two-sided nilpotent idealI . Lemma 2.8 shows that any nilpotent right ideal
is contained in a nilpotent two-sided idealJ. SinceJ is in particular a nilpotent
left ideal, the definition ofI forcesJ ⊆ I . Hence the sum of all nilpotent right
ideals is contained inI . But I itself is a nilpotent right ideal and hence equals
the sum of all the nilpotent right ideals. �

Lemma 2.12(Brauer’s Lemma). IfR is any ring with identity and ifV is a
minimal left ideal inR, then eitherV2 = 0 or V = Refor some elemente of V
with e2 = e.

REMARK. An elementewith the property thate2 = e is said to beidempotent.

PROOF. Being a minimal left ideal,V is a simple leftR module. Schur’s
Lemma (Proposition 10.4b ofBasic Algebra) shows that EndR V is a division
ring. If a is in V , then the mapv �→ va of V into itself lies in EndR V and hence
is the 0 map or is one-one onto. If it is the 0 map for alla ∈ V , thenV2 = 0.
Otherwise suppose thata is an element for whichv �→ va is one-one onto. Then
there existse ∈ V with ea = a. Multiplying on the left bye givese2a = eaand
therefore(e2 − e)a = 0. Since the mapv �→ va is assumed to be one-one onto,
we must havee2 − e = 0 ande2 = e. �

Theorem 2.13.If R is a left Artinian ring and if the Wedderburn–Artin radical
of R is 0, thenR is a semisimple ring.
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REMARKS. Conversely semisimple rings are left Artinian and have radical 0.
In fact, we already know that semisimple rings have a composition series for
their left ideals and hence are left Artinian. To see that the radical is 0, apply
Theorem 2.2 and write the ring asR = Mn1(D1)×· · ·× Mnr (Dr ). The two-sided
ideals ofRare the various subproducts, with 0 in the missing coordinates. Such a
subproduct cannot be nilpotent as an ideal unless it is 0, since the identity element
in any factor is not a nilpotent element inR.

PROOF. Let us see that any minimal left idealI of R is a direct summand as a
left R submodule. Since radR = 0, I is not nilpotent. ThusI 2 �= 0, and Lemma
2.12 shows thatI contains an idempotente. This element satisfiesI = Re. Put
I ′ = {r ∈ R | re = 0}. Then I ′ is a left ideal inR. SinceI ′ ∩ I ⊆ I ande is
not in I ′, the minimality ofI forcesI ′ ∩ I = 0. Writing r = re + (r − re) with
re ∈ I andr − re ∈ I ′, we see thatR = I + I ′. ThereforeR = I ⊕ I ′.

Now put I1 = I . If I ′ is not 0, choose a minimal left idealI2 ⊆ I ′ by the
minimum condition for left ideals inR. Arguing as in the previous paragraph, we
haveI2 = Re2 for some elemente2 with e2

2 = e2. The argument in the previous
paragraph shows thatR = I2 ⊕ I ′

2, whereI ′
2 = {r ∈ R | re2 = 0}. DefineI ′′ =

{r ∈ R | re1 = re2 = 0} = I ′ ∩ I ′
2. SinceI2 is contained inI ′, we can intersect

R = I2 ⊕ I ′
2 with I ′ and obtainI ′ = I2 ⊕ I ′′. ThenR = I1 ⊕ I ′ = I1 ⊕ I2 ⊕ I ′′.

Continuing in this way, we obtainR = I1⊕ I2⊕ I3⊕ I ′′′, etc. As this construction
continues, we haveI ′ ⊇ I ′′ ⊇ I ′′′ ⊇ · · · . SinceR is left Artinian, this sequence
must terminate, evidently in 0. ThenR is exhibited as the sum of simple leftR
modules and is semisimple. �

Corollary 2.14. If R is a left Artinian ring, thenR/ radR is a semisimple ring.

PROOF. Let I = radR, and letϕ : R → R/I be the quotient homomorphism.
Arguing by contradiction, letJ be a nonzero nilpotent left ideal inR/I , and let
J = ϕ−1(J) ⊆ R. SinceJ is nilpotent,Jk ⊆ I for some integerk ≥ 1. But
I , being the radical, is nilpotent, say withI l = 0, and henceJk+l ⊆ I l = 0.
ThereforeJ is a nilpotent left ideal inR strictly containingI , in contradiction to
the maximality ofI . We conclude that no suchJ exists. Then rad(R/ radR) = 0.
SinceR/ radR is left Artinian as a quotient of a left Artinian ring, Theorem 2.13
shows thatR/ radR is a semisimple ring. �

We shall use this corollary to prove that left Artinian rings are left Noetherian.
We state the theorem, state and prove a lemma, and then prove the theorem.

Theorem 2.15(Hopkins). IfR is a left Artinian ring, thenR is left Noetherian.

Lemma 2.16. If R is a semisimple ring, then every unital leftR moduleM
is semisimple. Consequently any unital leftR module satisfying the descending
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chain condition has a composition series and therefore satisfies the ascending
chain condition.

PROOF. For eachm ∈ M , let Rm be a copy of the leftR module R, and
defineM̃ = ⊕

m∈M Rm as a leftR module. Since eachRm is semisimple,M̃ is
semisimple. Define a functionϕ : M̃ → M as follows: ifrm1 +· · ·+ rmk is given
with rmj in Rmj for each j , let ϕ(rm1 + · · · + rmk) = ∑k

j =1 rmj mj . Thenϕ is an

R module map with the property thatϕ(1m) = m, and consequentlyϕ carriesM̃
onto M . As the image of a semisimpleR module under anR module map,M is
semisimple.

Now suppose thatM is a unital leftR module satisfying the descending chain
condition. We have just seen thatM is semisimple, and thus we can write
M = ⊕

i ∈S Mi as a direct sum over a setSof simple leftR modulesMi . Let us
see thatS is a finite set. IfSwere not a finite set, then we could choose an infinite
sequencei1, i2, . . . of distinct members ofS, and we would obtain

M �
⊕
i �=i1

Mi �
⊕

i �=i1,i2

Mi � · · · ,

in contradiction to the fact that theR submodules ofM satisfy the descending
chain condition. �

PROOF OFTHEOREM 2.15. Let I = radR. SinceI is nilpotent, I n = 0 for
somen. EachI k for k ≥ 0 is a leftR submodule ofR. SinceR is left Artinian,
its left R submodules satisfy the descending chain condition, and the same thing
is true of theR submodules of eachI k. Consequently theR submodules of each
I k/I k+1 satisfy the descending chain condition.

In the action ofR on I k/I k+1 on the left,I acts as 0. HenceI k/I k+1 becomes
a left R/I module, and theR/I submodules of this leftR/I module must satisfy
the descending chain condition. Corollary 2.14 shows thatR/I = R/ radR is
a semisimple ring. Since theR/I submodules ofI k/I k+1 satisfy the descend-
ing chain condition, Lemma 2.16 shows that theseR/I submodules satisfy the
ascending chain condition. Therefore theR submodules of each leftR module
I k/I k+1 satisfy the ascending chain condition.

We shall show inductively fork ≥ 0 that theR submodules ofR/I k+1 satisfy
the ascending chain condition. SinceI n = 0, this conclusion will establish that
R is left Noetherian, as required. The casek = 0 was shown in the previous
paragraph. Assume inductively that theR submodules ofR/I k satisfy the
ascending chain condition. SinceR/I k ∼= (R/I k+1)

/
(I k/I k+1) and since the

R submodules ofR/I k and ofI k/I k+1 satisfy the ascending chain condition, the
same is true forR/I k+1. This completes the proof. �


