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Abstract

We investigate whether groups of polynomial growth can act expansively by continu-
ous maps on the circle. Also, whether the semi-group Z* can act with finite positive
entropy by maps determined by Laurent polynomials on the full two dimensional two
shift (two dimensional algebraic cellular automata). We go on to consider the more
abstract setting of a mixing Z*-action by continuous group endomorphisms which
commutes with a completely positive entropy Z?-action on a compact metric group.
We extend cellular automata results of Hedlund from one to two dimensions and from
full-shifts to subshifts. This is partly preparation for proving entropy preservation by
certain cellular automata restricted to subshifts.

There are two appendices. The first is a short paper with Ward on mixing prop-
erties of invertible extensions that is not related to the material in the thesis. The
second is a paper with Ward that is closely related to the work in Chapter 3.

Chapter 1 is standard material that may be found in the texts of Walters or
Petersen for example. Chapter 2 contains original work on expansive actions on the
circle, though it is likely that some of the results are known but unpublished. One
important example of a solvable group action is due to Mozes (unpublished). Chapter
3 contains original work, inlcuding special cases of a conjecture by Shereshevsky. It
also contains a connected analogue of this conjecture, and the results here are joint
work with Ward. Chapters 4 and 5 are original. In these chapters, some of Hedlund’s

work has been generalised and some of these generalisations are routine.
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Chapter 1
Introduction

We address some aspect of the question of what constraints are imposed on a group,
or its actions, by dynamical considerations.

Throughout the text N, Z,Q,R,C.,I, and S will denote the natural numbers,
integers, rational numbers, real numbers, complex numbers, the closed unit interval,
and the unit circle respectively. By ZT,Q%, and R* we mean the non-negative
members (includes zero).

All spaces will always be assumed to be infinite. Topological spaces will always be

assumed to be metrizable. Measure spaces will always be assumed to be Lebesgue.

1.1 Group actions

We use the abbreviation m.p.t. for measure preserving transformation. We shall be
interested in actions of a group (or semi-group) GG on two kinds of spaces: topological
actions, where (G acts on a compact metric space X by homeomorphisms (continuous
maps), and measurable actions, where (& acts on a probability space (X,B,u) by
invertible m.p.t’s. (m.p.t’s. respectively). Thus, a topological action of GG is a (semi)
group homomorphism a : G — Cts(X) where Cts(X) is the (semi) group of continu-
ous maps of X (if G is a group we may use Homeo(X), the group of homeomorphisms
of X); a measurable action is a (semi) group homomorphism 3 : G — MPT(X) where

MPT(X) is the (semi) group of measure-preserving transformations of the measure



space X. If G = Z¢ (or N?) for some d € N then we write a : m — o™, otherwise

we write o 1 ¢ = a4, and similarly for 3.

Notation 1.1 For ¢ = 1,2 and sets X, carrying G-actions v; : G — Cts(X;) (or
MPT(X;)) we denote the systems by (X;,v;) and reserve the notation 7' : (X;,7;) —
(Xa,7v2) for amap T : X1 — X3 to mean that (y2),(7T(z)) = T((71),(x)) for all g € G
and z € Xj. In this case we say that 7' is a (measure-preserving/continuous/etc) map
from (X1,71) to (Xa,7v2) (if the actions are measurable, this intertwining condition
is only required to hold almost everywhere). Clearly, if (X1,v) = (X2,72) = (X,7)
then T': X — X is a (measure-preserving/etc) map of (X, ~) means that T commutes
with ~, for all g € G.

Definition 1.1 If, for + = 1,2, X; are topological spaces, topological groups, or
measure spaces respectively, and T; : X; — X, are continuous maps, continuous group
homomorphisms, or measure-preserving transformations respectively then we say that
(X1,TY) is, respectively, topologically conjugate to, topological group conjugate to,
or measure conjugate to (Xz,Ty) if there is homeomorphism, homeomorphic group
isomorphism, or invertible measure-preserving transformation respectively, 8 : X; —
X3 such that §o T} = Ty 060. Two I'-actions by the appropriate respective morphisms
are defined to be topologically conjugate, topological group conjugate, or measure
conjugate when, for each v € I'| the respective images of 4 under the two I'-actions

are appropriately conjugate for the same conjugating map.

1.2 Expansiveness

Definition 1.2 A topological action o : G — Homeo( X, p) is expansive if there is a
constant ¢ > 0 with the property that for any pair of points z # y € X, there is a
group element g € G for which p(a,(x),a,(y)) > 6. We call such a § an expansive

constant for the action.

From now on GG will always be a finitely generated group whereas I' will be any

(not necessarily countable) group. By G' = (¢1,...,¢,) we will mean that the group



(G is generated by the elements ¢,...,g, and no proper subset of these elements
generates it. We reserve the notation ((ay,,...,q,,)) to refer to the group a(G) of
maps in the image of the G-action a. Note that G and o(G) are isomorphic exactly
when the action « is faithful (has trivial kernel).

Let G = (¢1,...,gn). For arbitrary g € GG let
gl = min{k € N : g = hy...h where h; € {id,g",---, g5} for i =1,--- , k};

(the inclusion of the identity 7d in the choices for the h; is optional for our purposes,
the only difference it makes is that |[id|| = 1 instead of 2). Notice that || - | is

dependent upon the generating set. For a natural number m define the ball
B(m) ={g € G:|lgll <m}

and let b(m) be the cardinality of B(m).
If there exist constants A, C' > 0 and k£ € N such that,

AmF < b(m) < Cm* for all m € N (1)

for some finite generating set, then the same property holds (with different A and
(') for any generating set (see Bass [4]), so we may consistently make the following

definition.

Definition 1.3 The group G is said to have polynomial growth of degree k if there
exist constants A, C' > 0 such that (1) holds.

See Bass [4], Gromov [19], Shereshevsky [61] for discussions of polynomial growth.
Any finitely generated abelian group, and in particular the additive group Z¢ for
d € N, is clearly of polynomial growth. Wolf [67] showed that any finitely generated
nilpotent group has polynomial growth. Gromov extended this to finitely generated

groups containing a nilpotent subgroup of finite index along with proving the converse.

Theorem 1.1 Let G be a finitely generated group. Then G has a nilpotent subgroup
of finite index if and only if G has polynomial growth.



Proof. See Gromov [19].

We are interested in to what extent certain characteristics, such as growth, of the
acting group are determined by dynamical constraints, such as expansiveness, of the
action upon the space.

For example it is known, Reddy [51], that a single homeomorphism (a continuous
Z-action by homeomorphisms) cannot act expansively on the unit circle, S, while there
are solvable group expansive actions on S (the example, for instance, of Theorem 2.3).

A natural problem is the following.

Problem 1.1 Can a group of polynomial growth act expansively on S¥

“no”, then it is enough to show that nilpotent

By Theorem 1.1, if the answer is
groups cannot act expansively on S.
Along the way to partial results (for the specific case of Z%-actions) we show that,
for an arbitrary (possibly uncountable) group T', if a I'-action & by homeomorphisms
of S is expansive then the set of points of S that are fixed by non-trivial members
of a(I') is dense in S (the converse does not hold). We also provide an answer to

this problem for what we call finitely generated Mobius groups, and discuss some

geometrically natural actions on the circle.

1.3 Topological entropy and commuting maps

Recall that {Q, },en is defined to be a Fglner sequence in Z? exactly when Q, is a
finite subset of Z¢ for all n € N and

i 1@ A m+ Q)
Q]

=0 for all m € Z°.

Definition 1.4 Let a : Z¢ — Homeo(X, p) be a continuous Z%action on a compact
metric space. Let {Q,},en be a Folner sequence in Z¢ such that U,en @, = Z% and,
foralln € N, let Q, C Qui1. A set E C X is (Qn, p,0)-spanning for « if there exists,
for every x € X, an ¢’ € E such that p(a™(z),a™(z')) < 6 for all m € Q,, and
D C X is (Qn, p,d)-separated if there exists, for every pair  # 2’ in D, an m € Q,



with p(a™(z),a™(2')) > 6. Let rq (p,d) be the smallest cardinality of a (Q,, p,d)-
spanning set, and sy (p,d) the largest cardinality of a (Qn, p, §)-separated set. Notice
that both of these quantities are finite by compactness. Define the (topological)
entropy', h(a), of a on X to be
1 1
h(a) = limlimsup om| log rgy, (p,6) = lim lim sup ol log sy, (p, 9)

540 nooo | n| 5+0 nooo | n|

log rgy,(p,d) = lim lim infilog 5Qn(P9).

= limliminf 50 n—oo | Q]

60 n=o0 Q]

To see that the limits above are equal, and independent of the Fglner sequence used,

we refer the reader to the proof of Proposition 13.1 in Schmidt [60] and Shereshevsky
[61].

The definition for the topological entropy of a (Z*)%-action by continuous maps

of (X, p) is analogous to that of a Z?-action, replacing all occurrences of Z¢ by (ZT).

We prove (cf. Theorem 3.1) that if 7 : X — X is a uniformly continuous sur-
jective group endomorphism (that is, a Z*-action) of a metric (not necessarily com-
pact) group (X,p) with translation invariant metric p (in which case h(T') can be
defined consistently with Definition 1.4) then h(T') > log(| ker(T)|) with A(T') = oo if
| ker(T)| = oo.

Definition 1.5 Fix d,k € N. Put S = S(k) = Z), = Z/kZ = {0,--- k. — 1}. Let
Q = V(d) = 8% = [Iimeze S be the Cartesian product of Z¢ copies of S with the
product topology (S itself has the discrete topology). A typical element x € Q is given
by x = (2n)neze where z,, € S for all n € Z?%. The set Q becomes a topological group
under the obvious coordinate-wise addition mod k. Thus € is a compact metric
group under any metric for which elements of () are close together whenever their
coordinates agree over a large bounded region containing the origin in Z?. We define
the shift, 0:Z% — Homeo((2), to be the Z%action given by (¢™(x))n = Znym for all
m,n €Z? and for all x € Q. Note that the shift is also a group automorphism. We
call (Q,0) the full d-dimensional k-shift.

1This gives the same value as the open cover definition of topological entropy, see for example
Proposition 13.1 of Schmidt [60].



Our second problem concerning constraints made upon an acting group by dy-

namical considerations, a conjecture made by Shereshevsky, is the following.

Problem 1.2 [t is conjectured that the group Z cannot act by continuous shift-

commulting maps with finite positive entropy on the full two-dimensional 2-shift.

We initially confirm the conjecture for the algebraic case (that is, where the map T
of (Q, o) is a continuous homomorphism of the group structure on Q) of Shereshevsky’s
conjecture (for which d, the dimension of the shift, is equal to 2) with Q5 replaced by
2, for general prime p. We then use this result in the joint paper [42] with Ward to
solve the following related problem by Ward for the particular case e = 1,d = 2 (see

Definition 1.7 for mixing).

Definition 1.6 A measurable Z%-action a on a probability space (X,B,u) is a K-
action or, equivalently, has completely positive entropy if h,(ca,P) > 0 for any finite
measurable partition P such that H,(P) > 0 (see Definition 1.8 below for measure—
theoretic entropy).

Problem 1.3 Can a mizing action of Z° by continuous automorphisms of a compact
melric abelian group that commutes with a K-action of Z¢ by continuous automor-

phisms have finile posilive entropy if e < d — 17

Definition 1.7 Let G be a countable group. Let (X, B, 1) be a probability space and
let L*(X, 1) be the space of square integrable functions on (X, B, ). The G-action
a is ergodic if any f € L*(X,u) with f(a,(z)) = f(x) a.e. for all g € G is constant
a.e. We also then say that u is an ergodic measure of (X, B, a).

Let {gn}nen be an enumeration of . For a real-valued expression F(g) put

lim E(g) = nlggo E(gn),

g—0o0

and note that the meaning is independent of the particular enumeration of GG. The

action « is (strongly) mixing if

gli_)r&pc(B Na,(C)) = pu(B)u(C) for all B,C € B.



For a continuous group endomorphism of a compact group ergodicity and mixing

coincide (see, for example, Theorem 1.28 in Walters [64]).

1.4 Measure-theoretic entropy

Definition 1.8 A (measurable) partition of (X, B, ) is a disjoint finite collection of
non-empty measurable sets (the positive measure ones are called the atoms of the

partition) whose union is X.

IfP ={Ay; 1€ hLt},....,P, ={A. : 1 € I,} are partitions, indexed by sets

I1, ..., I, respectively then their join is the partition whose elements are all those
non-empty sets of the form (7_, Aj;;, where i; € I; for j = 1,...,n, and is denoted

For a measurable partition P = {X1,..., X, } of (X,B,u) the entropy of the
partition P, H,(P), is defined to be — Y7, u(X;)log(u(X;)). Let a be a measure-
preserving Z-action ((Z%)%action) of (X, B, it). Define the entropy of o with respect
to P by h,(a,P) = lim,— e @HM(VIHEQTL a~"™(P)) where {Q,},eN is a Falner se-
quence in Z? (see Definition 1.4). The existence of this limit and its independence
of the Fglner sequence used is well-known (see, for example, Ward and Zhang [65],
where a proof is given using methods from Kieffer [28] and Ornstein and Weiss in
[47]). Finally, the entropy of « is hy(a) = suppczh,(a, P) where = is the family of

all finite measurable partitions of X.

As a prerequisite to another result we prove, for fixed a,k,l € N, that if {P,},.en
is a sequence of measurable partitions of (X, B, i) then the value, if it exists (it may
be infinite), of lim,,— #H#(Pn) is equal to lim,,_ ., ;L—dHM(Qn) where, for all n € N,
Q,, is a measurable partition of (X, B, u) and each atom of Q,, is a union of no more

than [k atoms of P,,.

Example 1.1 Any ergodic automorphism of a compact metric group defines a Z-

action with completely positive entropy by Rokhlin [56].



1.5 Subshifts and maximal measures

Notation 1.2 For a compact space X let B(X) denote the Borel o-algebra of X,
and let M (X)) denote the set of Borel probability measures on X. If «r is a continuous
G-action of X let M(X, a) denote the a-invariant members of M(X).

The set M(X,a) is non-empty for any amenable group by Theorem 2.24 of Pa-
terson [50].
We have the following form of the variational principle for Z%-actions (and (Z*)%-

actions).

Proposition 1.1 Let o be a Z¥-action ((Z%)*-action) by homeomorphisms (contin-

uous maps) of the compact metric space X. Then h(a) = sup{h,(a): p € M(X,a)}.

Proof: This was originally proved by T.N.T. Goodman, [17], for d = 1, and
extended to d > 1 by Elsanousi, [15]. Misiurewicz, [41], has a short proof for d = 1.

Walters, [64], proves the ZT case for the more elaborate notion of pressure.

Notation 1.3 Let X and a be as in Proposition 1.1. For all A € [0,h(a)], let
M"X,a) = {u € M(X,a) : h,(a) = b} and put M*(X,a) = MM (X a), the set

of measures of maximal entropy.

Gurevic first showed that M*(X, @) may be empty. Examples of maps for which
M~*(X,a) is empty are given in Misiurewicz, [40], and Section 8.3 of Walters, [64].

We prove that, if 0 < h(a) < oo, the members of M*(X,«) are continuous
measures (also known as non-atomic measures). That is, such measures have value

zero on points of X.

Remark 1.1 If X is a compact abelian group, and the Z?-action a is by continuous
group automorphisms, then Haar measure is a member of M (X, a) (as observed by
Halmos [20]) and is, furthermore, in M*(X, «) (see Misiurewicz [41] or Berg [5]).

Haar measure is also the unique member of M*(X, ) if d = 1, « is ergodic, and
h(a) < oo (due to Berg [5]) or if o has completely positive entropy and h(a) < oo
(see Lind, Schmidt and Ward [34]).

10



Definition 1.9 A system (X, a), where X is a compact space and a: X — X is a
continuous Z%-action such that h(a) < oo and |M*(X,a)| = 1, is called intrinsically

ergodic.

The unique maximal measure of an intrinsically ergodic system is ergodic. In
general, M*(X,«a) is convex (if y,v € M*(X,«) and m € I then mu + (1 — m)v €
M*(X,a) where (mu + (1 — m)v)(B) = mu(B) + (1 — m)v(B) for all B € B(X)).
Furthermore, if h(a) < oo the ergodic members of M*( X, a) are exactly the extremal

points (see Walters [64, Section 8.3], for example).

Definition 1.10 Let d,k € N, S = {0,---,k— 1}, and let ¥ C Q = SZ° be a closed
shift invariant (o(X) = X) subset of Q. We call (¥,0]g) = (¥,0), or simply ¥, a
subshift.

For E C Z¢ and x = (zn)neze let mp(X) = (Tn)ner € SP be the projection of x
onto the coordinates in E.

Let F' be a finite subset of Z% and ¥ a subshift of Q. If there is a set P C S such
that

E:{XEQ:Qk:WF(Un(X))EPVHEZd}

then ¥ is a subshift of finite type (cf. Schmidt [59, Chapter 5]).
Now let d =1 and let A = (a;;) be a k x k matrix of ones and zeros such that no

row or column of A contains all zeros. Put
Y ={(zn)ez € Q= : ag,z,,, =1 for all n € Z}.

Then ¥ is a subshift of finite type. We call it a matrix subshift of finite type.

If, for all 1 <, j <k, there is an n € N such that a”(7,j) > 0 (where a”(z,7) is
the (i, j)th entry of A") then A is irreducible, and the corresponding matrix subshift
of finite type is irreducible.

Furthermore, for d = 1, any subshift of finite type is topologically conjugate to a
matrix subshift of finite type. The conjugate system may have a different value for k.
Parry [49] has shown that irreducible matrix subshifts of finite type are intrin-

sically ergodic and exhibited the measure of maximal entropy, the Parry measure.

11



In particular, for the one-dimensional full shift (clearly this is an irreducible matrix
subshift) we have that the Parry measure is the well-known equidistributed Bernoulli
measure (which coincides with the Haar measure on the natural compact group struc-
ture).

Coven and Paul [14] have shown that for intrinsically ergodic systems (X, T'), (W, 5)
with maximal measures p,v respectively, (X, W are compact metrizable spaces)
where T, S are continuous Z-actions (i.e. single homeomorphisms), if R is a con-
tinuous surjective map from (X, T) onto (W,S) (see Notation 1.1) then the map
R: M(X,T) — M(W,S) defined by (R(A\))(B) = A(R™(B)) for all A € M(X,T)
and B € B(W) is surjective, see Goodwyn [18], and ]%(,u) = .

Definition 1.11 Let X be a topological space and « a Z%-action by homeomorphisms
of X. We say that (X, ) is transitive if there is an € X such that the a-orbit of ,
O.(z) = {a™(x) :n € Z%}, is dense in X.

To generalize the notion of irreducibility to d > 1 we use the well known fact
(referred to in Markley and Paul [37, Section 5], for example) that a one dimensional
matrix subshift of finite type (X, o) is irreducible if and only if it is transitive and the
set {x € ¥:|0,(z)| < oo} is dense in X.

Burton and Steif have exhibited [8] a subshift of finite type (X, o) for d = 2 which
has these properties (transitivity and dense set of points with finite o-orbit) that are
equivalent (in the case d = 1) to irreducibility and yet is not intrinsically ergodic:
it has exactly two maximal ergodic measures. Furthermore, there is a continuous,
surjective map of (¥, o) which swaps the two maximal ergodic measures.

In the light of Coven and Paul’s result we ask (for d = 2) if, for all continuous maps
T of (¥, 0) (recall Notation 1.1: this requires that 7' commute with o), T(M*(E, o)) =
M*(¥,0). For an interesting class of continuous maps called corner permutative
subcellular automata we prove that T(Mh(E,J)) C M"(%,0) for all h € [0,h(0)],
with equality holding if the map is surjective.

This is similar to a result by Newton and Parry [44], for more general measure

spaces X7y, Xy with the two dimensional shift replaced by general single invertible

measure-preserving maps Sy, Sz where T : (X1,51) — (X3,T3) is countable to one

12



almost everywhere. However, our result is for d = 2, does not insist that 7" is onto,
and also does not require that 7" is countable-to-one almost everywhere.
Partly as pre-requisites for the above work, we generalise some of Hedlund’s results

[21] for one-dimensional cellular automata (continuous maps of (€, 0)) to continuous

maps of (X,0), where (X, 0) is a two-dimensional subshift of finite type (we use the
term two-dimensional subcellular automata to refer to such maps).

We also show (for d = 2) that any corner permutative map 7" of ({2, o) is surjective
and, adding support to Shereshevsky’s conjecture for the general (not necessarily
algebraic) case, cannot have finite positive entropy. The algebraic case also follows

from this result.

1.6 Related results

We mention here some standard examples of dynamical constraints on group actions.

Rokhlin [53] proved that Z cannot act ergodically and with zero entropy by con-
tinuous homomorphisms on any compact abelian group.

Kushnirenko showed that Z cannot act with infinite entropy by smooth maps of a
smooth manifold. The relevant definitions and a proof of this can be found in sections
1 and 12 of Arnold and Avez’s book [2].

An interesting example of group constraints dates back to a famous open algebraic
problem first posed by Lehmer [31] in 1933. It is well known (see, for example Wal-
ters [64, Section 0.8]) that any continuous group automorphism of the n-dimensional
additive torus group S™ (viewed as the direct product of n copies of [0,1) with co-
ordinatewise addition (mod 1) and the obvious topology) acts on points v € S™ by
v — A - v where A is an n X n-matrix with integer entries and determinant +1.
The entropy of the automorphism given by A (which we also denote by A) is given
by h(A) = S°% L log A;, where Ay, ---, A are those complex eigenvalues of A whose
moduli exceed one (see for example Arov [3], Sinai [62], or Yuzvinskii [25]). Lehmer’s
problem amounts to asking if this entropy value can be positive but arbitrarily small.
Thus, a negative answer to Lehmer’s problem would imply that there exists some

positive € such that, for any n € N, Z cannot act ergodically and with entropy less

13



than € by continuous group homomorphisms on 8™ (that Z cannot act ergodically
and with zero entropy on any compact abelian group was mentioned earlier).

Lind [32] observes that an automorphism of the infinite torus can be constructed
by multiplying (in the obvious way) automorphisms of finite tori and that the resulting
automorphism is ergodic if and only if each of the automorphisms of the finite tori
of which it is composed are ergodic. The entropy of the resulting automorphism is
then the sum of the automorphisms from which it is composed. So a positive answer
to Lehmer’s problem would give an ergodic Z-action by continuous homomorphisms
on SN with finite entropy. Lind [32] also proves the converse: a negative answer to
Lehmer’s problem would mean that Z cannot act ergodically and with finite entropy
by continuous homomorphisms on the infinite torus SN.

An interesting dynamical constraint arises for certain amenable groups. Amenable
groups date back to a question asked by Lebesgue in 1904, and their history and
theory is given a detailed treatment in Paterson’s monograph [50]. Fglner gave an
equivalent condition to amenability (which in the case of a countable group amounts
to the existence of a Folner sequence as in Definition 1.4). With some strengthening
of Fglner’s condition, Ornstein and Weiss [47] were able to give a consistent definition
of measure theoretic entropy for the actions, by measure preserving maps, of a large
class of (though not all) amenable groups. With an example of a group action due
to Rudolph [57] in mind, they then showed that there are amenable groups for which
the entropy of their action by measure preserving maps on measure spaces can be
defined and they are not able to act with entropy less than some constant (the value
of which depends on the group) on any measure space. Furthermore, the constant
may be infinity.

Section 6 of Conze’s paper [13] shows that, given a Z%-action by measure preserving
maps on a probability space which has positive entropy, any subgroup action (in the
obvious sense) of smaller rank must have infinite entropy.

Schmidt [58, Section 3] and Bergelson and Rosenblatt [6, Section 3] characterise
groups for which ergodicity of an action automatically implies a certain degree of

mixing.

14



Chapter 2

Expansive group actions on the

circle

2.1 The “North-East-South-West action”

We refer the reader to Section 1.2 of the introduction for some of the definitions used
in, and relevant background to, this chapter.

Consider S with diametrically opposite North and South pole, N and S respec-
tively, and a copy, R%7, of the one point compactification of the real line, tangential at
0 € Ry to S € S. For arbitrary € S let » € RY be the N-stereographic projection
of x (r is where the straight line through N and z meets RY). Let &5 :S—RY
be this N-stereographic projection from the North pole and note that (i) ¢y is a
homeomorphism and (ii) ®x5(N) =* co. The “North-South Map” ¥y :S—S is given
by Un(z) = &5 (20n(2)) for all € S (that is, the North-South Map is that unique
map on the circle which is topologically conjugate, under N-stereographic projection,
to the map f :r — 2r on RY). See Walters [64] for more on the North-South map:
note that the usual convention is that the inverse of our map is called the North-South
map.

If we place the East and West Poles, £ and W respectively in the obvious loca-
tions on S and consider an “Fast-West Map”, Vg :S—S defined as above, but with
‘North’, ‘South’, ‘N’, and ‘S’ replaced by ‘East’, ‘West’, ‘E’, and ‘W’ respectively,
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then ((Wy,Ug)) is given by a continuous group action « of some group G on S. In
this section we answer the questions (i) what abstract group is GG and (ii) is the action

expansive?

204Y)

P

S ONGY 20

Figure 1: The “North—South—East—West” action.

To prove that « is expansive we identify points on the circle with the real value of
their image under the N-stereographic projection, so that the points at N, . S, and W
are represented by oo, 2,0, and —2 respectively. Given r € R3 then, to know the effect
of U on r, we need to know the value of ®x(Vg(®y' (r))) = ®n (05 (20£(0N (r)))).

Given arbitrary z € S we can uniquely identify = by the angle 8y = < SNz
(respectively 0y = < WEz) € (—n/2,7/2] that x and S (respectively W) subtend
at N (respectively F), with the convention that clockwise angles from the NS (re-
spectively EW) line segment are negative so, for example, we may associate oo €RY
with Oy = 7/2 and 0y = —n /4 (the angle , at F, between the lines KW and EN,

where N corresponds to oo).
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If z € S is positioned on one of those three quadrants such that Oy € (=7 /2,7 /4]
(respectively 0y € (—m/4,7/2]) then Oy — 05 = —n /4. In the remaining quadrant we
have that Oy —0p = 3n/4 = 7 /247 /4 = —n /247 /4 = —n /4 due to the identification
of oo, —o0, /2, and —m /2 (bearing in mind the m-periodicity of the tan function).

Considering the effects that ¥ and Wy have on the representations 6y and
05 respectively of points in S we have that Uy (fy) = tan™'(1/2(2(2tan(fy)))) =
tan~!(2tan(fy)) and, similarly, Ug(fg) = tan~'(2tan(fg)), and the effect on RS of
Uy is given by g :RY —RY where, for all r eRY,

g(r) = 2tan(—7/4 + tan~ ' (2tan(7 /4 + tan~'(r/2)))) =

, 1 2 —1+222 446
2 tan —I—I—tan_1 2 +T/ =2 22_7” = + r‘
4 1—r/2 1422~ 647

2—r
From now on we abuse notation slightly by using the maps f Ry —RY and

g Ry —RY to refer to the maps Uy and Wy on S, and we shall use values of
points on RY to refer to their respective images, under ®3', in S ; i.e. we are merely
identifying (S, ¥y, ¥g) with (RY, f, g).

Note that ¢7'(r) = =*% and we have g(o0) = 6, g(—6) = o0, ¢(2) = 2, g(—2) =
=2, f(0) =0, and f(o0) = oo.

So g is a real function with asymptotic axes x = —6 and y = 6 and gradient
positive everywhere, and fixing 2 and —2 which refer to the East and West poles
respectively. Also, f sends all non-zero points closer to oo and ¢ sends all points in
(=2, —6) closer to —oo, all points in (—6, —o0) into (6, 00), all points in (2, 00) closer
to 2, and all points in (=2, 2) closer to 2.

Note that {0,00} U {[f™(4), f**'(:)) : n € Z and i € {2,—2}} (respectively
{2, -2} U{[g"(i),g""" (7)) : n € Z and i € {0,00}}) is a partition of S. If, for some
m € Z, g™ (z) and ¢"(y) (respectively f(x) and f™(y)) lie in different atoms of the
partition then, for suitable n € Z, exactly one of f*¢™(x) and f"¢™(y) (respectively
9" [ (x) and ¢ f™(y)) lies in [—2, 2) (respectively [0, 00)), they can then be separated
by g* (respectively f*) for suitable k € Z.

The difficulty in proving expansiveness lies in the possibility of two distinct points
always (after any finite combination of repeated applications of f*! and ¢g*') remain-

ing close together and in common atoms of the respective partitions for both the
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f-orbit and the g-orbit. Using the algorithm below we show that this does not occur.

First note that given € > 0 there exists § > 0 such that if r, s € (—2,2) CRY and
|r — s| > ¢ then those points on S corresponding to r and s are greater than § apart
with respect to the standard metric on S, so it is sufficient to separate points by some
specified amount € within the bounded interval (—2,2) of R%. For our algorithm we

use € = 1.

Algorithm 2.1 (i) Given distinct r,s € R, IF (a) r = oo or s = oo then apply
f7" for sufficiently large n € N and we are done, ELSE (b) apply f~" for sufficiently
large n € N to get f~"(r) and f7"(s) € (=2,2). Next apply g™ for sufficiently large
m € N to get r1 = ¢”(f7"(r)) € (0,2) and s = ¢"(f"(s)) € (0,2). Set i=1.

(ii) IF {r;,;s;} N (0,1) # ¢(the empty set) then apply f™ where m € N is such
that {f™(ri), [™(si)} N (0,1) = & but {f™~"(r;), [""(s)} N (0,1) # ¢ and put
rigr = f™(r;) and sip1 = f™(s;) ELSE put ripy = ¢ ' (r;) and s;41 = g7 (ss).
Increment 1.

(iii) Since f((0,1)) = (0,2) and ¢g7'([1,2)) = [2,2) we still have at least one of
ri,si € (0,2), IF (a) one of them is not (this would be because f™ sent it into [2, 00))
we can separate them adequately by applying ¢~ for sufficiently large m € N ELSE
IF (b) |ri — s;] > 1 then we are done ELSE (c) repeat step (ii).

Theorem 2.1 The “North-Fast-South-West Action” is expansive on S.

Proof. Apply algorithm 2.1. If we do not escape at (i)(a) or eventually escape
at (iii)(a) then, after sufficiently many repetitions of step (ii), we must have that
|ri — s;| > 1. This is because |f™(r;) — f™(s:)| = 2™|r; — s;| and, without loss of

generality, 1 <r; < s; < 2 implies that ¢g7'(s;) — ¢~ (r;) =

—4 + 682' —4 + 67“2' . 32(8Z — TZ')
6 — s; 6 —r; _36—6(S¢—|—Ti)—|—8iri
> 32(82 — TZ') . 32(82 — TZ') . 16(82 — Ti)
T 36+ supepoy(—120+1(1+1))  36-10 13

So step (ii) always increases |s; — r;| by a factor of at least 16/13. O
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We use the following lemma, for the proof of which we are indebted to Morris

Newmann, to prove that the “North-East-South-West Group” ((Un,Vg)) is a free
group.

Lemma 2.1 The group (G, F) is a free group, where

1 (64 1 (20
G=—r d F=— .
4\/5(16) - \/5(01)

10
Proof. Set S = , put
0 2

1 (31
E=5SGS" = ——
2\/5(1 3)

and F' = SFS~!. Tt now suffices to show that (F, F') = (SGS™!, SFS™!) is free.

Now K = UFU, where
1 11
U=—
\/§<1 —1)

is a square root of the identity. So any non-empty word-string of £’s and F’s equal to
the identity matrix gives a non-empty word-string of U’s and F'’s equal to the identity.
We claim that this word-string may be assumed to be of the form UF* U/ ... F*»
for some n € N and ky,---,k, € Z\{0}. This is because (where [ is the identity
matrix)

(i) FB U - UF* = I implies that UF*U ... UFkntk = [

(ii) FRU - - UF*U = I implies that UF*U ... UF*UF" = [, and

(iii) UFMU - - UF*U = I implies that F¥1U ... UF* = [ which in turn

implies that UF*U ... UFth =

Here cancellations due to the possibility of k& = —k,, and in general k; = —k,11_;
for either 1 < ¢ < n/2 for n even or 1 < i < (n —1)/2 for n odd leaves, at worst,
U = Iif nis even and F*»+1/2 = [ if n is odd, neither of which is possible. So we

may assume that UF* U ... UF* = [ for somen € N and ky,---, k, € Z\{0}.
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Let A~ B in GL(2,R) if and only if there exists r € R\{0} such that A = rB.
Then, for k € Z\{0},

1 —1 0 ﬂ—k - \/§k _\/§—k

which is equivalent, with respect to ~, to both

\/§2k 1 B 2k 1 1 1 \/5—219 B 1 2—k
\/§2k -1 o 2k -1 an 1 _\/§—Qk o 1 _2—k )

20 ) kS 0 and put A Lo
if k; and put A; =
ki _1 P 1 —9-k

if k; < 0. Clearly, since we have UF* U ... UF* = [, it follows that A;--- A, ~ I.
But the product Aj--- A, is a matrix with only integer entries, so A;--- A, =¢- [
where ¢ € Z\{0}. It then follows that A;--- A, = [ or 0(mod2), where 0 is the zero
matrix. But each A; = P or @ (mod 2), where

0 1 10
P:(O 1) andQ:(1 0).

Furthermore, P2 = P,Q? = Q, PQ = Q, and QP = P, which contradicts A, --- A, =

I or 0(mod?2). Thus, there cannot exist any non-empty word-string of F’s and F’s

For s =1,---,n, put A; = (

equal to the identity matrix and, hence, (F, F) is a free group. O

Theorem 2.2 The “North-Fast-South-West Group” ((Vn,Vg)) is a free group.

Proof. Note that all elements of the group ((¢n,¥g)) are of the form g : © — %
where a,b,¢,d € R and ad—be # 0 (simply check that ¢x and ¢ g are of this form and
that if g1, g2 are of this form then so is g1 0 g3). The typical element, g of ((¢¥n, ¥5))
is clearly unaffected if each of a,b, ¢, and d is multiplied by the same non-zero real
number r: ad — be is merely scaled by 2.

We thus construct a well defined map 0 : ((¢¥n,¢E)) = S = (SL(2,R),~) by

0(a) — 1 a b
(9) = vVad —be \ ¢ d
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where, for A, B € SL(2,R), A ~ B if and only if A = +B and note that § is a
group homomorphism with trivial kernel, ker§ = {z % :r € R\{0}}. Thus,
the restriction of 8 to ((¢¥n,¥g)) gives a group isomorphism between ((¢n, 9 g)) and
(F, ), where F and G are as in Lemma 2.1. O

Thus the geometrically natural action generated by the N-S and E-W maps is an
expansive action of a free group. A natural question is whether “smaller” groups can

act expansively.

Example 2.1 The group action generated by an irrational rotation of S and the
North-South map on S is clearly expansive. However, it is not clear whether this

group of transformations is free.

2.2 An expansive solvable group action

What relations can we impose upon the elements of the group and still retain ex-
pansiveness? We now describe an example due to Shahar Mozes (unpublished) of a
solvable group action which is easily shown to act expansively.

Remaining with the terminology (and identification of (S, ¥y ) with (RY, f)) from
Section 2.1 define Uy :S—S by Uy = O h®y where h (R —RY is given by
h:r—r+1.

Theorem 2.3 The group action ((Vn,Vg)) by homeomorphisms of the circle is an

expansive action by a solvable, but not nilpotent, group.

Proof. Note that, for all g € ((f,h)), g(r) = 2"r + a for all r € RY where a =
2"b, for some m,n,b € Z. Using the restriction of the injective group homomorphism

6 in theorem 2.2 to ((f,h)) we represent the typical member g € ({f,h)) by

G_l 2m  q
V2 0

and see that ((f,h)) is represented by

wn=(5(20)-(01))
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a
Note that all commutators of this group are are of the form where a € Q

and, hence, that all elements of the commutator subgroup are of this form. Further-
more such elements clearly commute, so certainly ((Wy, W) = ((f, h)) is solvable.
Suppose nilpotency of class n where n is minimal (clearly, F' and H do not com-

mute), so the n*® commutator subgroup 7, is contained in the centre of (F, H). Let
1 a
A = ( 01 ) where a € Q, be a typical member of v, (clearly all elements of

each commutator group are of this form). Then if A commutes with F', a = 0, so
vn = {id}, contradicting the minimality of n.

Expansiveness is clear; given any two distinct real numbers we can, if necessary,
apply f™ to both of them for suitable integer m so that they are real distance greater
than one but less than or equal to two apart (recall that f is the map on the extended
real line), then apply A" (which is an isometry on R) to each of the resultant points
for suitable integer n so that the two resultant points are within the interval (—2,2).

Expansiveness follows, by the paragraph preceding Algorithm 2.1. O

2.3 Mobius groups and nilpotency

The maps f, g, and h of R3 in Sections 2.1 and 2.2 are specific examples of Mébius
maps.

Definition 2.1 A real map of the form z — % for all x € R*, the one point
compactification of the reals, for some a,b,c,d € R with ad — bc # 0 is called a

Mobius map. We represent such a map by a Mobius matrix

ﬁ (Z 2) €S = (SL(2,R),~)

where Mobius matrices A and B are considered equivalent, A ~ B, if and only if
A = +£B. We call a group generated by such matrices with the equivalence relation

~ a Mobius group.
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Clearly, if the Mobius matrices Ay, ..., A, represent the Mobius maps fi,..., f,
of R® then ((f1,..., fn)) is a faithful (A;,..., A,)-action, and we call it a Mdébius

action.

We have seen from Theorem 2.3 that finitely generated Mobius groups can be
solvable, but what about nilpotency? We now prove that the only finitely generated
nilpotent Mobius groups are abelian. It will then follow from Theorem 2.9 below that
any finitely generated Mobius group which acts expansively on the circle cannot have

polynomial growth.

Theorem 2.4 Let GG be a finitely generated Mobius group. If G is nilpotent then it

18 commutative.

Proof: Let

a; b .
G:<A¢:( d)ES:aidi—bicizlforzE{l,...,k}>.
¢ d;

We first prove the theorem for the special case

a; b .
H:<Ai: ES:aidi:1forz€{1,...,k}>.
0 d;

The special case where ¢; is not necessarily zero but b; = 0 for 1 < < & follows by
an analogous (and hence omitted) argument. We then finally prove it for the general

case.

Suppose that H is nilpotent and not commutative. Then {/} # ~,(H) C Z(H)
b
for some n € N. Let A = ( g p ) be a non-identity member of v, (H). Since

A € Z(H) we have that ab; + bd; = a;b+ b;d, or b(d; — a;) = bj(d — a), for 1 <i < k.
If b = 0 then ab; = b;d for 1 < 1 < k. Since H is not commutative we can’t have
b; = 0 for all « such that 1 < < k. It follows that a = d equals 1 or —1 (since
ad=ad —b-0=1). But A% I, so we can’t have b = 0.

Hence b(d; — a;) = bi(d — a) gives b;b(d; — a;) = b;b;(d — a) = bb;(d; — a;) and
b # 0 then gives a;b; + b;d; = a;b; + bid; for 1 < 1,5 < k, which can’t be so because
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H is not commutative. This contradiction proves the theorem for the special case of
H. The theorem is similarly shown to be true for the case where b; = 0 for 1 < < k.

Finally suppose that G is nilpotent but not commutative. Then {I} # v,(G) C
b
“ J ) # I in v,(G). So be; = bic, bi(a — d) =
c
bla; — d;), and ¢;(a — d) = ¢(a; — d;) for 1 <1 < k.
Suppose ¢ = 0, then be; = 0 for 1 < ¢ < k. If b = 0 we have (a—d)b; = 0 = (a—d)¢;
for 1 <i < k. We can’t have ¢; = 0 for 1 < ¢ < k (this was H), so we must have
a = d and, hence, a = d = 41 since ad = ad — be = 1, but A £ I, so we must have

Z(G) for some n € N. Take A = (

b # 0. But, then, be; = 0 gives ¢; = 0 again for 1 < i < k (case H again), so we
can’t have ¢ = 0. The case for supposing that b = 0 (before any restrictions on ¢) is
similarly dealt with.

So, finally, suppose b # 0 # ¢. Then, by the same method used earlier, we get
bi(a; —d;) = bjla; — d;), cila; — d;) = ¢j(a; — d;), and bje; = biej for 1 < 4,5 <k,
which is sufficient for G to be commutative. Thus, it is not possible for our group to

be nilpotent unless it is commutative. O

2.4 Expansive group actions on the circle and

fixed points

In Section 2.5 we consider (finitely generated) commutative groups. We first prove a
result for expansive actions of continuous maps by arbitrary (not necessarily count-
able) groups which will help us show that commutative groups cannot act expansively

on the circle.

Definition 2.2 Let S be I, S, or R. A set A C S is nowhere dense if it is dense in

no interval of 5.

Lemma 2.2 A finite union of nowhere dense subsets of S is nowhere dense, where

SisI, S, or R.

Proof: Take any interval, B say, of S. Let the nowhere dense sets be Ay,---, A,
for some n € N. There exists an open set C; C B such that A; N C; = (. There
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exists an open set Cy C C such that A, N Cy = (0. --- . There exists an open set
C, C Cn_q such that A, N C, = 0. Clearly (U, A)NC, =@ and C,, C B. So
U™ A; is not dense in arbitrarily chosen B C S. O

Theorem 2.5 [f an action o : I' — Homeo(S), for arbitrary group T, is expansive
then there is a dense sel of elements in S, each of which is fired by a non-trivial

element of a(I'). That is, the closure of
{z € S:a,(z) =z for some v € I" such that a., # id}

is all of S.

Proof. Assume « is expansive with expansive constant §. We shall presently
think of S as the unit interval, [0, 1], with 0 and 1 identified and metric p given by
p(z,y) = min(|z —y|,1 — |z — y|). Partition S into a finite number, m say, of disjoint
positive length intervals (it doesn’t matter whether any particular interval is open,
closed, or closed at one end and open at the other end) {/1,..., .} each of length
less than /2.

Fix a sequence {¢,} such that ¢, € (0,1/2)¥n € N and Jim ¢, = 0. Given z €
S put z, = = + ¢,(modl) for all n € N. By expansiveness there exists a sequence
{7} C I' such that p (e, (2),a,,(z,)) > & for all n € N. Therefore there exists m, €
{1,...,m} and a subsequence {v,,} C {7} such that I,,, C (e, (7),a, (7,,)) for
all k € N. Since {¢,} is fixed, the least such m,. is uniquely determined by z.

length > ¢
| ( \ |
| y Y !
0 —— ol

Figure 2: First step in Theorem 2.5.

Now suppose that F is an arbitrary interval of S. Partition the points of F into
disjoint subsets Uy, ..., U,, according to the rule x € U, if and only if n = m,, the
unique element of {1,...,m} chosen as above. By Lemma 2.2 there exists a proper
interval D C FE and there exists mg € {1,...,m} such that U, is dense in D (else
FE =", U; would be nowhere dense).
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Qo (:L'O) i
1:-0'/'7,166 (yo) i
| | | | |
[ | [ I ]
T=(ry )~ (Tng) g
L D 1

Figure 3: Second step in Theorem 2.5.

Now select an interior point g € DNU,,, of D. Then there exist sequences {z;} C

S\{zo} and {v;} C I' such that klim zr = xo and L,y C (o, (20),aq, (25))VE € N.
—00
Select ko € N such that 3, € D. So (zo,24,) C D and 1,,,, C (a%o (xo),awko (2 ))-
Now let J = (a,, )™ (Im,) and take yo € JNU,,

J, so there exist respective sequences {y;} C S\{yo} and {v;} C I such that klim Yp =
—00

, such that yq is an interior point of
yo and L,y C (e, (Yo), o, (yr)) ¥k € N, and there exists an appropriate k) € N such
that y, is an interior point of .J and /I, is a proper subset of (avké (yo),auk(/) (Yr:))-

Clearly a, # au, since (a., (Yo), @y, (Yry)) is a proper subset of I,,,. In fact,

,, (Y0) <y, (y0) and aqy (yry) < aw,, (yry) (2)
(but note that it is possible that o, (yo) > a,, (yx;): i.e. it is possible that o, does
not preserve the orientation of S) where the ordering relation is used locally in the
obvious sense on proper subintervals of S (if Qy,, Teverses orientation, of course, we’d
have > instead of < in the above two inequalities). By the Intermediate Value Theo-
rem, there exists = € (yo, y;) such that z is fixed by the non-trivial homeomorphism
AR
Remark 2.1 The proof of Theorem 2.5 is clearly still valid when S, with its usual

metric, is replaced by I, with its usual metric.
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Remark 2.2 By (2) we have actually shown that, given any interval, we can find a
non trivial element a., of a(I') and three distinct points in the interval such that the

middle (in the obvious sense) point is fixed by «a., and the other two points are not.

2.5 Commutative group-actions on the circle

So far we know that solvable groups can act expansively on S but have no evidence
that any groups of polynomial growth (or nilpotent groups) can. We now show that
finitely generated abelian groups cannot act expansively on S and, by a previous
result, non-expansiveness also follows for all Mobius groups of polynomial growth.
After eliminating any torsion elements (elements of finite order and clearly of no
influence on expansiveness or non-expansiveness of commutative groups) we may
consider any commutative group to be isomorphic with Z¢ for some d € N, so we
consider faithful Z%-actions only.

We continue to view S as [0, 1] with 0 and 1 identified and keep the metric p from
the proof of Theorem 2.5 (but see the notation below), and § will always represent a
candidate for an expansive constant. We begin with a concept of generator for con-
tinuous countable group actions analogous to Keynes and Robertson’s [27] generator

for a single homeomorphism of a compact metric space.

Notation 2.1 When considering intervals, I = [a,b] say, of S we are sometimes
interested in the interval as a metric space in its own right, with points ordered in
the obvious manner (as elements of R). For arbitrary = < y in [ let u(z,y) be
the Lebesgue measure (normalised on S, not [) of the interval [z,y] considered as
an interval in S. This is useful because if p(z,y) < 1/2 then p(z,y) = p(z,y) and
plr,y) <6 <1/2 = p(u,v) < 6 for all u,v € [x,y], which wouldn’t necessarily be
true if we merely had p(z,y) < § < 1/2. We therefore always assume that § < 1/2
from now on and must initially prove the main theorem for intervals with the y-metric
(that is, u(x,y) is the Lebesgue measure of the interval with end points z and y for

any points z and y in the interval).
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Definition 2.3 A finite open cover ¢ is a generator for a continuous I'-action a on
a compact metric space X if, for every {X,},er C &' (where X, € £Vy € ),
| Nyer a4 (X5)| < 1. If we only insist that |,er a0 (X,)| < 1 then we call £ a weak

generator.

Theorem 2.6 A continuous countable group action has a generator if and only if it

has a weak generator.

Proof: As in Theorem 5.20 in Walters [64] (all generators are weak generators. If
£ is a weak generator with Lebesgue number ¢ and £ is an open cover of X with

diam(A) < e for all A € ¢ then ¢ is a generator). O

Observation 2.1 If {m;,...,my} C Z? form a basis in R? then for all m, € Z¢
there exists (ny,...,n4) € Z? and k € P (the semi-closed d-dimensional parallelogram

in Z¢ formed by the set of vectors {O_r?li: i € {1,...,d}}) such that

m0:n1m1+...+ndmd—|—k.

Theorem 2.7 A continuous countable I'-action on a compact metric space is expan-

sive if and only if it has a generator if and only if it has a weak generator.

Proof: Completely analogous to Walters [64, Theorem 5.22] and due to Reddy
[51] and Keynes and Robertson [27] for the case I' = Z.
The next result shows that expansiveness, or non-expansiveness, is unaffected

if we replace an R%basis {m,,---,my} C Z? by the standard orthonormal basis

{ep e 7ed}‘

Corollary 2.1 Let {my,...,my} C Z?\{0} be a basis in R?. Then the Z*-action a
on a compact metric space X is expansive if and only if 3 is expansive on X, where,

foralln = (ny,...,ng) € yARNCEIE (M) (aMd)rd = gmMitotnaha,
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Proof: (<) A generator for 3 is a generator for a.
(=) By Observation 2.1, given mgy € Z? there exists n = (ny,...,n4) € Z% and
k € P such that o™ = (a™1)™ ... (™)X = gPakX. So if € is a generator for a
then the refinement \/ ak(f) is a generator for 3. O
keP
Remark 2.3 The expansive constant for 3 may have a different value to that for «

in the event that « is expansive.

Observation 2.2 Let {ei,...,e;} be the standard orthonormal basis for Z¢. Given
m € Z9\{0}, {m}U({es,---,es}\{e;}) is a basis in R? for some 1 < j < d. So,
putting m; in corollary 2.1 equal to e; for 7 # j and putting m; = m, we have

B3 = a™. That is, if o™ has some property for some m € Z4\{0} then we may
assume that o® has that same property for some 1 < j < d, without affecting the

expansiveness or non-expansiveness of a.

Observation 2.3 Let {ei,...,e;} be the standard orthonormal basis for Z¢. By
Corollary 2.1 we may replace {2ey,...,2e;} by {e1,...,e;} and assume that all el-
ements of our group act by orientation preserving homeomorphisms of S without

affecting expansiveness.

Notation 2.2 Let a be a Z%-action by homeomorphisms of an arbitrary set X. For
n € ZN\{0} put Fy, = Fu(a) = {z € X : a®(x) = 2}, Fs = Nneze Fn, Pn = Pa(a) =
Unmez\foy Fran, and Py = Uneza 1oy Fn-

If X =S and a is an expansive Z%-action then P, is dense in S (Theorem 2.5).

Note that, with respect to Corollary 2.1, if "(z) = « for all z in some set S then
amMit-tnaMa(p) — g for all z in S. That is, there exists n’ € Z4\{0} such that all
points fixed by 4™ are also fixed by a™. In particular:

Observation 2.4 The property that |Fy,| < oo for all n € Z%\{0} is preserved if we

replace an R%basis in Z? by the standard orthonormal basis.
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Notation 2.3 Let {e;,---,e;} be the standard orthonormal basis for Z%. For Y C X
and ¢ < jin {1,---,d} put Of(Y) = {a@Me ettt (VY s (ny niyg, e, n ) €
Z/=*1Y. Put ©; = O If Y = {z}, a singleton set, we denote @!({z}) and O;({z})
by (’)Z(:x) and O;(z) respectively.

If j € {1,---,d} is fixed and, for ¢« € {1,---,d}, the R¥basis {my,---,mg} in
Corollary 2.1 is such that m; = e; if 1 # 5 and m; = m for some m = (my,---,my) €
Z? (so m; # 0) then note that 3% = o™ and, for all i € {1,---,d}\{;j} and n € Z,
[ = o™, That is:

Observation 2.5 If i # j and m; # 0 then O;(Y), for all Y C X, and F, are
unaffected if m = (my,---,my) is replaced by e;. What was “Fp,” before replacement

becomes “Fe,”.

It is known that a Z-action (action generated by a single homeomorphism) on the
circle cannot be expansive, see for example Walters [64, Theorem 5.27] which is based
upon Reddy’s proof [51]. Theorem 2.5 gives rise to the following different proof of
this.

Theorem 2.8 A continuous Z-action T on the circle S cannot be expansive.

Proof: Suppose T' is expansive and without loss of generality assume T' preserves
orientation. If |F,,| < oo for all m € Z\{0} then take m € Z\{0} with F,, # 0
and assume without loss of generality that m = 1. We can find an interval [z, 23]
of non-zero length in S with Fy N [z1,22] = {z1, 22} (21 and x3 may be the same
point, giving unit length). Since T is strictly monotone on the open interval (x4, z3),
all interior points of [z1, 23] must have infinite T-orbit, contradicting Theorem 2.5.
Therefore there must exist mg € Z\{0} with |F,,| = co. Assume without loss of
generality that mo = 1. Then given any ¢ > 0 there exists z,y € F with p(z,y) <9,
so that p(T"z, T"y) = p(x,y) < d for all n € Z, contradicting expansiveness. O

To prove the same result for arbitrary Z-actions on (S, p) we first prove it for Z
on (I, i) and then for Z¢ on (I, ;) for arbitrary intervals I'in S and the metric u of

Lebesgue measure (normalised on S).
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Proposition 2.1 A continuous Z-action T on a closed interval with the Lebesque

measure metric ;i cannot be expansive.
Proof: Everything in Theorem 2.5 and Theorem 2.8 carries through to (I, ). O

Proposition 2.2 A continuous Z%-action o cannot act expansively on a closed in-

terval T with the Lebesgue measure metric p.

Proof: We note that the statement is true for d = 1, by Proposition 2.1, and
proceed by induction. Assume that d > 1 and that the statement is true for Z*-
actions for all & < d. We consider two separate cases (A) and (B). The latter breaks
down into two further cases, (i) and (ii), and (ii) itself breaks down further into cases
(a) and (b). Thus we have cases (A), (B)(i), (B)(ii)(a), and (B)(ii)(b). Throughout
we assume, for a contradiction, that the Z-action a is expansive (and hence that P,
is dense) and we assume, without loss of generality, that orientation is preserved.

(A) First assume that |Fjy| is finite for all m €Z4\{0}. Now a®! clearly permutes
Fm for any m € Z, so take m € Z\{0} such that Fyp, # 0. Some iterate of o®
fixes Fiy pointwise, this may as well be a® itself. So Fe, # 0 (this we know to be
true for a Z%action on a closed interval, before this replacement, since orientation
preservation implies that the end points are fixed, but this replacement IS needed in
Theorem 2.9 which refers to this proof, but with the closed interval replaced by the
circle). Since 0 < |Fe,| < oo (by Observation 2.4) we may assume without loss of
generality that only the end points of interval I of positive Lebesgue measure (unit
measure if |Fe,| = 1 and hence the end points are the same point) are fixed by a®!.
Then o must be strictly monotone on the interior of our I so that the a®-orbit of
every interior point is infinite. Expansiveness implies that there exists n € Z%\{0}
and an interior point of I which belongs to Fy. But |Fy| < oo (by Observation 2.4),
contradicting the infinite a® -orbit, since F}, is a® -invariant.

(B) Suppose that |Fin| = oo for some m € Z4\{0}. Without loss of generality we
may replace m by e;. Clearly Fg, is a closed subset of our interval: if it is dense then
it implies that a® is the identity, giving a Z%'-action and we appeal to our induction
hypothesis. So, since Fg, is closed, we may assume that there exists distinct z1,y; € 1

such that [z1,11] N Fe, = {x1,y1}. We observe two possibilities.
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(i) Since |Fe,| = o0, if there exists only finitely many intervals such as (21, y1) then
Fe, must be dense over some interval of positive Lebesgue measure in the compliment
of this finite set of open intervals and hence must contain some such interval in this
compliment, since Fg, is closed. So Fe, must consist of a finite number of isolated
points (possibly none) and also a finite number (but at least one) of positive Lebesgue
measure, closed, pointwise a®-invariant intervals which are maximal in that they are
not proper sub-intervals of any other intervals which are contained in Fg,, let I be
one of these intervals.

For each 2 <1 < d, since a® permutes Fe, and is a homeomorphism it must also
send these proper intervals to one another. But there are only finitely many intervals
such as I. So clearly, for all ¢ € {2,...,d}, there exists m; € N such that o™ () =1
(though not necessarily pointwise). Assume without loss of generality that m; = 1
for 2 < < d. Since [ is pointwise fixed by a® we now have that the restriction «af,
is a Z%'-action on [ and so is non-expansiveness, by the induction hypothesis. It
clearly follows that « itself is non-expansive.

(ii) So suppose that there exists an infinite family F = {[,},en = {[®n, Yn] }neN
of intervals such that I,, N Fe, = {z,,y,} for all n € N. Since, for all m € Z%\{0}, o™
clearly permutes Fe, and is a homeomorphism it must also permute F. Furthermore
the distinct members of F may clearly only intersect at end points. We consider two
cases.

(a) If O4(I,,) = {amC2F—Fna1€a([ ) (ny,... ,ng,) € Z971} is a finite collection
of intervals for all m € N then F is an infinite union of such orbits and, given
potential expansive constant § > 0, there exists m € N such that O4(1,,) contains
only intervals of Lebesgue measure less than §, contradicting expansiveness on z,, and
Ym, since each interval in O%(1,,) is also ae,-invariant (end points of such intervals
are in Fe, and orientation is preserved).

(b) So finally assume that O3(I,,,) = {a™®2F~Fra=1®a([ ) (ny, ... ,ng_y) € 2771}
is an infinite collection of intervals for some m € N. Put I = [,,,. If |O;(])] < o
for 2 < i < d then |O¢| < oo so, without loss of generality, assume that there
exists j € {2,---,d} such that 1 € {2,---,75 — 1} implies that |O;({)| = a; € N and
i € {j,---,d} implies that |O;(I)| = co.
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By observation 2.5 we may incrementally replace a;e; by e; for 1 = 2 then for - --
then for i = j — 1 so that @]~'(I) = {I} and |O;(I)| = oo for i € {j,---,d}. If the
members of O;l are not all distinct we apply the following step (with the initial value
k = 1) which may be applied inductively until we do have this desired condition.

In general if, for some k € {1,---,d — j}, O (1) = {I}, |0i| = oo for i €
{j+k—1,---,d}, and there exists n = (ny, -+, n4_j_pr2) € Z77*2\{0} such
that @™ €+s—1++7d——k+2€4([) = [ (not necessarily point-wise of course) then we may
assume, without loss of generality, that n; # 0 and replace n by ;441 so that, by
observation 2.5, O™ (I) = {I} and |O;(I)| = oo for i € {j + k,---,d}.

Thus, eventually we must get, for some m € {0,---,d— j}, that O{+m_1([) ={I}

and that (’);-l+m([) is an infinite family of distinct closed intervals whose interiors are

mutually disjoint (if we get as far as m = d — j then we’d have that |O;l_|_1([)| =
|O4(1)] = |Oa4(I)] = oo so that, certainly, a™®+m([) = a™®4([) # [ for all n; €
7\{0}).

Now [ is (not necessarily pointwise) invariant under the action of the map-group
G = ((ameFmtm=1€im=1  (n, . n;. ) € Z7V™71)) where j+m —1 < d—1
and so, by our induction hypothesis, the restriction of this action to I, 3 say, is not
expansive.

Furthermore, given a potential expansive constant § > 0, all but a finite subset,
{a™(I):1 <i < p}say (where p € ZT), of members of O;l+m([) must have Lebesgue
measure less than 4. But, for 1 <7 < p, by uniform continuity of a™ there exists
; such that w,v € [ and p(u,v) < §; implies that p(a™(u),a™(v)) < §. But by
non-expansiveness of 3 we can find distinct wg,vg € [ such that p(y(ug),v(vo)) <
min{d; : 1 <i<p}forally e G. O

Remark 2.4 The above inductive argument cannot be directly applied to S because
in assuming the induction hypothesis and applying it to [ in the last sentence of part
(B)(i) the metric p, on [ itself would have to be assumed to be like the circle metric p
in that two points x and y could be § close according to p, because they are each, for
example, within §/2 of the opposite ends of I so that p,(z,y) < § and yet p(z,y) > 9,

the interval I may be arbitrarily close to the whole of S. Similar remarks apply, in
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part (B)(ii), for intervals whose end points are less than or equal to § apart in the

circle metric.
This brings us to the main result of the chapter.
Theorem 2.9 A continuous Z*-action o on the circle cannot be expansive.

Proof: Apply the proof of Proposition 2.2 with I replaced by S and p replaced by
p, but at the stage in part (B)(i) referred to in Remark 2.4 appeal to the statement of
Proposition 2.2 for I as an interval with metric g on I C S but normalised on S. For
p(z,y) < § < 1/2 we are then assured that p(z,y) = p(z,y) < 6. In part (B)(ii), we
can be assured that not only are p(z1,y1) < § and p(g(z1),g(y1)) < 6 for all g in the
co-finite subset a(Z?)\G of the action but that the Lebesgue measure of, without loss
of generality, the respective intervals is less than or equal to §, thus ensuring that,
for § < 1/2, p(u,v) < § and p(g(u),g(v)) < § for all g in a(Z?)\G, for any chosen
u,v in [z1,y;]. For the uniform continuity argument we again apply the statement of
Proposition 2.2 to I as an interval with metric 4 on I C S normalised on S and also
put the p-metric, normalised on S, on each of the respective finite set of intervals and

then appeal to uniform continuity. O

Corollary 2.2 A finitely generated Mobius group G of polynomial growth cannot act

expansively on the circle.

Proof: By Theorem 1.1 such a group must contain a nilpotent subgroup of finite
index so, for purposes of non-expansiveness, we can assume (G to be finitely generated
nilpotent and Mobius. Theorem 2.4 then tells us that G is commutative, so we apply

Theorem 2.9. O

Remark 2.5 Work of Witte [66] shows that certain lattices in Lie groups cannot
act faithfully by homeomorphisms of the circle. For example, if I' is a subgroup of
finite index in SL,(Z) with n > 3 then I' has no continuous faithful actions on S (see

Corollary 2.4" in Witte [66]).
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Chapter 3

Topological entropy and

commuting maps on metric groups

3.1 A result for translation invariant metrics

Remark 3.1 For a = 7', the N-action generated by a single uniformly continuous
map 7' : X — X, the non-invertible analogue of Definition 1.4 makes sense when the
metric space, X, is not necessarily compact (here, @, ={0,---,n—1} for all n € N).
See, for example Walters [64, Section 7.2] for this fact which is due to Bowen. Thus,

X in the following theorem is not necessarily compact.

Theorem 3.1 Suppose T': X — X is a uniformly conlinuous surjective group en-
domorphism of a metric group (X, p) with translation invariant metric (that is, if
z,y,z € X then p(xz,yz) = p(x,y)). Then h(T) > log(|ker(T)|), with h(T) = oo if
| ker(T')| = oo.

Example 3.1 The one-sided (non-invertible) full-shift on p symbols has entropy
log p, exactly the logarithm of the size of the kernel.

Example 3.2 The only continuous endomorphisms of the circle group (viewed addi-
tively (mod 1)) are of the form z — maz (mod 1) for all z € S, for some m € Z. The

corresponding entropy is log m, exactly the logarithm of the size of the kernel.
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Example 3.3 The only continuous endomorphisms of the d-dimensional toral group
S? (viewed additively (mod 1) in the obvious coordinatewise manner) are of the form
x = Ax (mod 1) for all x € S, for some non-singular integer d x d matrix A. The
corresponding entropy is the logarithm of the product of those eigenvalues of A that
have modulus greater than one. The size of the kernel of this map is the product of
all of the eigenvalues of A and hence its logarithm is less than or equal to the entropy

of the map.

) # 0 for all z € X and thus,
since T' is a group homomorphism, |T~(z)| = | ker(T)| for all z € X.
Furthermore, for fixed zo € T7'(z), T7'(z) = {xoz : 2 € ker(T)} and so by

translation invariance of p, T~*(z) is isometric to ker(T) for all z € X.

Proof of Theorem 3.1: By surjectivity, 77'(x

For any finite subset A C ker(T") there clearly exists € > 0 such that p(a1,as) > €
for all ay,a; € A and, by the isometry between T~ (z) and ker(7') for all x € X there
exists A” C T~'(x) with the same property for the same value of € for all x € X.

If | ker(T')| = oo then take a strictly increasing (A, is a proper subset of A, for all
n € N) sequence {A, },cn of subsets of ker(T') with respective sequence {¢, > 0},eN
such that A, is (0, p, €, )-separated, as is some appropriate set AZ, which is isometric
(to A,), for all x € X, for all n € N. We may assume that lim,— . €, = 0 (necessary
if X is compact).

For |ker(T')| < oo there exists ¢g > 0 such that ¢; > ¢ > 0 implies that ker(7') is
(0, p, €)-separated and we assume that A, = ker(T') and ¢y > ¢, > 0 for all n € N,
and that lim,_ €, = 0.

So, for all n € N and for all z € X, A7 is (0, p, €, )-separated. Furthermore if,
for k € ZT, some set B is (k, p, ¢, )-separated then (J,c5 AZ is (k+ 1, p, €,)-separated
since, if 1 # x2 in Uyep AL then EITHER z; and z, are both from the same A7
so that p(z1,22) > €, (since A7 is (0, p, €, )-separated) OR T'(x1) # T(x2), in which
case there exists ¢ € {0,1,---,n — 1} such that p(T"(T(z)), T'(T(z))) > €, since
T(x1),T(x2) € B and B is (k, p, €,)-separated. Thus, Spi1(p, €,) > |An|Sk(p, €1). So

| 1 A lF i
h(T) = 1imlimsupm > lim lim og(|An|*So(p, €n))

e—0 k=00 k‘ n—o0 k—oo k‘
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> lim lim
n—00 k—oo

log(|A,|**!
% - nh_}y(r}o log |A,| = log | ker(T")| or oo

depending on whether |ker(7')| is finite or infinite respectively. O

3.2 Actions by the semi-group N and inverse lim-
its

Recall that (Q,(d), o), or just Q,(d), is the d-dimensional full shift on p symbols.

Shereshevsky’s conjecture, Problem 1.2, suggests that Z cannot act by continuous
shift commuting maps with finite positive entropy on (93(2),0), or simply €, the full
two dimensional two shift as in Definition 1.5.

We prove a form of Shereshevsky’s conjecture, for {1, instead of 23 where p is
any fixed prime, and use the result in the joint paper [42] (an account of which
constitutes the latter part of this chapter) with Ward to answer (for the case d = 2
and e = 1) Problem 1.3; that a mixing action of Z°¢ by continuous automorphisms of
a compact metric abelian group that commutes with a K-action of Z? by continuous
automorphisms cannot have finite positive entropy if e <d — 1.

We initially address Shereshevsky’s Conjecture, formulated instead for continuous
N-actions (not necessarily invertible maps), for an interesting class of continuous
maps 1" of (Q,0) (see Notation 1.1), the class of algebraic cellular automata. These
maps are all of the form

(T(x))n = Y ¢s(m)ensm (mod p)
meZ?
for all n € Z*, where ¢¢(n) € {1,---,p — 1} for finitely many n € Z* and c¢;(n) = 0
otherwise; they are clearly cellular automata in the sense given at the end of Section
1.5. So, for all n € Z?, ¢;(n) can be considered to be the coefficient of u™ in
[= 20 crmpu® € Ry =Zy[ur’, vz,
neZ?
where R, is the ring of Laurent polynomials in commuting variables uq,u; with
coefficients in Z;, and u™ = uj'uy? for all n = (n1,ny) € Z*. The polynomial f

uniquely determines T', and 7" uniquely determines f.
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Notice that maps of the form 7" are continuous group endomorphisms of the com-
pact metric abelian group (2. There is an extensively developed theory for such
algebraic dynamical systems with the N-action {7" : n € N} replaced by general
Z?-actions by continuous group automorphisms and € replaced by various other in-
teresting compact metric groups (see the monograph [60] by Schmidt).

An example of such a Z%action is the inverse limit (Q, o, T) of the case we are
considering, (,0,T). That is, the Z-action generated by the shift component T =
o(091) on the subshift of finite type and subgroup € = ¥(3) of Q(3) (i.e. d =3 for

the inverse limit system) given by

Q = 2(3) = {T € Q(3) : x(n17n27n3+1) = (T((x(mhmmns))(ml7m2)€z2))(n17n2)

for all (ny,nq,n3) € Z}, where the original two dimensional shift is represented by
o= {J(”l’”2’0) :(n1,ng) € ZQ}.

These actions in general originate from Ledrappier’s [30] example of the shift

action o of Z? on the closed shift invariant subgroup
{2€ D2(2) 1 2(ny ) + (a1 +1,m0) T+ Ty mpt1) = 0(mod 2) for all (ny,n,) € Z*}

(so d=2 and p=2) of the full two-dimensional two-shift.

Ledrappier’s example is the inverse limit of the N-action generated by the map
T" of (,0) = (2(1),0) given by (T'(x)), = x, + Tpy1 (mod?2) for all z € @ and
n € Z. A natural progression from this action to the type that we are considering is

T:Q2(2) = Q2(2) = Q given by
(T(x))(nhm) = x(n17n2) + x(n1+17n2) + x(n17n2+1) (mOdQ)

for all z € Q and (ny,n,) € Z2. Here the original space is {0,1}% and the inverse
limit space constructed inside {0,1}%° may be identified with {0,1}2*N since the
rule T determines every point z(,, n, n,) With n3 > 0 from the values of z(,, , 0). The
respective polynomial in Ry for T is f = 1 + u; + uy. The behaviour of such shift
commuting maps is everywhere determined by the appropriate translates of the set of

values of n € Z? for which ¢¢(n) # 0, in this case (0,0), (1,0), and (0,1). Note that
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these points are not co-linear in Z?, the significance of which will become apparent
as our argument develops.

We answer Shereshevsky’s Conjecture for N-actions for our class of examples by
appealing to the well-known Theorem below (the earliest explicit proof we found is

in Conze [12] for instance).

Theorem 3.2 Let T' be a continuous map of a compact metric space X. If the N-

action generated by T on X is expansive then

e Pa) < pry 3)

lim sup
n—oo

where F,(T') is the number of elements of X fized by T" for all n € N.
Proof: See Conze [12].

Example 3.4 For the special case of an axiom A diffeomorphism, Bowen [7] showed

that we have equality in (3).

Example 3.5 The existence of an irreducible shift space with no periodic points and
positive entropy is alluded to in Lind and Marcus [33, Exercise 4.1.11]. Hence the

inequality in (3) may be strict for expansive maps.

Example 3.6 In many algebraic settings, the inequality (3) holds even without ex-
pansiveness; see Chothi, Everest and Ward [11, Section 6].

3.3 Convex maps and expansiveness

We consider maps on the 2-dimensional p-shift space = Q,(2), where p is any fixed

prime.

Definition 3.1 Let the continuous map 7" :  — € be determined by the polynomial
f € Ry, and suppose that ¢ € N and the set of points, {m;: 1 < i < ¢} C Z? for
which ¢;(m;) # 0 along with the origin 0 € Z* are not co-linear in R?*. Then T is a
convex map of Q with hull H where H is the convex hull formed by {0, m,,... , m.}.
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For the sake of illustration, Proposition 3.1, Theorem 3.3, and Theorem 3.4 are

proved for p = 2. Note that the proofs readily extend to a general prime p.

Proposition 3.1 Let T be a convex map of Q. Then there exists k € Z*\{0} such
that, for any n € N\{0}, the N-action generaled by the restriction of T to the closed
shift-invariant subgroup Q™ = {z € Q : z, = Tpink for alln € Z2} of Q is expansive.

Example 3.7 Consider = Q3(2) and the convex map T : @ — Q given by, for all
x €0, (T(X))m = Tm + Zm4(0,1) + Tm(1,0) (mod 1) for all m € Z*. If k = (1, 1) then,
given n € N, let S C R? be the strip parallel to the (1, 1) direction, centered at (0,0),
and of thickness nv/2. Let D C R? be the square with two of its sides parallel to the
(1,1) direction, centered at (0,0), and of side-length nv/2, any two points x,y € Q"k
such that x, # yn for some n € S must also have zy, # ym for some m € D, by the
construction of "%, But if u,v € 9% and R ¢ R? is the thinnest strip centered at
(0,0) and parallel to the strip S such that uq # vq for some q € Z* which lies on an
edge of R then, clearly, (T'(u))p # (T(v))p for some p € Z? which lies on an edge of
that strip in R? parallel to R and thinner than R by /2. We can repeat this until
(T*(u))e # (T%(v))e for some b € N and ¢ € S N Z? and, without loss of generality,

c € D N Z* Expansiveness follows.

Remark 3.2 The method of “approximating” subdynamics in a Z-action by restric-
tion to subshifts of a large shift-period in some direction is used in Chothi, Everest

and Ward [11].

Proof of Proposition 3.1: Let T' be determined by f € Ry and let {m;: 1 <
i < ¢}, for some ¢ € N, be the set of points for which ¢f(m;) # 0. Suppose T has hull
H in Z*. Choose a line L through 0 of rational gradient in R? that has non empty
intersection in R? with the interior of H and is therefore not parallel to any of the
faces of H.

By Theorem 2.7 and Definition 1.5, we may use any metric p which makes points
z,y € Q close when x(n) and y(n) agree for all n € Z* within a large radius of the
origin 0 € Z*.
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For any real number r > 0 let S(r) be the closed (in R?) square of side length r,
centered at 0 and with two of its sides parallel to L. For any =,y in Q let p(z,y) =0
if y = 2 and (1/2)'®¥ otherwise, where

I(z,y) = inf{r > 0: 2, # ynfor somen € Z>N S(r)}.

So p is greatest when zg # yo, giving p(z,y) = 1.

Let the unit length vector v.€ R? represent the direction perpendicular to L.
Let ' > 0 and r” > 0 in R be the greatest distances in the directions of —v and v
respectively between L and a line parallel to L and containing one (by the construction
of L it will be a single point) of the points {m, : 1 < < ¢}; without loss of generality
assume that the points are m; and m, respectively. Let r” € R be the distance
between 0 and its nearest neighbour, k say, in LNZ?.

It may help to refer to the diagram on the next page for the remainder of the
argument.

For any real number R > max{2r’,2r" r"} choose any n € N such that nk is

distance strictly less than R from 0. Put
Ok = {x € Q:zy = 2y foralln € Z%},

Let the distinct lines L, Ly in R? be those two lines that are each parallel to L and

each contain a side of the square S(R).
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S(R)

S(R)

n-m-m ,

Figure 4: Proof of Proposition 3.1.
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If p(z,y) < (1/2)F for any = # y in Q7K then zy, # yn for some n € Z? outside, or
on the boundary of, S(R). Furthermore, any such n cannot lie between Ly and Ls, by

the construction of Q™. Since L has rational gradient there exists some minimal real

number R > R and a line [/ parallel to L and distance (in the direction of v or —v)
R'/2 from L such that xp» # ypr for some n” € L' NZ?* and so, furthermore, there
exists n’ € S(R')NZ? (in fact, n’ € I(S(R'))NL'NZ?, where 9(S(R')) is the boundary
of S(R')) such that zy # yn and clearly p(z,y) = (1/2)%". By our construction we
know that, for j =1 or j = 2, Zn/4m;—m,; = Yn'4m,;—m, for all 2 € {1,...,c}\{s}.

It follows that (T'(z))n-m; # (T(y))n—m,. If p(T(2),T(y)) < (1/2)% then, by
the construction of QK p(T(z), T(y)) = (1/2)% =% for some real ry such that r' <
ry < r” (without loss of generality, we are assuming that ' < r”).

So we may inductively argue that if (1/2)F ~201+47%) = p(T*(z), T*(y)) < (1/2)F
for some k € N where r' <r; <r” for 1 <1 <k then

p(TH1 (), THI(y)) < (1/2)7 = (1) Hertertrinn) = (T4 () T4 (y))

where also 1’ < rpy1 < r”. Eventually we must get R' — 2(r1 + ...+ rp) < R for
some k' € Nand r' <r; <r"for 1 <i <k giving p(Tk/(;r:),Tk'(y)) > (1/2)%. So the
N-action generated by 7' is expansive on Q7K with expansive constant § = (1/2)%.
Finally note that we could have selected R, and hence |nk|, arbitrarily large (though
for n’ # n" the expansive constants for 7' restricted to Q"'K and Q™" respectively are

not necessarily the same). O

3.4 Shereshevsky’s conjecture

Let A be any set and p any prime number. Partition A? into equivalence classes
according to the equivalence relation, ~, given by (ag,---,a,-1) ~ (bg,---,b,—1) if
and only if there exists ¢ € {0,---,p — 1} such that, for all j € {0,---,p — 1},
a; = bjyi(modp). Furthermore, let 7 : A — AP be the canonical embedding given by

ira (a,---,a).

Lemma 3.1 With the above notation, AP\i(A) is partitioned, by ~, inlo equivalence

classes each of cardinality p.
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Proof. Clearly, no equivalence class can have cardinality greater than p. If

aj = j4i (modp) foT all j € {0,-+-,p—1} then ag = a; = @2i(modp) = *** = G(p—1)i (modp)-
But, since p is prime, {ki (modp) : 0 <k <p—1} ={0,---,p—1} unless ¢ = 0. So
if i # 0 and a; = a;4i(moap) for all j € {0,---,p—1} then ag = --- = a,_;. In other

words, if ai # a; for some distinct k,1 € {0,---p — 1} then, for all e € {1,---,p — 1},
there exists j = j(z) € {1---,p — 1} such that a; # a;4i(modap). S0, for all distinct

iaj € {07 Y 2 1}7 (aiy' s 7ai+p—1(modp)) 7£ (aj7' s 7aj+p—1(m0dp)) unless g = =+ =

ap—_1. O
Corollary 3.1 Fermat’s little theorem.

Proof. Fix any n € N. With the above notation, let A = {1,---,n}. Then
n? —n = |A?| — |A| = |AP\i(A)| = kp for some k € Zt. O

Lemma 3.1 is used in the multiple summation in the following observation, where
A= {1,---,q}. The sums of the form n; +---+n;,, as (i1,---,%,) runs through
AP\i(A), can be partitioned into equivalence classes (of cyclic permutations) of car-
dinality p. Furthermore, each member of any such equivalence class will correspond
with the same coefficient product. It follows that all such terms cancel (mod p). The

following line then uses Fermat’s little theorem.
Observation 3.1 If, for some ¢ € N, T' is represented by
f=cimp)u™ + -+ ¢cp(ny)u™ € Ry, then (TP(z))n =

cr(m)(TP7(2))ugm, + -+ + ¢ (ng) (T (2))n4m, (mod p) = - -+ =

(¢r(m1)) ngpm, + -+ (¢5(0g)) Tngpn, (mod p) =
¢s(N1)Tnypn, + -+ ¢s(Ng)Tnipn, (mod p)
which is represented by

P =cp(ny)u™ 4 ...+ cp(ng)uP™ € Ry,
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We thus inductively show that, for all k € N, T?" is represented by

fpk = cf(nl)upknl +... 4+ cf(nq)upknq.

Remark 3.3 This tight control over the support of iterates of 7' is exactly where the

algebraic case becomes much easier than the general case.

Theorem 3.3 The N-action generated by any convexr map on the full two dimen-

sional 2-shift has infinite entropy.

Proof: Remaining with the notation of the arbitrary convex map T in Proposition
3.1 note that, by Observation 3.1, z € Q is fixed by T?" for any k € N if and only if
Tn = Tpgokm, T - - + Tngporm, (mod p) for all n € Z? and that T?" is a convex map
with hull 28 .

There exist points in ((r' +r")v 4+ L)NZ?, let k' be one of them, and let M be the
line through 0 and k’. Given k,n € N let R(k,n) be the semi closed quadrilateral
in R? with vertices 0, nk, 2*k’, and nk + 2*k’ including points on the two borders
contained in L, and M only.

We are free to start to construct a point z in Q7K that is fixed by 72" by putting
zn = 0or 1 for all n € R(k,n)NZ? because (i) if some n is in R(k,n) then n + k can’t
be and (ii) some corner of any hull of the form m + 2*H (m € Z?) must always lie
outside of R(k,n). This gives a total of 2°(*™) choices where C'(k,n) is the cardinality
of R(k,n)NZ%. One readily sees that, for all k,n € N, C(k,n) = 28nC(0,1) = 2*nC
for some C' # 0.

By Proposition 3.1, for all n € N\{0}, the restriction of T' to Q7K. is expansive

and so, by Theorem 3.2, h(T') > h(T| k)
QTL
log Fx(T| ) log Fy (T ) Lo 9270
. n . . M g
= nsup ——y =i 2k BT nClog2

Theorem 3.4 No N-action on ) generated by a map T which is determined by a
polynomial | € Ryo can have finile posilive entropy.
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Proof: For convex maps this is Theorem 3.3. If T" is not convex then either it is
the identity, the zero map (both entropy zero), or 0 and all m for which ¢f(m) # 0
lie on a unique rational line K, which is isomorphic to Z. We thus think of  as Z
copies of €y :Z/Z2 where T acts on by acting individually on each copy of €; and
a simple entropy calculation tells us that A(7) = co when non-convex T is not the

identity or the zero map. O

Remark 3.4 This result also follows from our more general result of Theorem 5.8.

3.5 The algebraic case in general

The remainder of the chapter gives the proof of the result of the joint work, [42], with
Tom Ward.
Recall Problem 1.3. We solve this for e = 1,d = 2, and for endomorphisms rather

than just automorphisms. That is;

Theorem 3.5 [fT is a mizing conlinuous group endomorphism of (X, «), where X
is a compacl metric Abelian group and « is a completely positive entropy Z*-action

by continuous group automorphisms, then h(T) = cc.

Note that we may drop the possibility (for the case of general d > 2 and e < d—1)
of h(T) = 0, since a single mixing continuous group endomorphism (an N-action) of
a compact metric Abelian group has positive entropy by Rokhlin [53].

Theorem 3.5 will be proved after some preparations. Certain Pontryagin duality
results on compact metric groups will be used. All may be found in Hewitt and Ross
[23] or Morris [43].

Let M = X be the dual group or character group of X; that is, the group of
continuous group homomorphisms from X into the unit circle with the compact open
topology (see Morris [43]). By the Pontryagin-van Kampen duality Theorem, for each
z € X , the map 2’ : M — S given by 2'(m) = m(z) for all m € M is an element of
M and the map sending each z to 2’ is a topological group isomorphism, which gives

the identification X = M = X. We thus identify x with 2’ for all x € X and hence
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have m(x) = z(m) under this identification for all m € M and = € X. It also follows
from this identification that, for a continuous group homomorphism o : X — X, we
may identify & and a.
For work on commutative algebra including ring-modules, Noetherian rings, and
associated prime ideals, see Atiyah and MacDonald [1], Lang [29], or Matsumura [38].
Let R be a ring and M an R-module.

Definition 3.2 A prime ideal p of R is said to be an associated prime ideal of M if
there exists m € M such that p={f € R: f-m=0=0x}.

Definition 3.3 The module M is said to be Noetherian if, whenever My C My C ...
is an increasing sequence of submodules of M, there exists n € N such that M, =
M,y =....

The ring R is said to be Noetherian if it is Noetherian as the canonical R-module
over itself. Equivalently, if whenever ¢; C ¢5 C ... is an increasing sequence of ideals

of R, there exists n € N such that £, =/,,, = .. ..

Theorem 3.6 If R is a Noetherian ring then any R-module not equal to {0} has an

associated prime ideal.

Proof. See Corollary 4.7 of Lang [29].

Much of the algebraic dynamics which we use is from Schmidt’s book [60] where
the following notation is described.

Let X be a compact metric group. The dual group (or character group) M = X of
X is countable and discrete. We shall treat the unit circle as an additive group here,
so that the character group operation is given, for all mq,ms € M, by (m;+m2)(z) =
my(z) + ma(z)(mod1) for all z € X, the (mod 1) often being taken for granted and
omitted. Given a Z%action, a, by continuous group automorphisms of X recall that
the dual, @, of a is given by (a™(m))(z) = m(a™(z)) for all n € Z4,m € M and
r € X. If Rg = Z[uf', -, u¥'], the ring of Laurent polynomials in commuting
variables wuy, - - -, ug with coefficients in Z, then M becomes an R -module under the
action f-m = Y czacy(n)a™(m) for all m € M and for all f € R,, where ¢s(n)

is the coefficient of u™ = uj'---u}? in f for all n = (ny,---,ny) € Z%. Conversely,
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if M is an Rgs-module (always countable) then we may define the Z%-action, 3, by
continuous automorphisms of M by #%(m) = u™-m for all m € M for all n € Z¢ and
obtain the Z%action o = B by continuous automorphisms of X.

Consider the map 0 : Ry — Ziga = Sz (here, the notation Zyga refers to the direct
sum of Z? copies of Z) given by (0(f))((¥n)nez¢) = Soneza cs(n) - xy (mod 1) (recall
that c¢f(n) is the coefficient of u™ in f) for all f € R4. Then (0(f + g))((zn)) =
Yonezd Ci+g() - Tn = Ypezalcs(n+ ¢g(n) - 2n = Fpegacr(n- 2 + Xpeza ¢p(n - n =
O () + @) ((z0) = (B() + 0(9))((n)) for all (za) € SZ* and for all
f,9 € Rq. So 6 is a homomorphism of discrete groups, and hence continuous.

Furthermore, 0(f) = 6(g) implies that, for all (z,) € Sz Yonezacs(n) - xy =
Sonezd ¢g(n) - xn so that Y czacs_y(n) - zn = 0. Fixing arbitrary m € Z? and
constructing (zpn) € SZ* such that Tm € S is irrational and z, = 0 for all n # m we
get that ¢;_,(m) 2y = 0(mod 1), so ¢s_,(m) =0 and ¢;(m) = ¢,(m). Since m was
chosen arbitrarily we have that f = g and hence 0 is injective.

Dual to 0 we have 6 : SZ° — R given by (0((zn)))(f) = (xn)(0(f)) = (0(F))((zn)).
S0 0((xn)) = 0((yn)) implies that, for all f € Ry, (0((xn)))(f) = (8((yn)))(f), so that
(e)(0(F)) = (3)(O()) and hence (O/)(zn) = (O/))(yn), 50 that Snezs cs(n) -
(zn—yn) = 0(mod 1). So taking f = u™ for arbitrary m € Z? we have that zy = ym.
So (zn) = (yn), since m € Z? was arbitrary. That is, 0 is injective, so 0 is a continu-

.

ous group isomorphism and we may consider f € Ry as an element of SZ* under the
identification of f with 8(f). That is, f((2n)neze) = Yoneze cs(n) - 2y (Mmod 1) for all
(xn) € Sz,

Let o be a prime ideal in R;. The dual, m, of R/ is isomorphic to the
annihilator, pt = {(zn) € SZ — R, : (zn)(f) =0 for all f € Ry}, of pin R,. This
is {(xn) € SZ* . Sonezd ¢p(n) - Tmyn = 0 for all m € Z4}, when o = (p) is principal.

Let g™ : Ry — 7/2\d/l£ the dual of multiplication by u™ on R4. Now ((8™ o
) ((a))() = () (570 D)) = (a)(® 0 F)S)) = (am) (O™ - )) = (O(u™
MN(@n) = Xnezacums(n) - 2n = Ypezacs(n —m) - zn = Ypezacs(n) - Tmin =
O ((men)) = (e O0)) = O((2man))F) = (0 0 0™((ea)))(f) for all f €
Ry, for all (zn) € Sz,

So, under the identification given by 8, 3 is the shift on Sz, Similarly, the dual
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of multiplication by u™ on R;/p is the shift, o™, on m = {(zn) € SZ' = R, :
(zn)(f) =0 for all f € Ry}

Let ¢ : m — m be a continuous group homomorphism that commutes with
the shift o on m. Note that, for f € Ry, t(f + p) = t(Xpezacs(n) - u™ 4 p) =
S ezt (1) H0™) 9 = (Snegs ¢s(m) -0 + ) 11+ ) = (f + ) (h + ), where
h+p=1t(1+ ). Sot commutes with multiplication by u" on R4/¢.

So the duals t of algebraic cellular automata such as ¢ are merely multiplica-
tion by polynomials in Ry. It follows that (1((zn))(f) = (zn)(t(f)) = (zn)(f - h) =
Ymezd €-h(M) Tm = Ymeza Yoneze ¢ (D)en(M—n) zm = Fyeza cr(n)(Emeza cr(m—
n)-rm) = (yn)(f), for all f € Ry, for all (zy) € SZ’  where (yn) € SZ* is such that

Yn = YomezdCh(m —n) - zy = Y ezaci(m) - zymyn for all n € Z%. So algebraic

cellular automata such as ¢ are the polynomial maps on Ry/p; t is determined by the
polynomial h € R,.
To prove Theorem 3.5 we need three more results (Theorem 3.7, Theorem 3.8,

and Theorem 3.9).
Definition 3.4 A subgroup I' C Z? is primitiveif the quotient Z¢/T is torsion free.
For notational compactness, F), below is Z,, = Z/(pZ).

Theorem 3.7 Suppose d € N, o is a positive characteristic prime ideal in Ry, of

characteristic p, and the shift o on

m = {(Zn)neza € sZ . > ¢s(n)zy =0 (mod 1) for all f € p} C Ffd
neZd
is ergodic. Then there exists an integer r = r(p) € {1,---,d}, a primitive subgroup
I' = T(p) C Z% and a finite set Q = Q(p) C Z¢ such that I = Z", 0 € Q,
Q@N(Q+m)=10 whenever 0 £ m €T and, if

I'=Il'+Q={m+n:mel,ncqQ},

T

o Which restricts any poinl x € m to

then the coordinate projection m : m — F

its coordinates in T, is a topological group isomorphism; in particular, if {ny,---,n,}
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is a basis for I' then the Z"-action generated by {c™,--- o™} is isomorphic to the
shift on (Fg)zr.
Furthermore, for any s € R¥,
. 1 —m
sup lim ——H\( \/ o ™(P)) =

oo if and only if s < r(p) (4)
Perm— (Qm)s meQ(m)

0 if and only if s > r(p),

where = is the set of all finite measurable partitions ofm and A is Haar measure
on m. The integer r = r(p) does not depend on the choice of primitive subgroup

I'=T(p) C Z¢, and is a measurable conjugacy invariant.

Bxample 8.8 1t d = 2 and o = (2,p) = (2,1 + w1 + ) (0 ((0.1)) = (0, 0)) =
¢,((1,0)) = 1) then Ry/p =

{(xn) € SZ2 :2xm = 0 and Tm+(0,1) T Tm+(0,0) T Tm+(1,0) = 0 (mod 1) for all m € ZQ}

= {(zn) € {0,1}% : Zmy01) + Tmi(00) + Tmi(0) = 0 (mod 2) for all m € Z2},

Consideration of a lower-left to upper-right bi-infinite diagonal strip in RZ?, thick
enough for any translate to always contain exactly two adjacent bi-infinite diagonal
lines of points of Z?, gives a one-to-one correspondence between points of m and
all possible combinations of 0’s and 1’s on the lattice points in the strip. So, by
Theorem 5.4 with £ = {Ay, Az} where A; = {(zn) € m 20y = ¢} for 1 = 1,2,
equation (4) with s = 1 gives value 2v/2log 2 so, by Theorem 3.7, r(p) = 1.

Example 3.9 If d =2 and p = (2—u1,3 —uz) (so the shift on m is the invertible
extension of (S, 5,7) where S and T" are multiplication by 2 and 3, respectively, (mod
1)) then, by Theorem 5.4 with £ = {Ay,---, A} where A; = {(xn) € @ D T(0,0) €
(2 —1)/6,i/6)} for i = 1,---,6, equation (4) with s = 1 gives value log6 so, by
Theorem 3.7, r(p) = 1.

Proof of Theorem 3.7. Proposition 8.2 and Theorem 24.1 of Schmidt [60].

The case where the prime ideal ¢ has characteristic zero involves looking at

the shift component a(00:1) on Q;i/?o’ = {(xn) € »Z . Yneze ¢p(n) - axn = 0 =
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Oy for all p € '} (the identification being analogous to the R3/p case) where ¥ is
the full solenoid Q, Qs = Quf',---,ui'], and ¢ is the canonical ideal in Qs which
corresponds to the ideal p in Rs.

The dual of ({(zn) € ¥%° : Spezecp(n) -2y = 0 = 0x for all p € ¢'},0(©0V) is
(Qs/¢', 1) where t represents multiplication by us. We need to show that the entropy
of ({(zn) € »Z . Sneze ¢p(n) -y = 0= 0y for all p € o'}, 0(®0Y) is equal to that of
({(zn) € SZ° : T peze cp(n) - 2y = 0 = Og (mod 1) for all p € p}, @00,

We shall prove the more general Theorem 3.8 which is used (for the case of an
automorphism) elsewhere, though no proof has been found. We’'ll need the following
four lemmas (Lemma 3.2, Lemma 3.3, Lemma 3.4, and Lemma 3.5).

The first lemma which we prove (so as to exhibit the isomorphism involved) con-
cerns a compact metric group, (G, a normal closed subgroup H, of (G, endowed with
the subspace topology (U C H open if and only if U = HNV for some open V C G),
the annihilator H+ = {y € G- X(H)={0}}of H in (i, and the quotient group, G/H
(see, for example, Higgins [24] for the theory on topological groups). The quotient
group, G//H, is given the quotient topology; U C G/H is open in GG/H if and only
if ¢7*(U) is open in G, where ¢ : G — (G//H is the quotient map. The quotient
topology makes (G/ H into a topological group. The quotient map, g, is automatically
continuous.

The quotient map, g, is open since U C G open in G implies ¢~ (q(U)) = {g €
G:9g+H=u+HforsomeuelU}={geG:9g—uecHforsomeueclU}={g¢€
G:g=u+hforsomeu € U he& H} =Upeg{h+u:u & U} is a union of open
sets in G and hence open. It follows that ¢(U) is open in G/H, by definition of the
quotient topology and, hence, ¢ is an open map.

The quotient map, g, is closed because; H being closed is sufficient to make G/ H
Hausdorff, and any continuous map from a compact space to a Hausdorff space is a

closed map.

Lemma 3.2 With the above notation (H a normal closed subgroup of G with the
subspace topology), CA?/HL ~ H .

Proof. Let : : H — (G be the inclusion map, automatically continuous because
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H has the subspace topology. Dual to ¢ we have the continuous endomorphism
1:G — H. Define 0 : CA?/HL — H by O(x + H*Y) zg(x) for all y € G.

Firstly, not that if, for x, 7 € G, y—7 € H* then, forall h € H, (;(X) —;(T))(h) =
GOONR) — GUr)(R) = x(B) — (k) = (x — 7)(k) = 0, s0 that 6(x + H*) = i(x) =
2(7') = 0(t + H*) and, hence, 6 is well defined. We will show that 6 is a topological
group isomorphism.

Surjectivity of 8 follows from surjectivity of 7 and continuity is trivial upon noting
that the definition of the quotient topology and the discrete topology of (i means
that CA?/HL has the discrete topology. Furthermore, for all & € H, (6((x + H*) +
(r o HE))(0) = Glx o+ 7)) = (x+ 7)(B) = x(h) + (k) = GO0)(E) + (G(r)) (k) =
(O(x + HY))(R) + (0(7 + H*Y))(R), so that 6 is a group homomorphism. Finally, if
O(x + H*) = 0 then, for all . € H, x(h) = (i(x))(h) = (8(x + H'))(h) = 0, so that
x € Ht and, hence, 0 is injective. O

The proof of Lemma 13.6 in Schmidt [60] (concerning a Z?-action by continuous
group automorphisms) works also for a single group endomorphism. We give here a
more detailed proof (Lemma 3.5 below), but first we need the following lemma, which
is used implicitly in Lemma 13.6 of [60]. For a topological space X let B(X) denote
its Borel o-algebra. For c-algebras, B,, for n € N, on some common topological

space, V,en By, is the smallest o-algebra containing U, cn Bn.

Lemma 3.3 Let {H,},en be a decreasing (H,41 C H, for all n € N) sequence of
closed, normal subgroups of G such that N,en H, = {0} and, for all n € N, let
b, : G — G/H, be the quotient map. Then {6, (B(G/H,))}.eN is an increasing
sequence of o-algebras on G and \/ N 0, (B(G/H,)) = B(G).

Proof. Fixn € N and note that, since H,4; is a subgroup of H,,, H, = Upen, {f+
h:fé€H,}. Let U C G be the pre-image, under the quotient map 6, of an open
set in G/H,. SoU =6;'(0,(U)) ={g€ G:9—ué€ H, for someu € U} ={g €
G:g—u€Upeg {f+h:f€Hu}forsomeu € U} = Upeg {9 €G:g—uc€
{f+h:feH, 1} forsomeu e U}t =Upep {9€G:g—(h+u) € Hypq} for some
u € U} = Unen, O (Onrr({h +u s w € UY)) = 074 (Une,, i ({h + w2 u € U})).
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But Uen, 0n+1({h + v : w € U}) is open in G/H,4y. So U € G;il(B(G/HnH)),
which proves that {8, '(B(G/H,))}.eN is an increasing sequence of g-algebras on .

We now show that V,.n 0, (B(G/H,)) = B(G). If V is open in G/H, then
0-1(V) is open in G, by definition of the quotient topology on G/ H,,. It follows that
Veen 071 (B(G/H,)) C B(G).

To prove the reverse inclusion, let ' be a closed subset of . First note that
C C 0;'(0,(C)) for all n € N, so that C C N,en 8, (0,(C)). Conversely if, for all
ne€N,g+H, € {c+ H,:ce C}, for some g € (G, then there exists a sequence
{¢n}nen in C such that, for all n € N, g — ¢, € H,. Since (G is compact, {g — ¢, }neN
contains a convergent subsequence which, without loss of generality, we assume to be
the sequence itself. Fix arbitrary m € N then, for all n > m, g — ¢, € H, C H,,,
since {H,, },en is decreasing. Thus, lim, 0. g — ¢, € Hy, since H,, is closed. Since
m was chosen arbitrarily we have that lim, .. ¢ — ¢, € N,en H, = {0}, so that
g = lim, o ¢,. But this limit is in C (this was our motivation for concentrating on
the closed sets of G which, of course, also generate its Borel o-algebra). Thus g € C
and, hence, N,cn 0,1 (0,.(C)) = C.

By the paragraph preceding Lemma 3.2, for all n € N, 6,,(C) is closed in G/H,
and, hence, C' = NN 0, (0,(C)) is amemberof \/,,cn 0, (B(G/H,)). Thus, B(G) C
Vyen 8,1 (B(G/H,)), which is the reverse inclusion required. O

The proof of Lemma 3.5 uses the conditional entropy of P with respect to F,
H,(P|F) for a finite measurable (with respect to the o-algebra, B) partition P of
a probability space (X, B, p), where F is a sub-c-algebra of B. See, for example,
Walters [64, Section 4.3] for the the motivation for, definition of, and some theory
concerning conditional entropies. The results used here are:

Since P is measurable with respect to B, H,(P|B) = 0.

For a measure preserving transformation, 7', of (X, B, u), h,(T,P) < h,(T,P') +
H,(P|P') for finite measurable partitions P and P’ of (M, B, 1) (we have license to
place the finite partition P’ in place of a o-algebra due to the canonical one-to-one

correspondence between finite o-algebras and finite partitions, see Walters [64]).
Lemma 3.4 With the above notation, if {F,},eN is an increasing (F,, C Fugr for all
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n € N) sequence of sub-o-algebras of B with \/,en Fn = F then lim, oo H,(P|F,) =
H,(P|F).

Proof. Follows (see, for example, Walters [64, Theorem 4.7]) from Doob’s mar-

tingale theorem.

Lemma 3.5 Let T be a continuous group endomorphism of a compact melric group
G, and let {H,},eN be a decreasing sequence of closed, normal, T-invariant subgroups
of G such that N,eny Hn = {0}. Then h(T) = limuo h(T,,) where, for all n € N,
the continuous group endomorphism T, : G/H, — G/H,, is defined by T,,(¢9 + H,) =
T(g)+ H, forall g € G.

Proof. First note that, foralln € N, if T'(f)—T'(g) € H, then T,,(f+ H,,)— T (g+
H,)=(T(f)+H.)—(T(9)+H,)=(T(f)—T(g))+H, =0, so that T, is well defined.
Since, for all n € N, for all g, h € G, To((g + Hn) + (h+ Ho)) =T(g+ k) + H, =
(T(g) + () + Hy = (T(g) + Ha) + (T(h) + H,) = Tulg + Ha) + Tulh + Hy)
T, is a group homomorphism. Surjectivity follows trivially from surjectivity of T.
Furthermore, for all open U C G/H,, U = {v+H, : v € V for some V open in G} and
0. (U)y={9€ G:g+H, =v+ H, for some v € V} is open in (G, by definition of the
quotient topology on G/H,, where 0, : G — G/H, is the quotient map. Therefore,
T-(U)={9+H,€eG/H, :T(g)+ H,=v+ H, forsomeveV}={0,(g9):g€CG
and T(g)+ H, = v+ H, for somev € V} =60,({g € G:T(g9)+ H, = v+ H, for some
veV}H =0,(T"{g€G:9+4+ H, =v+ H, for some v € V})) is open in G/H,
since T'is continuous and #,, is an open map by the paragraphs preceding Lemma 3.2.
Thus, T, is a continuous group endomorphism on G/ H,.

By the variational principle for continuous maps of compact metric spaces (see,
for example, Walters [64]) and Remark 1.1 we have that h(7T") = h,(T) and h(T,) =
hy,(T,) where, for all n € N, g on G (and p,, on G/ H,, respectively) is Haar measure.

For all n € N, the quotient map 6,, : G — G/ H,, is a continuous (recall that G/ H,

is endowed with the quotient topology) group endomorphism of compact groups and,

thus, preserves the respective Haar measures. Furthermore, 6, 0 T(g) = T(g) + H,, =
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T.(g+ H,) =T,00,(g), for all g € G, so (G/H,,,T,) is a factor of (G, T') and, hence,
h(T) > h(T,) for all n € N. Thus A(T') > lim,— h(T}).

Conversely, let = be the set of all finite Borel measurable partitions of G, sup-
pose that ¢ > 0 is given, and take P = P(e¢) € =, such that h,(T) — h,(T,P) =
suppez hu(T,0) —h,(T, P) < ¢/4. By Lemma 3.3 {0, (B(G/H,))}.enN is an increas-
ing sequence of g-algebras on G and V,.n0.'(B(G/H,)) = B(G). For n € N,
let B, = 6-'(B(G/H,)). Tt follows from Lemma 3.4 that lim,_. H.(P|B,) =
H,(P|B(G)). But H,(P|B(G)) = 0 by the results preceding Lemma 3.4. Thus,
there exists n = n(P,¢) € N such that m > n implies that H,(P,B,,) < ¢/4. Since
Haar measure, y, is a Borel probability measure and (i is a metric space it follows (see,
for example, Walters [64, Theorem 6.1]) that (G, B((G), ) has a countable measure
basis (that is, a countable subset {B,},en C B((G) such that, for all B € B((G) and
for all § > 0, there exists n € N such that pu(B\B, U B,\B) < §). We may (see, for
example, [64]) therefore take an increasing sequence, {A, },eN, of finite sub-algebras
such that \/,cn A, = B,, so that, again by Lemma 3.4, there exists £ € N such that
H,(P|Ay) — H(P|B) < €¢/4. Also, H, (P01 (P") — H.(P|AL) < €/4, where P’ is
the unique finite measurable partition of (G/Hy, B(G/Hy)) such that 6, '(P’) gener-
ates (in the obvious sense) Ag. It follows, by the result preceding Lemma 3.4, that
h(T,P) < h(T,61(P))+H.(P|Bn)+e/2 = by, (T, P)+H,.(P|B.)+e/2. Hence,
hy(T) = suppez hy(1,0) < hy(T,P)+¢€/4 < hy, (T, P')+ € < hy, (1) + €. Hence,
R(T) = h,(T) < limp—yoo by, (T) + € = limp, 00 (T ) + €. But € was arbitrary, so
R(T) <limgy—eo h(T,,). O

Recall ¢’ introduced in the paragraph after Theorem 3.7.

Before proving Theorem 3.8 note that a general shift commuting (that is, com-
muting with multiplication by u™) group homomorphism, ¢ (respectively s), of Rq/¢
(respectively Q4/¢') is easily shown to be multiplication by an element of R4/ (re-
spectively Q4/¢’). Furthermore if the characteristic of Ry/p is zero then, since the
ideal p € Ry is prime, the map ¢ : Ry/p — Qu/¢’ given by [+ o — [+ ¢ is

injective.

Theorem 3.8 With the above notation and o a prime ideal with characteristic zero,

if t is a shift commuting topological group endomorphism ofm then t is simply
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maultiplication by h + ¢ in Ry/p for some h € Ry and h(3) = h(t) where s is simply
multiplication in Qq/¢" by h + ¢’ = ¢(h + p). Also, t is mizing if and only if s is

mixing.

Proof. First let G = Qy/¢ and H, = (1R2)/¢")* = {x € G : \((1R2)/¢') =
{0}} for all n € N. Since {(5R2)/¢ }nen can be considered as an increasing sequence
of subgroups of Q3/¢’ with U,en(5Rz2)/9 = Qa/¢’ it follows that the annihilators
form a decreasing sequence { H,, } ,en of closed normal subgroups of G with N,en H, =
0. Therefore, by Lemma 3.5, the entropy A (%) of the system (G, 5) is lim,_o0 h(T})
where T,, : G/H, — G/H, is given by T,,(x + H,) = 3(x) + H, for all y € G.

Also, by Lemma 3.2, foralln € N, G/H, = (%@p’ under the topological group
isomorphism 0, (x + H,) = Z:L(X) for all y € GG, where 1, : (%Rg)/p’ — Q, /¢ is the
respective inclusion map. Furthermore, (R3)/¢’ is a s invariant subgroup of Q3/¢’
(since s(f+¢') = (k- f)+¢ for all f € Qy, where h € R;), so that if £, : (LR2) /¢ —
(%Rg)/p’ is the restriction of s to (%Rg)/p’ (soi,0t, =tou,: (%Rg)/p’ — Qy/¢)
we note that, for all x € G and for all f € Ry, (6,0 T.(x + Hn))(% + ) =

0,500 + H)(L+ 6/) = (G0N L+ ) = X(50in(L+ ) = xlinotu(£ +¢/)) =
(f 0 OO+ ) = (£ 0 0a(x + H)) (& + ). So (G/Hy, T,) = (5R2)/ ¢, 1) for
all n € N. Therefore h(ﬂ = limy—e0 A(T}) = lim, 00 h(tAn).

However, for all n € N, ¢, : Ra/p' — (5R2)/¢" given by ¥,(f + ¢') = % + ¢
is a topological group isomorphism. Furthermore, for all f € Ry, t, 0¥, (f + ') =
(G +e) =th+¢ ="+ =val(h- /) +¢) = Yaoti(f+¢). So that,
for all n € N, (Ra/¢,t1) = ((%Rg)/p’,tn) and , hence, h(tAl) = h(tAn). It follows
that ~(3) = lim,5e h(tAn) = h(tAl) But t; : Ry/¢" — Ray/g’ is the restriction of
s: Qo = Q¢ to Ry/¢’ which was our original system. We have thus reduced
the problem to a shift commuting mixing map s of Q,/¢" whose entropy we wish to
show is infinite.

To see that ¢ is mixing on R/d/\p’ exactly when § is mixing on Qd//\p’ we use the
well known fact (see, for example, Walters [64, Theorem 1.10]) that a continuous
endomorphism of a compact abelian group is mixing if and only if the dual map has

no finite orbits on the dual group. We then note that, for f € R\p’ (that is, the
compliment of ¢’ in Ry) and m,n € N, t*(f/m + ¢') = 0 implies that A" - f/m € ¢
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implies that A" - f € ¢ implies that t"(f + ') = 0, where f € Ry\p'. So the
existence of finite t-orbits in Ry and finite s-orbits in @, are equivalent, the converse

being obvious. O

Theorem 3.9 Suppose d € N, ¢ is a zero characteristic prime ideal in Ry and the
shift, o, on

Ri/p = {(2n)neza € sz . > ¢f(n)zy =0 (mod 1) for all f € p}
neZd

is ergodic. Then there exists an integer r = r(p) € {1,---,d}, a primitive subgroup
I' = T(p) C Z%, and a finite set Q = Q(p) C Z¢ such that T = Z", 0 € Q,
QN (Q+m)=0 whenever 0 £ m € I' and, if

I'=I'+Q={m+n:mel,ncqQ},

then the coordinale projection g : Qd//\p’ — azd, which restricts any point © €

Q./ ¢ to its coordinates in T, is a topological group isomorphism; in particular, i
0 s poiog group 14 5 Y4 s
{ny,---.,n,} is a basis for ', then the Z"-aclion generated by {oc™,--- o™} is iso-

morphic to the shift on (%9)% = (Q\Q)Zr.
Proof. See Schmidt [60, Propositions 8.1 and 8.3].

Proof of Theorem 3.5. We may assume that 7" is a topological group auto-
morphism by considering the natural extension of (X, 7T") in the usual way. By Rokhlin
[55, Section 3.3], this does not affect the entropy or mixing of 7. By considering
coordinatewise action of the completely positive entropy action a on the natural
extension space we see that the completely positive entropy property of « is not
affected and that T and « still commute.

We may thus consider the combined Z3-action 3 of a and T given by " =
almm2) o T for all n = (ni,n2,n3) € Z*. As described above we look at M = X
as an Rz-module, where the action of Rz on M is determined by . Now Rj3 is a

Noetherian ring so that by Theorem 3.6, as an R3-module, M has an associated prime

ideal, p={f € Rs: f-m=10=0p} for some m # 0 in M.
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Let ¢ : R3 — M be the map f — f-m for all f € R3. Then ker¢ = p and
Ra/p = im¢ C M. That is, R3/p can be thought of as embedded in M. But,
under the isomorphism Theorem identity of f 4 p with ¢(f) = f-m for all f € R,
u(f+p) =u(f-m)=(u"f)m = uf + p for all n = (n1,n2,n3) € Z° (recall
that u™ = uf'uj?u3?). More generally, g(f + ¢) = g(f-m) = (gf)m = gf + p for all
f,9 € R3. Hence, R3/p can be thought of as an R3-submodule of M. In particular,
Ra/p is B-invariant (recall that u™-m = B“(m) for all n € Z° and m € M).

Dual to this inclusion, v say, of R3/¢p in M we have the surjection LE X — 7?3/\p
Furthermore, the dual of multiplication by u™ on R3/p is the shift, o, on @ =
{(zn)nez: € SZ° . Yonezs cf(n)zm) = 0 (mod 1) for all f € p}. Therefore, since
entropy can only decrease on passing to factors, it is sufficient to show that ¢(®01)
has infinite entropy on @ We know that h(o(®%1)) £ 0 since a factor of a mixing
map is easily shown to be mixing. Also, completely positive entropy is easily shown
to be preserved by passing to factors.

Suppose first that g has positive characteristic. Since h(a©%V) £ 0, r = r(p)
in Theorem 3.7 1s equal to 2 or 3. In the latter case we have a shift on an infinite
alphabet and in the former case we have the same or a two dimensional algebraic
cellular automata (as in Theorem 3.4), each giving infinite entropy.

So suppose that p has zero characteristic. By Theorem 3.8, we may consider
ourselves to be in Q3/p’ and, by Theorem 3.9, we are looking at the restriction to
(@Q)F where I' C Z? is isomorphic to Z" for r = 1,2, or 3. If r = 3 we have a
shift on an infinite alphabet. If r = 1 or 2 we have the same or a shift commuting
automorphism, 7', of (@Q)ZT. We give here a detailed account of the r = 1 case,
noting that the r = 2 case is similarly dealt with but the alphabet becomes @QXZ
(that is, we exploit the identification (QQ)Z2 = (@QXZ)Z).

Thus, we wish to show that a mixing shift commuting automorphism, 7" of (@Q)Z
has infinite entropy (see Remark 3.5). We have the obvious identification of (Q%)z
with Q®@[u*!], under which the shift becomes multiplication by v, for all n € N
(with which 7' commutes).

Think of the typical element v € Q% as a column vector v = (vy,- -+, v,), where

q = |Q|. Thus Q@ is a g-dimensional vector space over Q. Let {e;,---,e,} be
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the standard orthonormal basis for Q2. Now, for f € Q@[u*'] and n € Z, let
vi(n) € Q¥ be the coefficient of u” in f and let cf(n,i) be the i’th entry of v¢(n)
(that is, v¢(n) = Y7, cf(n,i) - €). For all but a finite number of values of n € Z
the vs(n), and hence cf(n,i) for 1 < i < g, will be the zero element of Q%, and
Q respectively. So, for f € QPut], T(f) = T(Zhez(T, ci(n,i) - &) - u") =
Cnezu" - T(Xioi cp(n,1) - &) = Tpez v - Xisy cf(n,1) - T'(ei).

Thus, for m € Z and 1 < j < q, erpy(m, J) = Ypez 2oimy €5(n,1) - epiepy(m — n, j)
and, hence, vr(s)(n) = Y1 erpn(m, g)-e; = S0 Yez Soimy ef(ny 1) -erey(m—mn, j)-
€; = nez M(m —n)-vs(n), where M(m —n) € M,(Q) (the ¢ x ¢ matrices in Q) is
such that its (j,7)th entry, (M(m — n))(i) = cren)(m —n, j).

So, if {€.};cz is the ‘standard orthonormal basis’ (in the obvious sense) for the
elements of (Q%)z = Q%[u*!] considered as bilaterally infinite column vectors whose
entries lie in QY and if vy is f € Q%[u*!] considered as an element of (Q%)z then,
T(f) = Zmezvrp(m) - e, = Ynez Yonez M(m —n) - vg(n) - €], = M - vy, where
M € M1 .(M,(Q)) (bi-laterally infinite matrices whose entries lie in M,(Q)) and
the (n,m)’th entry, M, ), of M is M(m —n).

Since M(K) € M,(Q) must clearly be the zero matrix for all but a finite number
of values of k € Z, and since M (4 ntiy = M((m+1)—(n+i)) = M(m—n) = M, )
for all n,m,i € Z, we have that, along any diagonal of M, all entries (elements of
M, (Q)) are the same and, for all but a finite number of those diagonals, these identical
entries are all the zero vector in M,(Q) (this is the band structure of the matrix B
in [42]).

We now consider two possibilities. First, if there exists a non-zero g € Q9[u*!] =
(Q¥)z (the direct sum of Z copies of Q?) and some non-zero rational polynomial
h € Q[u] in T that annihilates g (that is, > ,cz+ cn(n) - T"(g) = 0, where cp(n) € Q
for all n € Z™ and there exists m € N such that ¢;(m) # 0 but n > m implies that
cn(n) = 0) then the vector space W < (Q@)z over Q spanned by {T"(g)},cz+ is
finite dimensional and there exist [,r € Z such that f € W implies that v¢(n) =0
in Q2 for n < [ and r < n. Since W is clearly T-invariant and 7' commutes with
the shift, o, on (Q%)z, o"(W) is T-invariant for all n € Z and, for k > r — [, the set
W = {o™(W) : n € Z} is linearly independent over Q (that is, given a single vector
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from each of a finite number of elements of W, no non-trivial linear combination in
Q of this finite set of vectors is equal to zero). Also, for all n € N, @*, '*(W) is
clearly T-invariant.

Now, since ¢ € W, n < [ or r < n implies that v,(n) = 0 in Q% so that
VT(g) = YomeZ 2omey M(m —n) - vy(n) - €, and, by T-invariance of W, T'(g) must be
in W so that, for m < lorr < m cp(m) =0 in Q@ and, the coefficient of ¢/ in the
above summation must be zero in Q9. That is, vy = Y0 Yo, M(m—n)-vy(n)-€l,.

It follows that the projection mg...v : W — [I}_, Q@ gives an isomorphism of
discrete groups between W and V' = 7.1 (W) under which (W,T') is conjugate to
(V,S), where the endomorphism S of V' is given by the (r —{+41) x (r —{4 1) matrix
whose (n,m)’th entry is M(m — n) (since both of the respective summations were
from [ to r, and since M(m+1—1,n+1—1)= M(m,n) forall 1 <m,n <r—1[1+1,
there is no confusion here).

But the T-invariant W embeds in (Q?)z and, hence, (‘7, §) can be thought as
a factor of ((@Z,f) Similarly, for all n € N, (H?ZI\V,HZI\S) (where T2, S is
defined to act in the obvious coordinatewise manner on members of [, V') can be
thought of as a factor of ((@Z, ff) This is by the aforementioned linear indepen-
dence along with the obvious isomorphism which makes the restriction T|@ﬁ

_i ot

topological group conjugate to to []i—; S and the embedding of the T-invariant group
@i, o (W) in (Q7)z.

But H V=11 V where (X1, ", Xn) € Hnlf/acts on (g1, ++,9n) € 17,V
by (x1,- -, xn)((g1, - ,gn)) = Y7, xi(g:) (mod 1) (see, for example, Morris [43, The-
orem 13]). So x € Hzl\v implies that x = (x1,- -+, x») for some x1, -+, xn € V so
that, for all (g1,---,9,) € 1, V,

—
i n

(TS0 (g1s-+590) = x(TT S(g1, -+ 90)) = x(S(91), -+, S(gn))

= (x1(S(g1)), 5 xa(S(90))) = (SOx)) 1)+ (S(xn))(90))
= (S(x1)s -, Sa)) (G175 ) = 1:[§ X1 Xn))) (G155 Gn)

. <<f{1§><x>><gl, g,
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So (T172, V., 1T, S) = ([T, V., II~, 5) is a factor of ((Q®)z,T) and

=~

W(T) > W] 8) = n-h(S)
i=1
(see, for example, Walters [64, Theorem 4.23]).

But h(g) > 0, since (V,g) is a non-trivial factor of ((@Z,f) where 7', and
hence S, is mixing. Thus, since n € Z was arbitrary, h(ff) = oo.

The remaining possibility is the assumption that no non-zero f € (Q@)z is an-
nihilated by any non-zero polynomial & € Q[u] in T'. Then fix non-zero f € (Q%)z
and let U < (QY)z be that subspace of (Q?)z over Q spanned by finite linear
combinations, in Q, of elements of {T%(f)}rez+. Let 0 : U — (Q@)z+ be such
that 3 ,cz+ qn - T"(f) = (Gn)nez+. Then 0 is well-defined by our assumption, and
clearly an isomorphism of discrete groups. Furthermore, § o T 0 87 ((qu)pez+) =
00T (Cez+ qn-T"([)) = 0(Z ezt @n- T () = 0 en @na1-T™(f)) = (ga-1)nez+,
where q_; = 0. That is, the restriction of 7" to U (which is clearly T-invariant) is con-
jugate to the right-shift, o,, on (Q®)z+. Thus, dual to the embedding of U in (Q%)z,
we can think of ((Q/Q\)z+,UAr) = ((EQ)Z+,J;) (where oy is the left-shift on (EQ)Z+) as
a factor of ((EQ)Z,T). But this factor is the left-shift on an infinite alphabet and
therefore has infinite entropy so finally, again, h(f) = oo. This completes the proof
of Theorem 3.5. O

Remark 3.5 A famous open problem of Lehmer [31] asks whether, when ); € C for
i € {1,---,n} and II”_,(z — X;) is a polynomial with only integer coefficients, the
quantity Y|y,>1log |Ai| can be arbitrarily small and positive. By Lind [32, Theorem
2], a negative answer to Lehmer’s problem would be enough to show that the entropy

of a mixing automorphism of the infinite solenoid is infinite, shortening the proof of

Theorem 3.5.
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Chapter 4

Two dimensional subcellular

automata

4.1 Generalisations of results on one dimensional

cellular automata

Recall that, for d,k € N, § = S(k) = {0,---,k — 1}, Q = Qi(d) = SZ° and a d-
dimensional cellular automaton (on €) is a continuous map 7' of (©, o) (see Notation
1.1). A subshift (X,0) is the restriction of o to a closed o-invariant subset ¥ of
. When the meaning is clear we also denote the restriction by o, otherwise we

emphasize it by oy.

Definition 4.1 A d-dimensional subcellular automaton (of ¥) is a continuous map

T of (¥,0).

Recall that a subshift of finite type is defined by what we can consider to be a set
of allowed configurations P C ST for some finite subset I’ C Z? (see Definition 1.10).
For d = 1 every subshift of finite type is topologically conjugate to a matrix subshift
of finite type '; that is, a subshift of finite type on k symbols (this may differ from

!The same holds for d > 1 in some sense (see Miebach [39]) but the extension problem means
this is rarely useful (see Markley and Paul [37]).
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the alphabet size of the original system) that can be represented by a k x k matrix
A of zeroes and ones. If A is irreducible (for all 1 <u,j < k there exists n € N such
that the (7, 7)th entry of A™ is non-zero) we say that the matrix subshift of finite type
is irreducible.

Hedlund [21] showed (the result was joint work of his, with Curtis and Linden)
that, for d = 1 and given & € N, the set of cellular automata maps is equivalent to
the set of maps f., of (©,0) determined by finite sets £ C Z and maps f : S¥ — S
given by (foo(X))n = f(TE4n(X)) = f(mg(c”(x))) for all n € Z, x € Q, and for all
such f and F.

Our use of projections in what follows is essentially equivalent to Hedlund’s ‘n-
blocks’. Hedlund effectively always has £ = {0,---,m —1} C Z for some m € N and
implicitly generalizes to maps g., of (£2,0), determined by arbitrary finite subsets
H = {hy, -, h,} (where, initially, by = 0) of Z and maps g : S# — S, by the
implicit assumption that £ = {0,1,---,h,} and the map f., of (©,0) is determined
by f:SF — S given by f((z)) = g(rr((z))) for all (z) € S¥: elements of SM, for
proper subsets M of Z or Z?, will always be denoted by encasement in brackets. The
case where hy # 0 is then dealt with by considering the action of ™ o f., for suitable
n € N. Our finite subsets of Z? will always be arbitrary, unless stated otherwise.

We will write w3} ((b)) for (b) € ma(X) when it is clear what the domain of mys
is. Otherwise, for M C M’ C ¥ and (b) € mar(X), mar(X) Ny (b)) emphasizes that
mar is the projection from man(X) to mar(X), whereas ¥ N w3,/ ((b)) emphasizes that
mar is the projection from ¥ to mp(X).

For m € Z* and M,N C Z? we denote M + m = {n+ m : n € M} and
M+N={m+n:mée Mne N}

Note that, for M C Z? and n € Z2?, we denote by o" the map from SM+" to
SM given by (6™(()))m = (b)maen for all m € M, for all (b) € SM*1. This abuse
of notation causes no problems since we have (6™(Ta4n(2)))m = (Ta+n(Z))mn =
Tmin = (6™(2))m = (mam(0™(2)))m for all m € M, for all z € Q. Thus, o™ o Tpr4n =
my oo™ forall M C Z%.n € Z2.

From now on, unless otherwise stated, we have the standing hypothesis that d = 2,

S = S(k), and Q = Q4(2), for some fixed k& € N.
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Thus, given a finite subset N of Z? and a map f : S¥ — S = S{% (where the
superscript 0 = (0,0) € Z? is usually taken for granted and omitted) then, for all
M C 72, we define fM : SN*M o SM by (fM((2))m = f(an(c™((z)))) for all
m € M, for all (z) € S¥*M. From now on, unless otherwise stated, N (or N’ when
referring to d = 1 analogues) and f will always signify a finite set of coordinates in
Z? and a function f: SV = 8§ (or f: SV — S respectively).

From now on ¥ will always be a closed subset of € that is o-invariant and f%°-
invariant. Denote [~ = fz2|g, thus f¢ = f%° (this is our analogue of Hedlund’s
foo)-The term f¥-map (or f¥-map) will indicate an arbitrary map of this form.

Now if (b) = myya(z) for some z € ¥ and M C Z? then f%(z) = y for somey € ¥
(by f%invariance of ¥). So, for all m € M, (fM((6)))m = f(7mn(c™((b)))). But, for
Al n € N, (™((B))n = Blnsms 50 f(an(o™((B) = f(mnsm((B)) = f(mnsm(z).
But, for all n € N, zp4m = (6™(2))n, 50 f(7nim(z)) = f(an(o(2))) = (f42))m =
Ym- So fM((b)) = mar(y) € mm(X). We record this as a proposition.

Proposition 4.1 [M(7y4n(2)) = fM(7pmen(E)) C 7m(Z) (s0 X is fM-invariant

in the sense in which we’d expect il to be).

In particular, if M = {0}, f(7n(2)) = fOH7n(2)) C m01(2) = T (T will always
denote m(g3(X)). Denote fM|7rN+M(g) crnem(Y) = 7 (2) by fM

Proposition 4.2 For all z € ¥, fM(myin(2)) = mu([Z(2)).

Proof. Forall z € ¥ and for all m € M, (f&(marin(2)))m = f(an(e™(maen(2)))).
On the other hand (6™ (mm4n(2)))n = (TM+N(2))min = Zmin = (6™(2))n for
all n € N. So wn(c™(mmen(2)))) = 7n(0™(2)), so that (fM(marin(2)))m =

fan(e™(2))) = (f*(2))m. O

The proof of the following result, generalised to d = 2, is based on Hedlund’s proof
for d = 1. It shows that all of our results for maps of (X,0) can be generalised to
maps of general (7, a) where 7 is a compact, totally disconnected, metric space and

a: 7 — 7 is an expansive Z?-action by homeomorphisms of Z onto Z.
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Theorem 4.1 Let 7 be a compact, totally disconnected, metric space and let o :
Z — 7 be a Z*-action by homeomorphisms of Z onto Z. Then (Z,a) is expansive
if and only if there exists k € N and subshift (X,0) of (Qx,0) such that (Z,«) is
topologically conjugate to (X, 0).

Proof. Completely analogous to Hedlund [21, Theorem 2.1].

Hedlund’s result for d = 1 that f., is a cellular automaton of € (the one dimen-

sional full shift) generalises to arbitrary two dimensional subcellular automata.
Theorem 4.2 Any [~ map is a subcellular automaton of ¥.

Proof. Given z,y € ¥ and € > 0 there exists finite M, C Z* such that p(z,y) < ¢
if and only if mar(z) = mar(y). Similarly, there exists finite Ms; C Z? such that
M.+ N C M; and corresponding § > 0 such that p(z,y) < ¢ if and only if mp,(z) =
mar;(y). Soif z,y € ¥ are such that p(z,y) < § then ma 4w (2) = mar.+n(y) and, thus,
S (maan (@) = [ (maran(y)). So, by Proposition 4.2, ma, (/*(z)) = mar (/7 (y)).
That is, p(f*(z), f¥(y)) < €. So f* is (uniformly) continuous.

Finally, for all k,m € Z% and = € %, we have (6™ (f*(2)))k = (f/¥(2))k4m =
Fan(a*™(2))) = (Z(e™(2)))k. so that o™ o f¥ = f¥ oo™ D

Hedlund’s result that, for given n € Z and N’ C Z, n € N’ if and only if there
exists f: SV — S such that f., = 0™ generalizes to the two dimensional full shift,

but only generalizes in one direction for subshifts.
Theorem 4.3 For any n € N there exists f : S¥ — S such that f* = o".

Proof. Simply define f : S¥ — S by f((z)) = (z)n for all (z) € SV so that,
for all m € Z? and for all (z) € Q, (f*(2))m = f(7n(c™(2))) = (7x(c™(2)))n =
(6™(2))n = o™ (z) = (6™(z))m so that f& = o™ and, in particular, f* = (o")|g =

o' = o™ (by abuse of notation). O

The generalisation (to d = 2) of the proof of the converse for the full shift is

straightforward and is omitted.
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Counter-example. To see that the converse to Theorem 4.3 does not hold take
any p,q € Z*, put N = {p}, and consider ¥ = {z € @ : tm+q = Tm for all m € Z*}.
By Theorem 4.3 f* = oP for some f : S¥ — S. But oP = ¢P*"4 for all n € Z so,

certainly, there exist n € Z? such that f* = ¢" and yet n & N.

We now prove that the converse of Theorem 4.2 holds and hence that;

Theorem 4.4 A map is an f* map if and only if it is a subcellular automaton of ¥.

Proof. One direction of proof is Theorem 4.2. For the other direction assume that
T is a continuous map of (¥,0). For all s € S put Us = {z € ¥ : 29 = s}. Now
{Us : s € S8} is a partition (allowing partitions to contain empty sets) of ¥ and each
Us is open and closed in ¥.

If, for each s, we put V, = T~H(U;) then P = {V; : s € mo(X)} is also a partition
of ¥ into sets each of which is closed and open. Since P is a finite partition of closed
sets there exists an € > 0 such that s; # sp in & implies that if, for : = 1,2, z; € Vj,
then p(z1,z2) > € and there exists appropriate set M, C Z?* such that p(zy,x,) > € if
and only if mar (1) # mar (x2). If we put N = M, then the map f : SN — S defined
by f((w)) = s whenever (w) € mx(V;) is well-defined. Also, given z € ¥, there exists
s € 8 such that z € Vi, = T71(U,), so that T'(z) € Us and (T'(z))o = s. Since z € Vj,
(f¥(2))o = f(mn(2)) = s, by definition of f. Now by the hypothesis Too = oo T
and, by Theorem 4.2 f* oo = oo f*. So, for all z € ¥ and for all m € Z2%, there
exists sy € S such that (T(2))m = (e™(T'(2)))o = (T(e™(2)))o = (fZ(c™(2)))o =
(e™(f*(2)))o = (f*(2))m so that T'(z) = f¥(z), for arbitrary z € ¥.. O

The following generalisation of another Hedlund result for one-dimensional full-
shifts to an analogue for two-dimensional subshifts concentrates on 7 = mo(¥), as
opposed to S. The necessity of this is explained after the proof. Note that the ¢M’s
and g~ are defined from 7 and g : TV — 7 in the same way that the fM’s and f*
are defined from S and f respectively. Part (3)=-(4) of the proof is significantly more
involved than the equivalent part of the proof for the full-shift.

Theorem 4.5 If N = {n} for some n € Z* and T = no(X) then f(TV) C T. I,
also, g = flr~ then f& = g& for all L C Z* and the following are equivalent:
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(1) g: TN = T is a bijection

(2) gM . TMHN — TM s onto for all finite M C Z*

(3) I(g™) 1<< D=1 for all (b) € T for all finite M C 7
(4) /> =

(5) f

.Y Y s onto

¥ =g¢*: ¥ = Y is a homeomorphism of ¥

Proof. If (¢) € TV then, since X is shift invariant, mx(z) = () for some z € ¥. But
¥ is fE-invariant so f((t)) = f(7n(2)) = (FZ(2))e = mo(f*(2)) € m0o(X) = T. That
is f(TY)CT.

Since T = mo(X¥) and ¥ is shift invariant we have that ¥ C TZ so that g is
defined on Y. For all (¢) € (X)) and for all m € L, (¢&((¢)))m = g(mn(c™((c)))) =
f(rn(@™((e))) = (f£((c)))m and, hence, g& = f& and when L = Z? we have

¥ = fE. We now show that (1), (2), (3), (4), and (5) are equivalent.

If (1) holds and M is a finite subset of Z%, and (b) € T™ then take (a) € TM*+N
such that (a)min = ¢7((b)m) for all m € Z? and, clearly, g ((a)) = (b) so that (2)
holds.

If (2) holds and M is a finite subset of Z2? and (b) € TM. Since |TV| = |T| < o
and g™ is onto it must also be a bijection so that (3) holds.

If (3) holds (so g™ is bijective for all finite M C Z?) and z € X then take a
sequence { M, },en of finite subsets of Z? such that M, C M, for all n € N and
UneNM,, = Z?. Now, for all n € N, let (b,) = mar, () and note that mas, ((bny1)) =
(b,). Then, by (3) there exists a unique (a,) € TM*V such that ¢"((a,)) = (b,).

Now, for all m € M,, and for all n € N,

(0™ (72,48 ((@n41))))n = (Tag, 48 ((@n41))Intm = (@nt1)nem = (6™ (@n41))n
So (o™ (ma,+n ((ant1)))) = Tn (0™ ((@nt1))). So, for all m € M,
(9" (Tt 4n ((@n41))))m = glan (0™ (Tar,an ((a041))) = 9(mn (0™ ((a241))))

= (g™ ((a41)))m = ((bag1))m = ((ba))m = (9" ((@n)))m

So gM"(ﬂMn+N((an+1))) = gM"((a:n)) and, since ¢M» is bijective, T, +N((ng1)) =
((an)). Therefore, for all n € N, take y,, € TZ* such that T, +N(Yn) = (a,) and see
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that {y,}nen is Cauchy, so lim,_e yn = y for some y € T2 such that T, +N(Yy) =
T, +N(Yn) = (ay,) for all n € N.

But, for all m € Z2%, there exists n € N such that m € M, so that, for all n € N,
(@™ @)n = Wmin = (Ta4n8(Y))mn = (™ (Ty—nen(y)))n and, putting A =
T2, (0*W)m = 9(mn(0™(y))) = g(mu(o™(mar—nin () = (9 (Tar,4n(Y)))m =
(g™ ((a2)))m = (ba)m = zm. So g*(y) = =.

Ify € ¥ then (a,) = ma,4n(y) & Tam,+n(y) for some n € N. But ¢M((a,)) =
(bn) € mar,(2) and |mar,4n(2)] = |7a,(X)] < oo (by o-invariance and |N| = 1) so,
since g™ is a bijection, there exists (a) € mar,+n(2) such that ¢gM»((a)) & mar,(2).
That is, g™ (maan(E) ¢ marn,(X). But ¢M(mann(E)) = ¢ (mar.n(X)) =
¥ (manan(2)) C mar,(2), so we must have y € ¥. Hence f* = ¢” is onto, so
(4) holds.

Now suppose that (4) holds. We wish to show that f* is injective. Suppose
otherwise, then there are distinct z,y € ¥ such that f*(z) = f*(y). Now zm # ym
for some m € Z* and so (™ (z))n # (6™ ™(y))n or, alternatively, mx(c™ ™ (z)) #
m(e™ R (y). However, since g(mx (™ (x))) = f(mn(0™(2))) = (F*()m_n =
(fE(y))men = f(rn(e™(y))) = g(an(e™"(y))), g : TN — T is not injective and
so can’t be surjective (since | 7| < oc), so there must exist ¢ € 7 such that g='(¢) = 0.
Select z € ¥ such that zg = t. Now by (4) there exists v € ¥ such that f*(v) = z,
so that g(mn(v)) = f(mn(v)) = (f¥(v))o = z0 = ¢, contradicting surjectivity of g. So
/¥ is injective and (5) holds.

Finally, if (5) holds then certainly (4) holds and, by part of the proof of (4)=(5),
g is surjective and hence bijective (since |T| < o0). So (1) holds. O

To see why we had to replace S, f, and fM in the statement of the two-dimensional
subshift analogue of the theorem for the one-dimensional full-shift by 7 = mo(Y),

g = [lzy(¥) and g respectively we have the following example.

Example 4.1 Consider § = Sy = {0,1,2,3} (so @ = Q4), N ={0}, f: SV = S

such that f((ag)) = 1, f((a1)) = 0, and f((a2)) = 2 = f((a3)) (where (a;)o = 1
for i = 1,2,3,4 and (a;) € S¥) and ¥ = {z € Q : zyy = 0 or 1 for all m € Z?%}.
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So T = {0,1} and (f*(2))m = f(7n(c™(2))) which equals either f((ag)) = 1 or
f((a1)) = 0 for all z € ¥ for all m € Z2, so that f%(¥) C ¥. So, by the theorem,
F(TN) € T (which is clear here anyway) and, clearly, g = fly~n : TV — T is a
bijection so, by the theorem, f* is a homeomorphism, so (5) in the theorem holds.
But f(SN) = {f((a;)):7€ S} ={0,1,2} # S. That is, f : SV — S is not bijective,
so statement (1) in the theorem with g : 7V — T replaced by f : SV — S does not
hold.

If IN] =1 and f% is not onto then, with ¥ = Q in Theorem 4.5, we have that
f: SN — S is not onto and the two dimensional analogue of Hedlund’s Remark 4.2
is that f9(Q) = (f(SN))Z2 = Qgsvy- So in Example 4.1 f(8N) ={0,1,2} so that
Q) = fH(Q) = {0,1,2}%° = Q3, whereas ¥ = Q.

The two dimensional analogue of Hedlund’s Remark 4.3 for the full-shift states
that if [N] = 1 and f* is not onto then there exists x € Q such that o™ (z) = z for all

m € Z? and (f%)~!(z) is uncountable. However, for subshifts, the following example

shows that {|f¥)71(z)| : z € ¥} can be bounded when f* is not onto.

Example 4.2 Let S =S85, N = {0}, f((ao)) =0, and f((a1)) =1 = f((az)) (where
(a;) € SV are as in Example 4.1 for 1 = 0,1,2), and
Y={zc€W:{mecZ*: 2y =1o0r2} <1}

(the complement is a countable union of open sets). Then 7o(X) = &, 50 g = f. Also,

) ={rcQs:am#A2forallme Z? and {m € Z*: 2y, = 1} < 1} C X, (5)

But g = f is not onto so, by Theorem 4.5, f* is not onto (this is also clear from

(5)). Yet, for all z € ¥, if f5(y) = z for y € ¥ then f(ax((c(y))) = (fZ(y))m =

zm = 0 for all but at most one m, mg say (when one exists), in Z* at which zpy, = 1
(because if zy, = 2 then (f*)7}(2) = 0). So mx(c™(y)) = 1 or 2. That is, ym, =
(e™°(y))o = 1 or 2. For all other m € Z? we have yy = 0. Thus

1 if zm = 0 for all m € Z2
|(f2)_1(2)| =< 0 if 2y = 2 for some m € Z?

2 if z;y = 1 for some m € Z?
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and, in particular, {|(f*(z)|: z € ¥} is bounded.
Recall from Theorem 4.5 that f(7") C T when |N| = 1.

Example 4.3 Now if § = S5 = {0,1,2} (so @ = Q3), N = {(0,0),(1,0)} (let the
notation (b) = (b1,b;) € TV mean that (b)) = by and (b)a,0) = b2), ¥ = {z € Q3 :
(Tm; Zm+@1,0)) = (0,0),(0,1), or (1,0) for all m € Z*} (the complement is a countable
union of open sets), and f : SN — & is such that f((0,0)) = 0, f((0,1)) = 1,
f*((1,0)) = 0, and f¥((1,1)) = 2 then clearly f*(X) C ¥ and T = mo3(¥) = {0,1}.
But (1,1) € TV and yet f((1,1)) =2 & T. So, for |[N| > 1, it is not generally true
that f(TV) C T.

However, though (1,1) € 7, in this example (1,1) € 7mnx(X). Here is our moti-

vation for our next theorem (Theorem 4.6).
Lemma 4.1 (1) If My C Ma, ((a)) € SM2*N and m € M, then
TN (o™ (man4n((a)))) = mn(a™((a))).
(2) For all y € Q and for allm € M,
TN (o™ (maren(y))) = v (a™(y)).
(3) For all (a) € SM*N and for allm € M,
TN (0™ (Tman((a)))) = mn(0™((a))).

(4) For all y € Q and for all m € Z?,

TN (e (Tman(y)) = (o™ (y)-

Proof. (1) For alln € N, (6™ (ma+n((a))))n = (mar48((@)))men = (@)min =
(a™((a)))n-

(2) Put My = M and My = Z? in (1).

(3) Put My = {m} and My = M in (1).

(4) Put M = Z? in (3). O

Recall from Proposition 4.1 that f&(myin(2)) C (D).
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Theorem 4.6 An f* map is onto if and only if fX is onto for all finite sets M C Z2.

Proof. Suppose f¥ is onto and M is a finite subset of Z%. Take (b) € mp ()
and let z € X N (mar)71((b)). Then there exists y € ¥ such that f¥(y) = 2. Let
(a) = mpren(y). Then, for all m € M,

T ((@)m = f(an(a™ (@) = flan (o™ (maren(y))

= [(rn(0™(y)) = (/¥ (¥))m = 2m = (b)m.
So fM((a)) = (b) and fY¥ is onto.
Now suppose f is onto for all finite M € Z?. Let z € ¥ and take a sequence
{ My} ren of finites sets My C Z* such that My, C My, for all k € N and Upen My =
Z?. Now, for all k € N, (by) = mar,(2) € mar,(X) so that there exists (ax) € mar,+n(X)
such that fMx((az)) = (by). Select a corresponding yr € ¥ N (mar,+n5) ' ((ar)). Now,
for all £ € N and for all m € My,

(S*(yi))m = [(an(o™(ye)) = f(mn (0™ (Tar4n(y1))

= flan(@™((ar)))) = (" ((ar)))m = (br)m = Zm-
So clearly limy .o, f*(yx) = 2. Take a convergent subsequence {y,, treN with limit

y & by say. Then fE(y) = fz(hmk—wgo ynk) = hmk—)oo fz(ynk) = hmk—)oo fz(yk) =<z
and f* is onto. O

4.2 Permutative maps

We now generalise Hedlund’s notion of permutative maps.

The points of N form a hull in R?, where we here allow a hull to be a line or a
single point. We shall refer to the corner points of the hull formed by the points of
N as the corners of N.
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Definition 4.2 We say that a point n € N (recall that f : S¥ — &) is a corner
point of f if there is a line £ C R? through n such that N\{n} lies completely in one
of the two open half-planes into which ¢ divides R?.

Suppose that n € Z? is given, then for all s € S let (s) € S™ be such that (s), = s
(it will be clear when, in the case of N = {n} C Z? being a singleton set, this abuse
of notation is being used). For all n € N, we say that f: SV — S is n-permutative
if, for all (a) € SN\In}, Sy S{nt 5 Sis a bijection, where J@((s)) = f((as)), where
(a;) € SN is such that (a;)n = s and ma\(n}((as)) = (a). If n is a corner point of N
we say that f is corner (n-)permutative. We say that the corresponding (sub) cellular

automaton (f*) f%is a (corner) (n-)permutative (sub) cellular automaton.

This says that, for f : S¥ -+ S = {0,---,k — 1} and n € N, then f is n-
permutative if and only if whenever (b) € SN\ and § = {(¢;) € SV : 1 < i < k}
is the unique set of k distinct elements of SV such that my\n3(S) = {(b)} then
() 1 <i <K)| =k

Hedlund has the result that if, for the obvious one- dimensional full-shift analogue
of permutative, f : SV — S is permutative at one of the two (or one if |[N’| = 1)
extreme values in N’ then f,, is onto. We have the following two-dimensional version

for the full-shift, the proof of which is rather more involved.
Theorem 4.7 A corner permulalive cellular automaton f* of ) is onto.

Proof. If |[N| =1 then f% is onto by Theorem 4.5. If |[N| > 1 then, by Theorem 4.6,
it is enough to show that fM : SM+N _ SM is onto for all finite sets M C Z2. Fix
an arbitrarily chosen M C Z%. Let a (the) permutative corner point of f be n € N.
Clearly there exists a line of irrational gradient £ € R?* through 0 = (0,0) such that
one of the two closed half-planes into which £+ n ‘divides’ R? (that is, the two closed
half-planes whose intersection is £+n) contains all of N. Let this half plane be H, let
H be the open set H\({+n), and put Ng = N\{n} = NN H (since { has irrational
gradient). Number the points of M as my,-- -, ks such that m;+n € H +m; if and
only if 1 <1 < j < |M]| (this can be done since £ has irrational gradient). Given (b) €
SM we shall construct an element of (fM)~'((b)). First note that for (a) € SM*+V,
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for all m € M, (7((a)))m = f(mx(e™((a)))) = f(mx(o™(rmsv((@))))) (by Lemma
4.1), so that mmyn((a)) determines (fM((a)))m. So if mmyn,((@)) is determined
then, by permutativity, there exists s € S such that (f((a)))m = (b)m if and only
if (¢)m+n = s. Thus, by the construction of H, we are free to choose (a)m € S
for all m € (m; + H) N (M + N) so that mm,1n,((a)) C S™*N is determined.
Hence, a unique (@)m,+n € S such that (fM((¢)))m, = (b)m,, for all (c¢) € SM+N
such that mm,yn((¢)) = Tm,+n((a)), is determined. Hence, 7, 4+m)n+n)((a@)))
is determined. We proceed thus. Having determined 7y 1 myn(v+n)((@)) for some
i € {1,-++,|M|—1} we freely choose (a)my for all m € ((m;1+H)\(m;+H))N(M+N)
so that T(m,,,+mn+n)((@)) and, in particular, mm, 4+n,((a)) is determined and
hence, by permutativity, unique (a)m,,,+n € S such that (fM((¢)))m,, = ((0))m.y,
for all (c¢) € SM+N such that Tmi+n8((€)) = Tmy,,+n5((a)) is determined.

Hence m(m,, +mnv+ny((@))) is determined. Eventually 7T(m|M|+FI)ﬁ(M+N)((a))) =
maan((a)) = (a) is determined and, by construction, (fM((a)))m; = (b)m, for 1 <
i < |M| and hence fM((a)) = (b).

By arbitrary selection of (b) € SM and of the finite set M C Z?, f is onto by
Theorem 4.6. O

The next two examples show that Theorem 4.6 cannot, in general, be extended

to subshifts.

Example 4.4 Let S = S;, 50 Q@ = Oy, and N = {(0,1),(0,0),(1,0)}. Let f: SV —
S be such that f((a)) = (a)@1)+ (@)0,0) + (a)q,0 (mod 2) for all (a) € SN and put
Y ={r € Q: Zmt1) + Tmt(00) + Tm+ao) = 0 (mod 2) for all m € Z*}. Note
that, for any fixed 7,7 in Z, we can construct a point z € ¥ by freely choosing either
tm=0o0r z;m =1 forallm e S;; = {(m,n) € Z? :n=jorm=1n < j}. The
value of zp, for all m € Z*\S,; is then, clearly, uniquely determined. Since |S;;| = oo
we have that |X| = 2° is uncountable but, for all z € ¥ and for all m € Z?, we
have that (f*(z))m = f(mn(0™(2))) = (6™(2))1) + (™(2))0.0) + (0™ (2))10) =
Zm+(0,1) T Zm+(0,0) T Zm+(10) (mod 2) = 0, by the definition of X. But if € {0,1}
then a +0 # a+1 (mod 2) and each point in N is a corner point of the hull of N
so, certainly, f¥ is corner n-permutative for all n € N. But f* maps an uncountable

set to the single point zy € X, where (2¢)m = 0 for all m € Z2%.

73



The second example of a corner permutative subcellular automaton which is not

onto is less trivial.

Example 4.5 Let S = Sy, s0 0 = Qy, and N = {(0,1),(0,0),(1,0)}. Let f: SN —
S be such that f((a)) = (a)1) + (@)@, + (a)a,) (mod 4) for all (a) € SN and
put ¥ = {2 € Q: Tmy(0,1) + Tm+(0,0) + Tm+,0) =0 or 2 (mod 4) for all m € Z?}.
Note that, for any fixed 7,7 in Z, we can construct a point z € X by freely choosing
zm € {0,1,2,3} for al m € S;; = {(m,n) € Z*> :n = jorm = i,n < j}. In
this case we still have some freedom of choice of zy for all m € Z?*\S;;, since the
definition of ¥ is less restrictive than that in Example 4.4. Since |S;;| = oo we have
that |X| = 4° is uncountable. For all z € ¥ and for all m € Z?, we have that
(P Dm = Fan(o™ () = (0™(Don + (™)) 00 + (0™ (=)o) (mod 4) =
Zm+(0,1) + Zm+(0,0) + Zmt+(1,0) (mod 4) =0 or 2, by the definition of ¥ (clearly then,
fE(X) € ¥). Butifa,b,c€{0,1,2,3} then b # c implies that a+b # a+c¢ (mod 4)
and each point in N is a corner point of the hull of N so, certainly, f* is corner
n-permutative for all n € N. But f* maps ¥ into {z € ¥ : z;y = 0 or 2 for all
m € Z%} so that f* is not onto since ¥ clearly contains uncountably many points z

such that zy, = 1 or 3 for some m € Z2.

The next chapter continues our interest in subcellular automata with respect to

some measure theoretic considerations.
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Chapter 5

Corner permutative subcellular
automata and entropy

preservation

We retain the notations and standing hypotheses of the previous chapter.

5.1 Background

This section merely recalls the notation, established concepts, and results mentioned
in Sections 1.3, 1.4, and 1.5 of the introduction.

For a compact set X and a continuous Z%action a of X, M(X) and M(X,a)
denote the set of Borel probability measures of X and the set of a-invariant Borel
probability measures of X respectively. Topological entropy h(«) (Definition 1.4) and
measure theoretic entropy (Definition 1.8) are related by the variational principle that

h(a) = sup{h,(a):p € M(X,a)}. For h € [0, h(a)] we put
MH(X, ) = € M(X, ) < hy(a) = A}

and we reserve M*(X, a) to denote M*®)( X a) (which may be empty). If h(a) < oo
and |M*(X,a)| =1 we say that (X, a) is intrinsically ergodic.
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For d = 1 we have that an irreducible subshift of finite type is intrinsically ergodic
and that Parry measure (equidistributed Bernoulli measure in the case of the full
shift) is the unique maximal measure [49].

Coven and Paul have shown [14] that if d = 1 and T : (X,a) — (X',¢) is
a continuous surjective map (recall that this means that 7o a = o o T') of in-
trinsically ergodic systems, with unique maximal measures u,v respectively, then
T : M(X,a) = M(X', o) defined by (T(A\))(B) = M(T~(B)) for all X € M(X,a)
and for all B € B(X') (the Borel g-algebra of X') is surjective and T'(y) = v.

For d = 1 a matrix subshift of finite type (X, o) is irreducible if and only if (¥, o)
is transitive (Definition 1.11) and the set {z € ¥ : |O,(z)| < oo} is dense in ¥ where
O,(z) is the o-orbit of z € ¥. This well-known fact is mentioned in, for example,
Markley and Paul [37, Section 5]. Note that transitive and dense are topological
properties. Since every subshift of finite type is topologically conjugate to a matrix
subshift of finite type we conclude that, for d = 1, a subshift (X, o) of finite type is
intrinsically ergodic if it is transitive and has a dense set of points whose o-orbit is
finite.

For d = 2 however Burton and Steif exhibit [8] an example, called the iceberg
model, which is transitive, has a dense set of points whose o-orbit is finite, and
yet 1s not intrinsically ergodic. Furthermore, the iceberg model has exactly two
maximal measures, and there is a surjective subcellular automaton map of (¥, 0)
which permutes these two maximal measures.

The goal of this chapter is to extend Coven and Paul’s result to general subshifts
(not necessarily of finite type and not necessarily intrinsically ergodic), for the class
of two dimensional corner permutative subcellular automata. That is, for subcellular
automata 7T of (X,0), we aim to show that T(M*(E,U)) C M*(¥,0), with equality
when 7' is onto. In fact, we’ll show that T(Mh(z,a)) C M"(X,0), with equality
when T is onto, for all A € [0,h(a)]. The result has also been proved, by Newton
and Parry [44], (for Lebesgue spaces in general) for d = 1, T" onto, and T' countable
to one almost everywhere. Our proof of the entropy preservation of 7' (that is, that
T(Mh(E,J)) C M"(%,0)) is for d = 2, doesn’t require that T is onto, and nor that
T is countable to one anywhere. Our stronger result (that is, that T(Mh(E,J)) =
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M"(¥,0)), again for d = 2, does require that T is onto, but again doesn’t require

that 7" is countable to one anywhere.

5.2 Preliminaries.

(i) If T is a map of (X, a) (o a Z%-action) then, for alln € Z%, T"1oa® = a0 T~}
on subsets of X (proof trivial).

(ii) For a family {P; : ¢ € I}, for some indexing set [, of finite partitions of X,
T (Vier Pi) = Vier T7H(P;) (follows immediately from T (N;erAi) = NierT 1 (A;)
for A, C X foriel).

5.3 A maximal measure of a compact space is

continuous

Recall that a continuous measure is one which has value zero on points.

Theorem 5.1 If X is a compact melric space and « is a conlinuous Z%-action of X

such that 0 < h(a) < oo then p € M*(X, ) implies that p is continuous.

Proof. Suppose 0 < h(a) < oo, 4 € M*(X, ), and that there exists z € X such
that p(x) = 6 > 0. Since y is a-invariant and p(X) = 1 < oo we must have
|O(z)| = |Ou(x)] =n € N. Define v € M(X,a) by v(D) = u(D\O(z))/u(X\O(z))
for all D € B(X).

Given a finite Borel partition P of X put P, = Vinep(m) @™ (P) for all m € N,
where B(m) is the d-dimensional ball of radius m and centre 0 = (0,---,0) € Z%.

Note that, for any y € X, there exists a sequence {F,(y)},en C B(X) such that
y € E,(y) € P, forall n € N. So pu(E,(y)) > p(y) = 6 for all n € N and for all
y € O(z). If, for £ € B(X), ENO(x) =0 then v(F) = u(E)/u(X\O(z)) = Ku(E),
where co > K = 1/u(X\O(z)) > 1 (for if u(O(z)) =1 we’d have that h(a) = 0).

Foralln € N let Q, = {E,(y) : y € O(z)}, then

H,(Py) == > v(E)logv(E)— 3  v(E)logu(E)

EeQ, Ee€Pn\Qn
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=— Y u(E)logv(E)— Y Ku(E)(log K + log u(E))

EeQ, Ee€Pn\Qn
= KH,(Pa)+ > (Kp(E)logu(E) —v(E)logr(E)) — Y. Ku(E)log K
EeQn E€Pn\CQn

giving h,(a,P) = Kh,(a, P) since the finite sum is obviously bounded for all n € N
and — Y gep o, Ku(E)log K < p(X\O(z))K log K is also bounded. But P was
arbitrary, so h,(a) = Kh,(a) > h,(a), contradicting the maximality of y. O

5.4 Entropy reduction without surjectivity

The following Theorem is a straightforward generalisation to d = 2 of a result for
d = 1 in Coven and Paul’s paper [14], but we eliminate the unnecessary condition

that 7" is onto.

Theorem 5.2 Let a,v be continuous Z*-actions of compact metric spaces X,Y re-
spectively. If T : (X,a) — (Y,v) is continuous then T - M(X,a) = M(Y,v) is
entropy reducing (that is, hTA(M)(fy) < h,(a) forall p € M(X,a)).

Proof. If P is a finite Borel partition of Y then 7'7'(P) is a finite Borel partition of X
and H,(T~'(P)) = HT(;L)(P) (by definition of T) Furthermore 77! (Vmeq, @™ (P) =
Vmeg, Y™ (T~'(P)), by preliminaries (i) and (ii). The result follows. O

Remark 5.1 Surjectivity of 7'is not necessary. By definition of 7", 7" (X,B(X),u) —
(Y,B(Y),T(1)) is onto (mod 0) anyway, since (T'(u))(T(X)) = u(T~Y(T(X))) =
p(X) =L

5.5 A result on allowable partition grouping

The next theorem we prove allows certain numbers of atoms of each of a sequence
of partitions to be grouped together to form single atoms without affecting entropy
values.

Lemma 5.1 If ]l € N, a;,z; € RY for j € {1,---,1}, and Zé‘:l a; = 1 then
Yoy ajriloga; > (Lo ajr;)log(Siy aj;).
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Proof. See Walters [64, Theorem 4.2].

Theorem 5.3 Let a,d, k,l € N be fized. If {P.}.eN is a sequence of measurable
partitions of probability space (X, B, ) then the value, if it exists (allowed to be infi-
L H,(P,) is equal to lim,_., M%H#(Qn) where, for alln € N, Q,

nite), of lim,_0o —

is a measurable partition of (X, B, p) and each atom of Q,, is a union of, up to, k"

atoms of P,,.

Proof. Assume lim,,_,, M%H#(Pn) exists and that Q,, is as described for each n € N.
Clearly P, > Q,, for all n € N, so that

lim LH u(Pr) > limsup —; ! -H,(Q,) € [0,00].

n—oo qnd n—oo  an?

Also, for alln € N, P, = E;U---UE,, and Q, = {F,---, F,,} for some m =
m(n) € N where, for all © € {1,---,m}, there exists k; € {1,--- ,lk‘”d_l} such that,
for all j € {1,...,k;}, there exists F;; = E;;(n) € B such that E; = {F;, -, Fi, }
and F; = Ufi:IEij. For all ¢ € {1,---,m}, put m;; = u(k;;) for all j € {1,---,k;}.

Now, for all 7 € {1,---,m}, we apply Lemma 5.1, with [ = k;, a; = 1/l = 1/k;,
and x; = Im;; = kym;; for all j € {1,---, k;}, to get

k;
Zm” log Zm” S Z M log k ml])

for all e € {1,---,m}, so that

ki

—S " H; > =3 myi(log mij + log ki) > H,(P,) —log(Ik"" ),

=1 i=1 5=1
since —log k; > —log(Ik™™") for all i € {1,---,m} and since 37", Zf‘zl m;; = 1. So

1

1 d—1 1
lim inf —dH#(Qn) > lim —(H,(Pn) —log(lk™ ")) = lim — H,(P,). Hence

n—oo  qn n—o0 and n—oo and

1 1 1 1
lim — H,(P,) > limsup —; HM(QTL) > liminf—dH#(Qn) > lim — H,(P,).

n—oo qnd n—oo  an® n—oo. qn ~ n—co gnd

d
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5.6 Entropy preservation by corner permutative

subcellular automata

We need two further theorems before proving proving that corner permutative subcel-
lular automata are entropy preserving, the first is the Z? analogue of the Kolmogorov-

Sinai Theorem. This is well-known (see Conze [13, p. 18] or Katznelson and Weiss’

paper [26, p. 170]).

Theorem 5.4 [f the finite measurable partition & of a probability space (X, B, ) has
Vneze a™(A) = B for a Z*-action a of X by measure preserving transformations,

where A = A(€) is the sub-algebra of B generated by &, then h,(a) = h,(a, €).

Given M C Z? let Py be the partition of X given by Py = {Eg) : (b) € mu(2)},
where Egy = {z € ¥ : my(z) = (b)} for all (b) € mar(X).

Proposition 5.1 With the convention just given, Paryn > (fZ) 7 (Pu).

Proof. If E € Payn then there exists (a) € maypn(X) such that, for all y € E,
maran(y) = (a). So,forally € F andforallm € M, (f*(y))m = (fM(mmen(¥)))m =
(fM((a)))m, by Proposition 4.1 part (2). So, for all y € E, mx(f*(y)) = fM((a)), so
that f5(y) € F = Fruqay) = {z € ¥ : mu(z) = fM((a))} € Pu. Soy € (f%)"1(F)
and, hence, £ C (f*)"(F). O

Proposition 5.2 greatly simplifies Theorem 5.5.

Proposition 5.2 If N C P C Z* and g : S¥ — S is such that g((a)) = f(nn((a)))
for all (a) € np(X) then f* = g*.

Proof. For all z € ¥ and for all m € Z2,
(9%(@))m = g(mp(c™(2))) = f(an(np(c™(2)))) = flan(e™(2))) = (f*(2))m. O

Theorem 5.5 If T = [~ is a corner n-permulative sub-cellular automaton then
there exist k,1 € N, 1 € Z* and a sequence {M,},eN of finite subsels of Z* such
that U,en(M,, + nl) = Z* and, for alln € N, M,, C (M,41 +1) and each atom of

T=Y(Pum,) is a union of, at most, k™ atoms of Pu,,,+n-

80



Proof. Using Proposition 5.2 we may assume that N’s hull H(N) is a triangle, that
N =Z*N H(N), that all three corners of H(N) are points of Z?, and that f is still
corner n-permutative (that is,f is still permutative at n and n is still a corner).

Consider the sequence {M,, },cN defined by My = N—nand M,y ; = M, + N —n
for all n € N. Note that the sequence {H(M,)},en consists of mutually similar
triangles with common corner points 0 shared by mutually corresponding corners
under the similarity. So clearly there exists 1 € Q* such that H(M, +nl) C H(M, 41+
(n+ 1)) for all n € N and, assuming without loss of generality that N is large enough
that 1 may be taken to be in Z?, that U,en(M,, + nl) = Z2.

Suppose y € T(X), so y = T(x) for some x € X. For all m € Z?* we require
ym = f(7n(e™(2))) = f(an(e™ (mmsn(2)))) (using Proposition 4.1, part (4)). That
is, Tm+n(2) determines ym so, by n-permutativity, ym and mm4n, (z) uniquely deter-
mines Tm4n-

Let n € N and let ¢; be the bi-laterally infinite extension of the side of H(M,,)
which is opposite n. Clearly, there exists a unique ordered set, {/; : 2 < i < m}, of
lines parallel to £; in R? for some m € N such that U™, A; = M,,,and 1 <i<j<m
implies that £; N ¢; = () and that ¢; is closer to ¢; than /; is, where, for 1 <17 < m,
A; = 0; 0N M, is non-empty.

By the proceeding two paragraphs we see that m4,(y) and ma,4n,(2) uniquely
determine 74, yn(z) and hence (4,4 n,)u(4,4n) (note that, since Ay is in the side of
H(M,) which is opposite n, if m; # mj are in A; then m; ¢ (my + Ny — n),
so that the determination of xm,+n is independant of zm,4n). Similarly, for 1 <
i < m, ma,(y) and 74, 4N, (2) uniquely determine m4,4n(z) and hence 74,45, (2) =
T(Ai+No)u(4i4n)(2). But, by construction, A; + Ny C U;;ll(Aj + N) for 2 <1 < m,
so that my4,(y) and TU;;ll(AJ_}_N)({L’) uniquely determine m4,1n(2) and hence uniquely
determines 4,4 N (%) = T(4;4Ny)u(4:4m) (7). Tt clearly follows that mar, (y) = mum 4,(y)
and m4,4n, () uniquely determine Tz, ., +n(2) = Tar, 48 () = T(Um 44N (7).

So if £ = E) € Pu, for some (b) € ma,(¥) and if 2 € T7'(E) then T'(z) =y
for some y € X such that m,(y) = (b), so that 7, 4n(z) is uniquely determined
by Ta,+n, (z). But, by construction, A; 4+ (Ng — n) lies inside of M,4;\M, which,

in turn, lies inside of the union of n + 1 translates of H(N) and n translates of
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some half revolution rotation of H(N). So ms,,,4+n(z) is uniquely determined by
T(Myy1\M)+n(2) which gives, at most, SE*TVIN = [k possibilities for mp,,,+n(2),
where | = SVl and k& = SV, So z is in one of, at most, k™ atoms of Prpyr4n =
P, +n- By Proposition 5.1 the result follows. O

We now come to the main result of the chapter.

Theorem 5.6 [f a map T is a corner n-permutative subcellular automaton of (X, 0)

then T(Mh(z,a)) C M"(Z,0) for all h € [0,h(c)]. That is, T is entropy preserving.

Proof. By Theorem 5.4, with £ = {FE; : i € mo(X)} where E; = {z € ¥ : z9 = 1}
for 1 € m(X), we need only show that hT(M)(O', £) = h,(o,€). Furthermore, by taking
{M,},en and | as in Theorem 5.5 and noting that \/,epr 0™ (&) = Par for M C Z2,

we need only show that

1 1
lim ——— = i 71{
By shift invariance of | - |, p and T(,u), we require that
1 1
A He(Para) = lim o Hig (Pav,)
and, by preliminaries that
1 1
im —— Pur,) = lim —— P,
i (P, = Jim (T (Pa)
Since clearly lim, o |M,|/|Mp+1] = 1 we need only show that
1 1
Jim Pt = lim o H(T7 (Pag,))
and, by shift invariance of pu, that
1 1
nh_)rgo A M(PMH+1+n) hm |M | H,(T™ (PMn))

Since the hull of M, is made up n? translates of the hulls of N and L (where L is a
half rotation of N about n say) for all n € N, and by the conclusion of Theorem 5.5,
the result follows from Theorem 5.3. O

The containment, T(Mh(E, o)) C M"(X, o), can be replaced by equality when T

is onto. We first need:
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Lemma 5.2 [fT : (X1,51) — (X2,52) (where S; : X; — X, is a homeomorphism
fori=1,2) is continuous and onto then T M(X1,51) = M(X,,S,) is onto.

Proof. Proved by Goodwyn in [18]. Proof outlined in Coven and Paul [14].

Theorem 5.7 If map T is a surjective corner n-permutative subcellular automaton

of (3,0) then T(M"(2,0)) = M"(X,0) for all h € [0,h(c)].

Proof. Since ¢ is the two dimensional shift we may clearly put X; = X3 = ¥ and
Sy = 8y = 09 in Lemma 5.2 to get that 7" is onto. Thus, given h € [0, h(c)] and
p € M"(X,0) there exists v € M(X, o) such that T(V) = . Clearly, v € M" (%, 0)
for some b’ € [0,h(0)] and, by Theorem 5.6, p = T(z/) € MM (X,0) so, clearly,
h' = h,(c) = hand p = T(V) € T(Mh,(E,O')) = T(Mh(E,O')). Since g was an
arbitrary element of M"(¥,c) we have that M"(¥,0) C (T(Mh(E,J)). Thus, by
Theorem 5.6, M" (%, o) = (T(Mh(z, 0)). But h was arbitrarily chosen from [0, k(o).
O

5.7 Shereshevsky’s conjecture revisited

Recall Definition 4.2.

Definition 5.1 We say that a corner point n € N is a shadowed corner point, or
s.c.p., of f if there is a line ¢/ C R? through n such that (N U {0})\{n}, where
0 = (0,0) € Z2, lies completely in one of the two open half-planes into which ¢
divides R?.

We omit ‘of f” from these definitions when the defining function from SV to S is

obvious.
We say that a cellular automaton f* is shadowed corner permutative at n if n is

a s.c.p. of fand f is corner n-permutative.

Observation 5.1 Since N is finite we may clearly assume that the lines ¢ and ¢ in

definition 5.1 are of rational gradient.
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Observation 5.2 If 0 is in the hull H(N) of N then every corner point, except 0 if
0 itself is a corner point, of f is a s.c.p. of f.

If 0 ¢ H(N) then, assuming the points of N not to be co-linear, there is a unique
pair of distinct lines, ¢; and /5, each through 0, and having non-empty intersection
with H(N) (indeed, non-empty intersection with the set of corner points of N), but
such that one of the two open half-planes into which ¢; (for i=1,2) divides R* contains

no points of N.

Let n; and ny be that unique pair of corner points of f. lying on ¢; and /,
respectively, whose distance from 0 is greater than that for any other points of NV
lying on #; and /5 respectively. Then n; and nj are s.c.p’s. Corner points other than
n; and ny, of f are s.c.p’s of f if and only if they do not lie in the closed triangle in
R? with vertices at 0, n;, and n,.

In other words, imagine a light emitted from 0 and s.c.p’s as being those corner
points of f that are shadowed by either the interior or the boundary of the hull H(N)
of N. If 0 is a corner point of f then all corner points, except 0, of f are s.c.p’s. If 0
lies on an edge, but is not a corner point, of the hull of N, or if O lies in the interior
of the hull of N, then every corner point of f is a s.c.p. of f. If O lies on the line
projected by an edge of the hull of N, but not on that edge, then the corner point on
that edge furthest from 0 is a s.c.p., but the corner point on that edge closest to 0 is

not a s.c.p.

Theorem 5.8 A shadowed corner permutative cellular automaton must have infinite

entropy.

Proof. Let the metric, p, on © = SZ° be such that p((zn), (yn)) =277 if (zn) #
(yn), where r = min {|n| : zn # yn}, and 0 otherwise (this gives the product topology
on ). Thus, given € > 0 there exists minimal R, € [0, 00) such that points in  are
e-close if and only if they agree at all Z%-coordinates in C'( R, ), the closed circle in R?
of centre 0 and radius R.. Furthermore, R, — oo as ¢ — 0.

Let €, and hence R = R., be given and let ¢ be the line of rational gradient
(observation 5.1) for the permutative s.c.p., m € N say, of f. Let £ C R* be that
unique line through 0 and parallel to £. Put Lg = ' N C(R) N Z2.
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For all n € Nlet S, = {(zn) € @ : 2n =0ifn € Lr +1-m for some 1 €
{0,---,n — 1}}. Clearly, if (zn) # (yn) in S, then there is a minimal value of i
in {0,---,n — 1} for which 21 ;m # Y14s.m for some 1 € Lg. If © = 0 then clearly
p((zn),(yn)) > €. If © > 1 then, by the construction of S,, ¢ — 1 is the minimal
element of {0,---,n — 2} such that (f((zn)))i+¢—1)m # (/*((yn)))14+i-1)m, for
some 1 € Lg, and we inductively see that ((f%)((zn)))1 # ((/*)'((yn)))1, so that
(S ((zn), (%) ((yn))) > €. Thus, S, is (n,p,e€)-separated. But |S,| = slP=l7,
where s = |S], so that

Lg|-n-1
h(f4) > limlimsup|R|n—OgS = lim|Lg| - logs = oo
e=0 nooo n e—=0
since |[Lr| =+ ccas R=R. o0 as ¢ — 0. O

Remark 5.2 Theorem 3.4 follows as a Corollary from this result, since any algebraic

cellular automata is n-permutative for all non-redundant n € N.
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