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Abstract of the Dissertation

Complex bounds for renormalization of one-dimensional
dynamical systems

by
Michael Yampolsky
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1997

Tn the first part of this dissertation We prove complex a priors
bounds for infinitely renormalizable real quadratic maps with es-
sentially bounded combinatorics. ‘This is the last missing ingre-
dient in the problem of complex bounds for all infinitely renor-
malizable real quadratics. One of the corollaries is that the Julia
set, of any real quadratic map z — 24eccc[—2,1/4), s locally
connected.

In the second part we apply our techniques to critical circle
maps to extend BE. De Faria’s complex @ priori bounds to all
critical circle maps with an irrational rotation number. The

contracting property for renormalizations of critical circle maps

it




follows.

As another application of our methods we present a new proof
of theorem of C. Petersen on local connectivity of some Siegel

Julia sets.
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PREFACE

This dissertation is concerned with the existence of complex o priori bounds
for renormalizations of one-dimensional holomorphic dynamical systems. It is
an adaptation of two papers, “Dynamics of quadratic polynomials: Complex
bounds for real maps”, written jointly with M. Lyubich, and “Complex bounds
for renormalization of critical circle maps”, whose earlier version has appeared

as a Stony Brook preprint [Ya)].
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Part I. Complex bounds for real quadratic-like maps

1. COMPLEX BOUNDS: WHERE THEY COME FROM, AND WIHAT THEY ARE

GOOD FOR: SOME HISTORY AND STATEMENTS OF THE RESULTS,

In the late 1970’s Feigenbaum and independently Coullet and "Iresser made a
remarkable discovery of the “Universal Scaling Law” in transition to chaos in a ‘
one-parameter family of unimodal maps. Drawing an analogy with renormal-
ization group methods in statistical physics, they defined a renormalization
operator acting on the space of renormalizable unimodal maps, and conjec-
tured that this operator has a hyperbolic invariant set with one-dimensional

unstable foliation, and infinite-dimensional stable foliation.

Although the initial efforts to prove the conjecture were confined to the

framework of real one dimensional dynamics (see [L5] for a brief review of
the history of the subject), the connection with complex aneﬂytic dynamics
was early realized. In particular, Epstein [E] observed the existence of an
invariant analytic function space for the renormalization transformation, the :

FEpstein class, and constructed periodic points of renormalization in this space.

i

|
Moreover, as was later observed by Sullivan [52, dMvS], the renormalizations i
of any sufficiently smooth infinitely renormalizable map are asymptotically in ;
the Epstein class, and thus complex analysis naturally comes into play. The :
renormalization operator was complexified by Douady and Hubbard [DH], to |
explain the occurence of little copies of Mandelbrot set in various one com- |

plex parameter families of analytic maps. The complex renormalization acts

on gquadratic-like maps, which are analytic degree two branched coverings of

simply connected domains f : U — V with the nesting property: clU C V. i




In his address to ICM-86 in Berkeley Sullivan [S1] suggested a program
of construction of the invariant set of quadratic-like renormalization and its
stable set by means of Teichmiiller theory. The program was carried out a few
years later (see [S2, dMvS]). A different approach to the problem, employing

the concept of geometric limits was then given by McMullen [McM2.

The stable set of an infinitely renormalizable quadratic-like map f in Sul-
livan’s theory is its hybrid class Hy. Two quadratic-like maps are hybrid
equivalent (see [DH]) if they are quasiconformally conjugate on the neighbor-
hoods of their filled Julia sets, with the conjugacy being conformal on the
filled Julia sets. It has been established that all infinitely renormalizable real
quadratic-like maps with the same combinatorics are contained in the same
hybrid class (see [S2, dMvS, McM1, Sw2, L4]). The space H; is equipped with
the natural Teichmiiller metric, and contains a unique quadrdtic pélynomial.
The distance from a quadratic-like map f : U — V to the polynomial map
p € H; is controlled in terms of the modulus of the fundamental annulus VAU.
The key analytic point of Sullivan’s argument are complex a priori bounds.
By definition, an infinitely renormalizable map f has complex bounds if all
its renormalizations R*f extend to quadratic-like maps with definite moduli
of the fundamental annuli. Sullivan (see [S2, dMvS|) has shown that for an
infinitely renormalizable unimodal map of Epstein clags with bounded periods
its sufficiently high renormalizations are quadratic-like with @ priori bounds,
which places them in a compact part of the corresponding hybrid class. He

then used an elegant non-coiling argument to conclude that renormalization

contracts the Teichmiiller metric in a hybrid class. McMullen in his argument




[McM2] also used Sullivan’s ¢ priori bounds as a compactness condition, in

the topology of geometric convergence.

The other application of complex a priori bounds is geometric information
about the structure of Julia sets and the Mandelbrot set at an infinitely renor-
malizable point. One of the questions they shed light on is local connectivity
of the Julia sets. This is of particular interest, since a quadratic polyno-
mial with a locally connected Julia get admits a simple combinatorial model
[Do3]. There are known examples of infinitely renormalizable (but not real)
quadratic polynomials with non locally connected Julia sets (see [Sg]). Hu and
Jiang [IJ] have used Sullivan’s a priori bounds to demonstrate that the Julia
gset of Feigenbaum polynomial is locally connected. Their approach was later
generalized by McMullen [McMI]| to apply, in particular, to all real infinitely

renormalizable quadratics with complex bounds.

Finally, complex bounds are related to rigidity questions. Lyubich’s Rigidity
theorem [[.4] asserts that any two combinatorially equivalent infinitely renor-
malizable quadratics with complex a prior: bounds satisfying secondary limbs
condition (this condition is automatically satisfied for real maps) are the same

up to an affine change of coordinates.

We hope that by now the reader is convinced that the existence of com-
plex a priori bounds is one of the central issues in the dynamics of quadratic
polynomials. After Sullivan [S2, dMvS] had established complex bounds for
maps of bounded type, Lyubich demonstrated [[.3, L4] that the map R"f has
a big modulus provided the “essential period” p,(R"~!f) (see §4 for the precise

definition) is big. Thus the gap between [52] and [L4] consists of quadratics of




“essentially bounded but unbounded type”. Loosely speaking for such maps
the high renormalization periods are due to saddle-node behavior of the return
maps. The first part of this thesis is based on the paper of M. Lyubich and
the author [LY], where this specific phenomenon was analyzed.

Let us formulate the main result of [LY]. Given a quadratic-like map f,
denote by mod(f) the supremum of the moduli of various fundamental annuli
of f. We say that a real quadratic-like map f is close to the cusp il it has an
attracting fixed point with the multiplier greater than 1/2 (one can replace 1/2
with 1—e for a fixed but otherwise arbitrary ¢ > 0). Note that a renormalizable

map has no attracting fixed points and therefore is not close to the cusp.

Theorem 1.1. Let f : z v 2% ¢, c € R, be any n times renormalizable real

quadratic polynomial, 0 < n < oo. Lel

k _
< D,
15;?3{—1%(}% f) < pe

Then
mod(R*£) > u(p.) > 0,

unless the last renormalization is of doubling type and R* f is close to the cusp.
This fills the above mentioned gap:

Complex Bounds Theorem. There exists a unwersal constant p > 0 with

the following property. Let f be any n times renormalizable real quadratic,

0<n< oo Then

mod(R"f) > p,




unless the last renormalization is of doubling type and K™ f is close to the cusp.
In particular, infinitely renormalizable real quadratics have universal complex

a priori bounds.

This result opens the possiblity to extend Sullivan’s theory to maps with
arbitrary combinatorics. Moreover, since the paper [LY] appeared, Lyubich
[L.6] has shown that the renormalization operator acting on real quadratic-like
maps has a hyperbolic invariant set with a codimension one stable foliation,
thus completing the proof of the Renormalization conjecture for all combina-
torics.

Also, by above mentioned work of Hu and Jiang {HJ, J] and McMullen
[McM2], the comple}g a priori bounds we obtained imply local connectivity
of the Julia set J(f) for any real infinitely renormalizable f. On the other
hand, the Yoccoz Theorem gives local connectivity of J(f) for at most finitely

renormalizable quadratic maps (see [Hu, M1]). Thus we have

Local Connectivity Theorem. The Julia set of any real quadratic map z —

2t + ¢, c € [~2,1/4], is locally connected.

The methods of the proof of Theorem 1.1 are closer to [S2] rather than to
[L4]. However, the base of Sullivan’s argument, the so-called Sector Lemma,
(see [S2, dMvS]) does not hold for essentially bounded, but unbounded com-
binatorics; the pullback of the plane with two slits is not necessarily contained
in a definite sector. What turng out to be true instead is that the litile Julia
sets J(R™f) are contained in a definite sector.

We will derive Theorem 1.1 from the following quadratic estimate for the




renormalizations (appropriately normalized):

(1.1) [R"f{2)] > ¢

2
’

z

with some ¢ > ( depending on the bound on the essential period. The main
technical point of this work is to prove (1.1). In particular, this estimate
implies that the diameters of the little Julia sets J(R"™f) shrink to zero (see
the discussion in §5), which already yields local connectivity of J(f) at the
critical point.

A quadratic-like map with a big modulus is close to a quadratic polynomial
which is one of the reasons why it is important to analyze when the renormal-
izations have big moduli. It was proven in [L4] that mod(Rf) is big if and

only if f has a big essential period, which together with Theorem 1.1 implies:

Big Space Criterion. There is o universal constant y > 0 and two functions
w(p) > vi(p) > v > 0 tending to oo as p — oc with the following property. For

an n times renormalizable quadratic polynomial f,

fj(pe(RHM1f)) < mod(£"f) < U(pe(Rnilf)):

unless the n-th renormalization is of doubling type and R™f is close to the

CuUSP.

The structure of the first part of the thesis is as follows: §2, contains some
background and technical preliminaries. In §4 and §7 we describe the essen-
tially bounded combinatories and the related saddle-node phenomenon. In §5
we state the main technical lemmas, and derive from them our results. In §6

we give a quite simple proof of complex bounds in the case of bounded com-




binatorics, which will model the following argument. The proofs of the main

lemmas are given in the final section, §8.

Remarks: 1. When Theorem 1.1 was proven the authors received a manuscript i
by Levin and van Strien [LS] with an independent proof of the Complex Bounds
Theorem. The method of [LS} is quite different; instead of a detailed combina-
torial analysis it is based on specific numerical estimates for the real geometry.
It does not address the phenomenon of big space.

Another proof of the Complex Bounds Theorem along the same lines was

recently announced by D. Sands [Sa]. The improved numerical estimates Sands

obtained allowed him to greatly streamline the argument.

| Also, the gap between [S2] and [L4] was independently filled by Graczyk
& Swiatek [GS2]. The method of the latter work is specifically adopted to
essentially bounded but unbounded combinatorics. Note also that a related
analysis of the big space phenomenon for real quadratics was independently

carried out in [GS1].

2. All the above results will actually be proven for maps of Epstein class

Ey (see §5). In this case the quadratic-like extension with a definite modulus
{independent of A) appears after skipping first N = N()) renormalization

levels.

2. PRELIMINARIES

2.1. General notations and terminology. Let I, = {z: |2| < r}.

We use |J| for the length of an interval J, dist and diam for the Euclidean ]

distance and diameter in C. Notation {g, b] stands for the cloged interval with




endpoints a and b without specifying their order.

We call two real numbers o and b K-commensurable or simply commen-
surable if K=t < |a|/|b] < K for some K > 1. Two sets X and ¥ in
C are K-commensurable, if their diameters are. A configuration of points
T1,... %y is called K-bounded if any two intervals [z;, z;], and [z, z;] are K-
commensurable.

Given a univalent function ¢ in a domain UV ¢ C, the distortion of ¢ is
defined as sup, ;rylog|¢'(2)/¢'(C)].

We say that an annulus A has a definite modulus if mod A > § > 0, where
d may also depend only on the specified combinatorial bounds.

For a pair of intervals I C J we say that I is contained well inside of J if
for any of the components L < J\ I, |L} > K|I| where the constant K > 0
may depend only on the specified quantifiers.

A smooth interval map f : I — I is called unimodal if it has a single
critical point, and this point is an extremum. A C® unimodal map is called
quasi-quadratic if it has negative Schwarzian derivative, and its critical point
is non-degenerate.

Given a unimodal map f and a point x € I, 2’ will denote the dynamically
symmetric point, that is, such that fz’ = fz. Notation w(z) = w;(2z) means
as usual the limit set of the forward orbit {f™z}52 .

Set Q.(2) = 2" +¢.

2.2. Hyperbolic disks. Given an interval J C R, let C; = C\(R\J) denote

the plane slit along two rays. Let C; denote the completion of this domain in

the path metric in C; (which means that we add to C; the banks of the slits).




By symmetry, J is a hyperbolic geodesic in C;. Consider the hyperbolic
neighborhood of J of radius r that is the set of all points in C; whose hyperbolic
distance to .J is less than r. One verifies directly that a hyperbolic neighbor-
hood is the union of two Euclidean discs symmetric to each other with respect
to the real axis, with a common chord J. We will denote such a neighborhood
Dy(J), where 8 = 0(r) is the outer angle the boundaries of the two discs form
with the real axis (an elementary computation yields r = logtan(m/2 — 6/4)).
Note, that in particular the Euclidean disc D(J) = D, /3(J) can be interpreted
as a hyperbolic neighborhood of J.

These hyperbolic neighborhoods were introduced into the subject by Epstein
[E] and Sullivan [S2]. They are a key tool for getting complex bounds due to

the following version of the Schwarz Lemma:

Schwarz Lemma. Let us consider two intervals J' C J C R Let ¢ : C; —
Cp be an analytic map such that ¢{J) C J'. Then for any 0 € (0,=n),
$(De(J)) C Do(J').

Let J = [a,b]. For a point 2z € Cy, the angle between 2 and J, _(;,‘}—)- is
the least of the angles between the intervals [a, 2], [b, 2] and the corresponding
rays (a, —o0], [b,+00) of the real line, measured in the range 0 < 8 < 7.

The following consequence of the Schwarz Lemma will provide us a key to

control the inverse branches expansion.

Lemma 2.1. Under the circumstances of the Schwarz Lemma, assume that ¢

admits a univalent extension (Cp,T) — (Cp,T"), where both components of

e —

TN J have length 2p|J|. Let us consider ¢ point z € C; such that (z,J) > €.

iz
t';

|

i
.l
|
39
[
i
i
‘E




Then

. , -
dlst(qﬁ’z,.]) < Odlst(z, J)
7’| |
for some constant C' = C(p, €).

FIicurE 1

Proof. Let us normalize the situation in such a way: J = J' = [0,1]. Since
the space of univalent maps normalized at two points is compact (by the
Koebe Theorem), the statement is true if dist(z,J) < p. So assume that
dist(z, J) = p.

Observe that the smallest (closed) geodesic neighborhood ¢l Dy(J) enclosing
z satisfies: diam Dy(J) < Cle) dist(z, J) (cf Figure 1). Indeed, if # > ¢/2 then
diam Dy(J) < C(e), which is fine since dist(z, J) > p.

Otherwise the intervals [0, 2] and {1, z] cut out segments of angle size at least
e on the circle 8Dy(J). Hence the lengths of these intervals are commensurable
with diam Dy(J) (with a constant depending on ¢). On the other hand, these
lengths are at most (1 + p~1) dist(z, J), provided that dist(z, J) > p|J|.

Together with the Schwarz Lemma this yields:

dist(¢z, J') < diam(Dy (J')) < diam(Dy(J)) < C(p, €) dist{z, J),

10




and the claim follows. O

2.3. Elementary properties of roots. We summarize here for future ref-
erence some elementary facts about the square root and the cube root maps.
Iirst, let @(z) = +/z be the branch of the square root mapping the slit plane
C\ R_ into itself.

Lemma 2.2. Let K > 1,6 > 0, K' <a < K, T =[-¢a,1], T" = [0,1].
Then:

e ¢(Dy(TY\R_) C Dy (1), with ¢ depending on & and K only.
o If 2 € oD(T)\ D([—4,1 +6]), then

T —

(21, T) > e(6} >0 and C(K,8) ! < dist{z,T") < C(K, ).

Lemma 2.3. Let { € C, J = [a,b] C [0,+00). ' = (), J' = [o,V] = ¢J.
Then:
o Ifdist(¢,J) > 6|J| then

dist(J', ¢')
|7

dist(.J,
< 0(5)—|S|—O'
o Let 8 denote the angle between [C, o} and the ray of the real line which does
not contain J; 1 denote the angle between [(', V] and the corresponding
ray of the real line. If 8 < 7/2 then f > /4.
(According to our convention, in the last statement we do not assume that
a<b)
Now let ¢(z) be the branch of the cube root mapping the slit plane C\ R_
into {z : |arg(z)] < 7/3}. The pext Lemma is parallel to Lemma 2.2, but

since its conclusion is somewhat more involved we choose to illustrate it in

Figure 2.

11




FIGURE 2
Lemma 24.let K > 1, >0, K1 <a <K, T =[-al, T=1[0,1].

Then: _ |
o ¢Dy(T) C Dg(T"), with 0" depending on 0 and K only. 1:
e Moreover, there ezist b, ¢ € {0, 1], such that 0,b,¢, 1 form o C{K)-bounded 1.

configuration, and ¢Dp(T) C Dy ([0, 1]) U Ds([0,¢]) for o < w/2. |
e If 2 € ¢D(T)Y\ D([-9,1 4+ 6]}, then i

(. T > e(K,6) > 0 and C(K,6)™" < dist(#/, T') < C(K, §).

3. RENORMALIZATION OF UNIMODAL MAPS IN THE EPSTEIN CLASS

3.1. Branched coverings. Let 0 € U' C U C C be two topological disks |
different from the whole plane, and f : U’ —+ U/ be an analytic double branched b
covering map with critical point at 0. Let B denote the space of such double )

branched coverings.

12




For f & B, the filled Julia set K(f) is naturally defined as the set of non-
escaping points of f, K(f) = Nusof U, and the Julia set is defined as its
boundary; J(f) = OK(f). These sets are not necessarily compact and may
change as the map is restricted to a smaller topological disk V7 (such that this

restriction is still a map of class B). The Julia set (and the filled Julia set) are

connected if and only if the critical point itself is non-escaping, 0 € K (f).
If additionally 1/’ U then the map f is called quadratic-like. If the

Julia set J{f) of a quadratic-like map is connected then it does not change

as the map is restricted to a smaller domain V' (such that this restriction is

still quadratic-like}, see [McM1], Theorem 5.11. Moreover, the Julia set of a
quadratic-like map is compact, and this is actually the criterion for admitting

a quadratic-like restriction:

Lemma 3.1 (compare [McM2], Proposition 4.10). Let U' C U be two topo-
logical disks, and [ : U — U be a double branched covering with non-escaping '
eritical point and compact Julia set. Then there are topological discs U DV D
V' > K(f) such that the restriction g : V' = V is quadratic-like. Moreover, if
mod{U \ K(f)) > € > 0 then mod(V \ V') > (e) > 0. .

Proof. Let us consider the topological annulus A = U\ K(g). Tet ¢: A —
R={z:1<|z] <r} be its uniformization by a round annulus. It conjugates b

, g to amap G : R — R where R' is a subannulus of 2 with the same inner

|
boundary, unit circle S'. As G is proper near the unit circle, it is continuously ‘
|
extended to it, and then can be reflected to the symmetric annulus. We obtain |
a double covering map G R — R of the symmetric annuli preserving the

circle. Moreover 12 is a round annulus of modulus at least 2e.

13
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Let I denote the hyperbolic metric on ﬁ’,, V denote the hyperbolic l-neighbot-
hood of %, and V' = G~V < V. As G : §' — S is a double covering, we

have:

(8" = [ D7 (2)di < ma | DI G)U(S",

so that maxg: ||Df(2)]} > 2. As mod R > 2¢, 1(SY) < L{e). Hence |Df(2)|| >
ple) > 1forall z € V. It follows that V' is contained in (1/p(e))-neighborhood
of S*. But then each component of ¥ \ V' is an annulus of modulus at least
o(e) > 0.

We obtain now the desired domains by going back to U: V = ¢ "W UK(f),
Vi=¢ " WUK(f). [

Let us supply the space B of double branched coverings with the Carathéodory
topology (see [McM1]). Convergence of a sequence f, : Ul — U, in this topol-
ogy means Carathéodory convergence of (U, 0) and (U!, 0), and compact-open

convergence of f,.

3.2. Epstein class. Let us consider a quasi-quadratic interval map f : T =
[8,8'] — I with f(8') = f(8) = B, where B is a non-attracting fixed point:
(B} = 1. By definition, f belongs to Epstein class (see [Fi, S2]) if it admits
an analytic extension to a double branched covering f : U’ — U such that
U =Cp and U’ is an R-symmetric topological digk meeting the real line along
an interval 7' containing 7. (For reasons which will become clear in §3.3 we do

not assume that 7' C 7.) Any map f in Epstein class admits a representation

(3.1) F(2) = ($(2)) +c= Qoo g,

14




where ¢ : U —» A(¢) is a univalent map onto the complex plane with four
slits, which double covers Cp under the quadratic map z — 2°> +c¢. As the
range A(¢) is determined by 7" and ¢, we will also denote it as .AT,C.

For purely notational convenience we will also assume the maps f of the
Epstein class to be even: f(z) = f{—z). Then the map ¢ is odd, and the
intervals I, 7" and the domain U’ are symmetric about 0. Moreover, the
interval 7' and hence the domain {7/ = €p can also be assumed symmetric:

just shrink T to make it symmetric and adjust 7" accordingly.

Remark. Of course, all the maps of Epstein class associated to a quadratic
map (restricted iterates of a quadratic map) are automatically symmetric. To
carry the argument through in the non-symmetric case, one should just observe
that the dynamical involution z r» 2/, f(2) = f(#'), has bounded distortion

on compact subsets of U.

Let & stand for the Epstein class modulo affine conjugacy (that is, rescaling
of I). We will always normalize f € £ so that 0 is its critical point. Given
ap>1,let £ C € denote the space of maps of Epstein class modulo affine

conjugacy such that |T'| > p|I].
Lemma 3.2. For any p > 0, the space £° is Carathéodory compact.

Proof. Let us normalize a map f in £” so that I = [-1,1], 8 = 1. Then
T D [—p, p]. Moreover, since the modulus of the topological annulus Cr \ I
is at most twice the modulus of Cp \ I, T" O [—¢/, p] with p' > 1 depending
only on p. Since the critical value ¢ divides T into two intervals of length at

least p — 1, the range A(¢) = Ag, covers the disk I, with r = /p — 1.

15




Let us now have a sequence f, = )., © ¢, of normalized maps of Epstein
clags (3.1}. Clearly we can select a subsequence such that the slit domains Cy,
and A(¢,) Carathéodory converge respectively to some Cr and Ag ., where
T > [—p,p] and Ag, DD,

Moreover, since Qu(dnI) C [—1,1], we have: |p,J| < 2+/2, so that we can
make ¢,! converge to some interval J = [—a, a]. This interval is contained in
Ar,., since the intervals ¢,1 are well inside A(¢y,).

Since ¢, (8) < V2 and f(8) > 1, ¢,(B) stays away from 0. So, the points
bn3 — a stay definite distance from the boundary of Az, and (¢,1) (¢, /) are
bounded from above. By the Koebe Theorem, the family of univalent maps
¢! is normal on Ap .

Let us select a subsequence ¢ ' uniformly converging on compact subsets
of Ap.. Since ¢l are intervals of bounded length staying away from the
boundary of Ap,, the limit of the ¢, ! ig non-constant, and hen;:e is a univalent
function ¢~'. It follows that the domains U} of the maps ¢, Carathéodory
converge to U’ = ¢~ A

Let us now observe that by the Koebe Theorem, the sequence of direct func-
tions ¢, is normal on any domain § O I compactly contained in U’. Indeed,
this is a family of univalent functions bounded on I, with the derivatives ¢/,(53)
bounded away from 0 (since f/(8) > 1). It follows that ¢, — ¢ uniformly on
compact sets of UJ'.

Since ¢, — ¢, we conclude that f, =+ Q.c¢. [
The above proof also yields:

Lemma 3.3. Given a p > 1, there is a domain O, D [—1, 1] with the following

16




property. For any [ € £° normalized so that I = [~1,1], the univalent map ¢
in (3.1} is well-defined and has bounded distortion on O,. Moreover, in scale

¢ the distortion of ¢ is bounded by C(p)e.

We will refer to the above property by saying that f is a quadratic map
up to bounded distortion. The last statement {which certainly follows from
the Koebe Distortion Theorem) shows, in particular, that in some scale ¢
depending only on p the distortion of ¢ is bounded by 2.

We will mostly be concerned with a subset of Epstein maps specified by a
stronger condition. Given a A € (0, 1), let £, C & be space of maps of Epstein
class modulo affine conjugacy such that 7' < T and each component J of
T\T"is A™'-commensurable with 7". Note that there exists A € (0,1), such
that all real quadratics @, ¢ € [-2,1/4], belong to the Epstein class £, (with

T selected as a fixed large O~symmetric interval).

Lemma 3.4, Given a A € (0,1), let f € &, and [-1,1] =T CT" C T be as

above,

¢ the space £y is Carathéodory compact;

o both T and T' are K (\)—commensurable with I, and I is contained well
inside T";

e denote by JI', 1= 1,2 the components of f~™(T'\'T"). If f is not close to

the cusp then |J}| is K(A)-commensurable with dist(J7, aT).

Proof. As €y is a closed subset of some £#N the first property follows from
Lemma 3.2.

Furthermore, there exists 4 = p(A) > 0 such that the annulus A = D(T) \
D(T") has modulus at least g. Since mod(f ™A) = 27™u()), there exist
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K, = K,(A) such that |JP| > K,|T\T"|. Using the fact that both components
of T\ T" are A~ '-commensurable with |77| we have |JP| > L,|1"|. As J} are
contained in T"\ I, |7|/{7”| is bounded from above.

Set 7" = [v,7] = (flg)™'7" where « lies on the same side of 0 as the
fixed point § = 1. Commensurability of the J? with 7" and Koebe Distortion
Theorem imply that ¢ in (3.1) has a C(A)-bounded distortion on this interval.
Hence |T'] > |fT"| =< [T"%. It follows that |7"|/|T"| — 0 as |T'| — co. Since
J? is commensurable with 77, the length of 7' must be bounded. Thus [ is
commensurable with 7 (and T').

To prove the last statement, let us consider the interval S = [3/2,v].
Bounded distortion of ¢|S and elementary distortion properties of the quadratic
map imply that f has bounded distortion on 5.

By compactness of £, for f € £, which is not close to the cusp the multiplier
of 5 is bounded away from 1. Moreover, we can take a point a ‘E {83, ) which
divides (3,7) into K(A)-commensurable parts and such that f'(z) > ¢ =
g(A) > 1 for x € (#,a). Let J* = JP stand for the intervals lying on the side
of the fixed point 8 € dI. Then only bounded number of intervals J” may be
outside (3,a). For the rest of them, |J"| > (¢ — 1} dist{(J", 3) which finishes

the proof of the lemma. [

In what follows all maps are assumned to belong to the Epstein class £.

3.3. Renormalization. Let us briefly recall the notion of renormalization in
unimodal dynamics; for a detailed account the reader is referred to [dMvS].
A quasi-quadratic unimodal map f is called renormalizable if there exists an

n > 2 and a closed interval P around the critical point 0, such that f*(P) C P,
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!'!]:

[P is unimodal, and the intervals P, f(P), f2(P), ..., f* Y{P) have disjoint E'
interiors. T'he smallest such n is called the period of f, and is denoted n,. The I[
|

corresponding periodic interval P! is not canonically defined: the minimal i

choice is P! = [f™(0), f"(0)]; and the maximal choice is P! = B = [3;, 3], %

where (4 is the appropriate fixed point of f; = f™. By definition, the renor- ‘
malization Rf is equal to f™|P! up to the choice of P and rescaling. To be 1
|

definite, we will assume that it is normalized so that B' is rescaled to [~1,1]:

Rf(z) = ¢~ f*(qz), where ¢ = f,.

If this procedure can be repeated 0 < k < oo times, the map f is called «;’;;
k times renormalizable. In this case there is a nested sequence of periodic

renormalization intervals around 0, P D P2 O ... O P*. We let n; denote 1

the period of P!, and let P} be the component of f~~9P! containing f%0.
We say that the intervals P}, i = 0,1,...,n; — 1, form the eyele of level .
We use notation f; for the iterate f™. Again, the maximal choice for P! is i
Pt = B' =4, 8], where £, is fixed under f;.

Let p; = ny/ny_; be the relative periods, gy(f) = max;;<x p;. We say that
an infinitely renormalizable map f has bounded combinatorics if the sequence il
of relative periods is bounded.

If ny = 2 then f is called smmediately renormalizable, and the corresponding H
renormalization is called doubling. In this case the maximal periodic intervals i

Pt = [54, 8] and P! touch at their common fixed point F; {which coincides

with the fixed point a of f with negative multiplier). In all other cases the !
periodic intervals P are disjoint.

Besides /3, the quasi-quadratic map f; has one more fixed point on B’ which A
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will be denoted by . At the cusp (i.e., when f/(5) = 1) these two points
coincide. Note that if I < k (so that B'f is renormalizable), then f](cy) < —1,

Let S O P be the maximal interval such that the restriction of f“~! to it
is monotone. Set 7% = fM~1(S!) and S* == f~3(S4). Then f;: S* > T isa
unimodal map.

Let us now state some basic geometric properties of infinitely renormalizable
maps usually referred to as real bounds (see [G, BL1, BL2, 52, dMvS] for the
proofs). Below we assume that f is a & times renormalizable quasi-quadratic

map of Epstein class £, 0 < k < co.

Lemma 3.5. For a quasi-quadratic map f € £, as above:

o The interval P* is well inside T* and S*. Moreover, after skipping initial
N(X) levels, the space in between these intervals becomes absolute (i.e.,
independent of A).

o The renormalizations R f belong o some class £ with r = rE(A) <
7(A) < 1 which becomes absolute after skipping the initial N{X) levels.

o If oy has negative multiplier then S* C T*.

o If f'{cy) < —e < O then S* is well inside T (with the space depending on

€).

Proof. The first statement is proven in the above quoted works (see e.g.,
[dMvS, Lemma VI.2.1}). The second statement is the consequence of the
first one.

Let us consider the component J of 5%\ (5,4') containing 5. If S* > T*
then f; monotonically maps J into itself. Hence it has an attracting fixed

point v € J with positive multiplier. Since the critical point is attracted by




the cycle of , ¥ belongs to some interval Pf. It follows that 2% f also has an
attracting fixed point with positive multiplier contradicting the assumption.
This proves the third statement.

The last statement follows by compactness of £, O

Lemma 3.6. The map f™ % : PF 5 P¥ 0 < { < nyg, of a non-central interval
onto the central one 4s a diffeomorphism whose distortion is bounded by an

absolute constant.

Let G* be the gaps of level k, that is the components of Pj‘-’“’1 \UPF. Ge-

ometry of f is said to be d-bounded (up to level n) if there is a choice of
periodic intervals PF, such that for any intervals PF,G* C P}™', we have:
|PF|/|PFY > 6 and |GX|/|PFTY) > 6, k = 1,...,n. In other words, all the
intervals and the gaps of level & contained in some interval of level & — 1 are
commensurable with the latter. ' ;."

Let p be an upper bound on the essential periods of the first k£ renormaliza-

tions of f: pi(f) <p, 1 =0,1,... k. '

Theorem 3.7. Any map [ as above has a d-bounded geometry, where & de- I
pends only on p. In particular, infinitely renormalizable maps with bounded

combinatorics have bounded geometry.

Corollary 3.8. Let P be a non-central interval which belongs to the central
interval P*~1. Then the map f™ % : P¥ — P¥ has a derivative bounded away

from O and oo by constants depending on p only.

Proof. Indeed, by Theorem 3.7, the intervals PF and P* are commensurable,

while by Lemma, 3.6, the map between them has a bounded distortion. [
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Corollary 3.9. Let f'(oy) < —e < 0. Then S* is K(p)-commensurable with
T%, and the renormalization R* f belongs to some class £y, with p depending

ondy on A, p and e.

Proof. Given the last statement of Lemma 3.5, we only need to show that
|S%|/|T*| is bounded from below. But S* C P*~! since the map fy = f7 . is
O-symmetric and at least 3-modal on P¥ 1. As P*¥1is fy-invariant, TF ¢ P*~?
as well. As by Theorem 3.7 P* and P* ! are K(p)-commensurable, we are

done. [

3.4. Bounds and unbranching. Let us state a result which gives an esti-

mate of the modulus of a quadratic-like map after one renormalization:

Theorem 3.10 ([L4], Corollary 5.6). Let f be o renormalizable quadratic-

like map with mod f > p > 0. Then Rf is also quadratic-like, and
mod Rf > §{p) > 0

unless the renormalization is a doubling and Rf is close to the cusp.

A fundamental annulus A of a repormalization R*f is called unbranched if

Aﬂwf([]) =0 .

Lemma 3.11. [L4, Lemma 9.3] Let f be an infinitely renormalizable R-symmet-
ric quadratic-like map with a priori bounds. Then every other renormalization
R*f has an unbranched fundamentel annulus with o definite modulus {depend-

ing on a priori bounds only).
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4, ESSENTIALLY BOUNDED COMBINATORICS AND GEQOMETRY

Let f be a renormalizable quasi-quadratic map.

Recall that 8 = fy and « stand for the fixed points of f with positive and
negative multipliers correspondingly. Let B = B(f) = [4,/], A = A(f) =
[, @] C B.

If f is immediately renormalizable then A is a periodic interval with period
2. Otherwise let us consider the principal nest A =I1°=1°(f) > ' =1'(f) D

. of intervals of f (see [L3]). It is defined in the following way. Let ¢(m) be
the first return time of the orbit of 0 back to /™ 1. Then I™ is defined as the
compoﬁent of F~Hm =L containing 0. Moreover N, I'™* = B(Rf).

For m > 1, let

Om UI:“ —y -l

be the generalized renormalization of f on the interval Imﬁ;", that is, the
first return map restricted onto the intervals intersecting the posteritical set
(here I™ = I"). Note that g, = f¥™ : I™ — I ! is unimodal with
g (BI™) C 8™ 1, while g, : I™ — I"™! is a diffeomorphism for all i 3 0.

Let us consider the following set of levels:
X = {m:t{m) > t{m—1)}U{0} = {0 = m(0) < m(1) <m{2) <--- <m(x)}.

A level m = m(k) belongs to X iff the return to level m — 1 is non-central,
that is g0 € I™ \J™. For such a moﬁent the map gm.1|I™"! is essentially
different from g, |I™ (that is not just the restriction of the latter to a smaller
domain). Let us use the notation hy = gmy1, ¥ = 1,...x. The number

x = x(f) is called the height of f. ( In the immediately renormalizable case
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set x = —1).

The nest of intervals
(41) Im(k:)+1 - Im(k)+2 5.0 Im(k+1)

is called a central cascade. The length I of the cascade is defined as m{k +
1) —mf{k). Note that a cascade of length 1 corresponds to a non-central return
to level m(k).

A cascade (4.1) is called saddle-node if hpI™®+1 4 0 (see Figure 3). Other-
wise it is called Ulam-Neumann. For a long saddle-node cascade the map hy
is combinatorially close to z + 2% + 1/4. For a long U‘lam—Neumann cascade

it is close to z — 2% — 2.

A
I —

afk)  m{El nifkti)-1  miked)
| | | I 1 | |
I i | =TT I

A ! N

™

Ficure 3. A long saddle-node cascade

Given a cascade (4.1), let
(4.2) KO pr®risiy pud =y m(k 1) mik) - 1

denote the pullbacks of I+ ynder hi! = i1 (i-e., the connected

components of the I™* %1 under the corresponding inverse map). Clearly,

m(k)+it+1
K;

while K;-n(k)ﬂ = I;”(kHl are mapped onto the whole 7™®*) This family of

are mapped by hy onto KB 4 = 1 . m(k+ 1) — m(k) — 1,

intervals is called the Markov family associated with the central cascade.

24




For z € w(0) N (ImE) \ 141y got
d(z) = min{j — m(k), m(k + 1) — j},

if hgx € I\ I for m(k) < § <m(k+1) — 1 and d(z) = 0 otherwise (i.e

=1

when hyx ¢ I™5+D). This parameter shows how deep the orbit of x lands

inside the cascade. Let us now define di as the maximum of d(z) over all .

3 € w(0) N (™0 \ [y,

Given a saddle-node cascade (4.1), let us call all levels m{k) +dy < 1 <
m(k -+ 1) — dy, neglectable. _

Let us now define the essential period p, = p,(f). Let p be the period of the
periodic interval J = B(Rf). Let us remove from the orbit {/*J} 5 all the
intervals whose first return to some ™ belongs to a neglectable level. The
essential period is the number of the intervals which are left.

We say that an infinitely renormalizable map f has essentially bounded

combinatorics if sup,, p.{E"f) < co.

Remark. Bounded essential period is equivalent to a bound on the following
combinatorial factors: the height, the return times of the I* to ™! under
iterates of g, 1, the lengths of the Ulam-Neumann cascades, and the depths

dy, of landing at the saddle-node cascades.

Theorem 4.1. [L4, Theorem V| Let f € £ be a renormalizable quasi-quadratic
map of Epstein class. There is §y > 0 and a function v,(p) — o0 as p —+ 00
with the following property. If p.(f) > P, > Py then Rf has an unbranched

fundamental annulus A such that mod(A4) > vy (5.).

Let o(f) = |B(Rf)|/|B(f)|. Let us say that f has essentiolly bounded
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geometry if inf, o(R™f) > 0.

By the gaps G of level m we mean the components of [ m-13 U™, We say
that a level m is deep inside the cascade if m(k)+75, <m < m(k+1)—p.. The
following lemma says that the maps with essentially bounded combinatorics

have essentially hounded geometry (the inverse is true by Theorem 4.1).

Lemma 4.2. [L4, Lemma 8.8] Lel f € &) be a renormalizable quasi-quadratic
map with p(f) < .. Then all the intervals I'"™ in the principal nest of f are
C(Pe, A)-commensurable. Moreover, the non-central intervals 1", 1 # 0, and

the gaps G of level m are C(ﬁe,A)—commensumblé with 1™\ I™, This is

also true for the central interval I™, provided m is not deep inside the cascade.

Note that the last statement of the lemma is definitely false when m is deep
inside a cascade: then I™ occupies almost the whole of 7™*. So we observe
commensurable intervals in the beginning and in the end of the cascade, but
not in the middle. This is the saddle-node phenomenon which is in the focus

of this work.

Corollary 4.3. Let f € &\ be a renormalizable quasi-quadralic map with
pe(f) < Pe such that Rf is not close to the cusp. Then Rf € £° with p =

(X, o). If Rf has no attracting fized points then Rf € £, with p = (A, Be)-

Proof. In view of Lemmas 3.5 and 4.2 it is enough to notice that I™x 1 o
Tt > St 5 ™% where ¥ = x(f) is the height of f (compare Corollary
3.9). [

The following important distortion result replaceé Lemma 3.6 in the case of

unbounded combinatorics:
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Theorem 4.4 (see [GJ, Mal]). For any quasi-quadratic map f, the return
map g 1P — I™ is a composition of the quadratic map z v 22 and a
map h with bounded distortion. Moreover, h™! has a definite Kocbe extension

around I™,

The following two statements extend Corollary 3.8 and 3.9 to the case of

essentially bounded combinatories.

Corollary 4.5. Let f be a quasi-guadratic map with pe(f) < Pe.

e For a non-central interval 1% C m®) \ L the derivative of the
restriction hy| e B8 bounded away from 0 and oo.
d
e For any m(k) <! < s <m(k+1), which are not deep inside the cascade,

the derivative of the transition map
hz——I . Is \ISkl—l = Il \ Il—‘rl
s bounded away from 0 and oo.

The constants depend only on p..

1 .
k)t is commensurable to

Proof. By Lemma 4.2, any non-central interval I;" (
its distance to 0. Hence the quadratic map has bounded distortion on I ;” (k)1
By Theorem 4.4, the return map ¢y, : I;-”‘H - I™ has bounded distortion as
well. Since its domain and range are commensurable (by Lemma 4.2 again),
we see that its derivative is bounded away from 0 and co.

Furthermore, the Koebe Principle easily implies that the transition map

along the cascade has bounded distortion. Hence by essentially bounded ge-

ometry, it must have bounded derivative. O
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Corollary 4.6. Under the assumptions of the previous Corollary, let f be

renormalizeble. Let P* ¢ I™F)\ mE42) be 4 non-central periodic interval.
Consider its first return f*P* = P back to I™%). Then P is K(p,)-
comrnensurable with P*.

This s also true for the intermediate returns to I™®) | that is the intervals
Piyj satisfying 0 < § < s and fFP* C I™\I™ with m(k) <m < m(k+1)-+1,

provided m. is not deep inside the cascade.

Proof. The first statement follows from the previous lemma.
The second statement follows in a similar way from Theorem 4.4 and the

second part of Corollary 4.5. []

5. REDUCTIONS TO THE MAIN LEMMAS

In this section we will state the Main Lemmas and will derive all the results
from them. The lemmas will be proven in the following sections. As every-
thing will be done in the setting of the FKpstein class, let us start with the

corresponding version of Theorem 1.1.

Theorem 5.1. For any A € (0,1) there exists N = N(X) with the following

property. Let [ € £y be an n—times renormalizable map, N <n < oco. Let
k .
\Joax pe(R°f) < pe.
Then R"f has a quadratic-like extension with

mod(R" f) > u(p.) > 0,

unless the last renormalizalion is of doubling type and R™f is close to the cusp.
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Main Lemmas Let P*, fi = f™ etc. be asin §3.3. Set S = 5% T'=7° g0

that f: S — 7T is unimodal. Let us consider the decomposition:

(5.1) Jr =tro f,

where 1, is a univalent map from a neighborhood U/* of P onto Cpe.

Lemma 5.2. Let f : [-1,1] — [~1,1] be a k times renormalizable quasi-
quadratic map of Epstein class Ex. Assume that p(R'f) < p. for 1 =0,1,...,
k — 1. Then there exist C = C(fe) > 0 and t = t(\,7.) € N, such that
Vz ¢ D(T") N Cr, the following estimate holds:

(5.2) dist(15 'z, PF) < o dist(z, PH)
| PE] | P
Thus the maps 4" after appropriate rescaling (that is normalizing {P*| =
|PF| = 1) have at most linear growth depending on X and p only. This im-
plies, in particular, that for sufficiently big ! (depending on A and #, only),
o (D(TY)) is contained in the range where f! is the square root map up to

bounded distortion (see Lemma 3.3). This yields the quadratic estimate (1.1)

stated in the Introduction:

(5.3 S ED (M

) ’ k 1,1 1
QOF = D
where ¢ and | depend only on § and A.
Corollary 5.3. Under the circumstances of Lemma 5.2, there exists N =
N(A, D) with the following property. For any k > N, f, : P¥ — P* admits

a quadratic-like extension whose little Julia set is K (p.)-commensurable with

the interval Pk,
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Proof. The above estimate (5.3) implies that for a sufficiently large r we have
|[™(2)| > 2|z|, provided dist(f™(z), P*) > r|P*|. By real bounds there exists
s depending only on A and P, such that dist(¢, P*) > r|P*| for k > s+ [ and
any ¢ € OD(T%*).

Set VF = D(T*=*) N Cpa, AF = (f|2¥)~1V*. Then by the ahove estimate,
AAF cannot touch 8D(T*%). Neither can it touch 7%\ T* since JA* N
R = S* Hence A* is compactly contained in V¥, so that the restriction
J™ o A¥ — V¥ g quadratic-like. Tts little Julia set is contained in (%)

which is commensurable with P*. [

Carrying the argument for Lemma 5.2 further, we will prove the following

result:

Lemma 5.4. Under the circumstances of the previous lemma, the little Julia
set J(fi) (for the quadratic-like eaxtension of fy : P¥ — P*) is contained in
the hyperbolic disk D.(B*), where ¢ > 0 depends only on p,, unless the k-th

renormalizotion 48 of doubling type and R*f is close to the cusp.

Proof of the main results.

- Proof of Theorem 5.1. Choose N as in Corollary 5.3. Let us assume first that
R¥f does not have an attracting fixed point. Then by Lemma 3.5, B* is well
inside of T%. Hence the hyperbolic disk D.(B*) is well inside the slit plane
Cri. By Lemma 5.4, the Julia set J(R™f) is also well inside Cp«, and the
desired follows from Lemma 3.1.

If R*f has an attracting cycle, let us go one level up. As RF1f does not

have attracting points, it has a definite modulus. By Theorem 3.10 its first
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renormalization, E* f, also has a definite modulus, unless it is of doubling type

and close to the cusp. O

Proof of Theorem 1.1. For n > N the claim follows from Theorem 5.1. As
mod f = oo for any quadratic polynomial f, for all preceding levels n < N we

have bounds by Theorem 3.10. O

The statement of the Complex Bounds Theorem needs an obvious adjust-
ment for maps of Epstein class (where one should skip first N () levels), or for
quadratic-like maps (where the bounds depend on mod(f)). Note also that
due to the Straightening Theorem (see [DIH, McM1]), the latter case follows

from the quadratic one.

Proof of the Complex Bounds Theorem. By Lemma 3.5, all the renormaliza-
tions R™f, N(A) < m < k, belong to a class & with an absolute 6. Without
loss of generality we can assume that N(X) = 0 (taking into account Theorem
5.1 in the guadratic-like case).

Take a p > 0, eg. p = 1. By Theorem 4.1, there is a § = H{u) such
that mod(Rf) > p for all renormalizable maps f of Epstein class & with
pe(f) > B. So we have complex bounds for all renormalizations R*' f such
that p{R"f) > p. For all intermediate levels we have bounds by Theorem 3.10
and Theorem 5.1 (except perhaps for the first N levels with an absolute N =
N{8)).

The latter bounds depend on p. But with the choice x = 1, j and hence the

bounds are absolute. O

Now the Complex Bounds Theorem and Lemma 3.11 yield:




Lemma 5.5. Let f € Ex. Then for every other level k > N (M), the renormal-

ization REf has an unbranched fundamental annulus with o definite modulus.

By a puzzie piece we mean a topological disk bounded by rational external

rays and equipotentials (compare [Hu, L4, M1]).

Proof of the Local Connectivity Theorem. By [HJ, J, McM2], unbranched
e priori bounds imply local connectivity of the Julia set. For the sake of
completeness we will supply the argument below.

For now, f is an infinitely renormalizable map of class £,. Since quadratic-
like maps (considered up to rescaling) with a priori bounds form a compact
family, the Julia set A (g) depends upper semi-continuously on g, and the 8-
fixed point depends continuously on the map (see [McM1, §4] for all these
properties), the little Julia sets J(f;) are commensurable with the intervals
B*. Hence the J{(f;) shrink to the critical point. By the Douady‘and Hubbard
renormalization construction {see [Dol, L4, M2]), each little Julia set is the
intersection of a nest of puzzle pieces. As each of these pieces contains a
connected part of the Julia set, J(f) is locally connected at the critical point.

Let us now prove local connectivity at any other point z € J(f) {(by a
standard ”spreading around” argument). Take a puzzle piece ¥V 3 0. The set
of points which never visit V, Yy = {¢: f*( ¢V, n=10,1,...}, is expanding.
(Cover this set by finitely many non-critical puzzle pieces, thicken them a bit,
and use the fact the branches of the inverse map are contracting with respect
to the Poincaré metric in these pieces). It follows that if z € ¥y then there is
a nest of puzzle pieces shrinking to z, and we are done.

Let now 2z ¢ Yy, for any critical puzzle piece V. Take an unbranched level &.
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Then there is a puzzle piece V* O J(f;) with a definite space in between it and
the rest of the posteritical set. Take the first moment I such that f%z € V%,
Then there exists a single-valued inverse branch =% : Cirepr — C whose
image contains z {where € depends on A cmly).

Furthermore, there is an r € (0,1) depending on A only such that the hy-
perbolic disk ©* in Ci14eypr of radius r (centered at 0) contains V*. Moreover,
by the Koebe Theorem this disk has a bounded shape.

Using the Koebe theorem once more, we see that the f ' have a bounded
distortion on . Hence the pullbacks U* = f~%QF have a bounded distortion
as well. As they cannot contain a disk of a definite radius {(as any disk B{z, ¢)
must cover the whole Julia set under some iterate of f), we conclude that
diam U* —+ 0. All the more, the pullbacks of the V* under f~* shrink. This

is the desired nest of puzzle pieces about z. €1

Proof of the Big Space Criterion. It follows from Theorem 4.1 and Theorem
1.1.0

6. BOUNDED COMBINATORICS CASE

We first prove the complex bounds in the case when the map f has bounded
combinatorics. The result is well-known in this case [dMvS, S2], but we give a
quite simple proof which will be then generalized onto the case of essentially

bounded combinatorics.

The e-jumping points. Given an interval T'€ R let f: U/ — Cr be a map
of Epstein class.

For a point z € RNU’ which is not critical for f7, let V,.(x) = V,.(z, f) denote




the maximal domain containing z which is univalently mapped by f* onto Crp.
Its intersection with the real line is the monotonicity interval Hy(z) = H,(z, f)
of f™® containing z. Let f.™ : Cpr — V,(z) denote the corresponding inverse
branch of f~™ (continuous up to the boundary of the slits, with different values
on the different banks). If JJ is an interval on which f® is monotone, then the
notations V,(J) and H,(J) and f;" make an obvious sense.

Take an ¢ € R and a z ¢ Cp. If we Vha,ve a backward orbit of z =
o, T—1,--.,%—; of x which does not contain 0, the corresponding backward
orbit z = 2, 2_1,..., % is obtained by applying the appropriate branches of
the inverse functions: z_, = f.™z. The same terminology is applied when we
have a monotone pullback J = Jy, ..., J_; of an interval J.

Let H 2 J be two intervals. Let Sp.(H,J) denote the union of two 2e¢-
wedges with vertices at 3J (symmetric with respect to the real line) cut off by

the neighborhood Dy(H) (cf. Figure 4). TLet C.(J) denote the complement

Dy(H)

FIGURE 4

of the above two wedges (that is, the set of points looking at J at an angle at

least €).
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Lemma 6.1. Let f be a quadratic map. Let J = Jo,J 1,...,J ;= J bea
monotone pullback of an interval J, z = z5,2-1,...,2_1 = z' be the corre-
sponding backward orbit of a point z € Cp. Then for oll sufficiently small
¢ > 0 (independent of f), either z_y € C(J_g) at some moment k < 1, or

2 € So (H (I, J) with § = 1/2 — 0(c).

If the first possibility of the lemma occurs we say that the backward orbit

of z e-jumps.

Proof. Assume that the backward orbit of z does not “e-jump”, that is, z_; be-
longs to an R-symmetric 2e-wedge centered at a_p € 8J 4, k=0,1... L. By
the second statement of Lemma 2.3, fo_(e41) = 6_g. Let M_g = fFoRH(J),
and b_j be the boundary point of M on the same side of J_; as a_j. Let us
take the moment & when b_; = 0. At this moment the point 2k belongs to a
right triangle based upon [a_g, b_x] with the e-angle at a_; and the right angle
at b_y. Hence z_, € Do(M_;) with 8 = 7/2 — 0(¢). It follows by Schwarz
Lemma that 2z’ € Dy(Hy(J')), and we are done. [

In view of Lemma 3.3, the above lemma admits the following straightforward

extension onto the Epstein class:

Lemma 6.2. The conclusion of Lemma 6.1 still holds, provided f is a map of
Epstein class £y, and the backward orbit of z stays sufficiently close to the real

line (depending on ).

Proof of Lemma 5.2 (for bounded combinatorics). For technical reasons

we consider a new family of intervals §% and 7%, for which P* ¢ §* ¢ S* ¢
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1% C T*, each of the intervals is commensurable with the others and contained
well inside the next one, and f,(S*) = T*,

Let us fix a level k, and set n = ny,

6.1 Jo=PE g, = pt
0

e o1y = PF.
‘Take now any point zg € D(T%) N Cpv with sufficiently big ¢ = #()\). Let
Z_1,.. ,Z-(n—1) be its backward orbit corresponding to the above backward

orbit of Jo. Our goal is to prove that

dist(z_(n—1), J (n 1)) < C(p)
|J_(n—1)l B

Take a big quantifier K > 0. Let us say that s is a "good” moment of time

diSt(ZO, J(])

(6.2) A

if J_, is K-commensurable with J;. For example, let J_, ¢ P! and s < N1,
that is s is a moment of backward return to P! preceding the first return to
P Thus J_, is contained in one of the non-central intervals P! ¢ PP,
By. Corollary 3.8 we see that the moment s is good, provided X is selected
sufficiently big.

We proceed inductively:

Lemma 6.3. Let J = J_; and J' = J (414, be two consecutive returns of
the backward orbit (6.1) to a periodic interval P', 1 < k. Lel z and 2'
be the corresponding points of the backward orbit of zy. If z € D(TY) then

dist(2, J') < C()|[T*|. Moreover, either 2 € D(T%), or m > e(p) > 0.

Proof. Let us consider the decomposition (5.1). By Lemma 3.5 the space be-
tween the intervals 7' and 7' depends only on 5. Applying Koebe Distortion

Theorem to the map 4" we see that its distortion on 7% is C(f)-bounded.
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D(T) n

=t

Figure 5
Set Z! = ;7 *7". By bounded geometry, the point £,0 divides 7% into com-

mensurable parts. Hence the critical value f0 = ;7 '(£0) divides Z* into
commensurable parts; let A = A(p) stand for a bound of the ratio of thege
parts.

By the Schwarz lemma, domain V' = ¢, }(D(T")) is contained in D(Z%).
By Lemma 3.3 and Lemma, 2.2 its pullback, f~1V is contained in a domain
W = fLD(Z') intersecting the real line by &, with diamW < K(p)3'|;
moreover, W\ D(7%) is contained in a sector Q(S*) with € depending only on
A (see Figure 3), and thus the proof is completed. |

()

Let us now give a more precise statement:

Lemma 6.4. Let J = J_; and J' = J_g be two returns of the backward orbit
(6.1) to P', where s’ = s +tny. Let z and 2’ be the corresponding points of the
backward orbit of zg. Assume z € D(’f"). Then either for some 0 <1 <t, a
POINt Z_(opiny) €-fumps and |z_(ypiny| < C|TY, or z_y € Dyp(H"), where H' is

the monotonicity intervel of f*™ containing J', and ¢ = /2 — O{c).

Proof. Assume that the above points do not e-jump. Then by Lemma 6.3 they
belong to the disk D(7*). As the map ;' from (5.1) has bounded distortion,

none of the points z_,, d-jumps for s < m < &, where § = Ole) as ¢ — 0.
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Now the claim follows from Lemma 6.1. [
The following lemma will allow us to make an inductive step:

Corollary 6.5. Let J = J_ @y, J' = J_p,,, ond 2,7 be the corresponding
points of the backward orbit of zp. Assume z € D{T*~"). Then either there is
a good moment —m € (—ny, —nyy1) when the point z_p, e-jumps and |z | <

C|T%, or #' € D(TY).
Proof. Note that by bounded geometry (Corollary 3.8) all the moments
—ng, — (g + 1), —(ng 4 2m), e, =M,

when the intervals of (6.1) return to P! before the first return to P+,
are good (prox-fided the quantifier K is selected sufficiently big). Hence by
Lemma, 6.4 either the first possibility of the claim occurs, or 2’ € Dg (L'), where
I/ is the monotonicity interval of fm+~ containing J', and & = 7/2 — Of(e).
As ngpr —ny > my, L' is contained in $%, which is well inside Tt. Thus Dy (1)) C

D(T"), provided ¢ is sufficiently small. [

We are ready to carry out the inductive proof of (6.2). Let j be the smallest

level for which
(6.3) 2 € D(TY).

By Lemma 6.3, either z_,, € D(Tj ), or Z_y, e-jumps. Moreover, in the latter
case |z—n,;| < Cl2o|, and the map 95 L from (5.1} admits a univalent extension
to Cri. So Lemma 2.1 ylelds (6.2).

In the former case we will proceed inductively, Assume that either z_,, €

D(Tz‘l), or z_; e-jumps at some good moment —¢ > s. If the latter hap-
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pens, we are done. If the former happens, we pass to [ 1+ 1 by Corollary 6.5.

Lemma, 5.2 is proved.

Proof of Lemma 5.4 (for bounded combinatorics). By Corollary 5.3,
diam J(fi) < C|T*|, with a C = C(p). Hence J(fy) C D(T"), where | >
k— N@). Let ¢ € J(fi), ¢ = fu', and ¢ = (o, Cets--- ,¢n = ' be the
corresponding backward orbit under iterates of f;.

By Lemma 6.3, either ( ; e-jumps at some moment, or {' € D(T®). If the
former happens then ¢ ; € Dg(J_jn,), where 8 = 0{c) > 0, and J_,, are the
intervals from (6.1). But then by the Schwars Lemma ¢’ € Dy (P*) with some
¢ depending on A and 7 only. Thus J(fi) C Dg{P*¥)U D(T*), and we are

done.

7. SADDLE-NODE CASCADES

Let f € £, be a map of Epstein class.
Let us note first for a long saddle-node cascade 4.1, the map Ay : ™0+ —

I™(%) ig g small perturbation of a map with a parabolic fixed point.

Lemma 7.1. [L4] Let hy be o sequence of maps of Epstein class £, having
saddle-node cascades of length { — oo. Then any limit point f : I' = I of
this sequence (in the Caratheodory topology) has on the real line topological
type of z > 22 + 1/4, and thus has o parabolic fived point.

Proof. Tt takes I, iterates for the critical point to escape [ {1 yunder iterates
of hy. Hence the critical point does not escape I’ under iterates of f. By the
kneading theory [MT] f bas on the real line topological type of 22 + ¢ with

—2 < ¢ < 1/4. Since small perturbations of f have escaping critical point,
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the choice for ¢ boils down to only two boundary parameter values, 1/4 and
—9. Since the caseades of hy, are of saddle-node type, fI' # 0, which rules out
€= —2.

]

Remark 7.1. Thus the plane dynamics of Ay with a long saddle node cascade
resembles the dynamics of a map with a parabolic fixed point: the orbits follow

horocycles (cf. Figure 6).

FI1GURE 6. The backward trajectory of a point corresponding

to a saddle-node cascade

Lemma 7.2. Let us consider a saddle-node cascade 4.1 generated by a return
map hy. Let us also consider a backward orbit of an interval B C Im““)\fm(’“)“

under iterates of hy:
B =Ry, B, CI™MBrLy mti2 @ = gl prE ekt

where m(k) + 3 +4 < m(k +1). Let 2 = 2,2 1,2-9,...,2-; = Z be the

corresponding backward orbit of a point z € D(Im(’“‘)). If the length of the
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cascade is sufficiently big, then either 2' € DImEY o (2,JY) > € and

dist(2', J') < C(p)|I™®].

Proof. To be definite, let us assume that the intervals F_; lie on the left of
0 (see Figure 4). Without loss of generality, we can assume that z € I
Let ¢ = h;* be the inverse branch of hy for which ¢F_; = E_i11). As ¢
is orientation preserving on (—oo, hg(], it maps the upper half-plane I into
itself: ¢(H) C {z=r"r >0, 7 >0 >n/2}.

By Lemma 7.1, if the cascade 4.1 is sufficiently long, the map ¢ has an
attracting fixed point ny € HN D(I m(k)}+2) (which is a perturbation of the
parabolic point for some map of type z2+1/4). By the Denjoy-Wolf Theorern,
¢ (€) =2 for any ¢ ¢ H, uniformly on compact subsets of H. Thus for
a given compact set K € H, there exists N = N(J, ¢) such that dV(K) C
D(I™#®+1) By a normality argument, the choice of /V is actually independent
of a particular ¢ under consideration.

By Lemma 2.2 the set K = ¢(D(I™M)\D (™I is compactly contained
in H, and diam K < C|I™®]|. For N as above we have 2’ € UMLKY U
D(I™#)) and the lemma is proved.

O

8. PROOFS OF THE MAIN LEMMAS

The cage of essentially bounded combinatorics is more involved than the
bounded case treated above (§6). Above we needed only quite rough combi-
natorial information in between two consecutive renormalization levels. Below

we will need to pull the point more carefully through the principal nest wait-
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ing until it jumps. A difficulty arises if the jump occurs at a “had” moment.

Then the corresponding iterate of the periodic interval is deep inside of a cas- it
cade and hence is not commensurable with its original size. The analysis of

saddle-node behavior given in §7 will allow us to handle this problem.

Proof of Lemma 5.2. In view of Lemma 3.5, we can assume without loss of
generality that all the renormalizations Rf 1=0,...,k—1, belong to a class

&£, with an absolute A. Let us start with a little lemma:

Lemma 8.1. Let f € & be a map of Epstein class which is not close to the

cusp. Then both components of B\ A contain an f-preimage of 0 which divides

them into commensurable parts.

Proof The interval [c, 8] is mapped by f onto [§,¢] 5 0. Denote by n =

F71(0) N |, 8. Under our assumption this point is clearly different from «

and A'. As the space of maps of Epstein class £y which are not close to the

cusp is compact, 7 divides [, f'] into commensurable parts. The analogous

statement is certainly true for the symmetric point ' € [8,¢/]. O I
As in §6, let us fix a level 7, let n = n,, and set
(81) JDEPT,JlER:_I,...,J_(H_UEP{.

Let z € D(T*) N Cp- with sufficiently big ¢ = ¢(A).

(8.2) 2= 2y 2l B2y e s B (=)

the backward orbit of z corresponding to the orbit (8.1). We should prove that |;

dist(z_(n—1), J-(n—1)) v )dist(zo, Jo)
T _n-1)] R

(8:3)
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We will proceed inductively along the principal nest. Namely, we will show
below that the backward z-orbit (8.2) either e-jumps at some good moment,
or follows the backward J-orbit (8.1) with at most one level delay.

In what follows we work with a fixed renormalization level ! and skip index !
in the notations: f = f; = RY(fy), S = &, A= AL, B = BL. We will use nota-
tions of §4 for different combinatorial objects. Let H,(z) be the monotonicity

intervals as defined in §6.

Lemma 8.2 (Return to A). Let E = FEy, E_4,...,E_, = E' be consecutive
returns of the backward orbit (8.1) to B, between fwo consecutive returns to A.
Let ¢ = (,¢_1,...C.s = (" be the corresponding points of the backward orbil
(8.2). Assume ( € D(S). Then either (' € D(B), or there is a moment when

—i € [—s,0] when the point (_; e-jumps: ((_;, E_;) > ¢(Pe) > 0 and moreover

dist(¢_;, B_;) dist({o, Fo)

(84) T |5y

< C(Pe)

Proof. By definition of the essential period, s < P,. Note that the interval
F7H(S) is contained well inside S. By Schwarz Lemma and Lemma 2.2, if a
point {_; ¢ D(S}, then it e-jumps. Combining Lemma 2.3 and Lemma 3.3 we
see that {8.4) holds up to the first moment —¢ when (_; e-jumps.

By Lemma 8.1 each component of B \ A contains an f-preimage of 0 which
divides B into K-commensurable intervals, with K = K(p,). Hence the mono-
tonicity interval of f, H = H,(E_,), is well inside of B. As f: B — B has an
extension of Epstein clagss £, (Corollary 3.9), we can apply Lemma 6.2. It
follows that if none of the points {_; e-jumps, then {_; € Dg(H), 0 > —i > —s,
with 8 = 7/2 — O(e). Thus (_; ¢ D{B)} for sufficiently small € < €(p,), and

the proof is completed. O
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We say that a point/interval is deep inside of the cascade (4.1) if it belongs
to [P Jrleti)—Fe (In the case of essentially bounded combinatorics this
cascade must be of saddle node type). Recall that a moment —i is called good
if the interval J_; is commensurable with Jo. By Lemma 4.6, this happens,
e.g., when for some k, the interval J.; lies in ™k \ I+ before the first

entering to f m{k+1) Hut is not deep inside the corresponding cascade.

Lemma 8.3 (First return to 1m0, Assume that [ is not immediately renor-
malizable. Let B = Fo,E_1,..., E_, = I be the consecutive returns of the
backward orbit (8.1) to A wntil the first return to ™Y Let ¢ € Cy N D(B),
and let ¢ = Co, (1. .. (s = (' be the corresponding points in the backward orbit
of Co. Then either (' € D(A), or (C:,_E:,) > ¢{fe) > 0 and dist{_i, F-i) <

C(5.)|B| at some good moment 0 > —i = — .

Proof. Let H = H(E_,).

As f is not immediately renormalizable, we have the interval I* = [p, '],
which is contained well inside of A by Lemma 4.2. If p is chosen on the same
side of 0 as a, then f2[a,p] D [, ¢/]. Denote by 7 the f2-preimage of 0 in
[, p]. Since f is quadratic up to bounded distortion (Lemma 3.3), the map
Fliag 18 quasi-symmetric (that is, maps commensurable adjacent intervals
onto commensurable ones). It follows that » divides [, p], and hence A, into
K = K (fi., \)-commengurable parts. Hence H C [7,7] is well inside A.

By Lemma 6.2 and Lemma 8.2, either ¢’ € Dp(H) with 8 = /2 — O(e), or

there is & moment 4 < g such that

(8.3) (CoE.)>ec and dist(¢i, Bi) < C(p.)|BI.
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Tn the former case we are done as Dy(H) ¢ D(A) for sufficiently small €.

Let the latter case occur. Then we are done if the moment —i is good.
Otherwise F_; is deep inside the cascade A=I° D> I D .-+ D 1), Consider
the largest r such that B_g.q C I\ T for all 0 < g < 7. Note that by
essentially bounded combinatories (Corollary 4.6), the moment —j = ~{i-+7)
has to be good. By Lemma 7.2, either (8.5) occurs for ¢_;, and we are done,
or {_; € D(A).

In the latter case let & ¢ I™H~1\ 1) be the interval containing £_(;_1)
which is homeomorphically mapped under A2 ™7 onto A (to see that such an
interval exists, consider the Markov scheme described in §5). By the Schwarz
lemma (_(;—1) € D(K) © D(A). Now the claim follows from Lemmas 2.2 and
3.3. O

Now we are in a position to proceed inductively along the principal nest:
Note that the assumption of the following lemma is checked for £ = 1 in

Lemma 8.3.

Lemma 8.4 (Further returns to I™®). Let £ and E' be two conseculive
returns of the backward orbit (8.1) to the inlerval ™) Let ¢ and ¢' be the
corresponding points of the backward orbit of zo. Assume that { € D(I m{k—1)y,
Then, either ¢ € DI™®), or (ﬁ) > e(p.) > 0, and dist({', B} <
C(pe) |[I™F1].

Proof. Denote by I the last interval in the backward orbit (8.1) between F
and E', which visits I™* ) before returning to I"™*), Then hyk' = E and

hy' E = F for an appropriate j.
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The Markov scheme {4.2) provides us with an interval K ¢ ol k)
containing % which is homeomorphically mapped under hy onto Ik, By
essentially bounded geometry K is well inside /™) -1\ ™). Repeating the
argument of Lemma 4.6, we see that the iterate 1S has bounded distortion on
K , and thus the critical value of hy divides K into commensurable parts.

Let K' 5 E' be the pull-back of K by hg|I™*. It follows that K' is
contained well inside I™*),

Let ¢ = hgl' be the point of the orbit (8.2) corresponding to E. By the
Schwarz lemma, ¢ € D(K). By the previous remarks and Lemma 2.2, (' €

D(I™®), or (&, B > €(p,) and dist(¢’, B') < C(p)| I™*V]. O

Lemma 8.4 is not enough for making inductive step since the jump can occur
at a2 bad moment. The following lemma takes care of this possibility in the

way similar to Lemma 8.3.

il

Lemma 8.5 (First return to I+ k> 1). Let B = By, E q,..., B
E' be the consecutive returns of the orbit (8.1) to I™®) until the first return
to I et ¢ = (o, C1...,C s = (' be the corresponding points in the
backward orbit of (. Assume that (.1 € Cpmgssy N DI™R). Then either
¢ e D™, or (o Bs) > €(Be) > 0 and dist((_y, B_y) < C(@e)|I™P)| at

some good moment —1 > ~1 > —s,

Proof. Let H O F' be the maximal interval on which fg° is monotone. Note,
that both components of I™*)\ I™*)+1 contain pre-critical values of h, which
divide I"™*) into K(p,, \)-commensurable parts. Hence, H is well inside of

Ik},
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By Lemma 6.2, either ' € Dy(H) with @ = w/2—0O{e), or there is a moment

1 <4 < s such that

(3.6) (B > e and  dist{CLi, E_y) < C(p)| 1),

In the former case we are done as Dg(H) € D{I™®) if € is sufficiently small.

Let the latter case occur. Then we are done if the moment —i is good.
Otherwise E_; is deep inside the cascade I™& o e+l o .. o polkdl)
Consider the largest r such that B C [™EFH—1\ [l for all g < 7.
Note that by essentially bounded combinatorics, the moment —j = —(i +r)
has to be good. By Lemma 7.2, either (8.6) occurs for {_;, and we are done,
or {_; € D{I™¥)),

In the latter case, the Markov scheme (4.2) provides us with an interval
K ¢ polet)=1y\ palk+l) containing £_(,—yy which is mapped homeomorphically
onto I™* by hi™'77. By the Schwarz Lemma ( (,—1y € D(K) ¢ D(Im).

The claim now follows from Lemmas 2.2 and 3.3. O

The following lemma will allow us to pass to the next renormalization level.
Note that the statement is almost identical to that of Lemma 8.2. Let us now

restore the label [ for the renormalization level.

Lemma 8.6 (To the next renormalization level: period> 2 case). Sup-
pose [; is not immediately renormalizable. LetE = E_y,... \E_, = F',.. . FE (1 5
= E" be the returns of the backward orbit (8.1) to BY™, and let E', E" be two
consecutive returns to A Let ¢ = (y,..., (. {ogrrsy = (" be the cor-

responding points of the backward orbit (8.2), and suppose ¢ € D11y,

where x = x{f) is the height of fi. Then either (" € D(B"), or (Cﬁl) >




€(Fe) > 0 and dist((y, F_;) < C(p)| B for some 1 < i <1+ 5. Moreover,

all these moments are good.

Proof. First, r + s < 2p, by definition of the essential period 7., and the last
statement follows from Lemma 3.3.

By Lemma 8.4, either (Cﬁz) > ¢, dist((_g, F-s) < C(B:)| B, or ¢y €
D(I"f(X)).

By the Schwarz lemma and Lemma 2.2, if ¢(_; € D{I"™X), then either
(- ey € DUI™0), o1 dist(C(i11), Boiany) < C(0) [ B and (Csy, Bogigry) >
¢(Pe) > 0. In the latter case we are done,

If the former case occurs for all ¢ < 7 + s then by Lemma 6.2, (" € Dy(H),
where H = Hpy 51 (E”, fi41) and 6 = 7/2 — Oe). By Lemma 8.1, H is well
inside B!, and hence Dy(H) C D(B*) for sufficiently small ¢ > 0. [

Qur last lemma takes care of the case when the map f; is immediately

renormalizable.

Lemma 8.7 (To the next renormalization level: period 2 case). Assu-
me that fi is immediately renormalizable, so A' = B!, Let E ¢ Bl
E = EyE_,,...,E_,= E' be the consecutive returns of the backward orbit
(8.1) to B!, until the first return to A%, Let( = (g, ..., (s = (' be the corre-
sponding points of the backward orbit (8.2). Assume also that ¢ € CuND(BY).
Then either (' € D{B™), or

(B > e and  dist(¢i, Boy) < Clp)IB']

for some 0 > —i > —s. Moreover, all these moments are good.




|

Proof. By essentially bounded combinatorics, s < 2p, which yields the last
statement.
Further, by Lemma 8.1, the monotonicity interval H{F_,, fi) is contained

well inside of B*t, and the claim follows from Lemma 6.2. [

Let us now summarize the above information. When f._; is immediately
renormalizable, set V, = B™!. Otherwise let V, = I™X~U(f, _|) where x =

x(fr_1) is the height of f._;.

Lemma 8.8. Let f, = R™f. Let us consider the backward orbit (8.1) of an
interval J and the corresponding orbit (8.2) of a point z. Then there eist
¢ = €(p.) > 0 such that either one of the points z_, e-jumps at some good

moment, or z_(—1) € D(V;).

Proof of Lemma 4.1. If the former possibility of Lemma 8:8 occurs than
Lemma 2.1 yields (8.3) (note that the assumptions of Lemma 2.1 are satisfied

due to Theorem 4.4). In the latter possibility happens then

dist(2_(n-1), J-(n-1))
ljf('nﬁl) |

by essentially bounded geometry, and we are done again.

< C{fe)

The lemma is proved. O

Proof of Lemma 5.4 Let us first show that J(fy) C Dy(S*) with a 8 = 6(p.)

(recall that S* 3 0 is the maximal interval on which f is unimodal).

By Corollary 5.3, diam J(f;) < C(5.)|B™|. Take ¢" € J(f-}. Let ¢! =
(€M), ¢ = FA¢), and { = (0, C1, -1 = 5o, Con = (" be the corre-

sponding backward orbit.




Let the first possibility of Lemma 8.8 occur and {_, e-jumps at a good mo-
ment for s < n—1. Then {_; € Dg(J_,) with § = é(p.) > 0, since dist({_,, J_)
is commensurable. But then by the Schwarz lemma and Lemma 2.2, (" €

Qe(S;) with a & = 8(F,) > 0,.
Let the second possibility of Lemma 8.8 occur.

Let us first consider the case when f,_; is not immediately renormalizable.
Then ¢' € D74~ By Lemma 8.4, ¢ € D(I7~™X)) ¢ D(S7). Thus
J(fr) € Qe(S,), and we are done.

In the case when f,_; is immediately renormalizable ¢’ € D(B7*). Consider
the interval of monotonicity of f._i, H = Hy{¢") C 5,;. By Lemma 6.2,
(" € Do(H) with # = 7/2 — O(e), and the claim follows.

Let us now show how to replace S™ by B”. By essentially bounded geometry,
the space S7\ B” is commensurable with |B7| (see Corollary 4.3 and the second
statement of Lemma 3.4}, By the last statement of Lemma 3.4, for any & > 0,
there is an N = N(%,, d) such that the N-fold pull-back of S7 by f. is contained
in (1+8)B". By the Schwarz lemma and Lemma, 2.2, J{f;) C D,((1+6)B7),

with a p = p(8, Pe}.

By the compactess Lemma 3.2, for some ¢ > 0 (independent of 7) the
map f. is linearizable in the &|B7|-neighborhood of the fixed point &.. In
the corresponding local chart the Julia set J(f,) is invariant with respect to
fL(B;)-dilation. Hence further pull-backs will keep it within a definite sector.

O
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Part II. Complex bounds for eritical circle maps

9. SOME MORE HISTORY, AND STATEMENTS OF THE RESULTS

The renormalization theory for critical circle mappings has developed along-
side the theory for unimodal maps. The appropriate renormalization transfor-
mation has been introduced by Feigenbaum, Kadanoff and Shenker [FKS] and
also by Ostlund, Rand, Sethna and Siggia [ORSS] to explain the universality
of the scaling ratios for critical circle maps with golden mean rotation mimber.

By definition, a critical circle mapping is a smooth orientation-preserving
self-homeomorphisms of the circle T = R/Z with one critical point, which is
usually placed at 0. For the length of our discussion we will assume that the
critical point is cubic, although all our results will be valid for any other odd
degree. As a circle homeomorphism, every critical circle map f has a well-
defined rotation number, which we will further denote by p( f) Examples of
critical circle maps with any given rotation number are found in the analytic

The renormalization operator for critical circle maps is defined in the language
of commuting pairs of homeomorphisms (see the next section for the precise
definition), which has first appeared in [ORSS]. Commuting pairs correspond
to conjugacy classes of critical circle maps, and thus posess well defined rota-
tion numbers, on which renormalization acts as the classical number-theoretic
Gauss map. As in the unimodal case, the renormalization transformation was

expected to posess a hyperbolic structure (compare with [Lal, La2, Ral, Ra2]).
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In its most general formulation, the hyperbolicity conjecture is due to Lanford
(see [La2]), and states that the renormalization operator is globally hyperbolic

with one dimensional unstable and infinite-dimensional stable foliations.

Epstein and Eckmann [EE] have observed that similarly to the interval
case, the circle renormalization has an invariant space of commuting pairs of
complex-analytic maps (the appropriate Epstein class), and presented periodic
points of renormalization in this space. Again, it follows from distortion esti-
mates, that the Epstein clags contains all limits of renormalization of smooth
circle maps (see, for instance, [dFdM1]}. The techniques of complex ana-
lytic dynamics were brought to the subject of critical circle maps by de Faria,
who transferred Sullivan’s renormalization theory to this setting [dF1, dF2].
De Faria has defined a complexified renormalization operator acting on the
space of holomorphic commauting pairs (the precise definition is somewhat in-
volved and will be postponed until §10.2). These complex-analytic dynamical
systems are analogues of quadratic-like maps in the unimodal setting which

are appropriate for the application of Sullivan’s methods.

The analytic cornerstone of de Faria’s argument is the existence of com-
plex a priori bounds for renormalization of maps in the Epstein class, which
are again the bounds on the moduli of the holomorphic extensions of renor-
malizations of commuting pairs. Modifying Sullivan’s argument, de Faria has
shown the existence of complex a priori bounds for critical circle mappings of
Epstein class with bounded combinatorics. This last condition is equivalent
to rotation number p(f) being Diophantine of order 2, that is having an infi-

nite continued fraction expangion with bounded elements. He concluded that
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the renormalization operator acting on the Epstein circle maps with bounded
combinatorics iﬁdeed posesses a global attractor, thus proving a part of the
hyperbolicity conjecture.

It turns out that the geometric properties of critical circle maps with an
arbitrary irrational rotation number are analogous to those of unimodal maps
with essentially bounded combinatorics, which were the subject of the inver-
stigation in the first part of thig dissertation. We were able to carry over the
method developed with M. Lyubich in [LY] to the setting of critical circle maps

to prove the following:

Theorem 9.1. Let f be a critical circle map of Epstein cless. Then [ has

complez o priori bounds.

As in the interval case, the theorem follows from a power estimate for the

appropriately rescaled renormalizations of the map f:
(9.1) |BEf(2)] 2 cl2f’,

with a universal ¢ > 0.

IFrom Theorem 1.1 we derive the following conclusion:

Theorem 9.2. Let fi and fo be two critical circle mappings in the Epstein
class with the same irrational rotation number. Then there exists N > 0 such
that the n—th renormalizations of f1 and fo have holomorphic extensions which

are K —quasiconformally conjugate with a universal bound K, for alln > N.

Note that in the case of real quadratic-like maps, the existence of a bound
on the moduli of fundamental annuli of two maps with the same combinatorics

immediately implies the existence of a quasiconformal conjugacy with bounded




“K” (see for example [McM1]). In the circle case, however, we need an addi-
tional argument which is presented in §13. Sullivan’s theory of Riemann sur-
face laminations adapted to circle mappings by de Faria ([dF2, Chapters VIII,
IX]) can now be applied to obtain the following renormalization contraction
result, which complements the results of de Faria for bounded combinatorics

Cabe:

Theorem 9.3. Let fi and fy be two critical circle maps of Epsiein class with

the same irrational rotation number. Then
distor (Rnfl, Rnfg) — 0,
for all 0 < r < oo, where dister denotes the distance in C7 metric.

Let us also note that in a very recent work E. de Faria and W. de Melo [dFdM1,
dFdM2] have enhanced the results in [dI'1, dF2]. They have incorporated
McMullen’s approach to renormalization theory [McM2] into de Faria’s theory
of holomorphic pairs, proving exponential convergence of renormalization on
the space of Epstein critical circle mappings of bounded type. Their work
culminates in showing that any two analytic critical circle mappings with the
same irrational rotation number of bounded type are C'te-conjugate, thus
proving a rigidity conjecture for such maps. The complex a priori bounds
ohtained in this dissertation open a possiblity of generalizing the results of
de Faria and de Melo to the case of an arbitrary irrational rotation number.
In the quadratic-like case the existence of complex a priori bounds has im-
mediate implications for local connectivity of the Julia set, as seen from the

proof of Local Connectivity Theorem in the first part. Somewhat unexpect-
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edly, we find a similar application for our methods for critical circle maps.
Namely, in §14 we present a new proof of a remarkable result of C. Petersen
on local connectivity of Julia sets of Siegel quadratics with rotation numbers
of bounded type [P]. The structure of our proof bears a strong similarity to

the argument of Hu, Jiang and McMullen presented in Part L.

10. RENORMALIZATION OF CRITICAL CIRCLE MAPS

10.1. Real commuting pairs. We present here a brief summary on renor-
malization of critical circle mappings. A more detailed exposition can be found
for example in [dF2].

Let f be a critical circle mapping with rotation number o(f). If p(f) is

irrational, it can be represented as an infinite continued fraction

p(f) = [ro,r,me,. .. ] =

’J"[}‘I‘
1

7‘1+
ot

We say that p is of bounded type if sup r; < oo, which is also equivalent to p(f)
being Diophantine of order 2.

For a critical circle map f denote by ¢, the moments of closest returns
of the critical point 0. The numbers ¢, appear as the denominators in the
irreducible form of the m-th truncated continued fraction expansion of p(f),
o = [P0y .+ sTma). Set I, = [0, f™(0)]. As a consequence of Swiatek

- Herman real a priori bounds ([Swl, He]), the intervals I, and I, are

K —commensurable, with a universal constant X provided m is large enough.
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The dynamical first return map of the union of intervals I, U I, is given

by f% on I, and by f%+ on [,. The consideration of the pair of maps

(fq'm-|-1 |Im; meIIm+l)
leads to the following general definition:

Definition 10.1. A commuting pair ( = (n,£) consists of two smooth orien-
tation preserving interval homeomorphisms 7 : I, — n{l,), & : I — &(I),

where

o 1y =1[0,£(0)], I¢ = [n(0), 0f;

¢ Both 7 and £ have homeomorphic extensions to interval neighborhoods of
their respective domains which commute, 1.e. 1o £ = £ o7 where both
sides are defined;

e {on(0) € Iy;

e '(z) £0#E&(y), forall z € I, \ {0}, and all y € T \ {0}.

The notion of renormalization acting on the space of commuting pairs first
appeared in a paper by Ostlund, Rand, Sethna, and Siggia [ORSS], and was
developed by Lanford and Rand (cf. [Lal, La2, Ral, Ra2|).

A critical commauting pair is a commuting pair (7, ), which maps can be
decomposed as 1 = hy o @ o Hy, and § = hg o Q o Hy, where hy, he, Hy, He

3

are real analytic diffeomorphisms and Q(z) = z°. Given a commuting pair

¢ = (n,€) we will denote by ¢ the pair (7|1, €|I;) where tilde means rescaling
by a linear factor A = I'fl}"l

For a critical circle mapping f one obtaing a critical commuting pair from

the pair of maps (f9m+!|1,, f%|I441) as follows. Let f be the lift of f to the
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real line satisfying f'(0) = 0, and 0 < f(0) < 1. For each m > 0 let I, C R
denote the closed interval adjacent to zero which projects down to the interval
I Let 7 : R — R denote the translation z — z + 1. Let 5 : I, = R,
£ Impr — R be given by 5 = 77Pn+l o ftmtl £ = 77Pm o fo  Then the
pair of maps (7|/m, £|Lny1) forms a critical commuting pair corresponding to
(fem+1|I, f9|Insa). Henceforth, we shall abuse notation and simply denote

this commuting pair by

(10.1) (I T, £ L)

We see that return maps for critical circle homeomorphisms give rise to a
sequence of critical commuting pairs (10.1). Conversely, regarding I, as a circle
(identifying £(0) and 0), we can recover a smooth conjugacy class of critical
circle mappings f¢ = ¢o fo o ¢, where ¢ : I, = I, is a smooth orientation
preserving homeomorphism with a cubic critical point at 0, and fe is a circle

homeomorphism defined by

{on(m), if 0<z < ?’}—1(0)
(102) Jela) =

),  if n7H0) <z <E(0)

.

We can define the rotation nwmber of a commuting pair { to be equal
to p(€) = p(fe). If p(¢) = [r,r1,79,...], one verifies that the mappings

n/[0,77(£(0))] and 7" o £|I; again form a commuting pair.

Definition 10.2. The renormalization of a real commuting pair ¢ = (n,£) is’

the commuting pair
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e

R¢ = (7 0 €llg, 710, 77 (E(ON]).

It is easy to see that remormalization acts as a Gauss map on rotation
numbers, that is if p(¢) = [r,r1,72,...] then p(R¢) = [r1,72,...]. The renor-
malization of the real commuting pair (10.1), associated to some critical circle
map f, is the rescaled pair (J%ﬁ;_; ) ﬁml|m) Thus for a given critical
circle map f the renormalization operator recovers the (rescaled) sequence of

the first return maps: {(F%t|I;, f&|L41)}52,.

FIGURE 7

10.2. Holomorphic commuting pairs. Following [dI'l, dF2] we say that
a real commuting pair (1, &) extends to a holomorphic commuting pair H (cf.
Figure 7) if there exist four R-symmetric domains A, D, U, V, such that
e D, U, VA UNV={0},U\D,V\D, D\U, and D\V are nonempty
connected sets, U O I, V D I
e mappings 7 : U = ANCyy,y and £ : V. — AN Cyyyy are onto and
univalent, where Jy = UNR, Jy =V NR,
e 1 and ¢ have holomorphic extensions to [ which commute, 1o £(2) =

£on(z)Vz € Dyne&: D = AN Cpgipy, where Jp = DNR, is a
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three-fold branched covering with the only critical point at O .
Note that Jp = (571(0),£71(0)).
Set Q = DUUUV. The shadow of the holomorphic commuting pair is the

piecewise holomorphic mapping I : Q@ — A, given by

g

n(z), z€ U
F(z) = £(z), z€V

fon(z), ze D\ (UUV)

\

Proposition 10.1 (Prop. IL4. [d¥2]). Given a holomorphic commuting poir

U as above, consider its shadow FF. Let I = QNR, and X = IUF~(I). Then:

o The restriction of ' to Q\ X is a regular three fold covering onto A\ R.

o ' and H share the same orbits as scts.

Definition 10.3 (Complex Bounds). We say that a critical circle map f
has compler a priori bounds if there exists M and u > 0, such that for all
m > M the real commuting pair (10.1) extends to a holomorphic commuting
pair (Am, Dim, Un, Vi) with mod(Ag, \ (D U U U Vin)) > p> O

10.3. Epstein class. An interval map g|I belongs to the Epstein class, if
the restriction of g to I can be decomposed as g = h o (), where Q{z) = 2,
and A : Q(I) = J = g(I) is an orientation preserving diffeomorphism, which
inverse h~! extends to a univalent mapping C; — C, where J > J. Thus a
map g of Epstein class can be extended to a 3-fold analytic branched covering

of a domain U ¢ C onto C;. Let us denote by £ the collection of all Ep-

stein mappings ¢ together with their domains U, equipped with Carathéodory
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topology (see [McM1]). The convergence of a sequence gy, : U, — C;, in this
topology is means Carathéodory convergence of the pointed domains (U,,0),
and compact-open convergence of g,. We further denote by &, the subspace
of maps in &, for which both || and dist(f, J) are s™*-commensurable with
|/], and the length of each component of .J \ J is at least s|.J|. We will often

refer to the space £ as the Epstein class, and to each &, as an Epstein class.

Remark 10.1. The reader may have noticed that the above definition of the
Epstein class is more restrictive than that used in Part I {a univalent map
precomposed with a polynomial instead of a univalent map postcomposed
with a polynomial). This is explained by some purely technical differences in
the proofs, which would have unduly complicated our arguments, were we to
use a more general definition.

We say that a commuting pair (7, £) belongs to the (an) Epstein class if

both of its maps do. It immediately follows from the definitions that:

Lemma 10.2. The space of commuting pairs in the Epstein class £ is invari-

ant under renormalization.
The following compactness statement will be of key importance for us:

Lemma 10.3. For each s > 0 the quotient space £, modulo affine conjugacy

is sequentially compact.

Proof. Consider a sequence of maps ¢, = h, o @ : U,, = C;, in & normalized
so that I, = [0,1]. Let us ensure by passing to a subsequence that all J,.’s
contain some fixed subinterval T. By Koebe theorem the derivatives of the

inverse maps h-! : J, — [0,1] are bounded away from 0 and oo. The maps
i
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h, I Lave univalent extensions to Cp which form a normal family by Koebe
theorem. Any limit in this family is non-constant, and hence univalent. The

convergence of the direct maps with the domains readily follows. [

The following statement is a weakened version of the convergence to an

Epstein class of the renormalizations of a smooth map, discussed in [dFdM1]:

Lemma 10.4. Let f € C7, (r > 3) be a critical circle map with an irrational
rotation number. Then the collection of real commuting pairs (ﬁﬁ?ﬁ |?,Z= i ﬁ;)

is precompact in C7 topology, and all its partial limits are contoined in &, for

some universal constant s > 0, independent on the original map f.

In particular for a critical circle map f € & there exists ¢ > 0 such tha
all its renormalizations are contained in &,. Moreover, the constant ¢ can be
chosen independent on f, after skipping first few renormalizations.

We will further only work with maps in the Epstein class. It will be shown
that a renormalization of such a map has an extension to a holomorphic com-
muting pair with modulus bound depending only on the Epstein constants of
the few previous renormalizations, and thus, in the view of the above lemma,
eventually universal. Therefore we obtain universal complex a priori bounds
for critical circle maps. Note that even for maps of bounded type this improves
the complex @ priori bounds obtained by E. de Faria, which depend also on

the rotation number of the map.

11. THE MAIN LEMMA

Let f be an analytic map which restricts to a self-homeomorphism of the

circle T'. We reserve the notation f~%*(z) for the :—th preimage of z € T" under
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flr.

Let f be a critical circle map. If f € £, it admits a restriction

fott s U, — (Cffrn+1(1n)
which is a three-fold branched covering. Let us decompose

(11.1) fi =, 00,

where Q(z) = 2%, and 4, univalently maps Q(U,) onto Cpms1(z,). Denote by
D, the Euclidean disc with diameter [ £+ (0), fom 4=+ (0)]. Let o(m) be the

stallest positive number such that R*(f) € Eymy for all i > m.

Lemma 11.1 (Main Lemma). Fizintegersn > M > 0, and let z € Cpants (1,)

NDy;. Then the following estimate holds:

dist(1, 'z, Q(1n))
Q1)

where ¥y, is the map from (11.1), and the constant C' = C{o(M)).

dist(z, I,)
a7

(11.2) <

Thus the maps ;' after appropriate rescaling (that is normalizing |/, =
|Q(Z,)| = 1) have at most linear growth. Note that if m > ¢ > 0, then
the inequality (11.2) follows directly from Lemma 2.1 Our strategy of proving
Lemma 11.1 will be to monitor the inverse orbit of a point z together with the
interval I,, until the conditions of Lemma 2.1 are satisfied.

Lemma 11.1 immediately yields the cubic estimate stated in the introduc-
tion:

(11.3)

dist(f®+ (2), fo1(1,)) S, (dist(z, L)
| foett (L)) - | In]

3
) ’ f‘hx—kl(z) € Dy N qun+1 (In}s
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with ¢ = c(o(M)), and thus universal for M sufficiently large. Now fix-
ing M and choosing ! sufficiently large (depending only on o(M)) we have
Q, = f @+ (D) N U, is compactly contained in U, and mod(D; \ Q) > p =
u(o(M)) > 0, and Theorem 1.1 follows.

For future reference let us note:

Remark 11.1. Tt follows from our argument that the domains Apy Doy Upn, and
V., in the definition of complex bounds (10.3) can be chosen K-commensurable

with I,,, with a universal constant K, for all m sufficiently large.

12. PROOF OF THE MAIN LEMMA

Let us begin by introducing some notation. For a map ¢ : U — Cr in the
Epstein class and € RN U which is not a critical point of g%, let Vy(z,g)
denote the maximal domain containing x which is ‘univalently.mapped by g"
to Cp. Let g;" @ Cp — Viu(z, f) denote the corresponding inverse branch
of g~ (continuous up to the boundary of the slits, with different values on
different banks). Take an z € R, and z € Cy. If we have a backward orbit of
T = Zo,Zo1,... %4 of £ which does not contain 0, the corresponding back-
ward orbit z = zo, Z—1,. . - , 21 I8 obtained by applying the appropriate inverse
branches: z_; = g5, (%~ 1)), The same terminology is applied if we have a
monotone pull-back of an interval J = Jo, J-1,.. ., J .

Let f € & be a critical circle map. Iix an integer M > 0and n >
M. Recall from the previous section, that D, denotes the Fuclidean disc

D{[f%+(0), fam—9m+1(0}]). Consider the inverse orbit:

(12'1) Jo = fqn+1(1n)= Joi= qul—l(fn)a vy J—(qn+1#1) = f(Iﬂ)
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For a point z € Dy M Cpansa (1) look at the corresponding inverse orbit

(12.2) = 2 A R A

————

We say that an element of the orbit z_; e-jumps if (z.;,J.4) > e. Let us
say that —i is a good moment if the interval J_; is commensurable with Jg
with a quantifier depending only on o(M). It {ollows from compactness of
an Epstein class that the first few returns of the orbit (12.1) to each [, with
m > M happen at good moments. We would like to argue that the points
of the orbit (12.2) either e-jump at a good moment, or follow closely the
corresponding intervals of the orbit (12.1). The first step towards this assertion

is the following Lemma:

Lemma 12.1. Let J = J 4, J 4y, = J' be two consecutive returns of the
backward orbit (12.1) to Iy, form > M, and let ¢ and {' be the corresponding
points of the orbit {12.2). Suppose ( € Dy, then cither (' € Dy, or W) >
¢, and dist(¢', J') < C|l,|, where the quantifiers € and C depend only on the

Epstein constant o(M).

Proof. Let Dy, denote the pull-back of Dy, corresponding to the piece of back-
ward orbit J_g, ..., J_p_g,, and let D, denote the pull-back of D,, along
the piece of the orbit J_, — -+ — J_g_,,. (cf. Figure 8). By compact-
ness of an Epstein class, the points 0 and f%(0) divide the interval D, N R
into B(o(M))-commensurable pieces. By Schwarz Lemma and by Lemma 2.4,
there exist points ay,ay € [fIm+179m(0), 0], such that f¢=+17Im{0), g, as, and
0is a K = K(o(M))-bounded configuration, and angles § and o < 7/2, also
depending only on o (M), for which D,, € Dy([f9m+1-9(0), ay]) U D, ([ag, 0]).

64




FIGURE 8
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Applying Schwarz Lemma, we obtain that Df, C Dy, U Dy([0, f=4m+1t9m (a,)])

and the claim immediately follows. [

A saddle-node phenomenon. The above Lemma puts us in the position to
apply Lemma 2.1 if the inverse orbit (12.2) e-jumps during one of the first few
(or the last few) returns of (12.1) to some I, There is a danger however that
when g1/ m 18 large, some of the returns of the inverée orbit of Jy to [, are
small as compared to the original size. If the orbit (12.2) e-jumps at such a bad
moment —i, although in view of the previous Lemma dist(z.¢, J i) < C\ln],
the ratio dist(z., J_;)/|J—s| may grow unbounded.

The situation when gm,1/¢m is large is, however, well understood (see for
example [He]). By Lemma 10.4, the family of rescaled restrictions {;E":”:l |f,,;;}
of Epstein circle maps, for which g% belongs to a fixed &;, is pre-compact in
Carathéodory topology. Any partial limit of sequence of maps in this family
with gmy1/¢m — o0 has a fixed point in the interval. Since this fixed point is
destroyed by a small perturbation, it is necessarily parabolic, and by Schwarz

lemma it is unique.

Tet us now handle the possibility of a jump at a bad moment:

Lemma 12.2. Let us consider the map fo+|I,. Let Py, P_y,..., Py be
the comsecutive returns of the backward orbit (12.1) to I, and denote by
Co, - -+ (i the corresponding moments of the backward orbit of a point (; =z C
D,.. Then either 2 = C 4 € Dy, or (#, Py) > € ond dist(#, P_g) < C|lnl,
where C' = C(o(M)}).

Proof. To be definite, let us assume that the intervals P_; lie on the left of




0. Without loss of generality we can assume that z € M. Let ¢ = f~¢mt
be the branch of the inverse for which ¢P_; = P_;.y). As ¢ is orientation
preserving on (—oo, f¥+11m(()] it maps the upper half-plane I into itself :
(H) < {z =re®lr > 0,7 > 8 > 27/3}. By Denjoy-Wolf theorem, ¢ has an
attracting fixed point n, € H, whose basin is the whole of II. As we have seen,
for gm41/gm large enough the map ¢ is a small perturbation of a parabolic
map. A compactness argument implies that there exists B = B(c(M)) such
that the fixed point 7y € D(1,,) C Dy, provided gy /gm > B.

If gm+t1/gm < N the Lemma readily follows from Lemmas 12.1 and 2.1. Oth-
erwise, by Denjoy-Wolf theorem the iterates of ¢ uniformly converge to 7, on
any compact subset K € H. By compactness, there exists N = N(K, o(4))
such that ¢V (K) C D,,.

Suppose (_; ¢ Dp,. By Lemma 12.1 the set (D, \ #(D,)) N H is contained
in a compact region K = K(o(M)) € H TFor N as above we have 2/ €
UG ¢ (K} U Dy, and the lemma is proved. [

The inductive step. The next lemma provides a step of induction for our

argument:

Lemma 12.3. Let J be the last return of the backward orbit (12.1) to the
interval I, before the first return to I,.q, and let J' and J" be the first two
returns of (12.1) to Imyi. Let ¢, ¢, ¢" be the corresponding moments in the
backward orbit (12.2), ¢ = fim (), (' = fim+2 ("),

Suppose ( € D,,. Then either (le) > e(a(M)) and dist(¢",J") <
Clo(M)) | Iy, or " € Dy,
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Proof. Note that J C [fotemt1(0), f4(0)]. By Lemma 2.4, we have (' €
Dy{[fom+179 (), 0]) for some ¢ depending only on the Epstein constants. De-
note by J, and J the intervals of (12.1), such that fomer—am( J) = J', f‘fm(f) =
J, and let ¢, ¢ be the corresponding points in the orbit (12.2) (cf. Fig-
ure 9) . The interval J C [fo=(0), fo~+1(0)], ¢ € Dg([fo(0), fom 1 (0)]).
By Schwarz Lemma and Lemma 2.4 there are points b1,be € [0, f%+1{0)],
such that 0, b1, b, and f~%+1(0) form a K {o(M))-bounded configuration, and
¢ & Da([0, b)) U Dy([ba, F-043(0)]) for = 4(o (M), and 6 = 8(o (M) < /2.

The claim now follows by Schwarz Lemma. [

Inductive argument. We start with a point z € Djs. Consider the largest
m such that Dy, contains z. We will carry out induction in m. Let Fy, ..., P 4
be the consecutive returns of the backward orbit {12.1) to the interval I, until
the first return to Lny1, and denote by z = (g, ..., (g = ¢’ the corresponding
points of the orbit (12.2). By Lemma 12.1 and Lemma, 12.2, {_; either e-jumps
at a good moment when P_; is commensurable with Jp, and dist({_;, P_;) <
ClInl, or ' € Dy,

In the former case we are done by Lemma 2.1. In the latter case consider
the point ¢” which corresponds to the second return of the orbit (12.1) to
Imi1. By Lemma 12.3, either (le) > ¢, and dist{¢", 1) < Cllpys|, oF
(" € Dy

In the first case we are done again by Lemma 2.1. In the second case, the

argument is completed by induction in m.

Let us make several remarks:

Remoark 12.1. Tt follows directly from the argument, that every point z €
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[ Dy ) MU, is either conatined in the dise D([0, f&~%-1(0)]) or satisfies

m > e = e(a(M)).
Remark 12.2. In Lemma 11.1 and the estimate (11.3) the domain Dy, can
be replaced with Do ([fe+(0), fau~+1(0)]) for some o > %, following an

obvious change in the argument.

13. CONSTRUCTION OF A QUASICONFORMAL CONJUGACY

We proceed to prove Theorem 9.2. Let f1, fa be two critical circle mappings
in the Epstein class, having the same irrational rotation number p. We will uge
the subscript 4 to denote the objects corresponding to the mapping f; for ¢ =
1,2. By choosing M sufficiently large, we can ensure that all renormalizations
R f; for n > M are contained in an Epstein class &, with a universal s > 0.
Futhermore, in view of Remark 11.1, there exists a universal constant N >
0, such that the real comlmuting pair (ff*", fI") extends to a holomorphic
commuting pair H? with complex o priori bounds (10.3), ranging over A} =
D([fl=%+1(0), fi*"(0)]), provided n — N > M. We will denote the shadow
of this holomorphic pair, as defined in §10.2, by FJ* : QF — AP. The precise

formulation of the statement of Theorem 9.2 is the following:

For FP as above, there exists a K —quasiconformal R-symmetric homeomor-
phism H™ © A? = AZ, conjugating the piecewise-holomorphic maps F! and

FP, with a universal dilatation bound K.

By a theorem of Herman [He] there exists a K;—quasisymmetric map

b [FmH0), SR (0)] = (£ H(0), f277 (0)]
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conjugating the real commuting pairs (ff***, ff*) and (ff**", fi*), with a uni- b
versal bound on K;. We will show that this map can be extended to a quasi- |

conformal conjugacy with the required properties. \
i

As we work with a fixed value of n, let us omit the superscript n where

possible, to simplify the notation. The mapping h can be extended to an

R-symmetric quasiconformal homeomorphism 7 : A; — A, whose dilatation

bound depends only on K and therefore is universal. As follows from Propo-
gition 10.1, the map + can be lifted to an R-symmetric mapping gbﬂ 18—,
such that Fyotp = 9ok, which is still an extension of A. The Theorem 9.2 will

follow via the standard pull-back argument (as presented in [dI'2, pp. 15-17])

from the following statement: "

1
Proposition 13.1 (Quasiconformal Interpolation). There exists o K -quasi- i

conformal map Hi(z) : Ay = Ag, with o universal K, satisfying the following: i

’

W(2),if z € OA !
H[(Z) = jm.

’l,b(z), if z € i‘;if

\ Ll
Let us comment on the nature of difficulties we are faced with in proving 2*?‘

the Proposition. Recall first that in the case of quadratic-like maps, complex i
a priori bounds imply the existence of a fundamental annulus with modulus
bounded below, both of whose boundary curves are quasicircles (see for ex-
ample [McM1]). The existence of a quasiconformal interpolation between two
such annuli is standard.

Consider, however, a maximal extension H : & — A of a real commuting

pair (fim+t[ L., 9| Lne1). It is easy to see that the intersection 2NR is the in-
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terval 7' = [ fem-179(0), f4m—dm+1(0)], and its image 1" = [ f?=~1(0), f#(0)] C
T". Thus on the real line we see exactly the opposite to what happens in the
complex plane: a region which is compactly contained in its preimage. This
precludes us from finding a fundamental annulus for a holomorphic commuting

pair.

F1GURE 10. The domains A and U when gpn1/¢y is large.

Instead we should construct the quasiconformal interpolation in the funda-
mental regions (A; \ ;) N £H. This does not create a problem in the case of
p of bounded type, as in this case these regions are K (B)-quasidiscs, where
B is the bound on ¢ny1/q, (see [dF1, dF2]). As seen before, if we select the
rotation number p, for which the ratio ¢, 1 /¢y is large, the restriction f17,_,
is a small perturbation of a parabolic map. Following the logic of Lemma 12.2,
we see that for the corresponding holomorphic pair, the domain U; is pinched

in a neighborhood of the ghost of the parabolic point (see Figure 10). Thus the
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bound on the quasicirele (A;\ €2;) N +4-H spoils, and we require a new argument
to show the existence of the quasiconformal interpolation.

We will establish Proposition 13.1 by analysing in some detail the geometry
of domains {}; and showing that the pinching occurs in the same way for all

such domains.

Some auxiliary lemmas. Let f € £ be a critical circle mapping. By the
main result of §12, the pair of maps (%1, f%|L,.1) extends to a holomor-
phic commuting pair H with domains A, D, U, and V, commensurable with
I, and having complex bounds for all n sufficiently large.

Consider the inverse orbit:
(13.1)  Jo= fr (L), Ja = frr N L), Ty = FUIL),
and the corresponding inverse orbit for the domain Ay = ANH:
(13.2) Ag, Ay, Bgp—-y = FIU)NIHL

We make several observations.

Lemma 13.2. Let J' = J ¢, J" = J 4, be two consecutive returns of the
backward orbit (13.1) to the interval L,y before the first return to I,,, and

denote by A', A" the corresponding moments in the orbit (13.2). Then
Fo (A" MH) = (BA' NH) U [fo17®(0), fo=1(0)].
The following two Lemmas are illustrated by Figure 11.

Lemma 13.3. Let J' = J_ g, and J' = J_ 4, . be the first two returns of the

backward orbit (13.1) to the interval I, and let A", A" be the corresponding
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domains in the orbit (13.2). Then for any z € A",

(z,P) > ¢,
for some fized angle € > 0, where P = [f~t+1(0), f9»~¢+(0)] = A"NR.
Proof. It follows from Remark 12.1 that the domain A’ is contained in W =
Dy(]0, fim=tm-1(0)]) for some fixed ¢. Note that the smallest iterate of the

critical point 0 contained in W is f%). The claim now follows from Schwarz

Lemma and Lemma 2.4. [

Lemma 13.4. Let J = J_4, . 4qm. e the last return of the backward orbit
(13.1) to the interval I, before the' first return to I, aend denote again
by J' and J" the first two returns of the orbit (13.1) to I,. Let A, A" ond
A" be the corresponding domains in the orbit (13.2). Let (" € OA", and let
Famsa(C1) = ¢' € DAY, fim-i((") = C € DA.

Suppose, that { € H. Then,

dist(¢", Tm) > K|Inl.

Proof. Note, that the disk D([f%+ ~4=(0}, f%=(0)]) is pulled back univalently

along the piece of the inverse orbit (13.1)
Jos I, I gt = -
By Swiajcek— Herman real a priori bounds, we can choose an interval
[fomr (0), f s (O)] ¢ Ty € [£1m470(0), £2(0)

such that each of the intervals is contained well inside the next one. Let 7', and
D C A denote the pullbacks of the interval T, and the disk D(T;) correspond-

ingly along the orbit Jy, J 1,... , Jogni14em_. = J. By Koebe distortion theo-
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FigurE 11
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rem, D > Dy(T") for some fixed value of 6. Thus, if (¢, [ fem-1(0), femtim=1{0)]) >
¢, then dist(¢, [f?-1(0), f@=ten1(0)]) > K|I, 1|, and the claim follows by
Koebe distortion theorem.

Otherwise, the point  is contained in an e-wedge, with the vertex at an end

point of the interval [f%-1(0), f&+%—1(0)]. Assume first that ¢ is contained

in the wedge attached to f®™-1(0). Then (' is contained in a triangle with

angle ¥ at 0, at a distance K|I,,] from the interval I,,,. The claim follows from

Koebe distortion theorem and the elementary properties of the cube root map.

In the other case, ¢’ is contained in an ¢-wedge at the pont f%(0), at
a distance C|l,| from the point f%(0). The Lemma follows for the same

reason. [

Perturabations of parabolic maps. As we know, when Gy /am 18 large,
the restriction f®|I,.1 is a small perturbation of a parabolic map. We sum-
marize here several facts about such mappings. A detailed account may be
found, for example, in [Sh].

Consider the consecutive returns of the backward orbit of 0 to the interval

I—1 before the first return to 1, I‘

£om(0), F7H0), .., frmmiTa b ), fremi i (0)

For a bounded value of s, the interval [fom-1—dmtrt2dm () f=8m(0)] C [, 4 is i

K=K(s)-commensurable with f_;.

Lemma 13.5 (Perturbed Fatou Coordinate). There exists a holomorphic

R-symmetric mapping ¥ from a neighborhood W O [ fam-1=tmt1tsdm () f=5tm(()]
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to a vertical strip {0 < Re(2) < (Gmt1 ~ Gm—1)/Gm — 25}, conjugating f~9 to

the unit translation z+— z + 1.

By a compactness argument, the constant s in the above statement can be
chosen independent on f.
A direct transcription of the proof of Lemma 12.2 yiclds the following state-

ment.

Lemma 13.6. Consider the sequence of returns of the backward orbit (13.1)

to the interval I,y until the first return to I, J o Joop, .., J and

mim?
let (_1,...,C, bethe corresponding inverse orbit of a pownt (y € H under the
mapping fi=.

Let dist{C_z, J_2q,, ) be K-commensurable with I, and ({2, J 9, ) > €.

Then (_y, € W for some s depending only on K and ¢,

Consider now a curve ¢ C € such that for every z € ¢, dist(z, J.q,,,) is K-
commensurable with I, ; and (Z:’j:;—;m) >e Let T' = J g, UJ_g, UJ a4,
There exists an annulus A C Cp with mod A > g > 0, containing the curve
¢ together with the interval J_ o, . The domain Cp can be pulled back uni-
valently along the inverse orbit J_ g4,/ 9n-1,--+ , J(in—3)qm- APplying the
Koebe distortion theorem, and noting that the intervals J_ o, and J (ln3Yam

are commensurable, we obtain the following corollary.

Corollary 13.7. Let a curve t C C be as above. Denote by t' the pull-
back of the curve t along the backward orbit J_oq,, J 04 -1, s Jtygm - TheD
dist(t', Ln—1) > K|Im-1], (Cﬁ;ﬂ > 6(e) > 0, for oll { € ¥, and the curves t

and i have commensurable lengths.
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The shape of the domain of a holomorphic pair. Let L C C be a
rectifiable simple closed curve. For any two points 21, z; contained in L denote
by 1(z1, 22) the length of the shorther subarc of L connecting z; and z,. We say
that the curve L ig of bounded (by K) turning, if there exists A > 1, such that
I(z1,29) < K dist{zy, 22), for all pairs of points z1, 2;. We recall the following

fact ([LV, Theorem 8.6}):

There exists an increasing function B(K) > 1, such that a Jordan curve of

K -bounded turning is o B(K)-quasicircle.

We will further simply say ”bounded turning” implying the existense of some
universal constant K. Consider the consecutive returns of the orbit (13.1} to

L1 before the first return to I,

(13.3) Tegor J—tgmr -

Ingm

Consider the curve segment 4™ C f~%([fem-1=%(0), fi~1(0)]) N H, cly™ 2
Jom-17 () and let

(13.4) A T i MR

be the corresponding inverse orbit of the curve segment ™ under f%. Let
the curve I' be the union of the segments +*, for i = —1,..., —{n.

Lemma 13.8. The curve I'™ is of bounded turning.

Proof. Let ¥, as in Lemma 13.5 be the perturbed Fatou coordinate for the
mapping f~%. The curve segments ¥,, (™) are obtained by a horizontal

translation of the segment ™, and therefore the whole curve ¥p,(I'™) is of
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bounded turning. An explicit estimate can be given for the mapping ¥, (see
Sh, pp. 19,30]), which shows that it is a small perturbation of a M&hius map.

Thus the curve I'™ itself is of bounded turning. [

Lemma 13.9. There ezists a topological disk D) € D{[f*%~9+(0), f~91-54n (0)])

commensurable with I,_¢, such that

e The domain U \ Disa K-quasidisk for some fized K.
o The intersection OU N D NI is contained in the curve f—{an-—1(In),

where ' 4s as above.

Proof. The proof of the Lemma consists of several steps. First we partition
the boundary of the domain U into a finite number of curves with bounded
turning, attached to each other at angles 7. Each of these curves is “created”
between the moments of the first return of the inverse orbit (13.1) respectively
to I,_1 and to I, for some m. We proceed to show that after we cut out a
piece of the boundary of I/ as in the statement of the Lemma, the union of
the remaining curves is of bounded turning.

So let { = (., € OUNH, and consider the forward orbit:

-1y = IO, Coor - - Go = [P(C).

Take the smallest & = k(¢) such that ¢ x € H. Let the curve ¢ C 8U NH
consist of all ¢, such that the interval J_ is contained in the backward orbit
(13.1) between the first return to the interval I, 1 and the first return to ;.
Let ¢, denote the corresponding curve in the lower half-plane. Thus we obtain
a finite partition of the boundary of the domain U into a collection of curves & .

If we let the curve I'™ be as above, then by Lemma 13.2, fP={@m+1—dm-1}(3+} —
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rm=.

As we know from Lemma 13.8, each curve I'™ is of bounded turning. Sup-
pose that m < n. Recall that J_, , ¢, . I8 the last return of the inverse
orbit (13.1) to the interval 7, ; before the first return to I,,, and that N
J 24,4, 8re the first two returns of the same orbit to 7,,. Let I'™ be the pull-
back of I'™ along the backward orbit J_, . .44 15, J-2gns- By Lemmas
13.3 and 13.4, dist(f™, I,,) > K|I|, and (C, 1) > € > 0 for any ¢ € [,
Applying now Koebe distortion theorem to the further pullbacks of T, we
conclude, that the curve ¢} is of bounded turning as well.

The curve I'™ satisfies the assumptions of Corollary 13.7. Thus if we denote
by ['™ the further pullback of I'™ until the first return of the orbit (13.1)
to the interval I,,,1, then the curves I™ and '™ have commensurable sizes.
Proceeding to apply Corollary 13.7 to f‘m, etc. we establish that the sizes of
the curves #f are commensurable with I,,, and dist(:, I,) > K|I,,|, provided

that m > n.

Ficure 12

Choose a domain G, D I'™, such that mod(G\I™) > x> 0, and G,, C L.

Setting G Dt to be the pullback of Gy, we have mod(Ghy \ £) = mod(G\
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fm) > . 'The domain Gy, can be chosen in such a way as to intersect only the
first segments of the adjacent curves ] (see Figure 12). Let ¢ and ¢, be any
two points in the boundary of U contained in different curves £, with m > n.
It follows from elementary considerations, that dist(¢i, ¢2) is commensurable
with the shortest segment of the boundary of I/ between the points (i, (.
Therefore, the whole curve Uyt is of bounded turning.

Since dist(¢tE,1,) > K|I,| for m > n, we can choose a bounded s, such
that D = D([f*%+1(0), f~-t—5m(0}]) N OU < ¢+ Ut,. By Lemma 13.6,
all, but fnitely many curves v* are contained in the disk D. Adjust the disk
D slightly to obtain a smaller disk D with the same property, and such that
AU\ D) is connected and is of bounded turning. Then the domain U\ 1 is
a K-quagidisk, and the proof is complete.

[

The existence of a quasiconformal interpolation. We now present the
proof of Proposition 13.1. Assume that ¢,.1/¢, is large. For the map f7%
congider its perturbed Fatou coordinate U;|W; as in Lemma 13.5. Consider
the orbit {13.4) corresponding to m = n, and f = f;. By Lemma 13.6, we can
choose r bounded and independent on the map, so that v* C W,;. Let ¢ CH
be a curve connecting an endpoint of 4%, with f; @+ F=114 () syeh that ¢
does not cross 4™,, and the translate of ¢; under f;™ is disjoint from ¢;. The
segments [ f; a1 toin () gkttt ot ()] an Cooand £ () bound
a fundamental rectangle R; C W; for the map ¥, ( see Figure 13 ).

Since all four sides of the rectangle R; are commensurable, there exists a K-

quasiconformal mapping « : £; -+ Ry with a bounded dilatation K, satisfying




= -~

F1Gure 13
Ko fi*ley = 8" o k|c;. We extend & to all domains R* ¢ Wy, ff™(RF) = R,

by s|RF = £ o ko fF9|RF, provided that RE = k(R¥) C Wa. Thus we

obtain the desired interpolation near the pinched region of the domain U;.
The pinched region of ¥ is treated in a similar fashion.
By Lemma 13.9, the interpolating map can be extended to the rest of A\

with bounded dilatation, which completes the proof.

14. LoCAL CONNECTIVITY OF SIEGEL JULIA SETS

In this section we will use the methods developed in §12 to give a new proof

for the following theorem of C. Petersen:

Theorem 14.1 (Petersen, [P]). Let Py denote the qguadratic polynomial z —
ey - 22, If 0 is an irrational number of bounded type, then the Julia set

J(Py) is locally connected and has Lebesgue measure zero.
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As a consequence of a classical result of Siegel, for an irrational 8 of bounded
type, the polynomial Py has a Siegel disc A around the origin. The action of
Py on the domain A is conformally conjugated to that of the rigid rotation

Z -y e27m'€

z on the open unit disc ID. The methods of quasiconformal surgery
allow in this case to relate the dynamics of By to that of a rational critical
circle map. Namely, consider the following one-parameter family of Blaschke

products:

. —3
14.1 T :'527r72z )
(14.1) fr(z) = el

A map in this family is a degree three branched covering of the Riemann sphere
with superattracting fixed points at 0 and oo. The only other singularity of f;
is a cubic critical point at 1. Since the unit circle 7' is invariant, the restriction
fT|T is a homeomorphism with one cubic critical point, that is, a critical
circle map. By the standard monotonicity considerations, for each irrational
g in (0,1) there is a unique parameter v = 7(8) € (0,1) for which the circle
restriction f7 has rotation number 6; and we set f; = f™®. The connection
between a Blaschke product fp and the quadratic polynomial Fy is given by

the following theorem:

Theorem 14.2 (Douady, Ghys, Herman, Shishikura, [Do2]). Let 8 be an

irrational number of bounded type, and let A denote the Sigel disc of the
quadratic polynomial Py. Then there exists a quasi-conformal homeomorphism
¢ : C — C, conformal on the immediate basin of infinity of fy, such that

$(D) = A, and ¢ o fo=Pro¢ on C\D.

Denote by W the f, *-preimage of the unit disc I not contained in ID. Set
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FIGURE 14. A quadratic Siegel Julia set ( above ) and the

corresponding set Jy
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Jo = ¢ 1{J(P%)). This set is obtained by removing from the Blaschke Julia

set J(fy) all points whose orbits eventually land in the interior of I:

Jo = J(fo) \ (Unzofy "(W) UD).

Petersen [P] proved the following result, which together with Theorem 14.2 i

implies Theorem 14.1:

Theorem 14.3 (Petersen, {P]). For any irraitonal rotation number 0 the set

: i
Jg s locally connected and has Lebesgue measure zero. ! t

\
Our proof of Theorem 14.3 bears a strong resemblance to the proofs of :
local connectivity of quadratic Julia sets with complex bounds developed in [
[HJ, McM2]. Following Petersen, we construct a plethora of puzzle-pieces -
for the map fy, which partition Jy info connected subsets. By a version of
the cubic estimate (11.3) for the map fp, the diameters of the puzzle-pieces
around the critical point 1 shrink to zero. Thus we obtain a basis of connected
neighborhoods around the critical point. Finally, we use bounded distortion

considerations to transfer this basis to other points of the set Jy.

Let us choose an irrational 0 < 6 < 1 and in what follows work with the

fixed map f = f.
For two points @ and b on the unit circle T', [, b] C T will denote the shorter "
arc with these endpoints; |[a,b]| will stand for its length. For [a,d] C 7' let .
D,([a,b]) be the preimage of D,([0,1]) under a Mébius map sending T to R |

and [a, b] to [0,1). As oo is a superattracting fixed point of f, its immediate

Tn [P} The original argument of Petersen showed measure zero for 6 of bounded type

only. The argument for the general case was suggested by M. Lyubich.
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basin is parametrized by C\ D via Béttcher coordinate. The images of polar
coordinate curves in this parametrization will be referred to as the external
rays and equipotentials of f; the former have the same landing propertics as
in the polynomial case. For a point ¢ € T with f*(¢) = 1 denote by W({¢) the

preimage of the domain W attached to (.

Construction of puzzle-pieces. Petersen’s construction of puzzle-pieces
begins as follows. Let vy C W, v C W, and f(v) = [f(1),1], f(v) =
TN, 1] Let N g £ 0, mNye # 0, and f{4]) =, fln) = fv). In-
ductively let viNyi_; # 0, vivyim1 #£ 0, and f(v) = vy, F(v:) = f(viz1). Con-
siderations of hyperbolic geometry (compare with Douady-Hubbard-Sullivan
Landing theorem) imply that the curves +; converge to a fixed point of f which
we will denote by g; this point is necessarily repelling.

Let TV = Uy U B, T = Upy U A, and let T° be the component of SHI
attached to f~1(1). Being the only fixed point of f in the complement of
the unit disc, § is the landing point of the external ray R of the external
argument 0. Let R’ be the preimage of R landing at the end point of I'. Fix
any equipotential curve £, and let the puzzle-piece Py O W be the closed
domain cut out by the curves RUTU[L, f~Y(1)]JUT'UR' and E {cf. Figure 15).

Asg before, denote the moments of the closest returns of the critical point
1 by ¢;, these numbers appear as the denominators in the truncated con-
tinued fraction expansions of the rotation number #. Let the n-th central
puzzle-piece P, be the univalent pull-back of F,_; along the inverse orbit
[L, fo(1)] C Py, [f71Q), f&~1(1)],...,[f~%(1),1]. Note that P, N T =
o)1), fo(Pa 0 OW) = [f=(1), f~%-2(1)], and fotom-sie-2(pn
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Ficure 15
| OW(f~(1)) = [1, fr*te—2(1)]. As follows from disjointness properties of

external rays and equipotentials, the central puzzle-pieces form two nested
sequences inside the first two puzzle-pieces Iy and Pi. By construction we

have:

Proposition 14.4. The intersection P, N Jy is connected.

Let us also note:

Lemma 14.5. The puzzle-piece P, contains a Euclidean disc B with BN Jy =

® and diam B > K diam P, for some K > 0, independent of n.

Proof. Note that by construction, W(f %+2(1}) C B,. The claim now easily
follows from S'Wia;zek - Herman real e priori bounds and Koebe distortion

theorem. O

A cubic estimate for the map f. Our goal now is to adapt the methods of

§12 to obtain a cubic estimate for the inverse branches of f, similar to (11.3). i
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Let us first observe that

£} (1) = @m0 E ?

Therefore, for all points z € Jy we have
(14.2) oz =11 < |f(z) - F()] < Clz — 1]

for a suitable choice of positive constants ¢ and C.

The map f is not a self~-map of the Riemann sphere with points 0 and oo re-
moved, and therefore can not be lifted to the universal covering. Nevertheless,
consider the multivalued meromorphic function

F() = 5= Log /(7).

294

It preserves the real axis and has singularities at the integer points, whose
images are the integer translations of + = 7(9). By Monodromy Theorem,
in the domain Cgy;r4441) with the critical values removed, we have well-
defined univalent branches of the inverse map F~', mapping the open interval
(7 + 4,7 -+ % -+ 1) homeomorphically onto an interval between two consecutive
integers (mm,m + 1). These maps range over the simply-connected regions
Crm,m+1) \ UW;, where W denotes the component of 1/27i Log(W) attached
to j.

Denote by T(z) : 7'\ {f~1(1)} the branch of 1/27i Log(#) mapping 1 to 0.
Consider the lifts of the inverse branches f~|[f~*(1},1] and f~H[1, f~%(1}]
given by To f " oY !and To f~1 o T~! respectively. It is convenient for us
to abuse notation and label these branches ¢ and ¢ . Thus we obtain a

commuting pair of inverse maps

& = (0T (), 1), L, £ ().
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As we have seen above, these maps Have univalent extensions to the double
slit plane, however, they are not inverses of Epstein maps, and we will re-state
Lemmas 12.1-12.3 for them.

Set I, = T({[0, f4=(0)]), T, = T(f=H ([0, f&(0)])). Let D,, denote the
hyperbolic neighborhood Do (Y ([f41(0), fém~+1(0)])), where 0 < o < /2
will be specified later. Set Jy = T,, and consider the orbit of this interval
under ®. For a point z € Cp, the corresponding inverse orbit is obtained by
applying the appropriate univalent branches in the élit plane. We begin with

the following version of Lemma 12.1.

Lemma 14.6. Let J and J' be two consecutive returns of the orbit of Jy to
Inn, form > 1, and let ¢ and (' be the corresponding points of the inverse orbit

of z as above. Suppose { € D, then either (' € Dy, or (', J') > €, and

dist(¢', J') < C|I|; where the quantifiers € and C are independent on m.

‘We remark that the constants € and C' will in general depend on the choice

of the Blaschke product f.

Proof. Let D! denote the pull-back of D,, corresponding to the inverse orbit
J,...,J" and let D, denote the pull-back of D,, along the piece of the orbit
J,..., o™ (J). By Swiagek - Herman real o priori bounds, the points 0 and
T(f (1)) divide the interval D, NR into K-commensurable pieces, where K
becomes universal for large m, and therefore can be chosen simultaneously for
all m.

As the absolute value of the derivative of the logarythmic map is bounded
away from 0 and oo on the set Jp, the estimate (14.2) is still valid for the lifted

map near the critical point. Together with Schwarz Lemma and Lemma 2.4
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this implies that Dy, € Dg([T(f=+~(1)),0]) for some 3 > 0 independent
of m. Moreover, since the boundary of D, contains a segment of 8W;, which
forms the angle 7/3 with R at 0, we have Dy € DTt (1)), a1]) U
D,([as,0]), where the points T Famt1=m (1)), aq, 09, 0 form a B-bounded con-
figuration; with B, ¥ > 0 and 0 < 7/2 < « independent of m. Applying
Schwarz Lemma we have D/, € Dy, U D, ([0, T(f%+1+(a;))]) and the claim

follows.

O

Lemma 12.3 is also re-formulated in the obvious way:

Lemma 14.7. Let J be the last return of the orbit of Jo to the interval Inm
before the first return to In1, and let J'and J" be the first two returns to
I Let ¢, ¢, and (" be the corresponding points in the inverse orbit of z,
¢ = ¢ ((), (" = g7 (().

Suppose ¢ € Dy,. Then either (le) > ¢ = €(f) and dist(¢", J") <
C(A | mirl, or ¢" € Dy

The proof is again obtained by a direct transcription of the proof of Lemma. 12.3.

Finally, let us address the saddle-node phenomenon:

Lemma 14.8. Let Py, Py, ..., Py be the consecutive returns of the orbit of
Jo to I, under the iterates of ¢~ and denote by (o, ¢, ., {—k the cor-
responding moments in the backward orbit of z. Suppose, thot {_; € Dy for
some —k < —i < 0. Then either (_x € Dy, o7 (CTP_;C) > ¢ = €(f) and

dist(¢p, P} < C( ) ml-
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Proof. Let ﬁ:l denote the rescaling of the appropriate inverse branch by a.
linear factor 1/|Z,,|. Since the maps ¢~ %+ do not assume values in W, the
sequence {ml} forms a normal family by Montel’s Theorem. The partial
limits of subsequences with ¢,,41 /¢, — 00 are necessarily parabolic maps. By
Denjoy-Wolf Theorem each of the maps ¢+ has an attracting fixed point
both in the upper and the lower half-plane, whose basin is the whole half-plane;
by compactness, this point is contained in D([,,) C D, provided gm+1 /¢ is
large enough.

The proof is now completed as in Lemma 12.2.

We are now in position to repeat the inductive argument of §12, to obtain the

following estimate for the inverse branches:

dist(¢=mH1H1(z), g~ H1(T,))  dist(z, T,)
<ot
|¢~@m 1 (T5)] [Tl

(14.3)

where z € Cp, N Dy. The constant C' depends on the map f as well as on the
choice of the angle « in the definition of D,,.

Let us now choose « in such a way that the components of 1 /2w Log(F;) and
1/2mi Log(P,) attached to 0 are contained in D;. For n > 3 let G, D P41 be
the univalent pull-back of P,UP; along the orbit (1, f&+(1}],..., [f =+ (1),1].
Using the estimate (14.3), and the fact that the absolute value of the derivative
of 1/2x Log(z) is bounded away from 0 and oo on Jy, we arrive at the following

estimate:

dist(F(2), H([L 7)) _ dist(Fei(a), for(L, £ ()
WY —Famon = (L@

for any z € G, N Jy. Together with the cubic estimate (14.2) for the map f
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this yields the desired cubic estimate for fo+!:

(14.5) dist(fo+1(2), S*{IL S (D)) o g (dist(z, L, fﬁ'ﬂ(l)]))3,

| famer([L, S ()]

for some B > 0.

1, fo ()]

By Swiaftek-Herman real a priori bounds the arcs [f %+ (1), 1], [f4(1),1],
[1, fe=+1(1)] and fo+([1, f=(1)]) are all K- commensurable, with a universal

constant K for sufficiently large n. By the above cubic estimate (14.5), for
n > 3, we have

: f dlemPn oo
dlamPn.Hgb.,fﬂ|[1’f_qvl(l)]l lF (1), 1]].

diam F, diam F,,.4 1 diam P,
————— > K foralarge Ky, then < = .
{1, f o= (1)]] (e (1), 2] 2 |1, Fre (1]
It follows that for all sufficiently large n, the piece P, is Kp—commensurable

Hence, if

with [f~% (1), 1] with a universal constant K. Together with Proposition 14.4

this implies

Proposition 14.9. The set Jy is locally connected at the criticol point 1.

“Spreading around” argument. Choose any z € Jy. Assume first that
there exists n such that fi(z) ¢ P, forany ¢ > 0 and &k > n. As [ has an
irrational rotation number on the circle this implies that the forward orbit
2 = 2,21 = f{z),22 = f(z1),... does not accumulate on the circle, i.e. there
exists € > 0, such that z € V, = {¢, I¢| > 1 + ¢}

As the set Jg is locally connected at the critical point 1, there exist two
external rays r, and 7o landing at this point on different sides of W. For a
point ¢ € Jp whose forward orbit lands at the critical point 1 let r1({), 72(¢)
be the preimages of the rays r; and ry, landing on . Denote by Z(() the

component of C\ (r1(¢) Ury(¢) U {¢}) not containing 1. The limb L, of the
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set Jp is the set Zr N Jy. Since external rays do not intersect the Julia set, L,
is a connected component of Jg \ {¢}. Let a be an accumulation point of the
sequence {z;}. Choose a limb L = I; containing a, with L N7T = (. Denote
by k. the moments when z;, € L. Let L, 3 2 be the pull-back of L along
the backward orbit 2, , 2k, 1,--- , 21,20 = 2. We refer to the following general

principle to assert that diam(ZL,) — 0.

Lemma 14.10 ([L2], Prop. 1.10). Let f be a rational map. Let {f7™} be
a family of univalent branches of the inverse funclions n a domain U. If

UnJ(f) #9, then for any V such that clV CU,

This yields the desired nest of connected neighborhoods around z, and we are

done.

In the complementary case, let z, be the first point in the orbit zg, 21, 23, - - -

contained in the puzzle-piece P,. Denote by

(14.6) y=P,,Ty,... 1T

the preimages of P, corresponding to the inverse orbit zx, 2k -1, ..., 20
Lemma 14.11. The inverse orbit (14.6) hits the critical point 1 at most once.

Proof. To be definite, assume that I, 18 above the critical point 1. Note that
f I, NT = B for some ¢ < ¢", then the inverse orbit (14.6) never hits
the critical point. Otherwise, denote by A and B = P, the “above” and
“helow” fe+i-preimages of Py, L.e. fr+(A) = By, ANT # (), and A is above
1, and similarly for B. Notice that ANT = [f~™+ (1), c[f~=(1),1]. Let
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Ll = Pn M 8W, and Lg = AQW, then

fqn—1+Qn+qn+1 (Ll) = fqn+1(|:fan—1'|“Qn(1), 1]) = I:f‘I’n—l'{‘qn'l“QH-\-l(]_): fqn+1(1)]
D) [anﬁl‘HIn(l), fq”—1+(In+f1n+l(1)} — fqn—r%qn([l,fqn-u(l)])

— ffhp 1+gnt@ni1 (L2) )

Thus I,y D I, and as two different preimages of W cannot cross, it follows
that A C F,. Hence II_,,_, # A.

Pinally, denote by B’ N'7T # § the fo preimage of B, f*(B') = B. B'N
T = [f Q) fremen (1)) ¢ [f7=(1),1]. Let Ly = B nW(f(1)), and
Ly =B'"0W(f (1)), then

fqn'l'Q1L-1+qn--2(L2) - [1’ f‘?n—-l+(In—2(1)}
D) [foL—-l'l‘QR—Z"“qn'_‘QH-}-l(l)jfq-n~1+q:n.—2(]_)]

— f‘}'n"|“?n-—1+f1nﬁ2 (L3)

Therefore, Ly, D L3, and B' C F,.

Thus, I, ,—g. N7T =@ and the claim follows. [

As follows from the inductive argument (compare with Remark 12.1), for
n large enough, the puzzle-piece Py, is contained in Dg([1, -1~ (1)]) for
some 3 > 0 independent of n. By Koebe theorem combined with real a priors
bounds, the non-critical pull-backs of the puzzle-piece P, along the circle have
bounded distortion (compare Lemmas 13.3 and 13.4). Moreover, at the first
moment when IT_, N7 = @, there is an annulus of a definite modulus around

I1_, which does not intersect the circle T' and thus the whole postcritical set
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of f. By Lemma 14.5 the set F,(z) = Tl_ contains a Fuclidean disc B,
of commensurable size, with B, N Jp == . The diameters of B, necessarily
converge to zero, as a non-empty disc contained in an infinite subsequence of
Pp’s would eventually map over the whole J(f). Thus NP,(z) = {z}, and the

set Jg is locally connected at z.

Proof of measure zero statement. The following argument was suggested
by M. Lyubich.

We will make use of the following ergodic principle of Lyubich ([L1]).

Let f be a rational map, whose Julia set J{f) is not the whole Riemann sphere.

Then the forward orbit of almost every z € J(f) converges to the posteritical

set of f.

First consider the set of points Jy C Jy, Jy = {C € Jp| In, FH{) gé P, Vi >
0,k > n}. Since f|T has irrational rotation number, the points in J; do not
accumulate on the critical orbit. Thus J; has zero Lebesgue measure
Consider now a point z € Jy \ Ji, and let P,(2) be as above. We have
shown that P,(#) contains a Euclidean disc B, of commensurable diameter,
not intersecting the set Jp. As diam P,(z) — 0, z can not be a Lebesgue

density point of Jy. This completes the proof of Theorem 14.3.
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