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utterly impossible as are all these events they are probably
as like those which may have taken place as any others
which never took person at all are ever likely to be.

J. Joyce
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ABSTRACT

This paper deals with different aspects of dynamical systems in several com-
plex variables. It contains the following six papers.

L

II.

I11.

Iv.

VL

Hyperbolic dynamics of endomorphisms. We provide a written ac-
count of semilocal and global results for hyperbolic dynamics of endomor-
phisms.

Holomorphic motions of hyperbolic sets (submitted for publication).
We study how hyperbolic sets of holomorphic automorphisms and endo-
morphisms vary under holomorphic perturbations of the map.

Some properties of 2-critically finite holomorphic maps of P2 (to
appear in Ergodic Theory Dynam. Systems). We sharpen previous results
by Fornaess and Sibony and by Ueda, by showing that repelling periodic
points, as well as the preimages of any given point, are dense in P2 for a
2-critically finite map.

Dynamics of polynomial skew products on C?: exponents, con-
nectedness and expansion. Polynomial skew products on C? are holo-
morphic maps of P2 whose dynamics resemble that of a one-dimensional
polynomial. We study the relation between the critical set, connectedness
of Julia sets, Lyapunov exponents, and expansion.

Sums of Lyapunov exponents for some polynomial maps of C?
(accepted by Ergodic Theory Dynam. Systems). Using a laminar structure
for the invariant current, we prove a formula for the sum of the Lyapunov
exponents of some polynomial maps of C? with respect to an invariant
measure of maximal entropy.

Regular polynomial endomorphisms of C* (with E. Bedford). We
study the dynamics of polynomial endomorphisms of C* that extend holo-
morphically to P¥; these are called regular. Using techniques from pluripo-
tential theory and hyperbolic dynamics we prove results analogous to those
for polynomial mappings of C.
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SUMMARY

0. INTRODUCTION

This thesis contains six papers, each of which deals with dynamical systems in
several complex variables. I have chosen to group the papers into the following
three categories.

1. General dynamics in several complex variables (Papers I-IT).

2. Critically finite maps (Paper IIT).

3. Polynomial endomorphisms of C* (Papers IV-VT).
In section 1 below I give some general background to each of these categories
above, rather than describing my own results. This background is not intended
to cover everything known in the field; I apologize for any omissions. Brief
introductions to the six papers in the thesis are then given in section 2. The
papers are not presented in chronological order. A certain overlap between
sections 1 and 2 is unavoidable; I hope that the reader will benefit from it.

1. BACKGROUND

1.1. General complex dynamics. In this thesis a dynamical system in several
complex variables means a holomorphic mapping f : M — M, where M is a
complex manifold. Understanding the dynamics of f means understanding the
asymptotic behavior of orbits in M under f.

1.1.1. Complex dynamics in one variable. Complex dynamics is often illustrated
by Newton’s method for solving polynomial equations. Let p(z) be a polynomial
in one variable. Newton’s method is a numerical algorithm for finding the zeros
of p; it goes as follows. Let w be a zero of p, and let 2y be an approximation of w.
By the definition of derivative, p(z) = p(z0)+p'(20)(2— z0), the complex number
z1 = 29 —P(20) /D' (20) should be a better approximation of w. By repeating the
procedure we obtain complex numbers zs, z3, . .., which, hopefully, converge to
the exact zero w.
Define the rational function

f(2) =2z —p(2)/p'(2). (1.1)
Then the successive approximations above are given by z, := f™(29), where
f™" = fo---of. Hence, understanding the behavior of Newton’s method means
understanding the dynamics of the rational function f.

More generally, one studies iterations of a general rational map f on the
Riemann sphere C, i.e. not necessarily of the type fiz) =2z—-p(2)/P(2). A
good reference for this is [CG]. It turns out that the sphere naturally divides

1



2 SUMMARY

into two parts: the Fatou set F', where the dynamics is “tame” and the Julia set
J, where the dynamics is “chaotic”. More precisely, F' is the largest open set
where the family {f"} of iterates is a normal family, and .J is the complement
of F'. The Julia set can be characterized in many other ways, for instance as the
closure of the repelling periodic points of f. A quite different characterization
was found by Lyubich [L] and by Freire, Lopez, Mané [FLM]. Namely, f has a
unique invariant probability measure pu of maximal entropy and the support of
1 is exactly J. Further, p describes the distribution of periodic points, i.e.

. 1

gy 2 b 2
fr(a)=a

In addition, u describes the distribution of preimages of points. This means that

if a € C is any point (with two possible exceptions), then

lim — Y 6 =p. (1.3)

If f is a polynomial map of C, then J can be described as the boundary of
the set of points with bounded orbits. See section 1.3.1 for more details.

1.1.2. Polynomial automorphisms of C2. As mentioned above, the most general
kind of complex dynamical system is for us a holomorphic mapping f : M — M,
where M is a complex manifold. We still define the Fatou set F' of f to be the
largest open set where the family {f™} is normal. As for the Julia set, the
definition J = M — F' is only one out of many, inequivalent, possibilities.

In any case the above situation is too general for obtaining a lot of inter-
esting results. So far, most results in dynamical systems in several complex
variables deal with two classes of mappings: polynomial automorphisms of C?
and holomorphic endomorphisms of complex projective space P¥.

The study of polynomial automorphisms of C? has been pursued by many au-
thors, including Friedland and Milnor [FM], Hubbard and Oberste-Vorth [HO1],
[HO2], Fornaess and Sibony [FS1], and Bedford, Lyubich and Smillie [BS1], [BS2],
[BS3], [BS4], [BS5], [BLS2], [BLS1]. It is not possible to give a survey on the
theory in the limited space available here, so we will contend ourselves with
indicating a few definitions and results.

An important property of a polynomial automorphism f of C? is that it is
invertible and that its inverse is a polynomial automorphism as well. This means
that may consider both positive and negative iterates f™, n € Z. Most concepts
and results for f therefore come in pairs: one for the positive iterates of f and
one for the negative iterates.

The polynomial automorphisms of C? of degree d > 2 fall naturally into two
groups. The first one is the set £; of elementary maps. These are simple to
understand dynamically and we will say nothing more about them. The second
group is denoted H,4; its elements are affinely conjugate to finite compositions
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of maps of the type

f(z,w) = (p(2) + aw, 2),

where p is a monic polynomial of degree d > 2 and a # 0. For simplicity we
will call an element of Hq a Hénon map (in [FM] the elements in H,4 are called
compositions of generalized Hénon transformations).

Many results on Hénon maps are inspired by dynamics of polynomial maps of
C (see section 1.3.1. Two very important objects in the theory are the positive
closed currents u* and p~ of bidegree (1,1), which are invariant for f and f—!,
respectively. Their supports J* and J~ are exactly the Julia sets of f and
/7!, i.e. the complements of the largest open sets where {f"},>0 and {f"},<o
form normal families. In fact, Fornszess and Sibony showed that g™ and pu~
are the unique positive closed currents of unit mass supported on J+ and J—,
respectively. The currents u+ and p~ have a property similar to (1.3): if X is
any algebraic curve in C? of degree r, then

li !
n—lg-loo dnr

[F7 (0] = wt, (1.4)

where [X] denotes the current of integration over X. A similar formula holds
for p~.

The wedge product u := pu+ A p~ is well-defined and p is an invariant prob-
ability measure on C2. In fact, u is the pluricomplex equilibrium measure of
the compact set K consisting of points in C? with bounded forward and back-
ward orbits. Further, u describes the distribution of periodic points in the sense
of (1.2).

1.1.3. Complex dynamics on P*. The second widely studied class of dynamical
systems in higher dimensions are endomorphisms of complex projective space
P* for k > 1. Note that P' can be identified with the Riemann sphere C,
so endomorphisms of P*¥ may be viewed as generalizations of rational maps on
C. The main difference between a polynomial automorphism of C? and an
endomorphism of P* is that the latter is not invertible.

Just as for Hénon maps, pluripotential theory has been a key idea to the
understanding of the dynamics of endomorphisms of P¥. The study of dynamics
on P¥ using pluripotential theory was initiated by Hubbard and Papadopol [HP],
and developed more generally and systematically by Fornass and Sibony [FS4],
[FS5], [FS3].

An important object in the theory is a positive invariant closed current 7' of
bidegree (1,1) on P*. This corresponds to the current put for Hénon maps and
in the case k = 1, T is the exactly the measure u of maximal entropy described
in section 1.1.1. One way of viewing T is as the asymptotic distribution of
preimages of algebraic hypersurfaces. This means that if f is a holomorphic
map of P* of degree d > 2 (with some restrictions on the dynamics) and X is
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an algebraic hypersurface of P* of degree r, then

li !
n—1>I-|r-loo dnr

X =T. (1.5)

The support of T', which we denote by .Ji, is the Julia set of f in the sense
that {f"} is a normal family exactly on P¥ — J;. However, if k¥ > 1, then J;
does not carry all the properties of the Julia set in one dimension. For example,
the periodic points of f will not be dense in J; in general. For this reason one
defines the wedge products T8 = TA---AT,1 =1,..., k. These are well defined
positive closed currents and a result by Russakovskii and Shiffman shows that 7"
can be viewed as the asymptotic distribution of preimages of algebraic varieties
of codimension /. For the exact statement we refer to [RSh]; see also [RSo].
We write J; := supp(T"). It is clear that J;, C --- C J;. The question of
characterizing J; in terms of normal families is only partly solved.

Of special importance is the measure p := T*. Fornzess and Sibony [FS3]
proved that it is mixing and of maximal entropy and that it describes the dis-
tribution of preimages of points in the following sense: there is a pluripolar set
E C P* such that if a ¢ E, then

. 1
nlLI%OW Z 0p = W (1.6)

More recently, Briend [Bri2] showed that u describes the distribution of peri-
odic points, i.e. a formula similar to (1.2) holds.

1.1.4. Hyperbolic rational maps on C. Many results in dynamical systems re-
quire a priori assumptions on the dynamics; these often involve (uniform) hy-
perbolicity.

In the case of rational maps on C this is fairly easy to describe. Namely, a
rational map f is hyperbolic if there exists an n > 1 such that |Df™(z)| > 1 for
all z € J. This condition has a characterization in terms of the critical points of
f: f is hyperbolic if and only if all critical points of f are in basins of attract-
ing periodic points. Let us give some examples to show how the hyperbolicity
assumption affects the dynamics of f.

The first example concerns Fatou components. There is a classification of
Fatou components for a general rational map, but if f is hyperbolic, then the
description is simpler: the Fatou set consists of basins of attracting periodic
points.

Second, the hyperbolicity of f affects the geometry of the Julia set: if f is
hyperbolic, then the Hausdorff dimension of J satisfies 0 < HD(J) < 2.

A third consequence is that a hyperbolic map f is J-stable, meaning that if g
is sufficiently close to f, then g is hyperbolic, and there exists a homeomorphism
¢ Jr = J, such that go ¢ = ¢ o f. This result is due to Mané, Sad and
Sullivan [MSS]. We will have more to say about it in section 1.1.7.
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1.1.5. Aziom A maps. An interesting class of dynamical systems are the Azx-
iom A maps. These include, for instance, the hyperbolic rational maps on C
discussed in section 1.1.4. However, the definition of Axiom A has nothing to
do with complex structure, so let us for a moment consider a smooth mapping
f: M — M, where M is a finite-dimensional, smooth, Riemannian manifold.

To define Axiom A we need the notion of the nonwandering set and of a
hyperbolic set. A point 2 € M is nonwandering if it has no neighborhood U
such that f*(U)NU = 0 for all n > 1. The nonwandering set is the set of
nonwandering points; it is a closed set and we denote it by 2.

The definition of a hyperbolic set is most easily formulated for diffeomor-
phisms, but since we will study maps which are not invertible we consider the
general case. Suppose that A is a compact subset of M such that f(A) = A.
If A is a single point, i.e. a fixed point, then A is hyperbolic if and only if the
tangent space at A splits into two invariant subspaces on which D f is expanding
and contracting, respectively This definition can be generalized to any compact
set A with f(A) = A. The details can be found in Paper I. Suffice it to say that
the definition 1nvolves the set

~

A={(xi)ico; i €A, f(2i) = iy}

of histories in A. The set A is sometimes called the natural extension or the
inverse limit space of A.
We now say that a map f: M — M is Axiom A if

(i) Q is compact.
(ii) The periodic points for f are dense in .
(iii) f is hyperbolic on Q.

Every Axiom A map admits a spectral decomposition. This means that the
nonwandering set, 2 of f can be written in a unique way as a finite disjoint union
of compact invariant sets {2; on which f is topologically transitive. The sets 2;
are called the basic sets of f.

Define an ordering on the basic sets by saying that ©; > €2; if there exists
a complete orbit (z,)ncz such that z, — Q; as n - —oo and z, — Q; as
n — 4+o0o. We say that f satisfies the no-cycle condition if there is no nontrivial
cycle for the ordering >.

The no- cycle condition has ramlﬁcatlons for the global stability of f. Let us
say that f is Q-stable if g|Q for g close to f. Here f is

the shift map f((z;)) = (f(2;)). The Q-stability theorem asserts that if f is an
open Axiom A mapping of a compact manifold and f has no cycles, then f is
-stable. See Paper I for more details.

1.1.6. Aziom A in complex dynamics. We will now discuss Axiom A in the
setting of holomorphic endomorphisms of P*, k£ > 1 and Hénon maps on C2.
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To begin with, a rational map on C ~ P! is Axiom A if and only if it is
hyperbolic. In this case, the basic sets are J and a finite number of attracting
periodic points.

In [BS1], Bedford and Smillie did a similar analysis for Hénon maps. They
showed that f € Hg is Axiom A if and only if f is hyperbolic on J. In this case,
the basic sets of f are J and a finite number of attracting (or repelling) periodic
points. Moreover, f is topologically mixing on J and satisfies the no-cycles
condition. Thus f is Q-stable.

Hyperbolicity for a Hénon map also has consequences for the Julia sets J+
and J~ and for the currents u™ and pu~ defined above. For example, J* is
foliated by global stable manifolds of the points of J, and each leaf (i.e. each
stable manifold) is dense in J*. This laminar structure passes over to the current
uF, which is a uniformly laminar current. This means, loosely speaking, that
ut is locally of the form

it = [ vta),

where [M,] is the current of integration over a complex disk M, and v is a positive
finite measure, which is called the transversal measure for the stable foliation.
The laminar structure of u and p~ also give a geometric interpretation of how
these two currents intersect to form the measure yu = u* A u~. In fact Bedford,
Lyubich and Smillie [BLS2] were able to carry many of the above ideas through
even without the Axiom A assumption.

The theory of Axiom A holomorphic endomorphisms of P is still not fully
developed. Most results are known only for k& = 2. Even so, the theory is not as
complete as for rational maps on C or for Hénon maps, and many questions re-
main open. What is mentioned here is mainly due to Fornaess and Sibony [FS6],
who were the first to study hyperbolicity for endomorphisms of P2.

Let f : P2 = P2 be an Axiom A endomorphism. By spectral decomposition
we may write its nonwandering set as ! = Sy U S1 U S2, where S; is the union
of basic sets of unstable index i (S is attracting, S is of saddle type and Ss is
repelling). These three sets are all nonempty.

We have that J; is a basic set of f and Jy C S3. It would be interesting to
know whether J, = S>. This is equivalent to that all repelling periodic points
belong to Jo. In fact Hubbard and Papadopol [HP] have given an example of a
holomorphic map on P? with a repelling periodic point outside J», but is not
clear whether their example can be made Axiom A.

It would also be interesting to know whether an Axiom A map on P? can
have any cycles. In fact, as far as the author knows, there is no known example
of an Axiom A map with two different basic sets S}, S? in Sy, such that S} > S?
for the ordering defined above.

In [FS6], Fornaess and Sibony were particularly interested in the dynamics
of so called s-hyperbolic maps. These are Axiom A maps satisfying additional
assumptions (in particular that So = J3). They obtained results similar to those
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for hyperbolic Hénon maps, of which we mention a few. First, they showed that
the Julia set of f is the union of J and the stable set of Sy, i.e. J; = JoUW?(S)).
Then they considered a basic set Sl1 in S7 which is minimal for the ordering >
above, and proved that 7T is a laminar current near S} . Further, they constructed
an unstable current o near S} similar to pu~ for Hénon maps. The support of
this current is exactly the unstable set of S} and ¢ has a laminar structure.
Finally, they showed how T and o intersect at Si to form an ergodic invariant
measure v := T A o whose support is exactly S;.

1.1.7. Holomorphic motions. In section 1.1.4 we mentioned that a hyperbolic
rational map f on C is J-stable. This means, in particular, that if fa, a € D
is a holomorphic family of rational maps with fy = f hyperbolic, then there is
an r > 0 and for all @ € D, a homeomorphism h, : J(f) — J(f,) such that
fa o hy = hy o f. Moreover, hg = id and f, is a hyperbolic rational map. Now
consider a repelling periodic point z € J of f. The conjugacy h, must map z
to a repelling periodic point z, of f, and the implicit function theorem implies
that z, depends holomorphically on a

In fact, the whole set J, depends holomorphically on a. The proper way to
express this is via holomorphic motions. A general definition goes as follows.
Let D be the unit disk, M a complex manifold and X a subset of M. Then a
holomorphic motion of X parameterized by D is a continuous map ¢ : D x X —
M such that:

(i) ¢(0,-) = id.
(ii) ¢(-,z) : D — M is holomorphic for every z € X.
(iii) ¢(a,-): X — M is injective for every a € D.

Holomorphic motions were introduced by Mané, Sad and Sullivan [MSS], who
proved that if {f,}seD : C—>Cisa holomorphic family of rational functions,
such that f = fy is hyperbolic, then there is an 7 > 0 and a holomorphic motion
h:D, x J—= M such that for each a € D,

(i) Ja := h(a,J) is the Julia set for f, and f, is hyperbolic.
(ii) The map h, := h(a,-) : J — J, is a homeomorphism and f, o h, = h, o f.

In fact, the assumption on f in [MSS] is (potentially) weaker than hyper-
bolicity. Holomorphic motions in C, such as those in the result by Mané, Sad
and Sullivan, exhibit strong geometric properties. For instance, each map ¢(a, -)
above is quasiconformal, and the continuity assumption of ¢ is redundant. These
properties do not hold in higher dimension.

However, the result that the Julia set of a hyperbolic rational map is a holo-
morphic motion is true in a more general context. This is the content of Paper
II of this thesis, where we prove that a hyperbolic set of a diffeomorphism, or an
expanding set of an endomorphism moves holomorphically with the parameter.
The precise statement can be found in the summary of Paper II.
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As for hyperbolic sets of endomorphisms, the situation is slightly more com-
plicated. It can be formulated in terms of strongly analytic multifunctions, but
again we refer to the summary of Paper II for details.

1.2. Critically finite maps.

1.2.1. Construction of chaotic maps. One approach to critically finite maps is
the following: given a complex manifold M, how do we find an everywhere
chaotic, holomorphic dynamical system f : M — M? The question is vague,
because it is not clear what is meant by chaotic. However, let us agree that a
mapping f is chaotic if either

(i) The Fatou set of f is empty.
(ii) The repelling periodic points of f are dense in M.

We will be concerned with the case M = P*_ k = 1,2, but let us start with the
much easier situation when M is a torus, M = C/T’, where T is a lattice in C.
Then the map g(u) = 2u clearly satisfies (i) and (ii). From g we may construct
amap f: C — C as follows. Let p: T — C be the Weierstrass function. This
is a branched cover of the sphere of degree 2 such that p(—u) = p(u) for all
u € T. Since g preserves the fibers of p, it follows that there is a holomorphic
map f : C — C of degree 4, such that fop = pog. Hence f satisfies (i) and (ii)
as well. Such rational maps were first considered by Lattes, and are therefore
called Lattes examples.

1.2.2. 1-critically finite maps on C. Let us now try to nail down the dynamical
characteristics of a Lattés example f which makes it a chaotic map. It follows
from the formula fop = pog that the critical values of f are also critical values
of p. Let C' be the critical set of f and define the sets D := J,,», f*(C) and
E:=(;50 f7(D). Then D and FE are finite sets and the points in F are repelling
periodic points for f. Let us call a map f satisfying the conditions in the last
sentence a I-critically finite map (or a Thurston map).

It is known that any 1-critically finite map satisfies (i) and (ii). There are
many proofs of this result. In fact, Thurston [Th] classified 1-critically finite
maps and showed that they have even stronger properties than (i) and (ii). For
instance, the measure p of maximal entropy is equivalent to Lebesgue measure
on C.

1.2.3. 2-critically finite maps on P2. The natural generalizations to dimension
2 of 1-critically finite maps of C are the 2-critically finite maps of P2. For the
definition see the summary of Paper III. Examples of 2-critically finite maps
of P2 include those constructed from 1-critically finite maps of C; see [U2] for
details. In fact, it is not easy to find examples which are not of this type, but
they do exist [FS2].

Fornaess and Sibony [FS2],[FS4] initiated the study of critically finite maps
on P? and showed, among other things, that the Fatou set of a 2-critically finite
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map is empty. To be exact, they proved this result under an additional technical
assumption. Ueda [U2] later gave a proof in the general case.

The above result shows that a 2-critically finite map of P? is chaotic in the
sense of (i), but it does not imply (ii). In Paper III it is shown that in fact (ii)
does hold. More precisely, if f : P? — P2 is 2-critically finite, then

(i) If E C P? is a nonempty closed subset with f~!(E) C E, then E = P2.

(ii) Repelling periodic points of f are dense in P2.

Later on Briend [Bril] sharpened (ii) by proving that the repelling periodic
points are distributed according to the measure p := T2. By (i) the support of
uis all of P2. It is unknown to the author whether u is always equivalent to
Lebesgue measure.

Ueda [U1] has given another result in the same direction. Namely, he proved
that if Z is a connected complex space and @ : Z — P2 is a holomorphic map
such that the family {f™ o ¢} is normal on Z, then ¢ is constant.

1.3. Polynomial endomorphisms of C*.

1.3.1. Polynomial maps in one variable. What distinguishes a polynomial map-
ping p(z) = 2% + ... of C of degree d > 2 from a general rational mapping of
C is the presence of a completely invariant point, namely co. This point affects
the dynamics of p in several ways.

First, the dynamics near infinity is easily described in terms of the Bdéttcher
coordinate. This is the unique holomorphic function ¢ defined near oo such that
0(z) = 24+ 0O(1) as z — oo and p op = p?. Hence ¢ conjugates p to the
homogeneous polynomial ¢ — ¢?.

Second, the Julia set J of p is given as J = 0K, where K is the set of points
with bounded orbits. The maximum principle shows that C — K is connected,
so J is connected if and only if K is connected.

Third, the dynamics of p may be studied by using potential theory on C.
This approach was pioneered by Brolin [Bro], and developed further by Sibony
(see [CG]) and Tortrat [To]. The connection between dynamics and potential
theory is given by the function G(z) := lim, o d " log® [p”(2)|. Indeed, G is
the Green function of the compact set K and the measure p of maximal entropy
is exactly harmonic measure on J, i.e. p = %ddCG. In addition, G = log ||
whenever ¢ is defined.

The Bottcher coordinate is useful for studying the connectivity of .J. Using
the equation po ¢ = ¢ we may try to extend ¢ to all of C — K. This will work
as long as we do not encounter any critical values of p. In fact, a careful analysis
shows that J is connected if and only if no critical point of p is in the basin of
attraction of oo.

In the important case when J is connected, ¢ extends to a conformal equiv-
alence of C — K onto C — D. This leads naturally to the study of J in terms
of external rays, a powerful method introduced by Douady and Hubbard [DH].
The external rays are images under ¢ := ¢! of a ray in C — D. Thus the set
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of external rays can be identified with the circle S'. Further, the radial limit
e(f) := lim,_,14 p(re'?) exists for almost every 6 € S* and e,(2£) = y, where
% denotes normalized Lebesgue measure on the circle.

In fact, it is possible to define external rays even if J is not connected. The
endpoint map e is still well-defined and has the same property as above.

Suppose J is connected. It is natural to ask whether the external rays land
continuously on J, i.e. if e maps S' continuously onto J. This is equivalent to .J
being locally connected, something which is not always true. However, it does
hold in some situations, e.g. if p is hyperbolic.

We close this section by considering Lyapunov exponents. The general defi-
nition of Lyapunov exponents can be found in the summary of Paper V. Suffice
it to say that there is a number \(p), called the Lyapunov exponent of p with
respect to y, such that lim, . + log|Dp™(z)| = A(p) for p-a.e. z € J. There is
an interesting formula for A(p), formulated by Przytycki [P].

Ap) =logd+ > Gle),
p'(c)=0
where d is the degree of p. Papers IV-VI contain various generalizations of this
equation. An interesting consequence of the above formula is that the following
statements are equivalent for a polynomial mapping p of C of degree d > 2:

(i) J is connected.
(ii) All critical points of p have bounded orbits.
(iii) A = logd.

1.3.2. Polynomial endomorphisms of C*. All polynomial maps of C extend to
holomorphic mappings of C ~ PLl. The corresponding statement is false in
higher dimension. For instance, no Hénon map in C? of degree d > 2 extends
continuously to P2.

In this thesis we focus on polynomial endomorphisms of C* that do extend
continuously (and thus holomorphically) to P¥. We call them regular. They
can also be characterized by the growth condition lim inf|,_« [f™(2)|/]2]* > 0,
where d is the (algebraic) degree of f.

Some results from one dimension continue to hold for a regular polynomial
endomorphism f of CF. For instance, let K be the set of bounded orbits of f,
and let F' be the Fatou set, i.e. the largest open set where {f"} forms a normal
family. Then K is compact, 0K N F = and int(K) C F.

Other results are true with slight modifications. For instance, define G :=
lim,, 00 d " log® |f™|. Then G is the pluricomplex Green function of K. The
measure p of maximal entropy satisfies p = (5-dd°G)* and is therefore the
pluricomplex equilibrium measure of K. Its support Ji is exactly the Shilov
boundary of K.

It is also possible to generalize the concept of Bottcher coordinates and ex-
ternal rays to polynomial endomorphisms of C¥. This is done in Paper VI; will
only describe a few of the ideas here. The hyperplane II := P* — CF ~ P¥1
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is completely invariant and the restriction of f to II is a holomorphic mapping
fu. For the purposes of Papers V and VI, the roles played in one dimension of
50 and C — K are played by Jir and W#(Ji) in P*. Here Jy is the (k — 1)th
Julia set of fr1 in the sense of section 1.1.3 and W#(Jp) is the stable set of Ji,
i.e. the set of points in P* attracted to Jg. Note that if &k = 2, then IT ~ C, SO
fu can be viewed as a rational map and Jy is the (one and only) Julia set of fi;.

If f is a homogeneous regular polynomial endomorphism of C*, then W*(.Ji)
is contained in the complex homogeneous cone over J in C* — {0}. Further,
W*(Jn) has the structure of a Riemann surface lamination, whose leaves are
disks contained in complex lines through the origin. The Green function G is
harmonic on each leaf and we may define the external rays in W?*(.Ji1) as gradient
lines of G on the leaves of the lamination.

In Paper VI we do a similar construction for a nonhomogeneous polynomial
endomorphism f under the assumption that fr is (uniformly) expanding on Ji.
Then W3 (Jir) may not be a Riemann surface lamination, but it is a lamination
outside a small closed set. On the remaining part of W*(Ji) we may define
external rays. These rays land, in a measure theoretic sense, on Jj, the Shilov
boundary of K. For details on this, see paper VI.

The main tool for studying the properties of external rays is the current 75",
Let A be the basin of attraction of II. Then the support of T#~1_ A, i.e. the
restriction of TF~1 to A, is exactly W*(.Jir) and the laminar structure of the set
W#(Jn) parallels that of the current T+~ 11 A.

The condition in one dimension that no critical point is attracted to oo has
an equivalent in C*, namely that the critical set of f does not intersect W (Ji).
Under this condition, the stable set W#(.Jir) is a Riemann surface lamination,
where each leaf is a complex disk W, properly embedded in A. It is an interesting
question whether the disks W, land continuously on J, i.e. if the embeddings of
C-D defining W, extend continuously to S'. In Paper VI we prove that if the
dimension k is two and f satisifies suitable hyperbolicity assumptionsm then the
disks do land continuously.

2. SUMMARY OF RESULTS

Paper I. The purpose of Paper I is to provide a written account of some results
in hyperbolic dynamics for endomorphisms. We consider both semilocal and
global dynamics. All the material is very well known for diffeomorphisms, but
harder to find in the noninvertible case. Paper I will hopefully improve the
situation, although some or all of the results (and proofs) are previously known.
One out of many good references for dynamics of diffeomorphisms is [S]. For
the setting of this paper, the main references are [R] and [PS]. Many proofs are
taken from, or inspired by, [R].

The building blocks in hyperbolic dynamics are hyperbolic sets. These are
generalizations of hyperbolic fixed points. We consider a C'°° mapping f of
a finite-dimensional C°*° manifold M. Let A be a compact subset of M with
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f(A) = A and denote by A the set of histories in A, i.e.
A= {(zi)ico;zi € A, f(z;) = Tiy1}

Then A is compact and the shift f((z;)) := (f(2;)) defines a homeomorphism
f of A. The set A or the pair (A, f) is sometimes called the natural extension
or the inverse limit of A. We will use the notation z for a history (z;)i<o in
A. Define the tangent bundle T as the set of pairs (&,v), where & € A and
v € T, M. The derivative of f lifts to a map Df of Tj.

We say that f is hyperbolic on A or that A is a hyperbolic set if T} splits into
a direct sum E* @ E* of continuous invariant subbundles such that

IDf*(v)] > eA™|v| v e E"
IDf" ()| < ¢ 'Ao| v e B,

for some constants ¢ > 0 and A > 1 and for all n > 1.

Many properties of hyperbolic fixed points generalize to hyperbolic sets. Let
us mention two of these. First, hyperbolic sets are persistent. This means that
if g is C'-close to f, then g has a hyperbolic set A, close to A = Ay and there is
a homeomorphism conjugating f|[\f to g|[\g. Second, a hyperbolic set has local
stable and unstable manifolds. Define

W3 (p) = {z € M;d(f'(z), f'(p)) <& Vi>0}
W(;u(qA) = {1‘ € M;E'i‘,l‘g = xad(‘rlaqz) <4d Vi S 0}7

for p € A, § € A and & > 0. The stable manifold theorem asserts that if §
is small enough, then Wy (p) and W' (§) are smooth embedded disks, varying
continuously with p and ¢, respectively. For more details see Theorem 1.2 in the
paper.

The local (un)stable manifolds allow us to analyze the dynamics of f near
a hyperbolic set A, especially if an additional condition is satisfied. Suppose
we have a point p € A, a history ¢ € A and an orbit (zi)icz in M such that
d(z;, fi(p)) < 6 for all i > 0 and d(x;,q;) < 0 for all i < 0. If, under these
conditions, the orbit (z;) is contained in A, then we say that A has local product
structure. An important consequence of local product structure is shadowing.

Corollary 2.5. Assume that A has local product structure. For every € > 0
there exists an m > 0 such that if (z;);cz is a sequence of points in A with
d(f(z;),xiv1) < n for all i, then there is an f-orbit (y;)icz in A such that
d(y;, z;) < € for all i.

We also have a shadowing result for A. In fact, we first prove that A admits
shadowing and then deduce the above result as a corollary.

We now focus on global dynamics. A point € M is nonwandering if it has
no neighborhood U with f*(U)NU = for all n > 1. An endomorphism f is
Aziom A if (1) Q is compact, (2) periodic points for f are dense in Q, and (3) f
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is hyperbolic on Q. We will mainly consider mappings that are open. The first
result on Axiom A maps is

Proposition 3.3. If f is an open Aziom A endomorphism, then QO has local
product structure.

Thus we may do shadowing in Q or €. Further, we have the following spectral
decomposition theorem.

Corollary 3.5. The nonwandering set Q0 of an open Axiom A endomorphism f
can be uniquely decomposed into a finite union of compact invariant sets ; on
which f is topologically transitive.

The sets Q; are called the basic sets of f. We prove Corollary 3.5 by lifting
the situation to € and applying standard arguments for diffeomorphisms.

Finally we consider Axiom A endomorphisms with no cycles. To explain this,
let f be an open Axiom A endomorphism of a compact manifold M and define
an ordering on the basic sets of f by declaring that Q; > Qy, if there is an orbit
(2;)icz such that z; — Q; as i - —oo and z; = Q as i = c0. The mapping f
is said to have no cycles if there are no nontrivial cycles for the ordering >. The
reason for introducing the no-cycle condition is the following Q—stability theorem.

Theorem 4.3. If f is an open Aziom A endomorphism of a compact manifold
M with no cycles, then f is Q-stable, i.e. if g sufficiently close to f, then Qg is
close to Qy, and f|(zf and Q|Qg are conjugate.

Paper II. We consider a holomorphic family f, : M — M, a € D, of holomor-
phic endomorphisms of a complex Hermitian manifold M parameterized by the
unit disk D.

For terminology and results on hyperbolic dynamics we refer to Paper I.
Assume that f = f, has a hyperbolic subset A = Ay (in the paper we use
K instead of A). We ask ourselves in what way A is persistent when we vary
the parameter a. From general hyperbolic dynamics we know that for a small
enough, there will be a hyperbolic set A, close to A such that fa|[\,, is conjugate
to f|[\

If A is a hyperbolic fixed point, then the implicit function theorem implies
that a — A, defines a holomorphic curve in M. For general A, the assignment
a — A, defines a strongly analytic multifunction in the following sense.

Theorem B. Let f, be as above. Then there is an r > 0 and a continuous map
h:D, x A — M such that
(1) For eacha € D,, A, := ho(A) is a hyperbolic set for f,, where hy = h(a,-).
(2) For each a € D,., the map h, satisfies the relation f,oh, = h, o f and lifts
to a homeomorphism ot A — Ao, which is just the identity for a = 0.
(3) The map h(-,#) : D, — M is holomorphic for each & € A.
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(4) The set U,cp {a} X Ay in D, x M is the union of graphs of holomorphic
maps from D, to M.

There are several, inequivalent, definitions of analytic multifunctions in higher
dimension (see [A] for a discussion) but the notion of strongly analytic multi-
functions defined in Paper II is stronger than them all.

Theorem B simplifies in two cases. First, if the mappings f, are invertible,
then Aa may be identified with A, and the assignment a — A, is a holomorphic
motion of A.

Theorem A. Let {f,} be a holomorphic family of holomorphic automorphisms
of a Hermitian manifold M parameterized by D. Suppose that f = fo has a
hyperbolic subset A. Then A moves holomorphically with the parameter a at a =
0. More precisely, there exists an r > 0 and a continuous map h : D, x A — M
such that

(1) A, := h(a,A) is a hyperbolic subset for f, for all a € D,..

(2) The map h, := h(a,-) : A = A, is a homeomorphism and foohy = hgo f

for alla € D,.
(3) The map h(-,x): D, — M is holomorphic for all z € A.

The second case is when A is an ezpanding set. This means that there exist
constants ¢ > 0 and A > 1 such that

[Df"(z)v] = eA[v|

forall x € A, v € T, M and all n > 1. The assignment a — A, is a holomorphic
motion in this situation too.

Theorem C. If {f,} is a holomorphic family of endomorphisms and A is an
expanding set for f = fo, then A moves holomorphically with a at a = 0 in the
sense of Theorem A.

Paper III. In the third paper in this thesis we consider 2-critically finite maps
of the complex projective plane P2. The definition of these involve three con-
ditions, which we now describe. If f is a holomorphic map of P2, then we let
C = C denote its critical set and define

Dy = f1(C)
n>1
E1 = ﬂ f](Dl)
320
The first condition is that the set D, is algebraic or, equivalently, that the union
defining D; is finite. In this case F; is algebraic too. The second condition is
that E; and C; has no common irreducible component. This means that there
is no component of the critical set which is mapped into itself by some iterate



SUMMARY 15

of f. A map f satisfying these two conditions is called 1-critically finite. If f is
1-critically finite, then we define

Cy =CiNE;
Dy = | f"(Cs)
n>1
E2 = ﬂ f](D2)
720

It is a result by Ueda [U2], that these are finite sets. Now the third condition on
a 2-critically finite map is that Cy N E2 = @). This means that f has no periodic
critical point.

In a similar way one defines k-critically finite maps of P*, but we will stick
to the case k = 2.

The purpose of Paper III is to show that a 2-critically finite map f is “ev-
erywhere chaotic”. To motivate this, we recall the result by Fornass and Si-
bony [FS4], and Ueda [U2], saying that a 2-critically finite map has empty Fatou
set. In Paper III we prove more. The first main result is the following.

Theorem 2.2. If f is 2-critically finite and E C P? is a closed, nonempty set
with f~1(E) C E, then E = P2.

Another way of saying this is that the preimages of any point are dense in P2.
If we apply this result with E = J;, the Julia set of f, then we see that J; = P2,
i.e. the result by Fornass and Sibony, and Ueda. However, that result is used
in the proof of Theorem 2.2. On the other hand, we may apply Theorem 2.2 to
E = J,, where J, = P? is the support of the measure p of maximal entropy.
Hence we get that .Jo, = P2 for any 2-critically finite map.

Note that the notation in Paper III deviates slightly from the one in this
summary. In particular, J; and J are called Jy and Jp, respectively.

The second main result in Paper III is that repelling periodic points are dense
in P2 for any 2-critically finite map of P2. This has later been strengthened
by Briend [Bril], [Bri2], who showed that the repelling periodic points of f are
distributed according to the measure u, which, by the above remark, is supported
on all of P2,

Paper IV. A (polynomial) skew product on C? is a map of the form
f(z,w) = (p(2), q(z,w)),

where p and ¢ are polynomials of the same degree d > 2 and p(z) = 2¢+0(2¢7")),
q(z,w) = w4+ O(w?"). Such a map f extends to a holomorphic map of P2 and
maps any vertical line {z} x C ~ C to another vertical line {p(z)} x C ~ C by
a polynomial map ¢.. There are two reasons for studying the dynamics of skew
products on C2. First, they provide a good source of examples of holomorphic
maps on P2. Second, they can be viewed as compositions of different polynomial
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maps of C. The importance of considering polynomial skew products was also
stressed by Heinemann [Hel], [He2].

To the map f of C? (or P?) we can associate a Green function G, measuring
the rate of escape to infinity, a positive closed current ' = dd°G, and an invariant
probability measure u = T A T (see section 1.3.2). The component p of f also
has a Green function G, and an invariant measure p, = dd°G,. Its Julia set
is J, = supp(pp). Finally, for each vertical line {z} x C we can define a Green
function R., a probability measure p, and a Julia set J..

The first result concerns the relation between p, 1, and ..

Theorem 2.2. For any skew product f we have

p= /uz fp(2)-

This gives a partial dynamical characterization of the set Jy = supp(u).

Proposition 3.2.

Jy = U {2} x J..

z€Jp

To the measure p we can associate two Lyapunov exponents A; and Ay, mea-
suring the average growth of expansion of f". See the summary of Paper V for
more details.

Theorem 2.6. For any skew product f on C? of degree d > 2 we have
A1 =logd + Z Gy(c)

p'(c)=0

/\2:10gd+/ Z G(z,¢) | up(z).

3—5(276):0

From Theorem 2.6 we see that A1, A2 > logd, something which is not generally
true for polynomial maps of CZ2.

For a polynomial map p of C there is an interesting relationship between the
Lyapunov exponent A(p), the value of G, at the critical points of p and the
connectedness of .J,,, see section 1.3.1. The following result generalizes this to a
skew product.

Theorem 4.10. If f is a skew product on C? of degree d > 2, then the following
are equivalent
(i) Jp is connected and J. is connected for all z € J,.
(ii) Gp(e) =0 for all critical points ¢ of p and G(z,¢) =0 for all (z,¢) € J,xC
with g—i(z,c) = 0.
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The set of all skew products on C? of a given degree d > 2 can be identified
with CN, N = N(d). Let M, be the subset of CV corresponding to skew prod-
ucts satisfying (i)—(iii) above. This set should be thought of as a connectedness
locus.

Theorem 5.2. My is compact in CV.

Finally we give a criterion for expansion of f on .J5. Let PC be the closure of
the postcritical set of f,ie. PC =J,,», f*(C).

Theorem 6.3. Let f be a skew product on C>. Then f is expanding on Jo if
and only if Jo N PC = .

It is unknown whether Theorem 6.3 holds for general holomorphic endomor-
phisms of P*, k& > 2.
As a consequence of the proof of Theorem 6.3 we obtain.

Corollary 6.5. If f is a skew product on C? and f is expanding on Jo, then

JQZ U {Z}XJZ.

z€Jp

This result was previously known in special cases [Hel].

Paper V. An important result in smooth ergodic theory is Oseledec’s theorem,
concerning the existence of Lyapunov exponents. For simplicity we formulate in
only for an ergodic measure. See e.g. [Y] for a more general treatment.

Theorem (Oseledec). Let f be a smooth mapping of a Riemannian manifold M
of dimension k and let p be an ergodic invariant probability measure. Then there
exists a set E C M with u(E) = 1, positive integers my,...m; with Y m; =k,
and real numbers Ay < --- < N with the following properties. For each x € E
there is a sequence of subspaces

0 = Mo(w) € Mi(@) € -+ C Mi(a) = Tu M,
such that dim(M;) = m; and

1
lim —log|Df™(z)v] = \;

n—oo n

fOT v € Mz — Mi—l-

The numbers A; are called the Lyapunov exponents of f with respect to the
measure .

In Paper V we study the situation when f is a regular polynomial endomor-
phism of C? of degree d > 2. As invariant measure we use p = T A T, which
Fornaess and Sibony proved to be ergodic. See section 1.1.3 for more details. Let
A be the sum of the Lyapunov exponents of f with respect to pu. Thus

o1 n
A —nggoﬁlogmeth ()]
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for p-a.e. x € C2.

The main result in Paper V is a formula for A. Recall that the restriction fr
of f to Il is a rational map. Let ur denote its measure of maximal entropy (see
section 1.1.1) and A(fr) the Lyapunov exponent of fi1 with respect to pr.

Theorem 3.2. If f is a regular polynomial endomorphism of C? of degree d > 2,
such that f is sufficiently close to the mapping (z,w) — (2%, w?), then

A =logd + A(fm),
where A(fn) is the Lyapunov exponent of fii with respect to .

The main tool in the proof is a laminar description of the current 7. More
precisely we prove that W#(Jyy) is the disjoint union of complex disks W,, each
of which is properly embedded in A. Here A = P? — K is the basin of attraction
of II. The disks W, have uniformly bounded area and 7' A is a laminar current
of the form TL A = [[W,] un(a).

Paper V was written before Paper VI. Theorem 3.2 above is proved in a more
general version in Paper VI and the notation used in this summary follows the
latter paper.

Paper VI. In the sixth and last paper of this thesis we undertake an investi-
gation of the dynamics of a regular polynomial endomorphism f of C*¥. The
general idea is to study the dynamics of f in a similar way as the dynamics
of a polynomial mapping of C, i.e. through the Green function, the Bo6ttcher
coordinate and external rays. We use the notation introduced in section 1.3.2 in
the summary.

The restriction fiy = f|i is a holomorphic endomorphism of the hyperplane
I ~ P*=! at infinity. Let A denote the basin of attraction of II. We are
concerned with the invariant measure pr of maximal entropy for fri and its
support Ji. An assumption that we impose is that fiy is (uniformly) expanding
on Ji; see the summary of Paper II for the definition. The expansion implies
that f has local stable manifolds near Ji.

We are able to carry out the construction of Bottcher coordinates and external
rays in C*. The set Ji naturally takes the place of oo and W*(.Jir) the place
of C — K. A key to the understanding of external rays is the current 7%~ A,
which denotes the restriction of T¥~! to A, the basin of attraction of II. We
show that the support of this current is exactly W#(Jir). The latter set has the
structure of a Riemann surface lamination W3 (Jr7) outside a small closed set,
and this lamination goes hand in hand with a laminar structure of 75~ A.

Using the laminar structure we prove a formula for the sum of the Lyapunov
exponents of f, generalizing the corresponding result in Paper V. To state this,
we need a critical measure, which we define as p. := T*~1 A [C], where C is the
critical set of f. Let A(f) and A(f) be the sums of the Lyaounov exponents of
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f and fr; with respect to the measures p and pyy, respectively. Then we have.

A() =logd + Alfi) + [ G

We define external rays as gradient lines of the Green function G restricted to
the leaves of W?#(Ji). The set € of external rays can be identified with J x S’
and carries the natural measure ug ® %. Let e : £ = 0K be the endpoint map,
defined by following the rays along decreasing values of G. We show that e is
a.e. well defined, measurable, and pushes forward the measure pu ® % to w.

The one-dimensional Bottcher coordinate conjugates a polynomial to its ho-
mogeneous part of highest degree. We show that if f is a regular polynomial
endomorphism of C¥, then the restriction of f to a neighborhood of IT in W* (.Ji)
is conjugate to the homogeneous part fo of highest degree restricted to a neigh-
borhood of II inside the complex homogeneous cone C/(Ji).

In the special case when k = 2 and no critical point of f is in W?*(Jrr), then
the latter set is a disjoint union of complex disks, each of which is properly
embedded in A. Under suitable hyperbolicity assumptions we show that the
endpoint map e maps J x S' Holder continuously onto J,. The main crux in
showing that the endpoint map e is continuous is to show that the boundaries
of the disks W, accumulate only on J>. In particular, we must show that no
disk W, intersects an unstable manifold W*(§) of a history ¢ belonging to a
hyperbolic set outside J,. Compare with the discussion in Section 1.1.6.

That e maps Jg x S! continuously onto J, implies that Jo is a topological
quotient of J x S'. It would be interesting to know what identifications e can
introduce.
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HYPERBOLIC DYNAMICS OF ENDOMORPHISMS

MATTIAS JONSSON

ABSTRACT. We present the theory of hyperbolic dynamics of endomor-
phisms in. Topics covered are hyperbolic sets, stable manifolds, local prod-
uct structure, shadowing, spectral decomposition and 2-stability.

0. INTRODUCTION

In this paper we study a smooth mapping f of a manifold M as a dynamical
system. We will discuss both semilocal and global dynamical properties of f,
but always under some hyperbolicity assumption. The main examples we have
in mind are holomorphic endomorphisms of complex projective space P¥, k > 1
but we will state the results in greater generality.

There are many excellent and detailed expositions on differentiable dynamics,
e.g. [S], but they usually consider only invertible systems, such as diffeomor-
phisms of a compact manifold. As for noninvertible maps, the attitude seems
to be that most results for diffeomorphisms continue to hold when interpreted
correctly, but it is difficult to find a detailed written account; the purpose of this
paper is to improve upon that. We do not claim that our results are new. Our
main references are [R] and [PS].

The building blocks in hyperbolic dynamics are hyperbolic sets. These are
generalizations of hyperbolic fixed points, i.e. fixed points where the derivative
has no eigenvalue of modulus one. For the precise definition of what it means
for a compact, invariant set A to be hyperbolic, we refer to section 1, but the
definition involves the set

A = {(zi)ico; i € A, f(xi) = Tig1 }-
of histories in A.

A hyperbolic set A has local stable and unstable manifolds at each point; see
Theorem 1.2 for details. Another basic feature of hyperbolic sets is persistence
under perturbations. This means that if f is hyperbolic on A = Ay and g
is close to f, then g has a hyperbolic set A, close to Ay such that f|]\f and

§|Ag are conjugate. Here f is the shift f((z;)) = (f(z;)). For more details

1991 Mathematics Subject Classification. 58F15.
Key words and phrases. Hyperbolic dynamics, shadowing, local product structure, spectral
decomposition,stability.
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see Proposition 1.4. Note that the sets Ay and A, themselves need not be
homeomorphic.

Many results on the dynamics near a hyperbolic set A are best formulated
in terms of A. With this in mind we introduce the concept of local product
structure for A. The definition says that if (pD)iez and (§9);ez are orbits in
A and (2(9);cz is an orbit which follows (p(?) in positive time and follows (G(¥))
in negative time, then #(V is in fact an orbit in A.

Under the assumptions of local product structure for A we prove shadowing
results for A and A, saying that an approximate orbit in A (A) is always close
to an honest orbit in A (A). It seems difficult to prove this result for A without
first proving it for A.

Hyperbolicity of a compact set A is a semilocal condition, only involving the
dynamics in a neighborhood of A. Axiom A, however, is a global condition, i.e.
a condition on the dynamics of f on all of M. For most results on Axiom A
maps we will make two assumptions, namely that M is compact, and that f is
an open mapping. These assumptions are needed in some of the proofs; they are
always satisfied for nonconstant holomorphic endomorphisms of P,

The nonwandering set Q of f is, by definition, the set of points € M having
no neighborhood U such that f*(U)NU = @ for all n > 1. If M is compact,
then all orbits of f converge to €2 in forward and backward time. We say that f
is Axiom A if periodic points are dense in § and f is hyperbolic on 2.

The first consequence of Axiom A is that ) has local product structure; thus
the shadowing results mentioned above apply. We use this to prove versions of
Smale’s spectral decomposition theorem for Q and Q, saying that Q (Q) is the
finite disjoint union of compact invariant sets, called basic sets, on which f (f)
is topologically transitive. Again it seems difficult to prove this for  without
going via Q.

Finally we address stability. An endomorphism f is called Q-stable if f |Qf
is conjugate to Q|Qg for all g sufficiently close to f. Define a relation on the
basic sets of an Axiom A endomorphism f by saying that Q; > € if there
is an orbit (;)icz such that z; — Q; as i - —oo and z; — Q as i = oo.
Then f is said to have no cycles if there is no nontrivial sequence of basic sets
Qi < Q4 <--- < Q= Q;, We prove that if f is Axiom A and has no cycles,
then f is (-stable. Axiom A in itself does not imply Q—stability.

The paper starts by recalling the definition of a hyperbolic set for an endomor-
phism and stating some basic properties, including the stable manifold theorem
and persistence. This is done in section 1. The proofs here are only sketched, as
the (long) details can be found elsewhere. In section 2 we consider local product
structure for a hyperbolic set and prove shadowing results. Then, in section 3,
we define Axiom A endomorphisms, show that their nonwandering sets have the
suitable local product structure and prove the spectral decomposition theorem.
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Finally, in the last section we study Q—stability and prove that an open Axiom
A endomorphism f of a compact manifold M with no cycles is (2-stable.

1. HYPERBOLIC SETS AND THE STABLE MANIFOLD THEOREM

In this section we will give the definition of a hyperbolic set and state some
basic facts about them. In particular we will be concerned with persistence
under perturbations and existence of local stable and unstable manifolds.

Suppose f is a C'*° endomorphism of a C'*™ finite-dimensional Riemannian
manifold M. Let A be a compact subset of M with f(A) = A and define A to
be the set of histories in A, i.e.

~

A ={(zi)ico; i €A, f(2i) = iy}

Then A is a closed subset of AN, hence compact. We will often use the notation

& for a point (2;)i<o in A. Every distance d on A defines a distance on A, also
denoted by d, by

d(&,9) =y 2d(z;,ys)-

i<0

The restriction f| lifts to a homeomorphism f of A given by f((z;)) = (zi41).
There is a natural projection = from Ato A sending & to zo and the pullback
under 7 of the restriction to A of the tangent bundle of M is a bundle on A
which we call the tangent bundle 7. Explicitly, a point in T is of the form
(#,v) where # € A and v is a tangent vector in T,, M. The derivative Df lifts
to a map Df of T in a natural way.

Now f is said to be hyperbolic on A, or that A is a hyperbolic set, if there exists
a continuous splitting T = E* @ E*® which is invariant under D f and such that
Df is expanding on E* and contracting on E*. More precisely, D f(Ev/¢) c Ev/¢
and there exist constants ¢ > 0 and A > 1 such that for all n > 1

D) > A"lo] v € B
|IDf(v)] < ¢'A || v e B

Remark 1.1. It is possible to make a smooth change of metric in a neighbor-
hood of A and obtain ¢ = 1 in the equation above.

Note that whereas the fiber of the unstable bundle E* at a point & € A
depends on the whole history & of g, the fiber of E° at & depends only on the
point zo. Hence the dimension of the fiber of E* at a point £ depends only on
Zp, so the dimensions of the fibers of the bundles E* and E? are locally constant.

As a special case of the above we say that f is expanding on A if the bundle
E? is trivial. This means that there exist constants ¢ > 0 and A > 1 such that
|Df"(z)v] > eA™|o| for all z € A, v € T, M and all n. > 1.
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Perhaps the most fundamental result in hyperbolic dynamics is the stable
manifold theorem. For each point p in A and each history § in A, we define local
stable and unstable manifolds by

W3(p) = {y € M;d(f(y), f'(p)) <6 Vi >0}

for small § > 0. The following theorem asserts that the (un)stable manifolds are
indeed nice objects.

Theorem 1.2. (Stable Manifold Theorem) If 6 is small enough, then

(i) For allp € A and all § € A, Wi (p) and W§(q) are embedded C* disks in
M tangent to E*(p) and E¥(q) at p and qo, respectively.
(i) Wi(p) and W§'(G) depend continuously on p and §, respectively.
(iii) If 2 € Wi(p), then d(f™(x), f"(p)) — O exponentially fast as n — oc.
Similarly, every point x in W§'(§) has a unique history & such that x; €
Wf(ff(@)) for all § <0 and d(zj,q;) — 0 exponentially fast as j — —oo.

Let us sketch a proof of Theorem 1.2. The idea is to consider the set B(A, M)
of bounded maps of A into M. This is a Banach manifold modeled on the
Banach space of bounded sections of T;. Define a map F of B(A, M) by F(h) =
foho f’l. Then the projection 7 is a fixed point of F and the assumption that
f was hyperbolic on A means exactly that 7 is a hyperbolic fixed point. By a
general stable manifold theorem for hyperbolic fixed points in Banach spaces it
follows that F has a local (un)stable manifold. The (un)stable manifolds of f
are then obtained as {h(z)}, where h runs over the (un)stable manifold of F.
To do all of this precisely, and to verify that (i)—(iii) holds, requires a nontrivial
amount of work, which we will not go into here. A proof of a more general
theorem can be found in [PS].

A special case of a hyperbolic set A is a hyperbolic fized point p. This means
that f(p) = p and D f, has no eigenvalue of modulus one. Theorem 1.2 is then
easier to prove and the method of proof yields the following “Lambda Lemma”
or “Inclination Lemma”. For an outline of the proof see [R].

Proposition 1.3. If p is a hyperbolic fixed point of f and ¥ is an embedded
C' submanifold of M intersecting W§(p) transversely near p, then for n large
enough f™(X) contains an embedded manifold ,, which is C'-close to W{(p),
where p = (...,p,p). Similarly, if ¥' is an embedded C' submanifold of M
intersecting W3 (p) transversely near p, then f~"(X') contains a submanifold
¥!,, which is C-close to W§(p) for large n.

We close this section by stating a persistence property for hyperbolic sets.

Proposition 1.4. If f is hyperbolic on A = Ay and g is C'-close to f, then
there exists a continuous map h : A — M close to the projection 7(&) = xg such
that goh = ho f and that g is hyperbolic on Ay := h(Ay). The map h lifts to a
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homeomorphism h: K} — //\; with § o h=ho f, and h depends continuously on
g in the C" topology, 1 <r < oo.

Let us sketch a proof of this. Consider the Banach manifold C(A, M) of
continuous maps of A into M and define a selfmap F, of C(A, M) for each g by
Fq(h) = goho f=1. Again 7 is a hyperbolic fixed point of F, so for g sufficiently
close to f, F, has a hyperbolic fixed point h,, depending continuously on g. This
is the map h above.

2. LOCAL PRODUCT STRUCTURE AND SHADOWING

We now use the local stable and unstable manifolds to analyze the dynamics
near a hyperbolic set A. In particular we will define the notion of local product
structure on A and show how this implies that pseudoorbits in A (A) can be
shadowed by real orbits in A (A).

Let A be a hyperbolic set for an endomorphism f. If § is small enough, then
by continuity W¢(p) and W (g) are almost flat, i.e. C'-close to the tangent at
p and qq, respectively for all p € A and all § € A. Therefore, by the continuity
of E* and E*, W§(p) and W§(§) intersect in at most one point. In particular,
if p = qo, then W3 (p) N Wi () = {qgo}, which implies
Proposition 2.1. If f is hyperbolic on A, then f|a is expansive, i.e. there is a
0 > 0 such that if (z;)icz and (y;)icz are two orbits in A with d(z;,y;) < d for
all i, then x; = y; for all i. The same result holds if only (x;) is assumed to be
in A.

More generally we say that A has local product structure if § can be chosen
so that W§(p) N W (g) C A.

If A has local product structure, if p € A, § € A and if p,qo are sufficiently
close, then W (p) and Wj'(§) intersect in exactly one point 2 € A and z has a
history & such that z; € Wg‘(fj (¢)) for all j < 0. It is not a priori clear that

T € A, i.e. that z; € A for all 7 < 0. It will be useful in the sequel to assume
this, so we state the following definition.

Definition 2.2. We say that A has local product structure if § can be chosen so
that if the intersection W§(p) N W§(G) is nonempty, then it consists of a unique
point € A and the unique history # of z with z; € Wf(fj (¢)) for all j <0 is
completely contained in A. See Figure 1.

If A has local product structure, then there exist §' > 0 and & > 0 such that
if pe A, ¢ € A and d(p,qo) < &, then there is a unique history # € A such that
zo € W§(p) N Wi (q) and z; € WE(f7(q)) for all j < 0. Furthermore,

d(zo,p) < kd(p, o), (2.1)

We define [p, ¢ to be this history z.
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zo » W3 (p)
f o f
90_2—>
q—2 q-1 q90
W (f2(d) wE(f @) Wi (@)

F1GURE 1. Local product structure for A.

Definition 2.3. Let n > 0. An 75-pseudoorbit in M is a sequence ()}, t,],
where —oco < t; < ty < o0, such that d(f(z;),zir1) < § for t1 < i < t3. An
n-pseudoorbit (), +,] is e-shadowed by an orbit (y;)s, ¢, if d(ys, ;) < € for all
i € [t1,t5]. In a similar way we define (shadowing of) pseudoorbits in M or A.

Theorem 2.4. (Shadowing Lemma for f\). If A is a hyperbolic set for f
and A has local product structure, then for each € > 0 there exists an n > 0 such
that every n-pseudoorbit in A can be e-shadowed by an orbit in A.

Proof. Since f is uniformly continuous on A it suffices to prove the result for an
iterate of f (we may have to shrink 7). Let (i(i))[thh] be a n-pseudoorbit in A,
where 2() = (mgl)) j<o. Using the compactness of A and a diagonal process we
may assume that —oo < t; < t3 < oo. After relabeling, then, we may assume
that to =0 and —oc0 < t; < 0.

We will construct points §(?) € Afor t <4 < 0 such that

@0, F D), SO
e-shadows the n-pseudoorbit

(20, 20D 20,

We define () = (y§i))j§0 inductively by

g(U) — :E(O),

90D = FH(?, f@ED)),

see Figure 2. The idea behind this is that f*(3(~1) is close to f*(§®) for
k > 1 and close to f¥(2(=1) for k < 0.

We have to check that the definition above makes sense. Let ¢', § and x be
the constants in (2.1) and (2.2). After replacing f by an iterate we may assume
that there exists an « < 1/2 such that f contracts stable directions by a factor
a and expands unstable directions by a factor max(k, 1)/a. Choose 1,¢0 > 0 so
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(i-1) (i-1) O]

T_q Zo Y1
G ! s f .
y§ Y 2
wp (@) wp@E-D) wi)  wE@ED)) w )

FIGURE 2. Definition of the shadowing orbit.

small that
n+e < &
04(7] + 60) < €p-
Assume inductively that #; < i < 0, that §(* is well-defined, and that
d@0,5") =Y 2df,yi") < eo.
<0
Then
dyy”, 27V <n+d(zg), u)
<1n-+e€o
<4,

[y(()),f( i=1))], and hence §0~Y, is well-defined. Since mgifl) and y](-ifl)
belong to the same local unstable manifold for all j < 0 it follows that

d(@=,50) < 2d(f@0), f56D))
< a(d@{™",2") + dd, "))

which by assumption is less than e,. Hence it follows inductively that §( is
well-defined for ¢; < i <0.

We now complete the proof by showing that (5, .. .,fi(gj(i))) e-shadows
(@, ..., &), First, if t; < i <0, then it follows from (2.1) that

alwg” vy ™) < w(yg”, 0t ™)
< w(d(yy”, 2"y + (), 27))
< k(ep +1).
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Now we let i <t < 0 and estimate

t—i—1

d(@®, @) < d@ D, 50) + 30 d(f ), ).

7=0
The first term is bounded by €g. The terms in the last sum can be written as

d(fi(gt=2)), fit1(glt=i=Dy) = 22 d( ys+] ,ygtﬂjﬂl))

s<0

D+

—j<s<0  s<—j

Note that ygfj ) and ygfj];ll) are on the same local stable manifold if s +7 > 0,

so the first sum is bounded by

Z 250 s+Jd( (t Jj— 1))§

—j<s<0

92—J
1 -2«

r(€o + 7).

The second sum is bounded by

t t 1 t 1 t 1
S 2! ), ) + d@l P 2D a0 )
s<—7

< 279 (d(g"t=D 20Dy 4 d(zED | f(zET=DY)) 4 d(z¢ETD glt=i=Dy)
<277 (eg + 1 + €0)-

Thus d(z®, fi=i(5(D)) < €, where € = 5ep + 217 + 2k(e0 + 1)/ (1 — 2a) can be
made arbitrarily small by choosing 1 and €, appropriately. O

Once we can shadow orbits in A it is fairly easy to do shadowing in A.

Corollary 2.5. (Shadowing Lemma for A). Suppose that A has local prod-
uct structure. Then for each € > 0 there exists an n > 0 such that every n-
pseudoorbit in A can be e-shadowed by an orbit in A.

Proof. By Theorem 2.4 there exists an n' > 0 such that every n'-pseudoorbit in
A can be (¢/2)-shadowed by an orbit in A. Fix m > 0 so that 2!~ ™diam(A) <
n'/2. Let A > 2 be larger than the Lipschitz constant for f on A and let
n < A=™ I min(n', €)/2.

Now suppose (), +,] is an n-pseudoorbit in A. If £, < oo, then we define
x; = fimt2(xy,) for i > ty and if ; > —oo, then we pick any history ¢ of z;,
in A and declare z; = Gi—t, for i < t;. In this way we obtain an n-pseudoorbit
(1‘7,)7,€Z in A.

Define a sequence ((");cz of points in A by

f(l) = (2 i)a f(xifm)a RN} fm_l(‘ri*m% fm(xl*m))’
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where 2() is any history of z;_,, in A. We claim that () is an n'-pseudoorbit
in A. Indeed, for any i € Z we have

d(f(207),20) < 2'7md(f(20), 20+ T 2@, )

1-m<;<0
<ol mdlam Z 25 A(F N (2 1), fR (@ m))
1<k<m
< 77,/2 + Z 2jAm+jd(f(xi7m71)7 xifm)
1-m<;j<0
<24+ ATy

<.

By Theorem 2.4 we can find an orbit (5(?);cz in A which e/2-shadows (#(9)). If
(%)

we let y; =y, , then y; is an orbit in A and we have

d(ys, i) < d(ys?,28") + d(al) ;)
<d@®, D) + d(f™(@i—m), zi)

<e/24 ) d(f (wizj), T (@imjg))

j=1
-1
<e€/2 —I— A=ty
j=1
<e
Hence (y;) e-shadows (x;) and we are done. O

Using shadowing we can control the orbits of f staying near A in positive
or negative time. A neighborhood U of A with the properties in the following
corollary will be called a fundamental neighborhood.

Corollary 2.6. (Fundamental neighborhood). Let A be a hyperbolic set for
a map f such that A has local product structure. Then, for any sufficiently small
neighborhood U of A in M we have

(i) Ifz €U and fi(z) €U for all j > 0, then x € W§(p) for some p € A.

(i) If x € U and x has a history & with x; € U for all i <0, then x € W(q)

for some ¢ € A.
(iii) If (z;)icz is a complete orbit in U then x; € A for all i.
(iv) If g is C'-close to f, then the set A, in Proposition 1.4 is given by

Ay = {zo; (x:)icz is a g-orbit completely contained in U}.

In particular, Ag has local product structure.
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Proof. We will apply Corollary 2.5 with € = §/2. Assume that n < § and define
U:={z e M;d(z,\) <n/2}, with n from Corollary 2.5.

(i)

(i)

(ii)
(iv)

Pick points z; in A for i > 0 with d(z;,2;) < n/2. Then (2;);>0 is an
n-pseudoorbit in A so by Corollary 2.5 there is an orbit (p;);>0 in A which
d/2-shadows (z;). It follows that d(p;,z;) <n/2+4 /2 <4 for all i > 0 so
z € W;§(p), where p = py.

As in (i) we construct an n-pseudoorbit (2;)i<o in A such that d(z;,z;) <
n/2 for all i < 0. Corollary 2.5 provides us with a point ¢ € A such that
d(gi,xi) <n/2+6/2 < for all i, so z € Wi'(g).

From (i) and (ii) we find p € A and ¢ € A such that = € W (p) N W(G).
Since A has local product structure this implies that z € A.

We have A, C U by Proposition 1.4 so we only have to prove the reverse
inclusion. Let (x;);ecz be a g-orbit completely contained in U. By shrinking
U we may assume that if ¢ is close to f, then (z;) may be §/2-shadowed
by an f-orbit (y;) in A and hence d-shadowed by the g-orbit (z;) in A,
coming from the conjugacy in Proposition 1.4. Thus

zo € W5 (20) N W5'((2i)i<o) = {20} € Ay.

3. AXiIoM A ENDOMORPHISMS

The results up to now have been of a semilocal nature, i.e. they concern the
dynamics near a compact set. In order to study global dynamical properties
we now restrict our attention to Axiom A endomorphisms. Our goal here is to
prove the spectral decomposition theorem, which allows us to understand the
dynamics of f near its nonwandering set. For the proof we will assume that f
is an open mapping.

Let f be an C* endomorphism of a C'*° manifold M. A point =z € M is
nonwandering if it has no neighborhood V such that f*(V) NV = @ for all
n > 1. The nonwandering set Q of f is the set of all nonwandering points; it is
a closed set.

Definition 3.1. f is said to satisfy Axiom A if its nonwandering set satisfies

(i)
(i)
(iii)

Q is compact.
Periodic points are dense in ().
f is hyperbolic on Q.

Remark 3.2. If Q satisfies (i) and (ii), then f(Q) = Q, so (iii) makes sense.

Also,

if fis Axiom A, then periodic points (under f) are dense in €.

The following proposition shows that the results in section 2 apply to open
Axiom A endomorphisms.

Proposition 3.3. If f is an open Axiom A map, then Q has local product struc-

ture.
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W'y )
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w3 (pg)
U
7 ,
FFTHUY)
i q; W2, (46)
» , —my =iy ,
WE(f(4)) Wwit(d") ) WE(P)

F1cUre 3. Local product structure for 0.

Proof. Choose 6* > § > 0 so small that if p,¢ € Q and W3 (po) and Wi (q)
intersect in a unique point, then W}, (qo) and WJ*( p) intersect in a unique point.
Now let p and ¢ be any two points in € such that W§ (po) and W(§) intersect
in a unique point . Then z has a history # such that xz; € Wy (fJ((j)) for all
j < 0. We have to prove that & € Q.

We first consider the case when p and § are periodic, say of periods [ and
m, respectively. Let g = f' and let U be any neighborhood of z. By Propo-
sition 1.3, g/(U) contains a manifold C"-close to W (g) and g7 (U) contains a
manifold C'-close to W§(po) for all large j. Therefore ¢/(U) and g7 (U) inter-
sect in a point near z* := Wy, (qo) N Wit (p) for all large j, so x is nonwandering,
ie.x €.

For general p, ¢ let Z be the history defined above, let 7 < 0 and let U be any
neighborhood of x;. Then f~*(U ) is a neighborhood of z, because f is open.
Since periodic points are dense in Q we may find perlodlc points p’, ¢’ in Q close
to p, ¢ such that W§(p}) intersects W (¢') in f~4(U) and W (f( ")) intersects
U. Then the above argument shows that f*(U) intersects f~*(U) for infinitely
many k > 0. Hence x; is nonwandering for all i <0, so Z € Q. See Figure 3 for
an illustration of the proof. O

Theorem 3.4. (Spectral decomposition of Q) If f is an open Aziom A
endomorphzsm then Q can be written in a umque way as o dzsyomt union () =

ul_ 191, where each Q; is compact, satisfies f( i) = O, and f is transitive on
Q. The sets Q; are called the basic sets off Morover, each ; can be further
decomposed into a ﬁmte dzsyomt union € = U1<]<leZ i, where Q; ; is compact,
f(fl ij) = O, il (Ql ni+1 = 1) and f”l is mizing on each Q”

Proof. From Proposition 3.3 we know that ) has local product structure. Choose
8,0' > 0 as in the discussion preceding (2.1) and (2.2). If p € Q is a periodic
history, say of period [, then we let Wa (p) be the set of histories & € € such
that d(z;,p;) < 6 for all i < 0. Similarly, we let W*(p) be the set of histories
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& € Q1 such that d(z;,p;) — 0 as i — —oo. Then W*(p) = szofjl(WgL(ﬁ)). Let
X be the closure of W (p) in Q.

Suppose that p € Qs periodic of period I. We first prove that if § € Q and
d(y,Xp) < ¢, then § € X;. We may assume that ¢ is periodic, say of period m.
Take any point & € W*(p) with d(§,2) < 8’ and let 2 = [yo,2]. Then 2 € W*(p),
which implies that f7(2) € W*(p) if j > 0 and [ divides j. But f7(2) is close to
g if j is large and m divides j, so § € X;.

The next step is to prove that if p and ¢ are two periodic points in QO of periods [
and m, respectively, then either X; = X; or X;NX; = 0. First suppose § € X;.
By the preceding paragraph X, is open, so we may find v € (0,4) such that
W¥(§) C Xp. Then f"mW¥(§) C X, for all j >0, s0 X4 C X;. On the other
hand, X; is open and intersects X, so we may find Z € X; N W“(ﬁ) But it is
easy to see that f™(X;) = X, so f=9™(z) € X; for all j > 0, which implies
that p € X;. Therefore ¢ € X implies X; = X;. Now suppose p and ¢ are
periodic and that X, and X; are not disjoint. Then they intersect in an open
set, which contains a periodic history 7, so the previous argument shows that
X, =X; =X,

The different sets X, form a disjoint open covering of the compact set 9]
so they are finite in number. It is clear that f(Xﬁ) = Xf(ﬁ) SO f induces a

permutation of the different sets X;. Let QM, t=1,...,l, 7 =1,....n; be
the distinct sets X, labeled so that f(fll]) = Qi’j+1, for j = 1,...,n; where
Qi,ni+1 = Qi,l- Let Ql = U?;-lﬁi,j for i = 1,...,1. Then f(ﬁl) = Ql and
Qi) = Q. for all 4, 5.

We prove that f’“ is mixing on Qm for all ¢,j. Let U and V be two open sets
in Q; ;. We have to show that fi (U/) NV # 0 for all sufficiently large ¢. Let p
be a periodic point in U, say of period [. Then stnl.(ﬁ) = Qi,j so we may find
points 2(8) in W¥(fni(p)) NV for s =0,...,1 — 1. For every sufficiently large ¢
we may then find 0 < s < I — 1 such that f~ () € U so fi"(U) NV # 0.
Hence f”i is mixing on fll] for all 7, and this implies that f is transitive on ;
for all 1. O

As we see next, the spectral decomposition of ) induces one of Q.

Corollary 3.5. (Spectral decomposition of Q). If f is an open Aziom A
endomorphism, then € can be written in a unique way as a disjoint union ) =
Uizlﬂi, where each Q; is compact, satisfies f(Q;) = Q; and f is transitive on
Q;. The sets Q; are called the basic sets of f. Morover, each ; can be further
decomposed into a finite disjoint union ; = Ui<j<n;$2; j, where Q; ; is compact,
F( Qi) =Qijr1 (Qini+1 = Qi) and f™ is mizing on each Q; ;.

Proof. We define Q; ; = W(Qi,j), where 7 : Q0 = Q is the projection. We claim
that the Q; ;’s are pairwise disjoint. If not, then there exist periodic points p and
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q of periods [ and m, respectively, such that X;NX; = 0 but 7(X;)Nw(X;) # 0.
Let z be a point in Q with two histories (1) € X5, #2 e X;. If j >0, then
i@y € Xp, fim () € Xy and d(f71m(30), fm (1)) = 0 as j — .
This is a contradiction, because d(X,, X;) > .

Thus the sets €; ; are pairwise disjoint. They are compact because Q; ; is
compact for all i, j and 7 is continuous. It remains to be seen that f™ is mixing
on €; ;. This is easy, because if U and V are two open subsets of €2; ;, then
U:=a""(U) and V := 7= (V) are open subsets of €; j and fi(U)NV # () for
sufficiently large t. It follows that £ (U) NV # @ for sufficiently large ¢, which
completes the proof. O

It follows easily from the definition of the nonwandering set that if M is
compact and (x;);ez is a complete orbit in M, then z; — Q as i — +o0. In the
Axiom A case we can say more. Using the fact that the basic sets are compact,
disjoint and f-invariant, we easily prove the following result.

Lemma 3.6. Assume that M is compact and that f is an open Aziom A endo-
morphism. If x € M, then there exists a basic set Q; such that fi(z) — Q; as
i — oco. Similarly, if & is a history in M, then there exists a (possibly different)
basic set Q; such that x; — Q; as i — —oo.

Combining Lemma 3.6 and Corollary 2.6 we obtain.

Proposition 3.7. Assume that f is an open Aziom A endomorphism and that
M is compact.

1. (i) If x € M, then there ezists a unique basic set Q; such that fi(z) — Q;
as j — 0o. Moreover, there exists a (not necessarily unique) p € Q; such
that d(f7(z), fi(p)) = 0 as j — oo.

2. (i) If & € M, then there ezists a unique basic set €; such that z; =
as j — —oo. Moreover, there exists a (not necessarily unique) ¢ € ﬁ\l such
that d(zj,q;) = 0 as j — —o0.

4. Q-STABILITY AND THE NO-CYCLE CONDITION

Given a dynamical system we may ask whether it is stable under perturba-
tions. The answer to this fairly vague question depends on what we mean by
stability. In this section we define the notion of Q—stability and give sufficient
conditions for it in terms of hyperbolicity.

Let f : M — M be an Axiom A endomorphism. For this section we will
assume that f is open and M is compact. Let Q = [J,,, s be the spectral
decomposition for f. Define a relation < among the basic sets Q; by declaring
that Q; < Q; if W*(Q;) nW*(Q;) # 0. Here

W5(Q;) = {z € M; fi(z) = Qj as i — o0}
W (Q;) ={x e M;32,7n(%) = z,z; - Q; as i - —oo}
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Let us first show that there are no trivial cycles for the relation <.
Lemma 4.1. For any i we have W*(;) N W¥(£;) = Q.

Proof. The proof is similar to that of Proposition 3.3. Let () ez be a complete
orbit with z, — §; as |k| — oo. We have to show that o € Q; and it suffices to
show that z is nonwandering. Choose ¢’ as in the discussion preceding (2.1). By
Proposition 3.7 there exist k > 0, y € Q; and % € ﬁ\l such that z € W#(y) and
z_j, € W¥(2). Let U be an open neighborhood of zo. Then f*(U) is open and
intersects W§(y). Now f is transitive on ; so we may find j > 0 and y' € 4
such that W£(y') N f*(U) # 0 and d(f7(y'), z0) < §’. We may replace f/(y') by
a periodic point u of period m. Hence W (u) N f¥+7(U) # 0. Similarly, we may
find a periodic history 9 € Q; of period n such that W(®) N f~*U) # 0 and
d(vo,u) < &'. By Proposition 1.3 f¥+i+ml({]) contains a manifold C'-close to
W(9) and f~F " (U) contains a manifold C'-close to W§ (u) for large [. Hence
fREHIHARLTTY N T # § for large [, so g is nonwandering. O

We say that f satisfies the no-cycle condition or, simply, that f has no cycles if
there is no nontrivial chain

Qi < Qg <00 < Q. =0y,

Definition 4.2. An endomorphism f : M — M is (-stable if there exists a
neighborhood U of f and for every g € U a homeomorphism ¢ : Qy — Qg with
go¢ = ¢o f. Here Q; and , are the nonwandering sets of f and g respectively.

We now come to the main result in this section. For simplicity we restrict our
attention to compact manifolds M.

Theorem 4.3. If M is compact and f : M — M is an open Aziom A endo-
morphism with no cycles, then f is {2-stable.

Remark 4.4. The proof will show that the conjugacy ¢ can be chosen close to
the identity. Note that the conjugacy takes place on the level of histories — the
sets 0y and Q, need not be homeomorphic.

Let us make some observations before starting with the proof. By spectral
decomposition, €2 is the disjoint union of the basic sets ;, 1 < i <[ and there
are fundamental neighborhoods U; of ; in the sense of Corollary 2.6.

In particular, if g is C'-close to f, then g has hyperbolic sets Q; ,, 1 <i <1
contained in U; and there are homeomorphisms ¢; : Qi, F = Qi,g conjugating f
to g. Thus Qg ; has local product structure, periodic points for g are dense in
;4 and the restriction of g to Q; 4 is transitive. In particular ; , is contained
in the nonwandering set (2, of g. To prove that f is (-stable, it therefore suffices
to prove that €2, is exactly the union of the sets ; ,. In general, there is no
reason for this to be true. Picture 4 illustrates an Axiom A diffeomorphism f
of, say, the two-dimensional sphere admitting an Q-explosion, meaning that the
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FI1GURE 4. An Q-explosion.

nonwandering set for the original map f (a finite set) is much smaller than the
nonwandering set for the perturbed map ¢ (an infinite set). The nonwandering
set of f consists of six sources and sinks, marked with big circles, and three
saddle points p, ¢ and r. These are the basic sets of f. The nonwandering
set of g contain perturbations of these nine points, but also all the transverse
intersection between unstable and stable manifolds in the second picture.

The main tool in proving Theorem 4.3 is the existence of a filtration, which
we now describe. If f is Axiom A and has no cycles, then we may label the basic
sets of f in such a way that Q; > Q; implies ¢ > j.

Proposition 4.5. Let f : M — M be an open Azxiom A map with no cycles,
where M is compact. Then there is an integer m > 1, fundamental neighborhoods
U; of Q; and compact sets ) = My C My C --- C My = M, such that Uy =
int(My), f™(M;) C int(M;) for 1 < j <, and f™(M; — U;) C int(M;_1) for
2<j<l.

We postpone the proof of Proposition 4.5 and show instead how to deduce
Q-stability.

Proof of Theorem 4.3. Let g be C'-close to f. As mentioned above it suffices to
show that the nonwandering set 0, of g is the union of the sets €2;,, 1 < j </,
so let (2;)icz be a g-orbit completely contained in Q. If ¢ is close enough to f,
then Proposition 4.5 holds with f replaced by ¢g. Hence thereis a j, 1 < j <I,
such that z; € U; for all i. But then z; € Q; , for all ¢ by Corollary 2.6. O

Thus it remains to construct the filtration in Proposition 4.5. Figure 5 il-
lustrates the first two steps in the construction of the filtration. Here €2y is an
attracting set, by the labeling of Q;, and M; = U, is a neighborhood of Q.
Next, W*(€2) is in the stable set of Q; and My is the union of M; and a neigh-
borhood of W*" () — M;. It will take some care to define this neighborhood so
that the properties in Proposition 4.5 hold.

We start the proof of Proposition 4.5 with a preliminary result.

Lemma 4.6. The set Ay := |J, o, W"(%;) is compact and |J,., W*(Q;) is an
open neighborhood of Ay, for 1 <k <. B

Proof. We first show that A is closed, hence compact. Let z € Wu(Q;,) for
some ig < k. We must show that € W"(Q;) for some ¢ < k. Pick histories
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FIGURE 5. Construction of the filtration.

G, > 1, such that y(()“) — zas p— oo and y — Q;, as s — —oo for all p.
By passing to a subsequence we may assume that G converges to a history 2.

Let I be the set of ¢ such that §(*) accumulates on Q; as p — co. More
precisely, i € I if there exist pur — oo and s, < 0 such that yg‘:’“) — ; as

k — o0o. The proof now goes through a number of steps.
Lemma 4.7. There is an i € I such that x € W*(£;).

Proof of Lemma 4.7. Recall that §(*) — 2 as u — 0o. We have 2y = = and there

is an ¢ such that z; — Q; as s = —oo. We claim that ¢ € I. To see this, pick
sk with d(zg,,9;) <  for k > 0. Tf iy, is large enough, then d(y{*),0;) < L,
which proves that ¢ € I. O

Lemma 4.8. Ifi € I, i #io, then thereis a j € I, j # i such that Q; > ;.

Proof of Lemma 4.8. Pick §p > 0 such that
1 .
0o < 5 1S£1<Hi12§l d(Q“ R QQ)

By assumption there exist pr — oo and s; < 0 such that yg‘,:’“) — Q;. Choose

tr < s minimal such that d(ygg’“),ﬂi) < 9. This is possible because i # ig.
Define w*) by wgk) = yiﬁ_’;i By passing to a subsequence we may assume that
w*) = i as k — 0o. We claim that ws — Q; as s — oo. To see this we first
consider the case when s, — t;, — oo. Then d(wgk),Qi) < 8 for 0 < s < s, — ty,
so we must have w, — ; as s — 0o. The second case is when s, —t;, is bounded
as k — oo. By passing to a subsequence we may assume that sy —t, =r > 0
for all k. But then d(wﬁk),Qi) — 0as k — oo so w, € Q;. Thus wg — Q; is this
case too.

Similarly, we have w; — §); as s = —oo for some j. Hence §2; > ; and we
have j # i by Lemma 4.1. It remains to be seen that j € I. But for each m > 1
we may choose up, < 0 such that d(z,,,,;) < . Then we find yin, — 00 such

that d(y{"™), ,Q;) < L. This shows that j € I. O
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FIGURE 6. Dynamics near €
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We now continue the proof of Lemma 4.6. By Lemma 4.7, Lemma 4.8 and the
no-cycle property there exists a chain

Qi0>Qi1 >"'>Qin

such that x € W*(€;,). Again by the no-cycle property we must have i; < ip < k
so ¢ € Aj. This proves that Ay is compact. Similarly we may prove that
M — Uiy W2(Q4) = Ui W*(4) is compact so [J;., W*(€;) is open and it
contains (2 by the labeling of the basic sets. O

Proof of Proposition 4.5. We construct the sets M}, and choose the fundamental
neighborhoods Uy, inductively. Compare with Figure 5. First note that 4 is an
attracting set, because

W) = | W @) nwH(Q;) =
1<5<

by Lemma 4.1 and the labeling of the ;. Hence, if U; is small enough and
M, = Uy, then we can find m > 1 such that f™(M;) C U;. Note that A; =
 C int(M;). Now suppose that 2 < k < [ and that we have an integer
m’ > 1 and compact sets § = My C My C -+ C My_; such that A; C int(M;),
f™(M;) C int(M;) for 1 < j < k—1, and f™ (M; — U;) C int(M;_,) for
2<j<k—1.

If x € W%(Qyg), then z € W3(£;) for some i < k by Lemma 4.1 and the
labeling of the ;. Given €,d,4’,8" > 0, define the sets W,V,V' V" as follows. W
is the open e-neighborhood of Q in W*(Qy), V (V') is the closed §-neighborhood
(6'-neighborhood) of W in M, and V" is the closed §"-neighborhood of W* () —
(Mg_1 UW) in M. See Figure 6.

By the hyperbolicity of f on € we may choose m; > 1 and € > 0 such
that for every m > my and every 6" > 0 there exist 8’ > § > 0 such that
(V) cVuint(V").

Now W*(Q) — (W Uint(Mg_1)) is compact, so by the induction hypothesis
there is an my > my such that f™2(W*(Q) — W) C int(Mi_1). Choose 6"
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so small that f™2(V") C int(My_1) and find §' > § > 0 such that f™2(V') C
V uint(V").

Hence, if we let m = m'mo, Uy = int(V') and My, = Mp_; UV" UV’ then
My, is an open neighborhood of Ay, f™(My) C int(My), and f™(M; — Ui) C
int(Mp—1). This completes the induction. O
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HOLOMORPHIC MOTIONS OF HYPERBOLIC SETS

MATTIAS JONSSON

ABSTRACT. We show how hyperbolic sets for holomorphic families of en-
domorphisms of a complex Hermitian manifold give rise to holomorphic
motions or analytic multifunctions.

0. INTRODUCTION

Let M be a complex Hermitian manifold and {f,}.ep a holomorphic family
of endomorphisms of M, where D is the unit disk. This means that the map
D x M — M, defined by (a,z) — f.(z) is holomorphic. Suppose that f = f,
has a compact surjectively invariant subset K, i.e. f(K) = K. For example, K
could be a fixed point or a periodic orbit, but also a more complicated set such
as the Julia set of a rational function. We may then ask if K is persistent under
the perturbation f, of the map f. For instance, if K is a fixed point of f, then
we ask if f, has a fixed point K, near K for a small enough. A sufficient (albeit
not necessary) condition for this is that the fixed point K is hyperbolic, meaning
that the derivative of f at K has no eigenvalue of modulus one.

There is a natural notion of hyperbolicity for general sets K. Let us first
consider the case when the maps f, are diffeomorphisms. The precise definition
can then be found in e.g. [R] and will not be stated here, but it says, loosely, that
the tangent bundle over K splits continuously into two invariant subbundles on
which the derivative of f is expanding and contracting, respectively.

One basic result in real dynamics is that hyperbolic sets are persistent un-
der perturbations in the map f (see [R]). In our case this means that if a is
small enough, then f, has a hyperbolic set K, close to K, and there exists a
homeomorphism h, close to the identity conjugating f|x to fu|k, -

If K is a hyperbolic fixed point, then it follows from the implicit function
theorem that the fixed point K, of f, depends holomorphically on a. The natural
generalization of this to more general sets K is the notion of a holomorphic
motion, the definition of which is given in section 1.

Theorem A. Let {f.}acp be a holomorphic family of diffeomorphisms of a
Hermitian manifold M parameterized by the unit disk D. Suppose that f = fy
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Key words and phrases. Holomorphic motions, analytic multifunctions, hyperbolic sets,
holomorphic dynamics.
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has a hyperbolic subset K. Then K moves holomorphically with the parameter
a at a = 0. More precisely, there exist v > 0 and a holomorphic motion h :
D, x K — M such that for each a € D,

(1) K, :=h(a,K) is a hyperbolic subset for f,.
(2) The map h, := h(a,-) : K — K, is a homeomorphism and f,oh, = hgof.

Let us now return to the situation of a holomorphic family {f,} of endomor-
phisms of a Hermitian manifold M. There is a notion of a hyperbolic set K in
this setting too [R]. Again, we will not give the precise definition, but let us
note that it involves the set K = {(zr)r<o; 2k € K, f(xr) = 41} of backwards
orbits in K.

The real theory [R] tells us that for a small enough, f, has a hyperbolic set
K, close to K and there exists a continuous surjective map h, : K = K,.
Now K and K, need not be homeomorphic so K does, in general, not move
holomorphically with a. Nevertheless, the dependence of K, on a reflects the
complex structure; one way of saying this is that a — K, is a strongly analytic
multifunction, the definition of which is given in section 1.

Theorem B. Let {f.}uep be a holomorphic family of endomorphisms of a Her-
mitian manifold M parameterized by the unit disk D. Suppose that f = fo has
a hyperbolic subset K. Then K moves holomorphically with the parameter a at
a =0 and a = K, is a strongly analytic multifunction. More precisely, there
exist 7 > 0 and a continuous map h: D, x K — M such that

A~

(1) For each a € D,, K, := ho.(K) is a hyperbolic set for f,, where h, =
h(a,-).

(2) For each a € D, the map h, satisfies the relation f,oh, = h, o f and lifts
to a homeomorphism ﬁ; (K = I/(\a, which is just the identity for a = 0.

(3) The map h(-,#) : D, — M is holomorphic for each € K.

(4) The set |J,({a} x K,) in D, x M is foliated by holomorphic graphs over
D,.

Sometimes a hyperbolic set K does move holomorphically with the parameter

even for endomorphisms. An important situation when this happens is when K

is a repellor, meaning that the derivative of f is expanding on the whole tangent

bundle over K (see Definition 1.3).

Theorem C. If {f,} is a holomorphic family of endomorphisms and K is a
repellor for f = fo, then K moves holomorphically with a at a = 0 in the sense
of Theorem A.

Theorem C applies to show that the Julia set of a rational function moves
holomorphically with the parameter on the open set of parameter space con-
sisting of hyperbolic maps. In [MSS], the authors prove that in fact one has a
holomorphic motion for a (possible larger) open dense set of parameter space.
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1. DEFINITIONS

In this section we recall the definitions of holomorphic motions and analytic
multifunctions. For notational simplicity we will let these be parameterized by
the unit disk.

Definition 1.1. Let D be the unit disk, M a complex manifold and X a subset
of M. Then a holomorphic motion of X parameterized by D is a continuous
map ¢ : D x X — M such that:

(1) ¢(0,-) =id.

(2) ¢(-,z) : D — M is holomorphic for every = € X.

(3) ¢(a,-) : X — M is injective for every a € D.

Holomorphic motions have mostly been studied for subsets of the Riemann
sphere. In [MSS] Maiie, Sad and Sullivan proved the celebrated A-lemma, which
says that each map ¢(a, ) is quasiconformal and that the continuity assumption
on ¢ is redundant. Later on Slodkowski [S], strengthening previous results,
proved that a holomorphic motion of any subset X of C can be extended to a
holomorphic motion of the whole Riemann sphere.

In higher-dimensional complex manifolds, such extension and continuity prop-
erties do not hold in general. Indeed, it is easy to construct a holomorphic motion
of a subset X of C2, such that all the maps ¢(a, ) are discontinuous for a # 0.
Moreover, the role of quasiconformality is not clear, at least not for arbitrary
sets X. Some results on quasiconformality and holomorphic motions in higher
dimension can be found in [ABR].

Next we discuss analytic multifunctions. Let M be a complex manifold.
Then a multifunction from D to M is a map K from D to the set (M) of
compact subsets of M. K is called continuous (upper semicontinuous) if it is
continuous (usc) in the Hausdorff metric on K(M). Its graph is defined by
I'(K) = U,ep ({a} x K(a)) and it is easy to see that K is usc iff I'(K) is closed
inD x M.

Definition 1.2. A strongly analytic multifunction is an usc multifunction K
such that I['(K) is the union of graphs of holomorphic maps from D to M.

From the definition it follows that a strongly analytic multifunction K is
both continuous and an analytic multifunction in the sense of [A]. The latter
statement means that if D CC D is open and ¢ is plurisubharmonic in a neigh-
borhood of T'(K|p), then ¢(N\) := sup{vo(\,z);z € K(A\)} is subharmonic on
D. Also note that a holomorphic motion can be viewed as a strongly analytic
multifunction K such that I'(K) is the union of disjoint graphs.

Analytic multifunctions appear naturally in complex dynamics. For exam-
ple, Baribeau and Ransford [BR] proved that if f, is a holomorphic family of
rational functions, then @ — J is a analytic multifunction, where J; is the usc
regularization of the Julia set J, of f,, i.e. the graph I'(a — J) is the closure
of the graph I'(a — J,).
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Let us finally give the definition of a repellor as is needed in the statement of
Theorem C.

Definition 1.3. Let f be a holomorphic endomorphism of a Hermitian manifold
M and K a compact invariant set. Then K is said to be a repellor if there exists
¢ > 0,\ > 1 such that |f'v| > e¢\™|v]| for all tangent vectors v over K and all
n>1.

2. PROOFS

Proof of Theorem A. From the real theory [R] we know that we may find an
r > 0 and for all @ € D, a continuous map h, : K — M such that K, := h,(K)
is a hyperbolic subset for f,, h, : K — K, is a homeomorphism and the relation
fa o hg = hy o f holds. Moreover hg is the inclusion K < M and the map
a — hg is C* as a map from D to the real Banach manifold C(K, M) of
continuous functions of K into M. All of this is proved using the Implicit
Function Theorem on C(K, M).

We want to prove that the map a — h,(z) is holomorphic for all z € K
and depend continuously on z. But the smoothness of a — h, implies that
a — hg(x) is C* and that all derivatives of h,(z) with respect to a depend
continuously on z. Fix b € D, and let u be the section of the tangent bundle
of M over K, defined by ju(hy(2)) := 22 he(z)|a=s; this makes sense since h
is a homeomorphism. Then g is a continuous, hence bounded, section of T'M
over the compact set K;. We want to prove that ¢ = 0. From the relation
faohy = hgo f we easily get po f = (fp)«pt, where (fp)« is the derivative
of f,. But then the following lemma tells us that g = 0, which completes the
proof. O

Lemma 2.1. Let K be a hyperbolic set for an endomorphism f of a Riemannian
manifold M and let (x;);cz be an orbit in K. Suppose that u is a bounded
section of the tangent bundle over (z;), i.e. u(x;) € T, M, with the property
w(xiv1) = fe(zi)w(x;). Then p(z;) =0 for all i.

Proof. We prove the lemma in the case when f is a diffeomorphism — the
modifications in the endomorphism case are left to the reader. There is a con-
tinuous f.-invariant splitting of the tangent bundle over K into unstable and
stable bundles E* and E*, respectively, so we may write u = pu, + ps, where
iy, and pgs are bounded sections over (z;) of E* and E®, respectively. We
then have that py,(zir1) = fe(®i)pu(z;) and ps(zir1) = felzi)ps(zi). Sup-
pose that p,(z;) # 0 for some i. Then the expansion along E* gives that

|w(@ivn)| = |2 (x;)pu(x;)] = 00 as n — co. This contradicts the assumption
that u, was bounded. Hence u, = 0. In the same way, we see that us = 0 so
o= 0. O

Proof of Theorem B. The proof is very similar to that of Theorem A. The exis-
tence of r and h satisfying (1)—(2) follows from the real theory [R]. This time h
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is constructed using the Implicit Function Theorem on the real Banach manifold
C(K,M) of continuous functions from K to M. To prove (3) we take b in D,
and consider the map p from K, to TK, defind by ,u(f?b(:i')) = L h(2)]azb.
Then p is well-defined since ﬁ\b is a homeomorphism. Moreover, i is continuous,
hence bounded, and satisfies the relation uofb = (fp)«p. Therefore, if (x;) is any
orbit in K}, then Lemma 2.1 shows that u((z;)) = 0. This proves (3). Finally
(4) follows immediately from (3). O

Proof of Theorem C. Let h, be as in Theorem B. We claim that there exists a
homeomorphism g, : K — K, such that g, om™ = h,, where 7 : K — K is the
projection w((zx)) = xo. To see this, take any z € K and let & = (z) and
§ = (yx) be two points in K with () = n(j) = = (i.e. 2o = yo = ). We must
show that h, (&) = he(g). Suppose that this is not the case and let z(a) = hq (%)
and y(a) = ha(9). Then for n > 0 we have

d(fq (x(a)), £ (y(a))) < d(fg(x(a)), f"(2)) + d(f5 (y(a), f"(x)) < cla),

where ¢(a) — 0 as a — 0. Hence the forward orbits of z(a) and y(a) are very
close if a is small. Because of the expansion, this is only possible if z(a) = y(a).
Therefore, the map h, : K — K, is well-defined. It remains to be seen that
a — he(x) is holomorphic for all € K but this follows immediately from the
fact that the maps a — h,(Z) are holomorphic. O

It is also possible to give a direct proof of Theorem C without using Theorem
B. Let us sketch how to do this. The idea is to use Sullivan’s telescope construc-
tion as described in [HO]. For simplicity we assume that the constant ¢ in the
definition of a repellor is equal to one; this can be achieved by changing the met-
ric on M slightly (a construction originally due to Mather). Let Up(z) be the ball
of radius € > 0 centered at z € K. The expansion implies that f='(Uy(f(z)))
has a unique component contained in Uy (z) for x € K if € is small enough. Call
this component U; (x). Inductively we find a nested sequence (telescope) of open
sets {Un(z)}n>o for x € K and the expansion implies that the diameter of U, (z)
is uniformly exponentially small. In particular the intersection N,>oUn(z) (the
focus of the telescope) is the single point z. If @ is small enough, then we may
construct a perturbed telescope {Up o(2)}n>0 for @ € K so that Uy (z) is a
connected component of f, ™(Up(f™(x))). We will still have that the diameter
of Up,q(x) is uniformly exponentially small, so the focus of the telescope is a
well-defined point h,(z). It is easy to see, using the fact that expansion on K
is bounded above, that h,(z) depends continuously on z — in fact h, is Holder
continuous. Exchanging the roles of f and f, we see that (for a small enough)
he is a homeomorphism, which is bi-Holder. Define K, := h,(K). It is clear
from the construction that h, conjugates f on K to f, on K,. Finally, for fixed
x, he(z) is given as a uniform limit of functions holomorphic in a so a = h,(x)
is holomorphic. This completes the second proof of Theorem C.
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3. EXAMPLES

Our first example concerns polynomial diffeomorphisms of C2, for which we
use [BS] as a reference. We only consider diffeomorphisms which are conjugate
to finite compositions of (generalized) Hénon maps.

A polynomial diffeomorphism of C? is said to be hyperbolic if it is hyperbolic
on its non-wandering set; in this case the non-wandering set consists of a basic
set J of unstable dimension one and a finite number of repelling or attracting
periodic points.

It follows from Theorem A that if {f,}sep is a holomorphic family of poly-
nomial diffeomorphisms of C? and f = f is hyperbolic, then .J moves holomor-
phically with a at a = 0.

The second example is of a polynomial endomorphism f of C2, defined by
f(z,w) = (2%, w?). The non-wandering set 2 of f is the union QyUQ; UQs, where
Q% ={(0,0)}, & = {lw| =1,z =0} U{]z| = 1,w = 0}, Dy = {|z] = |w| = 1}.
In this case f is hyperbolic on all of Q2 and it has unstable dimension i on (2;.

We now embed f in a holomorphic family {f,} of endomorphisms of C?
with fo = f. It then follows from from Theorem C that the set {25 moves
holomorphically with a for a small enough; the same is true for 0g. On the other
hand, the set 2; does not move holomorphically in general. To see this, consider
the component K = {|z| = 1,w = 0} of ;. We embed f; in the holomorphic
family {f,} defined by f,(z,w) = (2?,w? + az),|a| < 1/4. Then the Riemann
surface V, = {w? = r?z} is invariant, where r = 1/2 — 1/1/4 — a and the branch
of the root is chosen so that \/1/_4 = 1/2. If we use z as a variable on V,, then
the dynamics on V, is given by 2 — 22. Hence K, = {|z] = 1,w? = r?z}. For
a # 0 this is a fiber bundle over the circle {|z] = 1,w = 0} with a two point set
as a fiber and it is clear that K, is not a holomorphic motion of K.

In fact, the discontinuity of K, in this example is misleadingly simple. If we
take fa(z,w) = (2%, w? + w/10+ az), then one can see that the set K,, which is
a perturbation of the set Ko = {|z| = 1,w = 0} for small a # 0 is a fiber bundle
over the circle |z] = 1 with Cantor sets as fibers.
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SOME PROPERTIES OF 2-CRITICALLY FINITE
HOLOMORPHIC MAPS OF P2

MATTIAS JONSSON

ABSTRACT. We define 2-critically finite maps of P2 and show that they
have no nontrivial closed backward invariant sets. In particular, their Julia
sets Jq, defined as the support of a natural invariant measure, are equal to
P2. We also prove that repelling periodic points are dense for such maps.

0. INTRODUCTION

The present paper deals with the dynamics of 2-critically finite holomorphic
maps on P2, These are natural generalizations of the so called Thurston maps on
P! which by definition are rational maps all of whose critical points are strictly
preperiodic (we do not allow superattracting periodic points). See §1 for precise
definitions.

Our first main result is that if f : P2 — P2 is 2-critically finite then f has
no nontrivial closed backward invariant set. More precisely, if E is a nonempty
closed set with f~*(E) C E then E = P2

Our second main result is that repelling periodic points are dense in P? for
any 2-critically finite f : P2 — P2,

We use two major tools for proving the above results. The first one is
Kobayashi hyperbolicity. More precisely, we apply two theorems of M. Green
[Gr1], [Gr2] which together tell us that the complement in P? of certain unions
of algebraic curves is complete hyperbolic and hyperbolically embedded. The
second tool is a theorem of Ueda [Uel] which says that families of branches of
inverse iterates of f are normal whenever they are defined.

In dimension one, a 1-critically finite map is a Thurston map and both our
main results are equivalent to the well-known fact that such maps have empty
Fatou sets. Indeed, Thurston [Th] has given a topological classification of them
and proved that they admit an expanding metric with singularities at the post-
critical points.

The study of 2-critically finite maps of P? was initiated by Fornzess and Sibony
[FS3], [FS1] (they use a slightly different definition and call their maps strictly
critically finite, see Remark 1.10). In [FS1] they proved that, under a technical

1991 Mathematics Subject Classification. Primary: 32H50; Secondary: 32H20.
Key words and phrases. Holomorphic dynamical systems, critically finite, invariant set,
periodic points, Kobayashi hyperbolic.
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assumption on the postcritical set, 2-critically finite maps have empty Fatou
sets, i.e. that their Julia sets Jy are all of P?. Ueda [Uel] later gave a proof
without this technical assumption. It is easy to see that for general holomorphic
self-maps of P¥, .J; is a nonempty closed completely invariant set which contains
all the repelling periodic points of f. Hence our main results are stronger than
the results in [FS1] and [Uel].

Furthermore, Jy is only one possible generalization of the Julia set in one
variable. Another natural candidate is the support J; of the “Green measure”
describing the distribution of preimages of quasi-every point (cf [FS2] and §2).
Alternatively, one can consider the set where iterates are not normal even on
1-dimensional subvarieties (cf [FS2]). All these Julia sets share the common
property that they are nonempty closed completely invariant sets, so our first
main result imply that they are equal to P2 for 2-critically finite maps.

The results in this paper are restricted to P? and the arguments to prove
them cannot, in general, be generalized to P* with £ > 3. The main reason for
this is that when analyzing a k-critically finite map f : P*¥ — P* we often need
to study the restriction of f to algebraic subvarieties of P* of dimension between
1 and k — 1. This is possible in dimension 2, because then the subvarieties have
normalizations that are nonsingular compact Riemann surfaces - in fact they
must be Riemann spheres or tori. In P* for & > 3, the situation need not be
that simple.

The paper is divided into four sections. In §1 we define what we mean by
a k-critically finite holomorphic map of P* and analyze the structure of the
postcritical set in the case k = 2. Then in §2 we prove our first main result,
that a 2-critically finite map of P2 has no nontrivial closed backward invariant
set. After that we turn to the study of periodic points and prove that repelling
periodic points are dense for a 2-critically finite map of P2. This is proved in §3.
Finally, in §4, we address the question of determining asymptotic distribution
of periodic points of a 2-critically finite map of P2. We show that a certain
conjecture about the limits of families of branches of inverse iterates implies that
(repelling) periodic points are distributed according to the “Green measure”.

1. CRITICALLY FINITE MAPS AND THEIR POSTCRITICAL SETS

Let us fix some notation and definitions which will be used throughout the
paper. For general information on holomorphic dynamical systems on P¥, see
[FS1], [FS2] and [FS4]. The maps that we call k-critically finite will be general-
izations of Thurston maps in one dimension, so let us first define the latter.

Definition 1.1. A rational map f : P! — P! is a Thurston map if the post-
critical set of f is finite and f has no superattracting periodic points.

Remark 1.2. One often allow Thurston maps to have superattracting periodic
points but the above definition is more convenient for our purposes.
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If f: P* — P* is a holomorphic map, we let C be its critical set, i.e. the set
of points p where df, is non-invertible. Then C} is algebraic of codimension 1.
We let Dy := Uj>0ij’1 and E; := ﬂj>0ij1. Note that D; is the postcritical
set of f and that if D is closed then E; is the w-limit set of C}.

Definition 1.3. We say that f is l-critically finite if D¢, and hence E; are
algebraic sets and C; and E; have no common irreducible component.

Note that D; is algebraic iff the sequence of sets {f/C;}; is preperiodic. In
that case, fi'+' Dy = fi' Dy for some minimal {; > 1so E; = f4'D; and Cy, Dy
and F; all have codimension 1.

Inductively we define j-critically finite maps of P*,1 < j < k as follows:

Definition 1.4. Suppose f is (j — 1)-critically finite. This means in particular
that the set F/;_; has been inductively defined as an algebraic set of codimension
j — 1 with no irreducible component contained in C;. Then C; := E;_1 NCy =
E;_1 N Cj_, is algebraic of codimension j. We say that f is j-critically finite
if Dj := U;sofiC; is algebraic and the set E; := NM;sof'D;, which then is
necessarily algebraic of codimension j has no irreducible component contained

in Ol.

In the case of P? the situation is simpler, because of the following lemma, by
Ueda (Lemma 4.2 in [Uel]).

Lemma 1.5. Let f : P* — P* be I-critically finite. Then the set Dy :=
UjsofiCs is algebraic of codimension 2 and is contained in sing(D1). The set
Es :=Njs0f/ D2 is algebraic of codimension 2 as well.

Sketch of proof. Let ¢ € Dy. Then q = f7(p) for some p € Cy = C; N E;. Since
E; and C have no common irreducible component, p must be a singular point
of C; U E; and since C; U E; C f~/D; we must have p € sing(f~/D;). But
then by Lemma 2.5 in [Uel], ¢ = f/(p) € sing(D;). Thus D C sing(D;). Now
let V' be an irreducible component of Co = E; N Cy. Since V' C sing(D;), V
must have codimension 2. Then for each j > 0 f/V is an irreducible algebraic
set of codimension 2 contained in sing(D;) so it must coincide with one of the
irreducible components of sing(Dy). This shows that D» is contained in the
(finite) union of irreducible components of sing(D;) and hence is algebraic of
codimension 2. The set E5 is the algebraic of codimension 2 because it is the
intersection of the decreasing family of algebraic sets {f/(D2)};j>o0- O

Because of Lemma 1.5, f : P2 — P? is 2-critically finite iff it is 1-critically
finite and the set FEs, which by the lemma is a finite set, contains no critical
point.

The following are examples of 2-critically finite maps of P2:
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[y 2] =[(—zx+y+2)°:(z—y+2)7%: (x+y—2)?

[Z:y:2l s ((e—y+2)?: (—z+y+2)°: (2+y—2)7

[y 2l =[(x+y—2)2:(—z+y+2)%: (x—y+2)?
[(

[:y:2] = [(z—2y)°: (z —22)% : 27

An example of a k-critically finite map of P* is the following:

[£o - xp] = [(wo — 221)% = - = (2o — 223)? : 23]

(The first three examples are due to Ueda [Ue2] and the two last ones to
Fornass and Sibony [FS3].)

Suppose f : P2 — P? is 2-critically finite. We analyze the structure of the
sets Fy and E» and the restrictions f|g,, f|m,- Note that neither E; nor E,
change if we replace f by an iterate. Hence, for the time being, we may assume
that all irreducible components of E; and all points in 5 are fixed by f.

Let V' be an irreducible component of F; which is fixed by f. Then V is an
irreducible algebraic set of dimension 1. Fornaess and Sibony ([FS2], Proposition
7.5) proved that f|V cannot be injective. Let V be the normalization of V' (see
[Gu]) with projection 7 : V — V. Since V has dimension 1, V is a compact
(nonsingular) Riemann surface, and the map f|y lifts to a holomorphic map
[V

We first prove a result about the critical set of f .

Lemma 1.6. Let f : P2 — P? be any holomorphic map and V an f-invariant
irreducible algebraic curve. Let V be the normalization of V. with projection
7V =V and f the lifting of f|v to V. Then the critical set off is contained
int~HCINV).

Proof. We have that p € 7' (p) C V is critical for f if and only if f|U is non-
injective for every neighborhood U of p in V which can only happen if f |z is
non-injective for any neighborhood U of p in V. The latter is only possible if
p € C1, because otherwise f is injective in a neighborhood of p in P2, O

Now V cannot be hyperbolic, for then some iterate of f would be the identity,
which is impossible since f is not injective. So V is a torus or the Riemann
sphere.

If V is a torus then f : V = V lifts to an endomorphism of C given by
z — az + b. Since f is not injective, we must have |a| > 1 so f is an expanding
endomorphism of the torus. In particular all periodic points of f are repelling.

If V is the Riemann sphere then f : V — V is a rational map. By Lemma 1.6,
its critical points are contained in the set 71(C;NV'). Hence they are contained
in the set 7= 1(Cy N'V) which is (strictly) preperiodic to the set 7~ 1(E> NV),
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consisting of noncritical cycles. Therefore, f is a Thurston map. In particular,
all its periodic points are repelling.
Let us summarize the above discussion in a proposition:

Prop051t10n 1.7. Let f : P? — P2 be 2-critically finite. Then the normaliza-
tion V of every irreducible invariant component V' of Ey is bzholomorphzc to P!
or a torus. If V ~ P! the lifting f of the restriction f|V to V is a Thurston
map, i.e. its critical points are strictly preperiodic. If V is a torus then f is an
expanding endomorphism. In any case, all periodic points of f are repelling.

Remark 1.8. We only used the fact that V' was invariant, so the proposition is
also true for all invariant irreducible curves V. A corresponding theorem is true
for maps which are only 1-critically finite (so that they may have superattracting
periodic points). In this case Lemma 1.5 shows that the sets Dy and E» are finite
so the same argument as above proves that the lifting of the restriction f|y to
V is an expanding endomorphism of a torus or a critically finite rational map of
P! (possibly with superattracting periodic points.

We now turn to the set E,, which is finite. We will call a periodic point p of
order r for a holomorphic map f : P¥ — P* repelling if all eigenvalues of df;
have modulus strictly greater than one.

Proposition 1.9. If f : P2 — P2 is 2-critically finite then Es is a finite set of
repelling periodic points for f.

Proof. We know that FE, is a finite forward invariant set, hence it must consist
of periodic points. We have to show that these are repelling.

Let p € E5. By replacing f by an iterate, we may assume that p is fixed.
From Lemma 1.5 we know that p € sing(D;). Since p is fixed, all the iterates
of the irreducible components of Dy passing through p still pass through p and
all sufficiently high iterates belong to E;. But p is noncritical, so all iterates of
f are local diffeomorphisms at p. This implies that in fact p € sing(E;). Again
replacing f by an iterate, we may assume that all the irreducible components of
E; containing p are invariant under f. In fact, we can, and do, assume that all
local branches of F; at p are invariant under f.

There are now several possibilities. First suppose that p € V where V is
an irreducible component of E; with a cusp singularity at p. As before, let
V be the normalization of V, m: V = V the _projection and f the lifting to
V of the restriction f lv. Let p € n~1(p) C V correspond to the cusp at p.
Then p is a repelling fixed point for f according to Proposition 1.7. Choose
local coordinates (x,y) around p such that p = (0,0) and the cusp of V is
parameterized by (x,y) = (t",t° + O(]t|**!)) where 1 < r < s and r { s. In the
same coordinates we may write f(z,y) = (az + by + g(z,y),cx + dy + h(z,y))
where g and h have no linear terms and ad — be # 0 as p is noncritical. Then
Fm 5 +...) = (at” + O([t|"), ct” + dt* + h(t",t* +...)). The condition that
the cusp is mapped into itself yields that ¢ = 0 and that the term h(t",¢*+...)
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contains no term of order less than s. Also, since r t s ,h(t",t* + ...) contains
no term of order s. Thus f(t",t°) = (at” + O(]t|"™1),dt* + O(|t|**1)). The
invariance of the cusp yields a® = d". In particular it holds that |a|,|d| > 1,
la| = |d] = 1 or |a|,|d| < 1. But a,d are the eigenvalues of f at p and p is a
repelling fixed point for f , so only the first alternative is possible. Thus p is a
repelling fixed point for f.

The next possibility is that two invariant irreducible regular local branches
V1,V5 of E; at p intersect transversally. Then p is a repelling fixed point for
flv; by Proposition 1.7 so f is expanding in the invariant directions of V7 and
V5. Thus p is repelling for f.

Finally, consider the case when two invariant irreducible regular local branches
V1, Vs of E; at p intersect tangentially. Choose local coordinates (x,y) such that
p=1(0,0)and Vi = (y =0),Va = (y = 2" + O(|2|"*!)) where r > 1. As before,
we can write f(z,y) = (ax + by + g(z,y),cx + dy + h(z,y)) where ad — be # 0.
Since f(V1) C Vi we must have ¢ = 0. Letting y = z" + O(|z|""!) we get
f(z,2" + O(|z|"™™")) = (az + O(|z|*),dz" + O(|z|"*")), so since f(Va) C Vo we
must have a = d. But d is the derivative of f|y; at p and p is a repelling fixed
point for fly, so |a] = |d| > 1. Now a,d are the eigenvalues of df, so p is again
a repelling fixed point for f. O

Remark 1.10. Fornass and Sibony [FS1], [FS3], [FS4] defines a map to be
strictly critically finite if (translated to our notation) the sets Dy and E; are
algebraic and fP|y is critically finite for each irreducible component V' of E;
with period p. The last sentence is interpreted as: the lifting of f? to the
normalization of V is critically finite, i.e. its critical points are preperiodic.

In fact, the last condition is redundant, i.e. a map f : P2 — P2 is strictly
critically finite iff the set D; is algebraic. To prove this, suppose f : P2 — P2 has
algebraic postcritical set D;. If the critical set C; has no irreducible component
which is periodic then f is 1-critically finite and Remark 1.8 shows that f is
in fact strictly critically finite. So, suppose some irreducible component W of
the critical set is periodic under f. Replacing f by an iterate, we may assume
that W is invariant under f. Let W be the normalization of W with projection
m:W — W and f the lifting of f|w to W. Then it is not difficult to see that
the critical points of f must be mapped under 7 into the set sing(Cy) NW. But
the proof of Lemma 1.5 shows that the iterates of f map sing(C}) into the set
sing(D1), hence maps the set sing(Cy) NW into sing(D1) N W which is finite. It
follows that the postcritical set of f is finite. Now it could of course happen that
the critical set C'; also has some other irreducible component which is strictly
preperiodic to a component V' of F;. We can assume that V is invariant under
f. But then we can get, in the same way as above, that the lifting of f|y to the
normalization of V' has finite postcritical set. Hence f is strictly critically finite
even in this case.
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2. BACKWARD INVARIANT SETS

We recall the definitions of the different Julia sets, Jy D J; D -+ D Jr_1 of
a holomorphic map f : P* — P* of degree d > 2 (see [FS2], [FS4] for more
details).

The map f lifts to a map F : C¥1\ 0 — Ckr!\ 0 via the projection
7 : CF*1\ 0 — P* and the Green function G := limp oo 77 log||F"[| is a
continuous plurisubharmonic function on C*+!\ 0 with the properties

G(tz) = G(z) +log|t], t € C*
and
G(F(z)) = dG(z).

The current dd°G is then a closed positive current on C*¥+1\0 of bidegree (1, 1)
and there is a unique positive closed current T on P* such that 7*T = dd°G.
We can define (dd°G)’ inductively as positive closed currents of bidegree (j, )
by:

(dd°GY = dd°(G(dd°G) 1)

for 1 < j < k. There exist corresponding positive, closed currents T9 = TA---A
T, 1 < j < k on P* of bidegree (j,j) such that 7*T7 = (dd°G)’; these satisfy
the relation f*T7 = d’T7, and they have mass ||T|| = 1.

We define J; := supp(77) and call it the j:th Julia set of f. The Julia sets
Jo D Ji D -+ D Jr—1 are then nonempty closed completely invariant sets. It
is known (see [FS2] or [Ue3]) that Jy is exactly the complement of the largest
open set where the family of iterates {f?} is normal.

Fornaess and Sibony [FS1] proved the following theorem (with an additional
technical assumption, which was removed by Ueda [Uel]):

Theorem 2.1. If f : P2 — P2 is 2-critically finite then Jy = P2.

We will prove that in fact J; = P2. The only property of the set J; that we
will use is that it is closed and backward invariant. Indeed, the main result of
this section is:

Theorem 2.2. If f : P2 — P2 is 2-critically finite then P? is the only nonempty
closed backward invariant subset of P2.

Our result implies Theorem 2.1 but we will use the latter to prove Theo-
rem 2.2. The strategy of proof is the following: Let f : P2 — P2 be 2-critically
finite and F be a nonempty closed backward invariant set. First we prove that
E must contain all the repelling periodic points of f (Proposition 2.6), hence, by
Proposition 1.9, all the points in Ey. Then we prove that the preimages of E, are
dense in P? (Proposition 2.12). From these two results it follows immediately
that £ = P2 as was claimed.
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We need an elementary but somewhat technical lemma. In favor of brevity
we sometimes let the word preimage mean preimage under some iterate of f.
The precise meaning should be clear from the context.

Lemma 2.3. Let f : P¥ — PF* be k-critically finite. Then any point in Dy has
some preimage outside D1. Hence D1 contains no nonempty backward invariant
subset.

Proof. Take any point « € D;. If & ¢ FE; then there is an N; such that
FNi(z) g D;. We only need to choose N; such that fMD; C E;. So sup-
pose that ¢ € FE; for some maximal i > 1. It suffices to prove that x has
some preimage outside E;, because then we can argue by induction. So suppose
f~™(z) C E; Yn. Then there exists an integer n; > 1 and a point x; € C; such
that f™ (z1) = x. Since f~™ (z) C E; we must have z; € E; N C; = C;41. But

now we can continue the process and find na,ng, -+ > 1 and x2, 23, -+ € Ciq1
such that f" (x;) = xj_1. It follows that z € fu+ i, for j = 1,2,...
and hence x € E;;, which contradicts the maximality of i. O

Before we state our next result, we recall the following theorem by Ueda [Uel]
that will be used here and in §3.

Theorem 2.4. Let f : PF — P* be any holomorphic map of degree at least 2
and {g,} a family of holomorphic (single-valued) branches of f 7 defined on an
open set U € P* (i.e. fiv 0 g, =id on U). Then the family {g,} is normal.

Remark 2.5. Ueda’s result in [Uel] is slightly more general than the statement
above but Theorem 2.4 is all that we need. Note that if f : P¥ — P¥ is k-
critically finite (or 1-critically finite) and U is a simply connected open set in
P* which does not intersect the postcritical set D; then all branches of f~7 are
well-defined on U and Theorem 2.4 applies.

Proposition 2.6. If f : P¥ — P* is k-critically finite, then any closed backward
invariant set E C P* must contain all the repelling periodic points of f.

Proof. Let E be such a set. By Lemma 2.3, there is a point ¢ € E'\ Dy. Let p
be a repelling periodic point of f, say of period m. Then there is a sequence g;
of holomorphic branches of f~/™ defined on a neighborhood U of p such that
g; — p uniformly as j — co. Since D; is an algebraic set in P* of codimension
1, there exist a sequence of simply connected open sets {U;}._, in P* such that
Uy=U,qeU,UnDy =0 fori>0,and U; NU;y1 # 0. Then the g;
can be analytically continued along the chain {U;}, because the U;’s are simply
connected and do not intersect the postcritical set of f (except for Up). By
Theorem 2.4, the family {g;} is normal on each U;. By successively extracting
subsequences if necessary, we get that g; — p on U; so in particular g;(q) — p.
Since g belongs to the closed backward invariant set F, it follows that p € E. O

In dimension 2, we now know from Propositions 1.9 and 2.6 that any closed
backward invariant set £ must contain the set E5. Hence, it suffices to show that
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the preimages of E5 are dense in P2. For that we will need a couple of criteria for
Kobayashi hyperbolicity. For background on hyperbolicity in complex analysis
see [La]. Unless otherwise stated, hyperbolic will mean Kobayashi hyperbolic.

Lemma 2.7. If V C P* is a irreducible compact (possibly singular) curve and
A C V is a closed subset containing at least 3 points, then V \ A is Brody
hyperbolic, i.e. there exists no nonconstant holomorphic map C — V \ A.

Proof. Suppose ¢ : C — V \ A is holomorphic. Let V be the normalization of
V, with projection 7 : V = V. Since V is one-dimensional, Visa compact
Riemann surface. The map ¢ : C — V lifts to a map q@ : C — V such that
7ro<£ = ¢. Now A := 71 A contains at least three points, so the Riemann surface
V' \ A is hyperbolic, which means that p:C oV \ A is constant. Thus ¢ is
constant and V' \ A is Brody hyperbolic. O

It is well-known that the complement in P* of 2k + 1 lines in general position
is hyperbolic. We need a slightly different result:

Proposition 2.8. Let Xy,..., Xy, where N > 21 — 1,1 > 3 be distinct irre-
ducible curves in P? such that X,, N---NX,, =0 if 1 <n;y <---<n <N.
Then P2\ UN_, X, is complete hyperbolic and hyperbolically embedded.

Proof. The proof is a fairly easy consequence of the following two theorems by
M. Green (see [Grl] and [Gr2]):

Theorem 2.9. Let D be a finite union of (possibly singular) irreducible hyper-
surfaces Dy, ... ,Dp, in a compact complex manifold V. Then V\ D is complete
hyperbolic and hyperbolically embedded in V provided
1. there is no nonconstant holomorphic map C — V '\ D.
2. there is no nonconstant holomorphic map C — D; N---N D;, \ (Dj,
---UDyj,) for any choice of distinct indices so that {i1,...,ix,j1,..., 7

{1,...,m}

Theorem 2.10. Suppose f : C — P* omits k + 2 distinct irreducible hypersur-
faces. Then f(C) is contained in a compact hypersurface.

I C

To prove Proposition 2.8, we apply Theorem 2.9 with Dy,..., D,, being the
curves X1, ..., Xn. We first verify condition 1. Suppose ¢ : C — P2\ UY_, X,
is holomorphic. Since N > 4 (in fact N > 5), Theorem 2.10 shows that ¢(C)
must be contained in a compact hypersurface V. C P2. Now V must intersect
every X, and the condition that no [ of the X,,’s intersect at a time implies
that V must intersect UN_, X, in at least 3 points. But then ¢ is a mapping
from C to V' \ {three points}, so according to Lemma 2.7, ¢ must be constant.
Condition 2 is in fact simpler: the only nontrivial case to consider is when
$:C = Xy \ (X2U---UXy) is a holomorphic map. But the condition on the
X,,’s imply that the finite set UnN:2X1 N X,, has at least three elements. Hence
¢ is constant according to Lemma 2.7. O
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Proposition 2.11. If f : P2 — P2 is 2-critically finite and V is any irreducible
component of E, then there exists an N and a finite collection X1,...,Xn of
irreducible branches of UN_, ="V such that P2\ UN_, X,, is complete hyperbolic
and hyperbolically embedded.

Proof. Let X1 be any irreducible component of the critical set C; preperiodic to
V and, inductively, let X, .1 be any irreducible component of f~!X, for n > 1.
We claim that if N is large enough, then P? \ UN_, X, is complete hyperbolic
and hyperbolically embedded.

The claim follows from Proposition 2.8 once we prove that there is a number
[ such that no [ of the X,,’s intersect at a time. Note that X,, N X,, is a
finite set if m # n, because otherwise X,, = X,,, which would imply that the
irreducible component X; of C; be periodic, contradicting that f is 1-critically
finite. Since f is 2-critically finite, there are numbers [y, I such that f*C; C Ey,
and fl2Cy C By, f2Cy N Cy = 0. We will show that the number [ =1; +15 + 1
will do.

Forlet I =1; + 15+ 1 and suppose p € X,,, N---NX,,. where 1 <ny < ng <
- <mng < N. Then f*(p) € Cy, 1 <i<I. But then f"*+i(p) € E1,j >1;,1<
i < n. In particular, f*(p) € E;, for m > Iy, so that f"(p) € C1 N E; = Cy
for m > I;. This implies that f**7(p) € Es,j > lo,m > ;. In particular
f™(p) € Ey , so that f™(p) € Cy N Ey =, a contradiction. O

Proposition 2.12. If f : P2 — P2 is 2-critically finite, then the preimages of
any point in FEy are dense in P2,

Proof. Let p € Es. We show that the preimages of p are dense in some irreducible
component V' of E; and that the inverse images of any irreducible component
V of E, are dense in P2.

Let V be any irreducible component of E; containing p. Replacing f by an
iterate, we may assume that V' is invariant under f. Let V be the normalization
of Vand f: V — V the lifting of f|v to V. Then we know from Proposition 1.7
that f is (equivalent to) a Thurston map on the Riemann sphere or an expanding
endomorphism of a torus. Hence, if p € V is any point above p, then the
preimages of p under f are dense in V. This implies that the preimages of p
under f are dense in V.

It remains to be seen that the preimages of V are dense in P2. Suppose not.
Then there is an open ball U C P? such that the restriction of the family of iter-
ates {f1} to U is a family of holomorphic mappings of U into P2\ UY_, f~"V for
all N. Now Proposition 2.11 implies that this family is normal, which contradicts
the fact that the Fatou set of f is empty (Theorem 2.1). O

We are now able to prove Theorem 2.2:

Proof of Theorem 2.2. Let E be closed and backward invariant. By Proposi-
tions 1.9 and 2.6, F must contain all the points in E, and hence, by Proposi-
tion 2.12, a dense set in P2. But F is closed so E = P2. O
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Remark 2.13. It is also true that the holomorphic map f : P* — PF¥ defined
by:

[To o ap] = [(wo — 221)% = -+ 1 (zo — 22p)? : 23]

has no nontrivial closed backward invariant subset, hence all its Julia sets are
equal to P*. The proof can be sketched as follows: Suppose E is a nonempty
closed backward invariant subset. The set E; consists of the hyperplanes (z; =
z;) for 0 < i < j < k and the set E; of intersections of [ different hyperplanes in
E,. In particular, E} consists of the single point [1 : - -- : 1], which is a repelling
fixed point. By Proposition 2.6, E must contain the point [1 : --- : 1], so it
suffices to prove that the preimages of this point are dense in P*. This is done
by showing that the preimages of E; are dense in E;_; for j = 1...k. The
proof of this is very much the same as the proof of Proposition 2.12; since each
irreducible component of E; is a (k— j)-plane in P* one can apply Theorems 2.9
and 2.10. The details are omitted.

3. DENSITY OF PERIODIC POINTS

We now prove that repelling periodic points are dense for a 2-critically finite
holomorphic map f : P2 — P2. The idea is to study sequences of branches
of f=7. According to Ueda’s result (Theorem 2.4), such sequences always form
normal families. If the limit of an appropriate subsequence is constant, the
Brouwer fixed point theorem can sometimes be used to assert the existence of a
periodic point. Our main objective will therefore be to show that certain such
limits must indeed be constant. This leads us to the following definition.

Definition 3.1. Let A be the set of points a € P2\ D; such that there exists
a simply connected open neighborhood V' C P2\ D; of a and a sequence of
branches {gp,} of f~™ on V such that g,, — a uniformly.

Remark 3.2. A priori, the set A could be empty. In fact, our main task in this
section will be to prove that it is not (Proposition 3.5). The next two results
would, however, be true even if A was empty.

Proposition 3.3. If a € A then every neighborhood of a contains a repelling
periodic point of f.

Proof. Take V' and {gn,} from the definition of A and let V' and V" be any
two sets homeomorphic to an open ball such that a € V" cc V' ¢ V. Then
gn; — a uniformly on V' so if i is large then g,,(V') C V" cC V'. By the
Brouwer fixed point theorem, this implies that g,, has a fixed point p in V'. We
claim that this fixed point must be attractive. Indeed, if Ky and Ky are the
Kobayashi-Royden metrics on V' and V" and if v € T,P? then since g,, is a
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biholomorphism from V' to g,,(V'), we have:
Kv(p,v) = Ky, (v)(9n: (P); gn: £ ()
> Ky (p, gn; . (v))
> Kvi(p, g, . (v))

The last inequality follows from the assumption that V" CcC V’. Since p is an
attractive fixed point for g, it is a repelling fixed point for f":. O

Lemma 3.4. A is backward invariant, i.e. f~1(A) C A.

Proof. Suppose a € A and f(a') = a. Let V be a simply connected neighborhood
of a in P?\ D and {g,,} a family of branches of f ™ defined on V such that
gn; — a uniformly on V. Since a’ € P?\ D, there exists a simply connected
open neighborhood V! C P2\ D; of a’ and analytic continuations of the g,,’s to
V'. By Ueda’s result (Theorem 2.4) these continuations form a normal family
s0 a suitable subsequence of them will still converge uniformly to a on V'. Let
h be the local inverse of f at a, defined on V', taking a to a’. Then {ho g,,} will
be a sequence of branches of inverse iterates of f on V', converging uniformly
to a’. Hence o’ € A. O

Proposition 3.5. The set A is nonempty.

Proof. According to Proposition 1.9, the set F, consists of repelling periodic
points for f. Take any b € E,. We will prove that a suitable preimage a of b
outside D; belongs to A. To do this we need to construct a family of branches
of inverse iterates converging to a. Using the fact that b is repelling, it is easy to
find branches of inverse iterates converging to b. However, b € D; and we want
the limit to belong to P?\ D; so the idea is to compose the branches converging
to b with a branch going from b to its preimage a. The problem with this is that
b belongs to the postcritical set Dy, so the latter branch cannot be defined in a
whole neighborhood of b. It can, however, be defined on simply connected open
sets having b as a boundary point and not intersecting the postcritical set D;.
This means that we must make the images of the branches converging to b stay
in such a set. What we have to do is, therefore, to control the dynamics of f
and the geometry of Dy near b. The following technical lemma contains all the
information we need.

Lemma 3.6. Let g be a germ at the origin of a holomorphic map of C? with
g(0) = (0) and dg(0) having eigenvalues A1, A2 satisfying 0 < |Ai], |X2] < 1. Let
V' be a germ of an analytic set of dimension 1 at the origin. Then there exist
open subsets U,U’' C C? and a sequence {n;} such that:

1.0€dU and U'NV =9.

2. U’ is simply connected.

3. g"(U) C U fori large.
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Assuming Lemma 3.6 is true, we now continue the proof of Proposition 3.5:
Take any a € f~*{b} \ D; for some k > 0 (the existence of such a and k follows
from Lemma 2.3). We claim that a € A. Since b is periodic, say of period m,
there exists a locally defined branch hy of f~™ near b such that hy (b) = b. Since
b is repelling for f™, it is attractive for h;. We now invoke Lemma 3.6 above.
This gives small open sets U and U’ and a sequence {n;} such that

1. 0€ 90U and U' N Dy = 0.

2. U’ is simply connected.

3. Y (U) C U’ for i large.

4. h{* — b uniformly on U as i — oo.

Now note that there exists a j such that a € f/(U). Otherwise, the comple-
ment in P? of the open set szofj(U) would be a nonempty closed backward
invariant set, hence equal to P2 according to Theorem 2.2, and this is clearly
impossible. We can therefore find an open simply connected neighborhood V' of
a in P2\ D; and a branch hy of £~/ defined on V such that hs(V) C U.

Recall that f*(a) = b. Because of properties 1 and 2 above, there exists an
branch hg of f~* on U’ such that lim, 4 ,cr h3(z) = a.

Define g; = hg o bl o hy for i large enough so that 3 holds. Then {g;} is
a family of well defined branches of inverse iterates of f defined on V. Since
hi* — b uniformly on U it follows that g; — a uniformly on V. Hence a € A so
A is nonempty. O

Proof of Lemma 3.6. We want to linearize the situation locally at the origin.
Although this is not always possible (due to resonances among A; and A2), we
claim that it is sufficient to prove the following lemma:

Lemma 3.7. Let T be a complez-linear automorphism of C? with eigenvalues
A1, A satisfying 0 < |A1], |A2| < 1 and let V' be an analytic set of pure dimension
one in in the unit ball B C C? such that 0 € V.. Then there exist open subsets
U,U' C B and a sequence {n;} such that:

1.0€ 90U andU'NV = 0.
2. U’ is simply connected.
3. T™(U) C U' fori large.

Let us postpone the proof of Lemma 3.7 and instead show how to deduce
Lemma 3.6 from it. Suppose 0 < || < |A1] < 1. If there are no resonances, i.e.
if Ao # A] for p = 2,3,... then we can linearize the situation locally (cf [Fa]),
and the result follows immediately from Lemma 3.7. If Ay = A} with p > 1
minimal, we cannot linearize in general, but after a change of coordinates we
can obtain (locally at the origin) g(z,y) = (M, A2y + az?) with a = O or 1
(cf [Fa]). If a = 0 we are again in the linear setting, so suppose a = 1. Let
® : C? — C? be the proper map defined by (%,7) = ®(x,y) = (z7,y). Then the
following diagram commutes (locally at the origin):
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c? 2 ¢

o[ ol
c 1 ¢

where T'(Z,9) = (A2Z, Ao + &) is linear. Since ® is proper, it follows from
Remmert’s theorem (see [Gu]) that (V') is an analytic set. Let V = ®(V)u{Z =
0}. Invoking Lemma 3.7 we get open sets U, U’ C C? and a sequence {n;} such
that

1.0€e U and U' NV = 0.

2. U' is simply connected.

3. T™(U) C U’ for i large.
Let Uj,...,U, be the connected components of & (U') and U any connected
component of ®~'(U). Since ® is an unbranched analytic covering outside {z =
0} € @ (V), we get that U{,...,U) are disjoint connected simply connected
open sets and ‘I>|UJ< P U — U’ is a biholomorphism for each j. Since U is
connected, the third condition and the commuting diagram above imply that
g™(U) C UJ’- for i large, where j may depend on i. Hence, taking a subsequence
of {n;} we can obtain ¢"(U) C U} Vi for a fixed j. We put U’ = U}. Then we
see that:

1.0€ U and U' NV = 0.

2. U’ is simply connected.

3. g™ (U) C U’ for i large.

Hence Lemma 3.6 follows from Lemma 3.7. O

Proof of Lemma 3.7. After a linear change of coordinates we may assume that
the matrix of T' takes the form:

A O A A
0 X/ % lo a

The second form is just a slight variation of the Jordan normal form. Consider
these two separately and call them CASE 1 and CASE 2.

Let V' be the analytic set V'\ ((z = 0) U (y = 0)). We first claim that if § > 0
is small then the set

As = A{y; (z,y) € V', |z],|y| < 0,z >0} CC

is a finite union of real-analytic curves. Note that V' is nonsingular in the
punctured ball B(§) \ (0,0) if § is small enough. Also, since V' does not contain
the lines £ = 0 and y = 0, it is not tangent to those lines anywhere in the same
punctured ball (after shrinking ¢ if necessary). But then the intersection of V'
with this ball is a union of graphs of finitely many nonconstant (multi-valued)
functions y = y(x) whence the claim easily follows.
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CASE 1: By theorem of Dirichlet (see [HW]) we can find a sequence {n;} such
that arg(A;"") — 0 as i — o0, j = 1,2. The set A; defined above is a union of
finitely many real analytic curves for > 0 small. In particular, there exists a
number 6 € (—m, ) such that the sector {| arg(y) — ] < 2¢} is disjoint from A;
for small e. This implies that the set

U" = {(2,9);0 < [z], Iyl < e, | arg(2)] < 2¢, | arg(y) — 0] < 2¢}

does not intersect the set V' for small e. But U’ does not intersect the lines z = 0
and y = 0 either so it must be disjoint from V. Note that U’ is a product of two
simply connected domains, hence it is simply connected. We further define:

U= A{(z,9);0 <z, |y <e|arg(z)| <e,|arg(y) — 6] <e}

The choice of the sequence {n;} guarantees that 7™ (U) C U’ for i large. Hence
the properties 1-3 all hold.

Cask 2: If we let (zy,yn) = T™(z,y) then z,/y, = z/y + n; in particular
arg(zn/yn) — 0 as n — co. We choose our sequence {n;} so that arg(A\") — 0.
If € > 0 is small then V' has no singularities in the set {0 < |z|,|y| < €}. Let
L Dbe the set of lines corresponding to tangential directions of the set V' at the
origin. These lines are well defined even if the origin is a singular point for some
irreducible component of V. We now have three cases.

The first case is when L contains no line of the form (y = 0) or (z = sy) with
s > 0. Then we may take

U= {(2,9);0 <z, lyl <e,|arg(z)| < 2¢,|arg(y)] < 2¢},

U:={(z,y);0 <z, |yl <e|arg(z)| <e|arg(y)| <e},

and 1-3 are easily verified.
The second case is when L contains some line of the form (z = sy) with s > 0
but not the line (y = 0). Then we may take

U= {(2,9);0 <z, lyl <e |z > Slyl, | arg(w)| < 2] arg(y)| < 2e},

U= {(2,9);0 <|z|, [y <e |z[ > Slyl, | arg(z)| <e,|arg(y)] <e},

if € is small and S large. Indeed, the formula z,/y, = x/y + n shows that
T™U C U' for i large and U’ does not meet V if S is large enough and € is
small. Also, U’ is simply connected because it is homeomorphic to the set

{(9,0") € R%;16],10'| < 2¢} x {(r,7") € R®0 < r,7' < e,r > Sr'}

which is a product of simply connected domains. Hence 1-3 above hold also in
this case.

Finally, we are left with the third case when L contains the line (y = 0) and,
perhaps, some lines of the form (z = sy) with s > 0. Since V is an analytic set,
we can then find a > 0 such that if € > 0 is small enough, the intersection

Vi {(z,9);0 <|z], [y <e |arg(z)] < 2 |arg(y)| < 26, |2] > S|y[}
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is contained in the open set

{(z,9);0 < |z, |y| < €, | arg(z)] < 2¢,| arg(y)] < 2e, |z > S|y, ly| < J=|' T}
We claim that the sets

U' = {(z,9);0 < |z|,ly| < e Jarg(@)], | arg(y)| < 2¢, |z > Slyl, [yl > ||}
and

U= {(2,9);0 < |zl ly| < e |arg(z)],| arg(y)| < e || > Slyl, [y > |z""*}

will do if € is small enough and S is large enough. It is clear that U' NV =
and that 0 € 9U’. Furthermore, U’ is homeomorphic to the product

{(6,0") € R%;16,10'| < 2¢} x {(r,7") e R%0 < r,7’ < e,r > Sr' ' > it}

and is therefore simply connected. It remains to show that T"(U) C U’ for
large 7. First note that if (z,y) € U and € is small then |arg(z/y)| < 2¢ so
|z1/y1| = |z/y + 1| > |x/y| > S. Using this, we also get

|x1|1+oz a)T1
|21 |*]—
|y Y1
[e] (e T
= A%z +yl*|[= +1]
y
[e] (e T
< A%z +y (|§|+1)
1.z
< IN*(|z 14+ =)
< ||(||+|y|)(+5)ly|

y 1, =z
= |A|%z|*(1 D1+ =)=
M+ 1D+ )l

1 1.z

< o | T\« V=
< PPt gt gl
11+a

<)

1+«

< e et
|yl

Hence, if S is so large that [A|*(1 + £)'"* < 1 and i is large enough, we will

have that T7¢(U) C U’. This means that the properties 1-3 above hold and we

are done. (]

Theorem 3.8. Repelling periodic points for f are dense in P2,

Proof. Tt suffices to prove that repelling periodic points are dense in P2\ D;.
Since A is nonempty and backwards invariant, it must be dense in P2. This
follows from Theorem 2.2. Hence if W is any open set in P? \ Dy we can find
a € ANW. According to Lemma 3.3, every neighborhood of a contains repelling
periodic points of f, hence W contains repelling periodic points. This completes
the proof. O
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4. DISTRIBUTION OF PERIODIC POINTS

Let f : P2 — P2 be 2-critically finite of degree d > 2. We know that
every sequence {g;} of branches of f~" (with n; — o) is necessarily normal
(Theorem 2.4). Tt is natural to ask what the possible limit functions of such
sequences are. In section 3 we showed that many such limits must be constant,
indeed sufficiently many to prove the density in P? of repelling periodic points.
The following conjecture is perhaps plausible:

Conjecture 4.1. All limits of sequences of branches of inverse iterates of f are
constant.

In this section, we show that Conjecture 4.1 implies that the periodic points
are distributed according to the “Green measure” p := T'AT of maximal entropy.
Since we know that supp(u) = J; = P2, this is of course stronger than just saying
that periodic points are dense in P2.

We know that f has (d®"® — 1)/(d™ — 1) periodic points, counted with multi-
plicity (cf [FS1]). Define probability measures vp,, fim,c as:

dam—1
m= g1 2 %
fm(a)=a
1
Km,c = d2—m Z 6[1,
fm(a)=c

Then vy, and py, describes the distribution of periodic points of order m
and preimages under f™ of a point ¢ € P2, respectively. Fornzess and Sibony
[FS2] proved that pm. — p weakly as m — oo for quasi-every ¢ € P2. This
is true for any holomorphic f : P2 — P2, In the 2-critically finite case, using
the fact that sequences of branches of inverses of iterates form normal families

whenever they are defined, one can prove that i, . — p weakly as m — oo for
all ¢ € P2.

Theorem 4.2. If Conjecture 4.1 holds then periodic points are distributed ac-
cording to the measure u, i.e. v, — u weakly as m — oo.

The argument given below is similar to the one given by Lyubich in [Ly] in
the one-dimensional case (for general rational functions).

Proof. Let W be a simply connected open set in P2 which does not meet the
postcritical set D;. Take any ¢ € W, € > 0 and find open sets Wy, Ws, W3 with
Wy CcC Wy cCc Wy cC W, u(W\ W3) < e. We put r = dist(Ws,0W;) > 0.
Since W is simply connected and WND; = 0, there are d>™ well-defined branches
gi,i = 1,...,d>™ of f~™ defined on W. If Conjecture 4.1 holds, then if m is
large enough, diam(g;(W1)) < r/2 fori = 1,...,d*™. Hence, if a; := g;(c) € W>
for some ¢ then g;(Wy) C B(a;,r/2) where B(a;,r/2) is the ball of radius r/2
around a;. But B(a;,r) C Wy so gi(B(as;,7)) C B(ai,r/2) C B(a;,r) so by
the Brouwer fixed point theorem g; has a fixed point b; in B(a,r) C W;. Since
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the sets g;(W),i = 1,...,d*™ are all disjoint, the points b;,i = 1,...,d*™ are
distinct. Note that a fixed point for g; is a fixed point for f™. This means that
we can associate a fixed point of f™ in W; for every preimage under f™ of ¢ in
Ws. Hence we have that vy, (W1) > o o(W2) if m is large enough.

Now suppose v = limg_, vy, is @ weak accumulation point of the measures
V. It then follows that

v(W) > Tlimg_eotm, (W1)
> T g o0 fhmg, e (Wa)
> li_mkﬁoo,umk,c(Wﬂ
> wu(Ws)
> p(W)—e

Since € > 0 was arbitrary, it follows that v(IW) > p(W). A trivial covering
argument yields that v > p outside D;. Now it follows from the Chern-Levine-
Nirenberg inequality (cf [FS2]) that u puts no mass on pluripolar sets and hence
that u(Dq1) = 0. Therefore, v > u everywhere. But v and u are probability
measures so ¥ = g. This shows that p is the only accumulation point of the
sequence v, so we must have that v,,, - y as m — oo. O

Remark 4.3. It follows from the above proof that repelling periodic points are
distributed according to the measure p. This is because a simple argument using
the Kobayashi-Royden metric shows that all the points b; are attractive for g;
and hence repelling for f™ (compare the proof of Proposition 3.3).

Acknowledgement. The author is grateful to N. Sibony for introducing him
into this field and to his advisor M. Benedicks for valuable comments.
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DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON CZ:
EXPONENTS, CONNECTEDNESS AND EXPANSION

MATTIAS JONSSON

ABSTRACT. We study the dynamics of maps of C? of the form f(z,w) =
(p(2),q(2z,w)), where p(z) and ¢(z,w) are polynomials of degree d > 2 such
that f extends to a holomorphic map of P2. For such maps we relate
expansion and connectedness of Julia sets to behavior of the critical set.

0. INTRODUCTION

Following the successful study of the dynamics on rational maps on the Rie-
mann sphere, a great deal of research has been devoted to complex dynamics in
higher dimension, in particular to iterations of holomorphic maps of the complex
projective space P* [FS1], [HP], [U1]. Despite many results there is still a lack
of non-trivial examples whose dynamics can be analyzed in detail. In this paper
we begin a study of (polynomial) skew products on C?; these are maps of the
form

f(z,w) = (p(2), (2, w)), (0.1)
where p and ¢ are polynomials of the same degree d > 2 such that f extends to
a holomorphic map of P2.

Another aspect of skew products of the form (0.1) is that they map any
vertical line {z} x C to another vertical line {p(z)} x C by a polynomial map.
Hence the restriction of f™ to {2z} x C can be viewed as a composition of n
different polynomial maps of C.

In this paper we study the dynamics of a skew product f on C? both as a
holomorphic map on P? and as a composition of polynomial maps of C. Results
on skew products of C2? have previously been obtained by Heinemann [H1], [H2],
but his approach is quite different from the one is this paper. In particular, he
works with the one-point compactification C2 of C? instead of P2. At the end
of section 6 we review some of his results in the terminology of this paper.

Before describing our results in more detail we introduce some notation. To
the map f of C? (or P2) we can associate a Green function GG, measuring the
rate of escape to infinity, a positive closed current 7' = %ddCG and an invariant
probability measure u = T' AT (see [FS1], [HP] or [BJ]). The component p of

1991 Mathematics Subject Classification. Primary: 32H50, Secondary: 58F23,58F15.
Key words and phrases. Skew products, holomorphic dynamics.
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f also has a Green function G) and an invariant measure p, = 3-dd°G,. Its
Julia set is J, = supp(up). Finally, for each vertical line {2z} x C we can define
a Green function R,, a probability measure u, and a Julia set J,.

In Theorem 2.2 we prove that the measure 1 is a skew product of p), and p.:
if p is a continuous test function, then

[en=[ ([ etz o).

This formula provides us with a partial dynamical characterization of the set
Jo := supp(u) (Proposition 3.2).

JQZ U {Z}XJZ.

z€Jp

Using this formula and a result of Briend [B] we show that .J» is the closure of the
repelling periodic points of f. This is in contrast with the example by Hubbard
and Papadopol [HP] of a holomorphic map on P? with a repelling periodic point
outside .J, (the set .J, is defined for any holomorphic map of P?).

For polynomial maps of C there is an interesting relationship between Lya-
punov exponents, critical points, the Green function and connectedness of the
Julia set. As we will see, all of this generalizes to skew products on C?2.

To the ergodic measure p we can associate two Lyapunov exponents A\; and
Ao, measuring the average growth of expansion of f™. In Theorem 2.6 we prove
the following integral formulae.

A1 =logd + Z Gp(c),

p'(c)=0

/\2:10gd+/ Z G(z,¢) | pup(z).

3—5(276):0

It follows that A1, Ay > logd, something which is not generally true for poly-
nomial maps of C2.

A particularly interesting class of polynomial maps of C are those with con-
nected Julia sets. We generalize this notion to skew products f on C? by saying
that f has property C if J, is connected and .J; is connected for all z € J,. That
property C is a good concept is shown by Theorem 4.10, which asserts that the
following statements are equivalent.

(i) f has property C.

(i) Gp(c) = 0 for all critical points ¢ of p and G(z,¢) = 0 for all (z,¢) € J, x C
O
with 5L(z,¢) = 0.
Moreover, if f has property C, then J, is connected and J, is connected for all
z€C.
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The set of all skew products on C? of a given degree d > 2 can be identified
with CV, N = N(d). Let M, be the subset of CV corresponding to skew
products with property C. Then M, plays the role of the connectedness locus
of degree d, a much studied object in the case of polynomial maps of C. One
can ask many questions about My; in Theorem 5.2 we answer one of them by
proving that M, is compact.

The dynamics of a rational map ¢ of C is most easily understood if ¢ is
expanding (hyperbolic) on its Julia set .J;. Such rational maps are characterized
by the condition that the closure of the postcritical set of ¢ is disjoint from
Jg. In Theorem 6.3 we prove the corresponding result for a skew product f
on C2, namely that f is expanding on Jy iff the closure of the postcritical set
of f is disjoint from Jo. A consequence of the proof of Theorem 6.3 is that if
f is expanding on J», then z — J. is continuous on Jp, which together with
Proposition 3.2 implies that

o= J {2} x J..
zE€Jp
This generalizes a result by Heinemann [H2].

The expansion of f on J, has consequences for the geometry of the Julia sets
Jp, J> and Jo. In Corollary 6.9 we show that if f has property C and is expanding
on Ja, then J,, Jo and J, for z € J, are all connected and locally connected.

The paper is organized as follows. In section 1 we review some notions from
dynamics of polynomial maps of C and C2. In section 2 we prove the inte-
gral formula for p (Theorem 2.2) and the formulae for the Lyapunov exponents
(Theorem 2.6). The study of the dynamics of f on vertical lines is started in
section 3 and continued in section 4, where we introduce and characterize prop-
erty C (Theorem 4.10). Section 5 is devoted to the connectedness locus My and
in particular the fact that it is compact (Theorem 5.2). Finally, in section 6, we
prove Theorem 6.3 about the relation between expansion on .J> and the postcrit-
ical set and we derive some consequences from it. We also describe some results
by Heinemann in our terminology.

1. POLYNOMIAL MAPS OF C AND C2

Polynomial skew products are polynomial maps of C? such that the first
coordinate is a polynomial map of C. In this section collect some material on
polynomial maps of C from [CG] and on polynomial maps of C? from [BJ]. Many
of the results from the latter paper are in turn collected from [FS1] and [HP].

Let us start by defining the objects we want to study.

Definition 1.1. A polynomial skew product on C? of degree d is a map of the
form f(z,w) = (p(2),q(z,w)), where p and g are polynomials of degree d and
where p(z) = 24 + O(z?") and q(z,w) = w? + O(w?1).

For brevity we will often say skew product instead of polynomial skew product.
Suppose that f(2) = (p(z), ¢(z,w)) is a skew product. A useful tool in the study
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of the polynomial map p is the Green function G, defined by
1 -n + |, n
Gy(2) = lim d ™" log" |p"(2)].

The set K, = {G), = 0} is called the filled-in Julia set of p. If we view p as a
rational map of C, then the Julia set of p is exactly J, = 0K,. The asymptotics
of G, at infinity is given by

Gp(2) =log|z| + o(1); (1.1)

this implies that K, and J, have logarithmic capacity 1. If we let p, denote
harmonic measure on K, then p, = %ddCGP and supp(pp) = Jp. The measure
tp is often called the Brolin measure of p and it is the unique invariant measure
of maximal entropy for p. We extend G, to C? by G,(z,w) = Gp(2).

The dynamics of p near infinity is very simple and can be described by intro-
ducing a Bottcher coordinate. This is the unique holomorphic function ¢, near
infinity such that ¢,(z) = z2+0(1) as z — 00, p,op = % and log |¢,| = G. We
can extend ¢, analytically to the set {G, > max{G,(c);p'(¢) = 0}}. In particu-
lar ¢, extends to C — K, iff no critical point is attracted to infinity and this hap-
pens iff K, and J, are connected. If .J,, is connected, then ¢, = ¢, ' maps C-D

conformally onto C — K, extends measurably to S' and (1b,).(d8/27) = p,.
By Carathéodory’s theorem ¢, extends continuously to S' iff .J, is locally con-
nected. This happens in particular if p is ezpanding (or hyperbolic) on J,, i.e.
if there exist constants ¢ > 0, A > 1 such that |Dp™(2)| > e\ for all n > 1 and
all z € Jp,.

Definition 1.1 above implies that f extends to a map of P2, also denoted by
f. If we use homogeneous coordinates [z : w : ] on P2, where (z,w) € C? is
identified with [z : w : 1] € P2, then the extension of f is given by

flz:w:t] = [tp(z/t) : tq(z/t,w/t) : t9].

The line II := (¢ = 0) at infinity is completely invariant under f and we
denote f|m by fr- Note that fi is a monic polynomial map of II: if we use the
coordinate ¢ = w/z on II, then fr1(¢) = qo(1,(), where gy is the homogeneous
part of g of degree d. The point at infinity for fi is the point [0 : 1 : 0]. We
denote by J and Ky the Julia set and the filled-in Julia set of fig, respectively.
Note that the point [0 : 1 : 0] is superattracting for f. Hence its basin of
attraction W#([0 : 1 : 0]) is an open subset of the Fatou set of f, i.e. the set of
points where {f"} is a locally normal family. The set of points in P? which are
attracted to Ji and Kr are denoted by W#(Jir) and W#*(Kr), respectively.

Just as in one variable we have a Green function G of f, measuring the rate
of escape to II. It is defined by

G(r) = lim d~"log" |f"(x)|

and is continuous, nonnegative, plurisubharmonic and satisfies the fundamental
relation G o f = dG. The definition of G is independent of the norm on C2. If
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we fix a norm on C2, then the asymptotics of G is given by
G(z,w) =log|(z,w)| + pg[z : w : 0] + o(1) (1.2)

as (z,w) — II, where [z : w : 0] is the projection of (z,w) on II and pg is
continuous on II. The function pg is called the Robin function of G; it depends
only on the homogeneous part fy of degree d of f. By letting z € C be a periodic
point of p we see from (1.1) and (1.2) that pg[0: 1 : 0] = 0 for any skew product
f (and any choice of norm on C2).

All the points in C? with bounded orbits form a compact set K, given by
K = {G = 0}. The positive closed current T := 3-dd°G extends to a positive
closed current on P2, also denoted by T. Much of the importance of T stems
from the fact that the set J; := supp(T') is exactly the Julia set of f, i.e. the
complement of the Fatou set, the latter set being the set of points where {f™}
forms a normal family.

The wedge product u := T AT is well-defined and is by definition harmonic
measure on K. It has dynamical importance because p is an invariant measure
of maximal entropy log d2. We denote the support of y by J,. The dynamics of
f on Jo are most easily understood if f is expanding on J,. This means that
there exist constants ¢ > 0, A > 1 such that |Df"(x)v| > cA"|v| for n > 1,
xz € Jyand v € T, C2.

The critical set plays an important role for the dynamics of a polynomial map
of C and so it does in higher dimension. Let C be the critical set of f : C? — C?2,
i.e the set of points where f is not locally invertible. We write C = Cy U Cs,
where Cy = {(z,w);p'(z) = 0} and Cy = {(z,w);0q/0w(z,w) = 0}. Note that
as a map of P2 the critical set of f is given by C; U Cy UTL.

2. LYAPUNOV EXPONENTS

In this section we describe the measure p as a skew product (Theorem 2.2).
This enables us to prove a formula for the Lyapunov exponents of f with respect
to 1 (Theorem 2.6).

We start by comparing the Green functions G and G).

Lemma 2.1. G =G, on J;.

Proof. Clearly G = G, = 0 on K and if G(z,w) > Gp(z,w), then (z,w) is in
the basin of attraction of [0 : 1: 0], hence in the Fatou set. O

Theorem 2.2. Let f(z,w) = (p(2),q(z,w)) be any skew product on C>. Then
the action of i on a test function ¢ is given by

[en=[ ([ etz o). (2.1)

where p. = 5=dd$,G(z,w) is the slice of T on the vertical line {z} x C.
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Proof. By Lemma 2.1, G — G,, is a continuous function on C? which is zero on
the support of T'. Hence GI' = G, T, which implies that

1 C
p = 5-dd*(GT)

1 c
5-dd*(GyT)
1 2 c c
= (5)°dd=Gy, A dd3, G,

where the last line follows because G}, is independent of w. Applied to a contin-
uous test function ¢, this gives exactly (2.1). O

Corollary 2.3. (m1)«p = pp, where mi(z,w) = z. In particular, if E C C and
up(E) =1, then p(E x C) = 1.

The map f has two Lyapunov exponents A1, A2, with respect to the ergodic
invariant measure p. They can be characterized as follows (see e.g. [Y] for more
details). The Lyapunov exponents of f are the two numbers A; > A, such that
for u-almost every point € C? there exists a subspace Ey(z) of T,,C? such that

1
lim —log|Df™(x)v| = Az Yv € Ey — 0,

n—oo N

1
lim —log|Df"(z)v] = A\ Vv € T,C? — Es.

n—o00 N,
For these z we also have
1
lim —log|det Df"(x)| = A,
n—oo N,

where A = X\ + A2. That all of this is well defined follows from Oseledec’s
theorem and a point z satisfying the above equations will be called Oseledec
generic.

Remark 2.4. If we regard f as a map of R, then f has four Lyapunov expo-
nents; these are Ay, A1, Aa, Ao.

Similarly, the polynomial map p of C has a Lyapunov exponent A(p) with
respect to the measure p,. We have

1 .
Jim —log [Dp” (2)] = A(p)

for p,-a.e. z € C. Again z will is called Osoledec generic if the above equation
holds. It follows from the chain rule and the ergodicity of p and p, that

A(p) = / log | Dp| (2.2)

A:/log|deth|u. (2.3)
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We are aiming for integral formulae for A; and A». There is an integral formula
for A(p), formulated by Przytycki [P].

A(p) =logd + /Gp e,p (2.4)
where p.;, is a critical measure defined by
Hep = Z de- (2.5)
p'(c)=0

Let f(z,w) = (p(2),q(z,w)) be a skew product of degree d. We will write
g-(w) instead of g(z,w). Then ¢, is a monic polynomial map of C of degree
d. Let ¢1(2),...,cq—1(2) be the critical points of ¢, counted with multiplicity.
Define H = log|0q/0w|. Then H(z,w) = logd + Z?;ll log |w — ¢;(z)|. Define a
new critical measure p. 4 by

1 1
fheq = (%)Qdch/\dchp = (%)Qddqu/\ddng. (2.6)

This means that if ¢ is any continuous function on C2, then

[onea=[ (§¢<z,ci(z>>> iy (2).

We will need the following computational lemma.

Lemma 2.5. If z € J,, then

/H,uz(w) zlogd-l-%/GddfﬂH.
T

Proof. The subharmonic function G(z,-) can be reproduced from pu. by inte-
grating against the kernel log| - |. Hence it follows from the above discussion
that

d—1
/ H(z,w) p=(w) = logd + / (Zlog|w —ci<z>|> s (1)
d—1

=logd + ZG(Za ci(2))

i=1

1
=logd + o /G(z,w) dd;, H(z,w).
™
o

Theorem 2.6. Let f(z,w) = (p(2),q(z,w)) be a skew product on C? of degree
d > 2. Then the Lyapunov exponents of f with respect to the measure y are
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given by

M =logd+ [ Gppicy (2.7)

Ao ZIOgd+/Guc,q, (2.8)

where the critical measures (i, and . q are given by (2.5) and (2.6), respec-
tively.

Proof. We first compute A(f) using (2.3).

A7) = [ 1og]det D1

:/log|Dp( ) 1p(2) /(/Hu ) »(2)
:A()+logd+—/</Gddc> (2)

= A(p) +logd + / G le,q- (2.9)

The second line follows from Theorem 2.2 and the third line from (2.2) and from
Lemma 2.5.

It follows from Corollary 2.3 that there exists a point (z,w) such that (z,w)
is Oseledec generic for f and z is Oseledec generic for p, i.e. (2.2) and (2.3) hold.
Since D f(z,w) is lower triangular we see that

0
det Df™(z,w) = Dp™(2) H a—i(zi,wi),
where (z;,w;) = fi(z,w), so

lim —10g| H 5w (zi,wi)| = A(f) — A(p).

n—oo N

Hence, if v # 0 is a vertical vector, then
1 n _
Jim —log |Df"(z,w)v] = A(f) = Ap).

It follows that one of the Lyapunov exponents of f, say As, is equal to A(f)—A(p),
so the other one, i.e. A1, is equal to A(p). Theorem 2.6 now follows from (2.4
and (2.9). O

Corollary 2.7. A, Ay > logd.

Note that it is not true in general for regular polynomial endomorphisms of C?
of degree d that A, Ay > logd. For example, if f is a homogeneous regular
polynomial endomorphism of degree 2 such that fi is a Lattés example, then

one can see that Ay =log2 and Ay = 10%2
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Corollary 2.8.
(i) M =logd iff Gp =0 on Ci.
(ii) A2 =logd iff G =0 on Co N (J, x C).

Proof. This follows from Theorem 2.6 and the continuity of G. O

3. DYNAMICS ON VERTICAL LINES

A skew product f(z,w) = (p(2),q(z,w)) maps vertical lines to vertical lines.
In this section we will study the dynamics of f on these. For a fixed z € C we
define ¢, (w) = ¢(z,w) and

n)

qg = gpn-1(z) © " 0(Qz.

Define R;(w) := G(z,w) — Gp(z). Then R, is a positive continuous subhar-
monic function on C and
R.(w) = log|(z,w)| + pal0 : 1: 0] = Gp(2) + o(1)
=log |w| — Gp(2) + o(1) (3.1)
as w — oo. This follows from (1.2) and the fact that pg[0 : 1 : 0] = 0. Let
K, :={R, =0} and J, := 0K,. Then K. and J. are compact. The relations
Gof =dG and Gy op = dG) imply that R,y 0q. = dR.. In particular
q.(K.) = K, () and q:(J.) = Ip(z)-

Proposition 3.1. R, is the Green function for K,. Moreover J, and K, have
logarithmic capacity exp(Gp(2)).

Proof. We have to show that R, is harmonic where R, > 0. But R.(w) > 0 iff
(z,w) € W*([0:1:0]) and G is pluriharmonic on the latter set. From (3.1) we
read off that the Robin constant of R, is —G(2), so the logarithmic capacity of
K, and J, is exp(Gp(2)). O

Let . := 5=dd°R. be harmonic measure on K. Then supp(p.) = J.. Note
that p, is the same measure as in Theorem 2.2. Recall the notation J, :=
supp(u). The measures u. vary continuously with z, because G is continuous.
Hence z — J. is lower semicontinuous in the Hausdorff metric.

Proposition 3.2. If f is any skew product, then

o= J {2} x J.. (3.2)

zE€Jp

Proof. This follows from Theorem 2.2 and the fact that z — pu, is continuous. [

Hubbard and Papadopol [HP] have constructed holomorphic maps of P? with
repelling periodic points outside J>. This cannot happen for skew products.

Corollary 3.3. .Jy is the closure of the repelling periodic points of f.
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FIGURE 1. Vertical Julia sets.

Proof. Briend [B] has showed that repelling periodic points are dense in J» (for
a general holomorphic map of P?), so we only have to show that all repelling
periodic points belong to Jo. Now if (z,w) is a repelling periodic point of f,
then z is a repelling periodic point of p, say of period k, and w is a repelling
periodic point of ¢, Hence = € Jp and {f™} is not normal on {z} x C at (z,w)
so w € J.. By Proposition 3.2 it follows that (z,w) € Js. O

The closure in (3.2) could be removed if z — J, was upper semicontinuous,
hence continuous, but this is not true in general. Consider e.g. the map f(z,w) =
(=22, w? + Mw(2 + 2)), where X is chosen so that w — w? + Aw has a Siegel disk
at the origin. Then 0 ¢ J_; but 0 € J, for all periodic points z # —1 of z — 22,
so z — J, is discontinuous at z = —1. On the other hand, we will prove in
section 6 that z — J, is upper semicontinuous if f is expanding on J5.

The notation .J, is meant to suggest that it is the Julia set for the iterates of
f on the vertical line z x C. This is indeed the case.

Proposition 3.4. The family {f"|;.3xc}, viewed as a sequence of mappings of
{z} x C into P2, is normal exactly on {z} x (C — J,).

Proof. This is a special case of a theorem of Ueda [U3] and is implicitly contained
in [FS2]. Compare with the result that {f"} is normal exactly outside .J; =
supp(dd°Q). O

In Figure 1 we show two vertical Julia sets .J, for the skew product
f(z,w) = (2%, 0 + 0.21iz 4 (—0.21 + 0.5i)).

The two pictures show J e for 8 = 0.7471100934857 and § = 0.7471101934857,
respectively. It seems that z — J. is not continuous on .J, for this map.

We end this section by relating the sets J. to the sets J, and J;. Ideally we
would like to decide whether a point (z,w) belongs to Jy or J; only by checking
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whether z is in int(K,), J, or C — K, and whether w is in int(K,), J, or C — K.
Such a characterization will not be true in general (compare with the discussion
above), but at least we have the following result.

Proposition 3.5. Let f be any skew product on C2.
(i) If z€ C and w € C — K, then (z,w) ¢ J;.
(i) If z € int(Kp) and w € J,, then (z,w) € J; — Jo.
(iii) If z € J, and w € J., then (z,w) € J5.
(iv) If z € Jp, and w € int(K,), then (z,w) € J;.
If z€ C— K, and w € J,, then (z,w) € J; — J5.

~— — — —

i
(v
Proof.
(i) We have already observed that R,(w) > 0 is equivalent to that (z,w) is in
the set W#([0: 1 :0]), which is disjoint from .J;.

(ii) Since R, is not harmonic near w, G' cannot be pluriharmonic near (z,w),
so (z,w) € Jy. The fact that (z,w) ¢ J; follows from Proposition 3.2.

(iii) This follows from Proposition 3.2.

(iv) The orbit of (z,w) is bounded, but every neighborhood of (z,w) contains
points with unbounded orbits. Hence {f"} is not normal at (z,w), so
(z,w) is in Jy.

(v) The proof is the same as for (ii).

4. BOTTCHER COORDINATES AND CONNECTEDNESS OF JULIA SETS

For a polynomial map p of C of degree d > 2, the Julia set .J, is connected
iff no critical point is attracted to infinity and this happens iff the Lyapunov
exponent of p is logd. In this section we analyze when the sets J, J, and J;
are connected for a skew product. We introduce a condition on skew products,
called Property C, meaning that .J, is connected and .J, is connected for all
z € Jp. In Theorem 4.10, we show that Property C plays the same role for skew
products as does connectedness of the Julia set for a polynomial map of C. The
main tool for analyzing the connectedness of .J, are the Bottcher coordinates ¢,
defined near infinity on each vertical line {z} x C and with similar properties as
for polynomial maps of C.

Lemma 4.1. There ezists a positive constant R such that {R, > R} is biholo-

morphic to a (punctured) disk and R, is harmonic without critical points on
{R. > R} for all z € C.

Proof. We have the asymptotic formulas (1.1) and (1.2) for G and G,. These
imply that if R is large enough and R.(w) > R, then (z,w) is close to the point
[0:1:0]. Hence R, is harmonic at w and since pg[0: 1: 0] = 0 we have

R.(w) =log|w| — Gp(z) + g-(w), (4.1)
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where the functions g, are harmonic on {R, > R} and can be made uniformly
small by choosing R large enough. Therefore R. has no critical points on {R, >
R}. For a fixed z we see from (4.1) that {R, > R'} is biholomorphic to a
punctured disk for R’ large enough. Since R, has no critical points on {R, > R},
the latter domain is also a punctured disk. O

Proposition 4.2. For any skew product f there exists a constant R > 0 and
for any z € C there is a unique conformal map ¢. of {R. > R} onto || > eF,
depending continuously on z, such that

(i) p:(w) =w+o(l) as w — 0.
(i) log|p.| = R..
(i) @p(z) 0 q= = 2.
We will call p. the Bottcher coordinate of g, .

Proof. Let R be as in Lemma 4.1. By (4.1) the function R.(w) — log|w]| is
bounded and harmonic on the punctured disk {R, > R}, hence has a harmonic
conjugate R} there. We may assume that R%(c0) = 0. Let ¢, = exp(R, +iR}).
Then ¢, is holomorphic on {R, > R} and satisfies (i) and (ii). To see (iii) we
note that the relation Ry(.)oq. = d R, and (ii) imply that there is a constant c.
of modulus 1 such that ¢,.)o0q. = c.p?. But ¢. is a monic polynomial so by (i)
we must have ¢, = 1. From (ii) it follows that . maps {R. > R} properly onto
{[¢| > ef*}, so . is branched covering map. By (i) the sheet number is one near
w = o0 50 in fact . is a biholomorphism of {R, > R} onto {|¢| > ef}. Finally
recall that R, depends continuously on z, hence the same is true for ¢.. O

We now try to extend the Bottcher coordinates ¢, analytically, using the
relation (iii) above. First note that if ¢ > 0, then every connected component of
{R. < ¢} must contain points of .J,. Indeed, otherwise R, would be harmonic,
hence constant by the minimum principle in such a component. We conclude that
if {R. < c} has several components, then .J, is disconnected. Since g.(J.) = Jp(»)
we see that if J,(;) is disconnected, then J, is disconnected.

Let 2 € C. First suppose that R, (.)(w) = 0 for all critical points w of gpn =)
for all n > 0. Then we can use the formula pyn+1(,) 0 q. = ‘PZn(z) to extend the
Bottcher coordinates ,» () to all of C — K. Thus ¢, maps C — K, conformally
onto C — D.

Now suppose there is an n > 0 and a critical point w of gpn(.) such that
Rpn()(w) > 0. Then we have

c=sup{d "Ryn(.)(w); (z,w) € C2} >0 (4.2)

It follows from Lemma 4.1 that the supremum in (4.2) is achieved for some pair
(n,w). Then Rpn(.) has a critical point at w, so the set {Ryn(;) < d"c} is
disconnected. It follows from the remarks above that Jyi(.) is disconnected for
all i <n. Summing up, we have proved
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Proposition 4.3. Let f be a skew product on C? and z € C. Then J, is
connected iff Ryn(.y(w) = 0 for all critical points w of qyn(.) and all n > 0. If
J. is connected, then the Béttcher coordinate ¢, extends to a conformal map of
C - K, onto C —D.

Corollary 4.4. Let X be the subset of z € X for which J, is disconnected.
Then X is open and p~*(X) C X.

Proof. This follows from Proposition 4.3 and the continuity of G and G, because
if z € C and (z,w) € Cs, then for every 2z’ close to z there exists a w’ close to
w such that (2',w') € Cs. O

Remark 4.5. For a polynomial map p of C it is true that J, is either connected
or has uncountably many components. For the sets J,, the situation is different.
Consider for instance f(z,w) = (2%,w? + z — 1). Then J, = {|z| = 1} and
Ji = {|jw] = 1}. Hence J ; = ¢ 1(J1) = {|w?> — 2| = 1} has exactly two
components.

Suppose that J. is connected for some z € C. Then ¢, maps C — K,
conformally onto C —D. Let 1. be the inverse of ¢., mapping C—D conformally
onto C — K,. Note that if we extend 1, to 0o, then v, is the Riemann map onto
C — K.. The function t.(¢)/¢ is bounded, so the radial limits lim,_ . (re®?)
exist for a.e. § € S! and the extension of 1, to S' is measurable and maps S*
into J,.

Proposition 4.6. If J, is connected, then (1.).(d0/2m) = p..

Proof. This is true because v, is the Riemann map and pu, is harmonic measure
on K. O

In general there is no reason why ¢, should extend continuously to S* or, equiv-
alently, why J, should be locally connected. It is perfectly possible for the set
J. not to be locally connected (consider J_; for f(z,w) = (—22,w? + ¢), where
the Julia set of w — w? + ¢ is not locally connected). On the other hand we will
prove in section 6 that if f is expanding on Jy, then v, does extend continuously
to S* for all z € J,.

There are several ways of characterizing polynomial maps of C with connected
Julia sets. As we will see, there is a natural generalization of this to skew
products on C2. The relevant property for a skew product will be called property
C and it means that J, is connected and J. is connected for all z € J,. We
therefore try to understand when a map has this property. Let us start with the
connectedness of J,. The following result is really one-dimensional.

Proposition 4.7. If f is a skew product on C? of degree d > 2, then the fol-
lowing statements are equivalent.

(i) G, =0 on C1.

(ii) Jp is connected.
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(iii) A1 =logd.

Proof. The equivalence of (i) and (ii) was already mentioned in section 1 and
Corollary 2.8 shows that (iii) is equivalent to (i). O

From Proposition 4.3 we see that the question whether J. is connected is
related to the function G — G}, on C5. Let C5 be the closure of C5 in P2 and let

Q,=((C-K,)xC)u (I —[0:1:0]).
Then (, is open in P2.

Lemma 4.8. The function G — G, extends to a continuous plurisubharmonic
function on Q.

Proof. G — G), is clearly continuous and plurisubharmonic on (C — K,) x C.
Take any point [zo : wo : 0] € IT with 2o # 0. We recall some facts from [BJ]
(in turn adapted from [FS1]). The functions G(z,w,t) :== G(z,w) + log|t| and

Gp(z,w,t) == Gp(z) + log|t|, defined for ¢t # 0, extend to plurisubharmonic
functions on C® — 0 which are logarithmically homogeneous of degree 1, i.e.

G(hr) - Gla) = Gy(A) — Gy (w) = log A

for all A € C*. For (z,w) close to [zg : wp : 0] we therefore have

G(z,w) — Gp(z,w) = G(z,w,1) — Gp(z,w,1)
=G(,w/z,1/2) — Gpy(1,w/z,1/z). (4.3)

Now G, is pluriharmonic on 771(f2,), where 7 : C* — 0 — P? is the projection,
so the right hand side of (4.3) defines a continuous plurisubharmonic function
in a neighborhood of [zg : wp : 0]. This completes the proof. O

Proposition 4.9. If f is a skew product on C? of degree d > 2, then the fol-
lowing statements are equivalent.
(i) G=0onCyn(J, x C).
(ii)) G—G, =0 on Cs.
(iii) J, is connected for all z € J,.
(iv) J. is connected for all z € C and Jp is connected.
(v) A2 =logd.

Proof. Clearly (ii) implies (i). Suppose that G = 0 on C> N (J, x C). By
Lemma 4.8 we can apply the maximum principle to G — G, on C5 N, to see
that G — G, = 0 there. Similarly we see that G — G, = 0 on C> N (int(K,) x C),
so G—G)p = 0 on C. Hence (i) and (ii) are equivalent. Trivially (iv) implies (iii)
and from Proposition 4.3 we know that (i) is equivalent to (iii). By Corollary 2.8
(v) is equivalent to (i). We complete the proof by showing that (ii) implies (iv).
If G — G = 0 on Cs, then we know by Proposition 4.3 that .J, is connected for
all z € C. Also, (ii) implies that C> NI C Ky so Jy is connected. Hence (ii)
implies (iv) and we are done. O
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We now combine Proposition 4.7 and Proposition 4.9.

Theorem 4.10. If f is a skew product on C? of degree d > 2, then the following
statements are equivalent.

(i) Gp=00nCy and G =0 on C2N (J, x C).

(ii) Gp =0 on Cy and G — G, =0 on Cs.

(iii) Jp is connected and J. is connected for all z € J,.

(iv) Jp, is connected, Ji is connected and J, is connected for all z € C.
(V) >\1 = )\2 = logd

Proof. Everything is a consequence of Proposition 4.7 and Proposition 4.9. O

Definition 4.11. We say that a skew product on C? of degree d > 2 has prop-
erty C if f satisfies conditions (i)—(v) above.

Proposition 4.12. If the skew product f has property C, then Jy is connected.

Proof. If f has property C, then, by definition, .J, is connected and J; is con-
nected for all z € J,. Suppose U is a nonempty closed and open subset of .J5.
For z € J, define U, := {w € J,;(z,w) € U}. Then U, is closed and open in
J. so for each z € J, we have U, =@ or U, = J,. Let A = {z € J,;U, = J;}.
Then A is open, closed and nonempty so A = .J,. Hence U D U.¢j, {2} x J. and
since U is closed it follows from Proposition 3.2 that U = Js. O

Question 4.13. Is there a skew product on C? such that Jy is connected but f
does not have property C?

5. COMPACTNESS OF THE CONNECTEDNESS LOCUS

For polynomial maps of C there is an interesting interplay between dynam-
ical space and parameter space. Of special interest is the connectedness locus,
corresponding to polynomials with connected Julia sets.

In this section we define a connectedness locus My for skew products on C?
of degree d and prove that M, is compact. The proof goes along the same lines
as in [BH], where the authors show that the connectedness locus for polynomial
maps of C of degree d > 2 is compact (indeed, much more is proved in [BH]).

First we have to specify what our parameter space is. A general skew product
of degree d > 2 can be written as

f(zaw) = (Z aizia Z bi,jziwj)a
i<d i+j<d
where ag = by, = 1. After a linear change of coordinates we may assume that
ag—1 = by,q—1 = 0. This leaves us with N = N(d) = (d—1)+((d+1)(d+2)/2—2)
parameters. We write f = f, 3, where a and b is the vector of a;’s and b; ;’s,
respectively.

Definition 5.1. The connectedness locus My is the set of (a,b) € CV such that
fa,p has property C.
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FIGURE 2. Slices of M.

Theorem 5.2. My is a compact subset of CV.

Proof. From (i) in Theorem 4.10 it follows that My is closed so it suffices to
show that My is bounded. We will let A be an unspecified positive constant.
Suppose that f,p has property C. Then J, is connected so by [BH] we have that
la;] < A for all 5. From Theorem 4.10 we know that G = 0 on C> N (K, x C)
so 1 is defined and maps C-D conformally onto C-—K.forall z € K,. By
Koebe’s one-quarter theorem we have K, C D, for all z € K,,. In particular,
the critical points and critical values of ¢, are in D 4 for all z € K. Therefore,
if we write

¢ (w) = w? + cq_i (2w + - 4 co(2),
then |¢;] < A on K, for all i (after increasing A). It follows from the maximality
of the Green function that |¢;(2)| < Aexp(dG(z)) for z € C. By increasing A
and using Cauchy’s estimates we get that |c§J) (0)] < Ajlfor all i, 5 with i+j < d.
Hence |b; j| < A and we are done. O

It would be interesting to know whether My is connected. Figure 2 shows two
slices of Ms. A general skew product of degree 2 has the form
f(Z, w) = (252 + ap, w? + b0_22’2 + b0712} + b070).

The left hand picture shows the intersection of M, with the line {ag = bp2 =
boo = 0}. This is the usual Mandelbrot set. In the right hand picture the line is
{bo,2 = boo = 0,a0 = 0.15¢}. It is difficult to see if the intersection of M, with
this line is connected.

6. EXPANSION OF f ON Jo

It is well known that a rational function h is expanding on its Julia set .J
if and only if the postcritical set does not accumulate on J. In Theorem 6.3
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we prove the corresponding result for a skew product f, with J, replaced by
Ja = supp(p).

If f is any skew product on C?, then we will denote the closure of the post-
critical set of f by PC. In other words

PC =] 10

n>1

We start by proving the following result. The proof follows section 3 in [U2]
to some extent.

Proposition 6.1. Let f be a skew product on C? such that J;NPC = 0. Then
z = J. is upper semicontinuous on J,.

Before giving the proof let us introduce some notation. If z € .J,, then PC,
is the set of w € C such that (z,w) € PC. Moreover B(w,d) denotes the disk
in C centered at w with radius 4.

Proof. Suppose that Jo N PC = 0 but z — .J, is not upper semicontinuous
at zp € Jp. Then by Proposition 3.2 there exists a point wy € C — J,, such
that (zo,wo) € Jo. Clearly G(zp,wo) = 0 so wo € int(K,,). We may find an
increasing sequence {n;} such that R; := qgg" ) is uniformly convergent in a
neighborhood of wg and (zj,w;) := f™ (20, wo) converges to (zoo, Weo) € Ja.

By assumption there exists a 6 > 0 such that B(wj,2§) N PC.; =0 for all j.
We may assume that |w; —ws| < d for all j. Then B(ws,d) N PC.; = () for all
j. Define holomorphic functions g; : B(wee,d) — C such that R; o g; = id and
gj(w;) = wo. Then {g;} is a normal family on B(we,0).

Let U be a compact neighborhood of wg on which {R;} is uniformly conver-
gent. By decreasing § and passing to a further subsequence we may assume that
9j(B(weo,0)) C U for all j. Hence R;(U) D B(weo,9).

Define S; ; 1= ¢\ ") for 1 < i < j. We claim that S; ; — id uniformly on
B(wso, 6) as i — co. Indeed, if w € B(wy, d), then w = R;(&;) for some &; € U.
Hence |S; ;(w) — w| = |R;(&) — Ri(&:)|, which is small if ¢ is large.

Let V' be the set where S; ; — id locally uniformly as ¢ —+ co. More precisely,
w € V iff there exists an € > 0 such that

limsupsup sup [S;;(€) —¢ =0. (6.1)
ioo  j>i |E—w|<e
Then V' is open and B(we,d) C V by the calculation above.

Pick a large number R > 0 such that if |w| > R, then |g,(w)| > 3|w]| for
all z € J,. We then have V C Dg. Take any point z € V. We claim that
(200, %) € Ja. To prove this it is, in view of Proposition 3.2, sufficient to find, for
each v > 0, an increasing sequence {iy} such that d(w;,, J;, ) <~ for all k. Fix
v > 0 and pick £ € V with | — 2| <. It is clear from (6.1) that £ € K, for all
sufficiently large i. On the other hand we claim that we can find sequences {i},
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{j&}, {&} with iy — o0, ji > i such that |& — z| < v/2 and |Sik,jk (&) > R
for all k. If this was not true, then we would have

limsupsup sup |S;;(¢)| <R. (6.2)

i—=00  j>i [f—z|<v/2
Hence any sequence {S;, j, }x>0 would be normal on B(z,v/3) and by (6.1) must
converge to the identity there. It would follow that
limsupsup sup |S;;(§) —& =0, (6.3)

i—oo  j>i|E—x|<vy/3
so B(z,v/3) C V, contradicting our assumption that z € V.

It follows that we may find iy — o0, jr > ix and & € B(z,v/2) such that
|Six i (€r)| > R for all k. Then & € C — K, . We conclude that d(z, K, ) <
and d(z,C — K, ) <, so d(z,J;, ) < v for all large k. This completes the
proof of the claim that (zo0,2) € J5.

By our choice of ¢ all branches of S; jl are defined and holomorphic on B(z, §)
for all 4, j.

Pick open sets V7,V with we € Vo CC V3 CC V and B(z,6/4) Ny # 0.
If ¢ is large enough, then S; ; is close to the identity on V; for all j > 4. In
particular S; ; is biholomorphic on Vi and S;;(Vi) D Vo. Thus there exist
holomorphic functions h; ; on V5 such that h; ;(V2) C Vi, S;j o h;; =id on V5
and h; ;o0 S;; =id on S;;(Vg) NVi. By (6.1) we have that

lim sup sup sup |h;,;(§) — &| = 0. (6.4)
is00  j>i EEVh

Now choose branches g; ; of S{,jl on B(z,d) such that g; ; = h; ; on B(z,0) NV,
for large i. We claim that

limsupsup sup |g;;(§) —& =0. (6.5)
ioo  j>i |6—x|<6/3

If (6.5) was not true, then we could find iy, — oo, ji > i and & € B(z,§/2) such
that |gi, j. (k) —&k| > ¢ > 0 for all k. But this is a contradiction, because {g;, j. }
is normal on B(z,0) and g;, j, — id uniformly on B(z,d/2)NV>. Therefore (6.5)
holds, which implies that B(z,d/4) C V, again contradicting = € 9V'. O

Corollary 6.2. If PCN.J, =0, then

Jo = U J..

z€Jp
Proof. This follows from Proposition 3.2 and Proposition 6.1. O
We now come to the main result of this section.

Theorem 6.3. Let f be any skew product on C?. Then f is expanding on Jo
iff Jo is disjoint from the closure PC of the postcritical set of f.
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Proof. First assume that f is expanding on J>. Then J, NC = @ and we can
find a neighborhood U of Jy such that f~1(U) C U and U N C = . It then
follows that U N PC = 0.

Now assume that PC N .Jo = . From Proposition 6.1 and Corollary 6.2 we
know that .Jo = U.¢s,J. and that z — .J, is continuous on .J,. The key step is
to prove the following lemma.

Lemma 6.4. There exists an | > 1 such that

0

= 40 > 9
)] 2
for all (z,w) € Js.

We postpone the proof of Lemma 6.4 and show instead how to prove that f
is expanding on Js.

The condition PC N J, = 0 implies that the closure of the postcritical set of
p is disjoint from .J, and this, in turn, implies that p is expanding on J,. By
Lemma 6.4 we may therefore find an [ > 1 such that

> 9 (6.6)

0
I () >
‘8qu (w)‘ > 2,

for all (z,w) € J.
Let (z;,w;)i>o0 be any orbit under f' in Jo, i.e. f!(2;, w;) = (2i41,wiy1) for
all ¢ > 0. Define
-1
Xi = (Dfl(zuwl)) )

for ¢ > 0 and

; -1
Y; = (ijl(ziawi)) =Xp...X;4

a; 0
w80,
Then (6.6) implies that |a;],|c;| < 1/2 and |b;| < B for all ¢, where B is inde-
pendent of i and of the orbit (z;, w;).

Similarly we write
_ (4 0
Yi= ( Bj C; ) '

Then |4;],|C;| < 277. We first prove inductively that |B;| < B for all j > 0.
This is clear for j = 0 and for j > 0 we have Bj;1 = a;B; + b;C}, so |Bjyi| <
(IBj| + B)/2.

Let k be so large that max(1, B) < 2¥7%/2. Then Y, = Y3 Y/, where

AL 0
Yé:Xk...XQk_1=<B§ C{>.
(3 1

for j > 0. We write
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It follows that
| Aoy | = |Ap Ay | < 272 < 275/2,
|Cor| = |CLCy| < 272k < 275/2

and

|Bax| = |BrAf + CB,| < 217*B < 275/2,

From an easy calculation it now follows that the norm of the matrix Y5, =
(Df?*! (29, wp))~! is less than 1/2. Theorem 6.3 follows, because k and I are
independent of the point (29, wp) € Jo. O

Proof of Lemma 6.4. Let R > 0 be so large that |g,(w)| > 2|w]| if |w| > R
and z € J,. Clearly J, C Dy for all z € J,. Pick € € (0,1/2) so small that
% < d(Js, PC).

Let Dg be the collection of all disks U centered at points ¢(U), where ¢(U) € J,
for some 2z € J,. If z € J,, n > 1 and U € Dy is a disk centered at ¢(U) € Jyn (),

then all branches of (¢{™)~! are holomorphic and univalent on 2U, where 2U
denotes the disk of radius 2e centered at ¢(U). Let D,, be the collection of all
preimages of disks U € Dy under all these branches.

Each U € D, has a natural center ¢(U) which is mapped to the center of the
corresponding disk in Dy. Let r(U) := sup{|w — ¢(U)|;w € U} be the radius of
U. By Koebe distortion we have that

B(e(U),r(U)/4) U C B(e(U),r(U)), (6.7)

for all U € D,, and all n > 0.
To prove the lemma it is sufficient to show that

sup{r(U);U € D,} — 0 as n — oo, (6.8)
because then we can find an I > 1 such that r(U) < ¢/2 for all U € D;. By
Schwarz’s Lemma this implies that

)22
for all z € J, and all w € J,. This inequality and Corollary 6.2 together imply
Lemma 6.4.

Hence it suffices to show (6.8) and we argue by contradiction. If (6.8) does
not hold, then there exists a 6 > 0, a sequence n; — 0o and elements U; € D,
with 7(U;) > 86 for all j. By (6.7) this implies that there exist z; € Jp,, w; € J.,
and euclidean disks A; := B(wj, 20) such that

¢ (A;) C Dgyy (6.9)
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for all j. By passing to a subsequence we may assume that (z;,w;) converges to
(200, Weo) € Jo and that A; D A for all j, where A = B(ws,0). Hence

qgf) (A) CDgyy

for all £ < nj and j < 1. Now B(24,6/2) N J.; # 0 for j large enough, so by
upper semicontinuity of z — J, we have AN J,__ # (). But then there exists an
n > 1 such that

6. (A) N (C = Dpyy) # 0.
By continuity and by the choice of R we see that
qgf) (A)N(C —Dg,yy) #0,
for k > n and j large enough. This contradicts (6.9). O

Corollary 6.5. If f is expanding on Jo, then z — J. is continuous on J, and

Jo = U J..

z€Jp

Corollary 6.5 generalizes a previous result by Heinemann. To see this, we
recall how Heinemann defines the Julia set, which we will denote by J*. We say
that = ¢ J* if there exists a neighborhood U of z and for each y € U a one-
dimensional analytic set v 3 y such that { |} is normal. Note that Heinemann
works with the one-point compactification C? U {oc} of C?. Hence J* C K. It
is not clear to the author whether J* = .J5 in general, but equality holds under
additional assumptions.

Proposition 6.6. Suppose f is a skew product on C? such that f is expanding

on Jo and qﬁ”) is expanding on J, for all attracting periodic points of p (where
n is the period of z). Then J* = Js.

Sketch of Proof. Let us say that z € .J' if there exists no analytic set containing
x on which {f”} is normal. Then J* is the closure of .J'. We claim that J' = J5.
To see this, write z = (z,w). If z € C — K, then z ¢ J' by the remark above.
If z € Jp, then z € J'iff w € J,. Finally, if z € int(K}), then (z,w) ¢ J'.
[The assumptions in the proposition imply that {(z,w);z € int(K,);w € J.}
is a union of stable manifolds of saddle points. Using these stable manifolds
we see that the above set does not intersect J'. Also, {(z,w);z € int(K,);w €
int(K,)} = int(K) and {(z,w);z € int(K,);w ¢ K,} N K = (.] Hence J' = Ja,
so J* = Js. O

In [H1] Heinemann studied so called “Cantor skews”. These are quadratic
skew products of the type f(z,w) = (22 + ¢,w? + k(2)), where the Julia set
of 22 + ¢ is disconnected and sup..¢ g, [k(2)] < 1. Using Theorem 6.3 it is not
difficult to see that a Cantor skew satisfies the assumptions in Proposition 4.9.
Hence it follows from Corollary 6.5 that J* = Uzer{z} x J,. This generalizes
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Theorem 3.2 in [H1] (it should be mentioned that Heinemann also proved that
the sets J., z € J, are Jordan curves).

We now turn to some consequences of expansion on .J;. First recall the result
by Sibony (see [CG]) that if p is a polynomial map of C, then its Green function
G, is Holder continuous. Moreover, if p is expanding on J,, then G, can be
bounded from above and below on C — K, in terms of the distance to J,. The
next result generalizes this to skew products.

Proposition 6.7. If f is expanding on Js, then there are constants ay,as > 0
and Cy,Cs > 0 such that

CiR.(w)* <d(w,J,) < CaR,(w)*? (6.10)

for all (z,w) € Jp, x C with 0 < G(z,w) < 1. The left hand inequality in (6.10)
is valid without the assumption that f is expanding on J.

Proof. Tt follows from Corollary 6.5 that the boundary of (J, x C)NK in J, x C
is Ja. Since f is expanding on .J, there exists an [ > 1, a neighborhood U of .J,
in J, x C and a constant A > 0 such that

2d(w, J,) < d(wy, Jy,) < Ad(w, J,) (6.11)

for all (z,w) € U, where (z;,w;) = f'(z,w). Choose a1, as so that d**! > A and
d*2! < 2. Let R be so small that (J, x C)N{0 < G < R} C U and choose Cy, Cs
so that (6.10) holds on (J, x C)N{R < G < 1}. It then follows from (6.11) and
the fact that R, (w;) = d R (w) that (6.10) holdson (J,xC)N{0 < G <1}. O

Suppose that J. is connected for all z € J,. Then the B&ttcher coordinates
. are defined on all of C — K, and their inverses ¢», map C — D onto C — K,
for all z € J,. The following Theorem shows that ¢, extend continuously to S’
if f is expanding on Js.

Theorem 6.8. If f is expanding on J> and J. is connected for all z € Jp,, then
Y. extends Holder continuously to C — D for all z € J,. More precisely, there
exist constants C > 0 and o > 0 such that

[¥:(¢) = ¥=((N < Cl¢ = ¢ (6.12)
in the spherical metric on C for (,(' € C =D and z € Jp. The map (z,() —
(2,7:(C)) is continuous on J, x (C — D) and maps J, x St onto Jo.

Proof. 1t is sufficient to prove the statement for an iterate of f. Corollary 6.5
implies that the boundary of (J, x C)N K in J, x C is J». We may therefore
choose R > 0 such that

9q-
w
if z € Jp and 0 < Ry(w) < R. Let & > 0 be so small that d* < 2. We may
assume that d*R%~! < 2. Recall that v, satisfies

¥-(C) = g(Wp( (¢H) (6.14)

>2 (6.13)
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for |¢| > 1, where g is a suitable branch of (¢,)!. By differentiating (6.14) and
using the estimate (6.13) we see that

d
|DY=(O)] < 51D (CHIIC (6.15)
for 1 < [¢] < eft/?. Define

m(r) = sup sup |D¢=(()]
z€Jp [(|=r

for r > 1. Then there exists a constant C' < oo such that
m(r) < C'(r—1)*"" (6.16)

for eft/4 < r < eF. Using (6.15) we see inductively that (6.16) holds for 1 < r <
ef'. By integrating (6.16) we see that 1., extends continuously to C — D for all
z € Jp and that (6.12) holds. That (z,() — ¢.(() is continuous is a consequence
of (6.12) and the fact that (z,¢) — ¥.(¢) is continuous on J, x {|¢| = r} for all
r > 1. Finally (z,¢) = (2,%.(¢)) maps J, x S' onto J» by Proposition 4.6 and
Corollary 6.5. O

Corollary 6.9. If f is expanding on J» and has property C, then the sets J,,
Jy and J. for z € J, are all connected and locally connected.

Proof. The assumptions imply that p is expanding on .J», that .J, is connected
and that J. is connected for all z € J,. Hence J, is locally connected [CG]
and we have continuous surjective maps from S! to J, for z € J, and from
Jp % S! to J,. Hence the sets J, for z € Jp and Jy are all connected and locally
connected. O
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SUMS OF LYAPUNOV EXPONENTS FOR
SOME POLYNOMIAL MAPS OF C?

MATTIAS JONSSON

ABSTRACT. We give a formula for the sum of the Lyapunov exponents of
a nondegenerate polynomial map f of C? close to (z,w) — (2%, w?). The
formula only involves the behavior of f at infinity. In particular, it follows
that the sum only depends on the homogeneous part of f of degree d.

0. INTRODUCTION

Every holomorphic map f of P* of degree at least two carries a natural
invariant mixing measure of maximal entropy (see [FS3]). To this measure y we
can assign Lyapunov exponents, which measure the rate of growth of tangent
vectors. It is a result by Briend [B] that the Lyapunov exponents of f are always
nonnegative.

In this paper we study the case when f is a polynomial map of C? of degree
d > 2, which has an extension to a holomorphic map of P2. The measure p
above is then the complex equilibrium measure of the compact set K consisting
of points with bounded orbits. We assume that f is close to the map (z,w) —
(2%, w?). Let Ay > Ao > 0 be the Lyapunov exponents of f with respect to p.
The main purpose of this paper is to give a formula for A; + A2, which measures
the growth of the Jacobian of f™.

The line IT at infinity is completely invariant under f and the restriction of
f to IT is a rational map close to ( — ¢¢. There is a natural invariant measure
v for this rational map and we denote by A(f|m) the Lyapunov exponent of
the restriction with respect to v. Our main result in this paper is then (cf.
Theorem 4.4)

d

Theorem. If f is sufficiently close to the map (z,w) — (2%, w?), then the
Lyapunov exponents of f satisfy

Let us compare formula (0.1) with what is known about Lyapunov exponents
in the one-variable setting. If g(z) = 2¢+. .. is a polynomial map of C of degree
d, then the harmonic measure of the compact set K consisting of bounded orbits
is again the natural invariant measure y and the Green function of K satisfies

1991 Mathematics Subject Classification. Primary: 32H50, Secondary: 58F23.
Key words and phrases. Holomorphic dynamical systems, Lyapunov exponents.
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G = lim,_ o d " log" lg™|. The Lyapunov exponent of g with respect to u is
given by the Brolin-Manning formula

A=logd+ Y  G(o). (0.2)
g'(c)=0
If g is close to the map z — 2%, then all critical points have bounded orbits
and the formula reduces to A = logd. In the one-dimensional case the object
corresponding to II is the point at infinity {oo} and it is reasonable to say that
the Lyapunov exponent of the restriction of f to this point is zero. With this
convention the two formulae (0.1) and (0.2) agree.

In one dimension, Lyapunov exponents provide information on parameter
space. For instance, for the quadratic family p.(z) = 22 + ¢, the function
¢ = A(p.) is proportional to the Green function of the Mandelbrot set. In
higher dimension, parameter space is not well understood; one might hope that
Lyapunov exponents could be a useful tool in its study.

The proof of Theorem 4.4 consists of two parts. First we prove an integral
formula for A; + A2, which implies that the sum depends only on the homogeneous
part of f of degree d. Then we prove Theorem 4.4 in the special case when f is
homogeneous of degree d.

To state the integral formula mentioned above we need a few definitions. The
Green function G of K is given by G = lim,_,,, d~"log™ | f"|; this expression
measures the superexponential rate of escape to infinity. Close to the line IT at
infinity we have the following asymptotic expansion for G (see Proposition 1.1)

G(z,w) = log|(z,w)| + v[z : w] + o(1),

where 7 is a continuous function on IT and [z : w] denotes the projection of (z,w)
on IT ~ P!, Similarly, if H := log|det D f| then we have the asymptotic formula

H(z,w) = 2(d - 1) log | (2, w)] + 6= : w] + o(L),

where ¢ is continuous on II outside the critical points of f|n. The integral
formula is then (cf. Theorem 3.2)

Theorem. The Lyapunov exponents of f satisfy the relation
M+ do = / (6= 2(d — 1)) dv. (0.3)
A

It is not too hard to see that the entities v, § and v depend only on the
homogeneous part of f of degree d. Hence the same is true for the sum of the
Lyapunov exponents as well. One can check that a formula corresponding to
(0.3) is valid in the one-dimensional case as well.

The main ingredient in the proof of formula (0.3) above is a geometric de-
scription of the current 7 = dd°G in the set P2 — K consisting of points with
unbounded orbits. The description says that 7" in this set has a global laminar
structure, which we now describe. The line II at infinity is completely invariant
under f and the restriction of f to II is, under our hypotheses, a hyperbolic
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rational map. The Julia set A of the restriction is therefore a hyperbolic set for
f and there exists a natural invariant probability measure v whose support is
exactly A. In fact, v is the restriction of T" to II. We prove in Proposition 2.8
that there exists an embedded analytic disk W?*(p) with boundary on supp(u)
through each point p of A, such that the different disks are pairwise disjoint and
f maps W#(p) onto W?(f(p)). The disk W¥(p) is to be seen as the analytic
continuation of the local superstable manifold at p € A. We then prove that the
action of the current T on a test form in the open set P2 — K is given by

<T, ¢ >=/Ad1/(p)/ . 6. (0.4)

In fact, the same formula is valid if ¢ is only supposed to be continuous and
bounded (with respect to the Fubini-Study metric on P?) in a neighborhood of
supp(T|pz2_x)- It is then not a priori clear that the right hand side is well de-
fined. However, we prove in Proposition 2.8 that the disks W*(p) have uniformly
bounded volume in the Fubini-Study metric so the expression in the right hand
side does make sense.

Local laminarity results for the current 7' of more general hyperbolic endo-
morphisms of P2 are proven in [FS4]. Equation (0.3) shows that, in our case,
the current T has a global laminar structure in all of P2 — K.

In the case of a polynomial map g of C, the first term in the Brolin-Manning
formula (0.2) is reminiscent of the behavior of g at infinity, whereas the second
term is an integration of the Green function against a critical measure, which in
this case is simply the sum of the point masses at the critical points of g.

A similar description has recently been given by Bedford and Smillie [BS2] in
the context of polynomial diffeomorphisms of C2. They establish formulae for
the Lyapunov exponents At and A~ with respect to the harmonic measure u
of the compact set K consisting of points with bounded forward and backward
orbits. Their formulae express the Lyapunov exponents in terms of integration
of the Green functions G* and G~ against certain critical measures, which, of
course, in their situation are much more complicated than a finite sum of Dirac
masses.

In a later paper [BJ] we will consider the problem of finding formulae for (the
sum of) the Lyapunov exponents for more general polynomial maps than those
treated in this article.

This paper is organized as follows. In the first section we review some basic
results from iterations of maps of P? and prove an asymptotic formula for the
Green function in the case of a polynomial map. Then in section 2 we describe
the current 7' in the domain P? — K, i.e. we prove formula (0.4). The third
section is devoted to the proof of the integral formula (0.3). Finally, in section
4, we study the case of a homogeneous polynomial map of C? and prove the
main result in the paper, namely Theorem 4.4.
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1. BASIC FACTS

In this section we review some basic results and definitions from the theory of
iterations of holomorphic maps of P?. Most of the material is lifted from [FS1]
and [FS2]. In the end of the section we give the definition of the Lyapunov
exponents A1, A2 in the context of polynomial maps of C?2.

Throughout this paper we let f be a polynomial map of C? of degree d > 2
such that the homogeneous part of f of degree d has no zeros outside the origin.
This means precisely that f extends to a holomorphic map of P2, still denoted
by f. The line Il = P2 — C? at infinity is then completely invariant and the
restriction of f to II is a rational map on IT ~ P!,

We endow P? with the Fubini-Study metric and all distances and volumes
are measured with respect to this metric unless otherwise stated. Let us note
that the Fubini-Study metric is comparable with the Euclidean metric on C? on
compact subsets of C2.

The set Hq of all holomorphic maps of P2 of degree d is a complex variety
(see [FS1]) and the set of polynomial maps of C? that extend to P2 is a complex
subvariety, which we denote by P;. The map (z,w) — (2%, w?) clearly belongs
to P4. From now on, let V be a (small) neighborhood of this map in Py.

If f € P; then we define the Green function of f as

G(z,w) := lim d—lnlog+ |f™(z,w)].

n—

Then G is a continuous plurisubharmonic function in all of C? with

G(z,w) =log|(z,w)| + O(1) as |(z,w)| = oo.
In fact, G is the pluricomplex Green function with pole at infinity of the compact
set K := {G = 0} consisting of points in C? with bounded forward orbits (cf.
[K]). The Green function G satisfies the fundamental relation Go f = dG.

It is natural to define G = oo on II. Later on, we will need more precise
information on the asymptotics of G close to II. For this, it is again useful to
regard f as a holomorphic map of P2. Then f lifts to a map f of C? — {0}
in an obvious way such that 7o f = f o7, where 7 : C3 — {0} — P2 is the
natural projection. If we use homogeneous coordinates [z : w : t] on P? where
C? = P2 —1I is identified with the set ¢ = 1 and f(z,w) = (p(z,w), q(z,w)),
then the map f is given by

fzyw,t) = (t%p(z/t, w/t), t'q(2/t,w/t), 19). (1.1)
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We define the homogeneous Green function for f to be the function
G(z,w,t) = nlglgo dinlog|f”(z,w,t)|.
Then G is continuous and plurisubharmonic on C* — {0} and it satisfies
G(tr) =log|t| + G(z) te€ C*.
The relation between G and G is given by

Gz,w,t) = G (; %) +loglt| t#0.
Now suppose that (z,w) — p, where p € II. We may represent p by p = [2o :
wp], where |(zo,wp)| = 1. Then

G(2,w) = log|(z,w)| +1og% e (%) |

so since G is continuous we get
G(z,w) —log|(z,w)| = G(z0, w0, 0).

If we define 7[z : w] := G(z,w,0) — log|(z,w)| then v is well-defined and con-
tinuous on II ~ P! and G(z,w) = log|(z,w)| + v[z : w] + o(1) as |(z,w)| — oco.
From equation (1.1) and the definition of G' above we see that G(z,w,0) de-
pends only on the homogeneous part of degree d of the polynomial map f. Let

us summarize all this.
Proposition 1.1. The Green function G has the following asymptotics at 11
G(z,w) =log|(z,w)| + [z : w] + o(1) |(z,w)] = oo.

Here 7y is a continuous function on II ~ P! which only depends on the homoge-
neous part of f of degree d.

The positive closed (1, 1)-current T' := dd°G is called the Green current of f
and it has an extension as a positive closed current (also denoted by T) to P2.
The support of T is exactly the complement of the largest open subset of P?
where the family of iterates {f™} is normal. Moreover, if A is an analytic disk
in P? on which {f"} is normal, then G is harmonic on A —TII.

Since G is continuous and plurisubharmonic, the wedge product p := TAT =
(dd°@)? is a well defined probability measure on C2. Tt is known that u is an
invariant mixing measure of maximal entropy for f. The support of y is the
Shilov boundary of the compact set K and u does not charge pluripolar sets.

We end this section with a brief review of the notion of Lyapunov exponents
in the present context. For an introduction to Lyapunov exponents in general
we refer to [Y]. By Oseledec’s Theorem there are two numbers A; > Az, called
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the Lyapunov exponents of f, such that for y-almost every x € C2 there exists
a complex subspace Ey(z) of C? of dimension 1 with the property that

lim l10g|Df"(:L‘)v| =X if veEy(z),v#0,

n—o00 N

1
lim —log|Df™(x)v] =X if v ¢ Ea(z),v#0

n—oo N

and
. 1
lim —log|det Df"™(x)| = A1 + Aa.
n—oo N,

Although we are interested in the sum of the Lyapunov exponents, we will not
use the last formula directly. Instead, we will work with the following well known
formula, which follows e.g. from the Ergodic Theorem

AL+ A2 :/log|deth|d,u.

Let us finally note that Briend [B] has proved that the Lyapunov exponents
of a general holomorphic map of P¥ k > 1 are nonnegative. In particular,
AL > X > 0.

2. GEOMETRIC DESCRIPTION OF T'|p2_g

In this section we will prove that the restriction of the current 7" to the domain
P2 — K has a laminar structure arising from superstable manifolds at the line
at infinity. We start by studying these manifolds.

Recall that the restriction of f to the line IT at infinity is a hyperbolic rational
map. We denote its Julia set by A and notice that it is a hyperbolic set for f
as a map of P2. From the general theory of hyperbolic dynamical systems
(cf. [R]) we know that there exists a local superstable manifold through each
point of A. To state this precisely, let II. be the neighborhood of II defined by
IO, = {G >logl/e}.

Lemma 2.1. If we define the sets W (p) for p € A as
W3 (p) = {z € Il;;d(f"z, f"p) — 0 as n = oo},
then for e small enough the following holds.
(1) Each set W§(p) is an embedded disk intersecting I1 only at p and transverse
to I1 at p.
(2) The disks W§(p) and W?(q) are disjoint if p # q and W*(p) depends
continuously on p.
(3) The restriction of G to W (p) —{p} is a harmonic function without critical

points and has a logarithmic pole at p.
(4) f(W§(p)) is compactly contained in W§(f(p)).
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Proof. The Stable Manifold Theorem [R] provides us with local stable manifolds
of the form

We.(p) = {z € P*;d(f"z, f"p) <&’ VYn>0}

for ¢’ > 0 small enough; these are pairwise disjoint embedded disks, varying con-
tinuously with p and if € W} _(p), then d(f"z, f*p) — 0 superexponentially
fast as n — oo. The disks W .(p) are all transverse to II because the unsta-
ble direction of the hyperbolic splitting over A is along II. We may therefore
parameterize a neighborhood Z(p) of p in W (p) for p € A as

loc
(z0) = (2 (1 +p(5), == (1 +44(s)) s €D, (2.1)

where |(zo,wo)| = 1 and [zo : wo] = p and ¢, 1, are bounded analytic functions
depending continuously on p with ¢,(0) = 1,(0) = 0. If we choose " small
enough, then the Z(p) are embedded disks. Using Proposition 1.1 we see that
on Z(p)

G(z(s),w(s)) = —logls| + gp(s), (2.2)

where g,(s) is uniformly bounded and g,(0) = v(p). Now the family f™ restricted
to W .(p) is normal, so G restricted to W .(p) — {p} is harmonic. It follows
that the g,’s are uniformly bounded harmonic functions on D, and (2.2) then
yields that G is has no critical points on Z(p) — {p} if " is small enough.
Therefore, the intersection of Z(p) with II. is an embedded disk for all p if € is
small enough. This proves (1), (2) and (3). Finally (4) follows from the equation

Gof=da@G. O
Next we prove a few easy properties of the dynamics of f in the set P? — K.
Lemma 2.2. The hyperbolic set A has local product structure.

Proof. The local unstable manifold of a (history of a) point p € A can be identi-
fied with a neighborhood of p in II. Therefore, if p,q € A are two nearby points,
then the intersection of W§(p) and the unstable manifold of (any history of) ¢
is exactly the point ¢, which belongs to A. O

Corollary 2.3. Let W*(A) be the stable set of A, i.e.
W*(A) = {z € P%;d(f™(x),A) = 0 as n — oo}.
Then, if € > 0 is small enough, we have |J,c, W5 (p) = W?*(A) N1IL..
Proof. This follows from the local product structure (see [R]). O
Corollary 2.4. W#(A) has empty interior.

Proof. Tt is sufficient to prove that W#*(A) has no interior near II. Indeed, W*(A)
is completely invariant under f and every compact subset of W?#(A) is iterated
into any neighborhood of II. Let ¥ be a complex line close to II and meeting
every disk W§(p) transversely and let x : ¥ N W?(A) — A be the holonomy
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map defined by x(z) = p if x € W§(p). Then x is a homeomorphism so since
A has empty interior, ¥ N W#(A) has empty interior. This is true for all lines
sufficiently close to the line IT so we conclude that W*(A) has no interior near
IT, which completes the proof. O

Lemma 2.5. The set W3(A) is contained in the Kobayashi hyperbolic open set
1 1
U={[z:w:t] € P*|(z,w)| > §|t|, 1—0|w| < |z| < 10Jw|}.

Moreover, W*(A) only intersects the critical set of f in A.

Proof. Recall that f is close to the map (z,w) — (2%, w?). Hence A is close
to the circle {|z| = |w|,t = 0} which is contained in U, so it follows from
Corollary 2.3 that W*(A) NII. C U for € small enough. But it is easy to check
that f~1(U) C U, so the invariance of W#(A) implies that W#*(A) C U. The set
U is biholomorphic to an open subset of the bidisk {|z1] < 10,|22] < 2} and is
therefore Kobayashi hyperbolic. Finally, a perturbation argument yields that U
intersects the critical set of f only in II. This completes the proof. O

Lemma 2.6. The set W?®(A) is equal to the support of T|p2_ k.

Proof. Any point in P2 — K is attracted to the line II at infinity and the re-
striction of f to II is a hyperbolic rational map. Let x be any point in P2 — K.
If © ¢ W#5(A), then the orbit of  will converge to an attracting cycle in II, as
will the orbit of points sufficiently close to . It follows that {f™} is normal in a
neighborhood of x so = ¢ supp(T"). On the other hand, W*(A) has empty inte-
rior by Corollary 2.4, so if z € W#(A) then every neighborhood of z will contain
points whose orbits converge to an attracting cycle in II, whereas the orbit of x
itself is attracted to A. Therefore {f™} is not normal in any neighborhood of x
and z € supp(T). O

Corollary 2.7. The support of the current T|p2_g only intersects the critical
set of f in A.

Proof. This follows immediately from Lemma 2.5 and Lemma 2.6. O

Now we want to extend the disks W (p) away from II. by pulling them back
by f~!. Recall that f(Wg(p)) is compactly contained in W(f(p)) for all p € A.
Let us define a sequence of disks

Wg(p) cCc Wi(p) cc Ws(p) CC ...

for every p € A as follows. First, we let W7(p) be the connected component
of f=Y(Wg(f(p))) containing W¢(p). Note that f='(Ws(f(p))) is contained in
W#(A) and therefore, by Lemma 2.5, meets the critical set of f only at II. Hence
f is a local biholomorphism at every point of f~1(Wg(f(p))) — II so the latter
set is an embedded manifold. In fact f~1(Wg(f(p))) is an embedded manifold,
because its intersection with II. is the union of the disks W§(q) for f(q) = f(p).
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We claim that f~1(Wg(f(p))) has d different components, each containing
exactly one of the disks W§(q) with f(¢) = f(p). If this was not true, then
there would exist two different preimages ¢; and g2 of f(p) and a curve T inside
F~Y(W§(f(p))) joining ¢1 and ga. The curve f(T') would then be homotopic
rel. p to the constant curve at p and if f(I') and the deformed curves were
sufficiently nice at p, then the homotopy would lift to a homotopy rel. {q1,¢2} of
I to a constant curve. This is impossible. It follows that W} (p) is an embedded
manifold, which is furthermore a branched cover of degree d of the disk W (f(p)),
branched only at p. Hence W (p) is an embedded disk containing W (p) as a
relatively compact subset and intersecting IT only at p. From the equation
Go f =dG and Lemma 2.1 it follows that G has no critical points on W (p)
for p € A. Tt is also clear that WF(p) N Wi (q) =0 if p # q.

We now repeat the procedure and inductively construct, for each p € A, a
sequence of embedded disks {W}(p)}n>0 with the following properties.

(1) W:(p) is compactly contained in Wy, (p) and f maps W7, (p) onto
WE(f(p)) as a branched covering of degree d, branched only at p.

(2) G is harmonic on W;(p) — {p} and has no critical points there.

(3) The disks W;:(p) and W, (q) are disjoint if p # q.

Let W#(p) be the increasing union of all the W(p) over n > 0. Note that
W#(p) is not the superstable manifold at p in the usual sense but rather the
connected component, containing p of the superstable manifold at p. We arrive
at the following.

Proposition 2.8. If V is sufficiently small, then for any f € V the following
properties hold

(1) W*(p) is an embedded disk for allp € A and W3 (p) NW*(q) =0 if p #q.
(2) G is harmonic without critical points on W*(p) — {p} for all p € A.
(3) If W8(A) is defined as in Corollary 2.3, then

supp(T|p>—x) = W*(A) = | ] W*(p).
peEA

(4) We have that Ws(A) N K C supp(p). In particular, the boundary of the
disk W*(p) is contained in supp(u) for all p € A.

(5) The volumes |W*(p)| of W#(p) in the Fubini-Study metric on P? are uni-
formly bounded.

Proof.

(1) We have that W*(p), being the increasing union of embedded disks, is
biholomorphic to either C or D. To see that W#(p) is a disk we note
that W#(p) is contained in the Kobayashi hyperbolic set U defined in
Lemma 2.5. If p # ¢, then W#(p) and W?(q) are disjoint, because W (p)
and W3 (q) are disjoint for all n > 0.

(2) This is clear since G is harmonic without critical points on W} (p) for n > 0.
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We know from Lemma 2.6 that the sets supp(T|p2_g) and W*(A) are
equal so we only need to show that the latter set is equal to UpeA W#(p).
But these two sets are completely invariant under f and the orbit of a point
in any one of them approaches the line II at infinity. Hence the equality
to be proved follows from Corollary 2.3.

We will make heavy use of the assumption that f is close to the map
fo(z,w) = (2%, w?), which is Axiom A and satisfies the No-Cycles condi-
tion. Let us briefly verify this. The non-wandering set of fy has seven
components Q%, i = 1,...,7. Here Q) = {[0:0:1]}, Q) = {[0:1:0]}
and Q3 = {[1:0: 0]} are attracting fixed points, QJ = {|z| = |wl|,t = 0},
Q2 = {|t| = |z|,w = 0} and Q2 = {|w| = |t|, 2 = 0} have unstable index 1
and Q9 = {|z| = |w| = |t|} has unstable index 2. It is easy to see that fo is
transitive on QY and that periodic points are dense in Y for all . Hence
fo is Axiom A (i.e. hyperbolic on its non-wandering set and with periodic
points dense there) and its basic sets are exactly Q2. We write Q9 < Q‘;
if there exists an orbit (zy)rez under fy such that zp — Qf as k - —o0
and z;, — Q(J)- as k — oo. It is then easy to verify that f, satisfies the
No-Cycles condition, i.e. there is no nontrivial sequence ig,i1,...,ix = ig
such that Q9 <Q? <...<Qf .

Hence, by Smale’s Q-stability theorem (cf. [R]), we can assume that the
perturbed map f is Axiom A and that the basic sets of f are close (in the
Hausdorff metric) to those of fo. In particular, f has three basic sets Qs,
Q6 and Q inside OK; these are perturbations of Q2,02 and Q9, respec-
tively. We know that supp(u) is completely invariant and that f|supp(,) is
expanding and topologically transitive [FS2]. Hence supp(u) is a basic set
so in fact Q7 = supp(p).

Now suppose that there is a point z € (W$(A) N K) — supp(u). By

definition, the orbit of  must converge to the non-wandering set of f and
since the orbit of z is contained in K and supp(u) is repelling, the orbit
must converge to 25 U Q6. But the orbit is contained in the closed set
Ws(A) so we conclude that the sets W3 (A) and Q5 U Qg have a nonempty
intersection. This is a contradiction, because W$(A) is contained in the
set U defined in Lemma 2.5 and €; is close to QY for all i.
It is clear that |W§ (p)| is uniformly bounded if € is small enough. Let A4, (p)
for n € Z be the annuli defined by A,(p) := W*(p) N {d" < G < d"*'}.
For n sufficiently large we have A, (p) C W§(p) for p € A. Also, for each
n, the volumes |A, (p)| are uniformly bounded, because if m is sufficiently
large, then f™ (A, (p)) C Wi (p) for p € A. It is therefore sufficient to prove
that there exist constants C' < oo and A > 1 such that for n sufficiently
large negative and all p € A we have |A, (p)| < CA™. Since the sets |4, (p)]
are uniformly far away from the line IT at infinity for n large negative, it
suffices to prove the same estimate in the Euclidean metric on C2.
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For the unperturbed map fo(z,w) = (2%, w?) we have |D fo(x)v| = d|v|
for all z € Q9 and all v € C2. If V is small enough and f € V then by
continuity we will have |Df(z)v| > 22|v| for all z in a small neighborhood
of supp(u) and all v € C2. In particular, it follows from (4) that the last
estimate will hold for z € A,,(p) for all sufficiently large negative n and all
p €A
Now f: Ap—1(p) = A,(f(p)) is a covering map of order d. Hence, for
n large negative and p € A we have

1
A Dlewer = [ IDflansn
An_1(p)

1 3d

d(Z)Q |An71 (p)|euc1

|An71 (p) |euc1-

)" for n sufficiently large negative, which

>

>

| ©

It follows that |A,(D)|eua < C
completes the proof.

—~

O

We have shown that the union of the disks W#*(p) is equal to the support of
the current T in the open set P? — K. Our next objective is to describe the
action of T in this set on test forms in terms of integration over the W#(p).

Let us first note that the slice of T on the invariant line II at infinity is a
measure v which satisfies f*v = dv. In fact v is the unique invariant measure
of maximal entropy for the restriction of f to II( cf. [L], [FLM], [HP] or [FS2]).
The support of v is exactly the hyperbolic set A.

We may try to define a current S on P2 — K by declaring

<S¢ >i= /A dv(p) /Ws(,,) " (2.3)

for a smooth form ¢ with compact support in P? — K. Since the W?(p) are em-
bedded disks with uniformly bounded volume, this makes sense and defines S as a
positive closed (1, 1)-current. In fact, formula (2.3) defines < S, ¢ > for bounded
(in the metric on P?) continuous (1, 1)-forms in a neighborhood of W#(A). The
change of variables formula implies that f*[W*(p)] = >_,)=,[W*(q)]. Together
with the fact that f*v = dv this shows that f*S =dS.

We arrive at the main theorem in this section.

Theorem 2.9. We have T = S on P2 — K. More precisely, if ¢ is a bounded
continwous (1,1)-form in a neighborhood of supp(T|p2>_k), then

<Tleeoro>= [ w) [ e (2.4)
s(p

We will prove that Theorem 2.9 follows from the following weaker statement.
The author is grateful to N. Sibony for the idea of its proof.



104 MATTIAS JONSSON

Theorem 2.10. FEquation (2.4) holds if ¢ is continuous with compact support
in a small neighborhood of the line I1 at infinity.

Proof of Theorem 2.9. We assume that Theorem 2.10 has been proven and let
¢ be a bounded continuous (1, 1)-form in a neighborhood of supp(T|p2_g). We
may assume that ¢ is defined, continuous and bounded in all of P2 — K. Let
{¥n}n>0 be a sequence of continuous functions with 0 < ¢, < 1, ¢, = 1 on
{G > 2/n} and ¢, =0 on {G < 1/n}. Then

<Tlp2eg,Ynd > =< Tlp2_fg, ¢ >

and

< S, Ppp > =< S, ¢ >

as n — oo because S and T are positive currents with finite mass. Hence we
may assume that ¢ is continuous with compact support in P2 — K. Now let V
be a neighborhood of IT on which the statement in Theorem 2.10 is true. We
may assume that the support of ¢ does not intersect II, because otherwise we
just write ¢ = ¢1 + @2 where supp(¢1) C V and where supp(¢p2) NI = .

There exists an n > 0 such that f"(supp(¢)) is contained in V — II. The
support of S and T'|p2_ only meets the critical set of f™ at A (Corollary 2.7),
so after multiplying ¢ with a suitable cut-off function we may assume that f"
is a local biholomorphism in a neighborhood of every point of supp(¢). But
then (f™)«¢ is a well-defined continuous form with support in V so using the
properties f*T = dT and f*S = d.S we obtain

1

<T¢>= <T.(f")0>

= din < S, (f")« >
=< 85,0 >.

O

Proof of Theorem 2.10. Recall that f is close to the map (z,w) — (2%, w?). Let
x : W3(A) — A be the holonomy map defined by following the leaves of the
stable foliation, i.e. x(z) = p if z € W#(p). It is clear that y commutes with f.

There is an open set of lines such that every line ¥ in this open set is very
close to the line II, intersects every leaf of W*(A) transversely and in exactly
one point and that the intersection point is in II..

For such a ¥ the restriction of x to ¥ NW#*(A) is a homeomorphism onto A
which is close to the canonical projection 7 on II. The slice T'|yx, is a measure on
Y. supported on ¥ N W#(A). The key observation is the following.

Lemma 2.11. The relation x«(T|s) = v holds. In other words, the measure v
is a transversal measure of the foliation {W?*(p)}pea of W*(A).
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Theorem 2.10 follows from Lemma 2.11. Indeed, Lemma 2.11 holds for an
open set of lines ¥, so we can use slicing theory for currents to prove Theo-
rem 2.10. See [BS1] for details on this kind of argument. O

Proof of Lemma 2.11. The idea of the proof is to use the property f*T" = dT
together with the fact that f™(X) approaches II very fast as n — oo.
Take any continuous function ¢ on P2 such that ¢ox = ¢ on TNW?(A). It

suffices to show that
[ o) = [ s
b I

We may use coordinates ( = z/w and ¢ = 1/w in a neighborhood of A. Note
that 7(¢,t) = ( in these coordinates. Cover A by a finite union of bidisks
B; = D; x D,, where D; are small disks in II centered at points of A and n > 0
is small. We may assume that each B; intersects the closure of the postcritical
set of f only at II and that ¥ N W?#(A) is contained in the union of the B;’s.
We may also assume that ¥ N B; NII = @ for all ;. Because of the hyperbolicity
(in particular the “Lambda Lemma”) we have that for all ¢ and all n > 0 the
set f™¥ N B; has finitely many components, each of which is a graph over D;,
uniformly close to D; as n — co. Since these components are disks which do not
intersect the closure of the postcrltlcal set of f, we see that f "fPENB)NE
consists of d" distinct disks El],] =1,...,d". Let D,J = f”( l]) and g;; be the
single-valued branch of f~" defined on Dl] with values in EZJ Note that if f™
is not injective on ¥ N W?*(A), then the disks DZ]' will not all be different.

Let D;; = 71'(5;) = D;, g;; be the single-valued branch of (f|r) ™ such that
gij O X = X © gij on 5; and let E;; = ¢;;(D;j). Then {E\;J}” and {E;;};; are
covers of ¥ N W#(A) and A, respectively. Choose a C'' partition of unity {p;}
subordinate to the cover {D;} of A and let {p;;} and let {p;;} be the partitions
of unity subordinate to the previous two covers defined by the properties p; =
pij © gij and p; o ™ = p;; o gi;, respectively. We then have

/E¢(T|E):%/EZ(%¢) )
— Y [ o @), (115)
:d*”Z/ﬂT ((pij0) © gij) (T|f’i7)
5)

denZ/D”ﬂi (pogijoxor ') m (T
i, ij

=d Z/ (pi o) (60 Gi;) (T

5)-
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Here the second line follows from the property f*T = dT, and lines three and
five from the change of variables formula. A similar computation shows that

/H(bd,/:dn;j/mj pi (¢0gij) (T

Now, as n — oo, D;; is uniformly close to D;; and {g;;} is equicontinuous so
pi(¢ogijoxon™') is uniformly close to p;(¢ o gi;). Since the slice measure T'|s
depends continuously on S this implies that

|/D”Pi(¢ogz‘j oxowfl)n*(Tij)—/ pi(¢ o gij) (T

DZ'J'

Dz‘j)'

Dij)|

is uniformly small as n — co. Hence it follows that

[ o(r1s) = [ oav)

is arbitrarily small, which completes the proof. o

3. THE INTEGRAL FORMULA

Having described the current T in the domain P2 — K as a laminar current,
we now proceed to obtain an integral formula for the sum A\; + Ay of the the
Lyapunov exponents of f. Perhaps the most striking about this formula is that
it only depends on the homogeneous part of f of degree d.

Let us recall the following asymptotic expansion from Proposition 1.1.

G(z,w) =log|(z,w)| + [z : w] + o(1),
where [z : w] is the projection of (z,w) on Il ~ P'. If H = log|det Df|, then
we have a similar formula:
H(z,w) =2(d —1)log|(z,w)| + [z : w] + o(1).

Note that v and § depend only on the homogeneous part of f of degree d. This
is easy to see for § and was shown in Proposition 1.1 for . As before, let v be
the measure on A C II defined by v = T'|n. We will need the following result,
which is a fairly straightforward application of Green’s formula.

Lemma 3.1. Let M be a Riemann surface, p a point on M, £ a coordinate on
M with £(p) = 0 and u,v harmonic functions on M — {p} with

u(§) = c,log |€|71 + pu + o(1),
’U(f) = ¢y log |€|_1 + pv + 0(1)

as & — 0, where cy,cy,pu, and p, are constants. Then, if T is a positively
oriented simple closed C'-curve homotopic to a circle |¢] =1, we have

/(udcv —vdu) = cypy — CypPu-
r
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Let us now state and prove the integral formula for the sum of the Lyapunov
exponents of f.

Theorem 3.2. IfV is sufficiently small and f € V, then
A+ A= / (5 - 2(d - 1)’)/)dl/.
A

Proof. Let x be a smooth function on C? with 0 < x <1, x =1on P? —1I, ),
and x = 0 on IL. /3. Then

M+&:/Hw
:/(XH) dp
:/(XH) dd°G AT
=/GddC(XH)/\T

= / Gdd°(yH) AT.
P2—-K

Here the first line is well-known and follows e.g. from the Ergodic Theorem. The
second line holds since x = 1 in a neighborhood of supp(p) and the fourth line
since the potential G of T is continuous. Finally, the last line is true since the
current 7' is of order zero and G =0 on K.

Now H is pluriharmonic outside the critical set of f and the latter set does
not intersect the support of supp(7T'|p2_) outside II. Hence dd°(xH) is smooth
and bounded in a neighborhood of supp(7T'|pz_x) so Theorem 2.9 yields

A1+/\2:/ Gdd (yH) AT
P2—K

_ /A dv(p) /Ws(p)Gddc(XH)
= [ ) /Wos(p)GddC(xm

- / dv(p) / (Gd°H — Hi°G),
A OW§ (p)

Here the third line follows because xH is harmonic on W*(p) N (P? —1I. 5) and
the fourth line from an integration by parts. If we apply Lemma 3.1 (with the
coordinate & given by (2.1)), then we get

AL+ = /(6 —2(d — 1)7)dv,
A

and the proof is complete. O
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Corollary 3.3. IfV is sufficiently small and f € V, then A1 + A2 depends only
on the homogeneous part of f of degree d.

Proof. This is clear since the measure v and the functions § and «y in the state-
ment of Theorem 2.9 depend only on the homogeneous part of degree d of f. O

4. HOMOGENEOUS POLYNOMIALS

From Corollary 3.3 we know that, for the maps we are considering, the sum of
the Lyapunov exponents depends only on the homogeneous part of f of maximal
degree. This motivates a further study of Lyapunov exponents for homogeneous
polynomial maps of C? and will lead us to the main result of the paper.

Suppose f is a nondegenerate homogeneous map of C? of degree d, i.e.
f(z,w) = (p(z,w), q(z,w)) with p and ¢ homogeneous of degree d, and f~1(0) =
{0}. We may then define a rational map f : P! — P! in a natural way by letting
flz : w] = [p(z,w) : ¢(z,w)]. Note that f can be identified with the restriction
of f to II.

Let v = T'|;1 be the unique invariant measure of maximal entropy for f . We
first prove a result about the relation between p and v. There is a natural
projection 7 : C? — {0} — P! such that n(z,w) = [z : w]. We know that
supp(u), being the Shilov boundary of K, is contained in K. Since u does not
charge pluripolar sets, this shows that 0K has positive capacity. Furthermore,
since f is homogeneous, the intersection of 9K with a complex line of the form
7 1(p) is a circle which we denote by S,. Let u, be the Lebesgue measure on
Sp, normalized so that 1, (S,) = 1. We have

Proposition 4.1. If ¢ is a continuous function on C2, then

/(bdu:/Pldl/(q)/S b duy. (4.1)

q

Proof. We will use the following two results (see [FS2]). First, if p € P! with
at most two exceptions, then ((f)*6,)/d" — v weakly as n — c0. Second, for
any ¢ € C? outside a set of capacity zero we have ((f")*d,)/d*" — p weakly
as n — oo. Therefore, we may find an 2 € C? such that the above convergence
results are true for p = 7(z) and z, respectively. We may assume that z is in
the set 0K, because we noticed above that the latter set has positive capacity.
Also, we may assume that no preimage of x is in the critical set of f, because the
set of x without this property has capacity zero. For any n > 1, the preimages
of x are then grouped into d" groups, where each group consists of d" points
{azgq), . ,a:&‘f)} equidistributed on the circle S,, and where ¢ runs through the
d™ preimages of p = m(z) under f Hence, if ¢ is a continuous function on C?,
then

1 1 1 &
< SN >= = 3T > o). (4.2)

fr(=p =1
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Here the left hand side converges to < p,¢ > by the choice of z, so we only
need to check that the right hand side of (4.2) converges to the right hand side
of (4.1). Let ¢ be the continuous function on P! defined by ¢(q) =< g, @ >.
Then we get

1 L,
DD d—ngﬂwi )—/PldV(q)/S ¢ dpg

fr(a)=p e

.
0@ @) + |3 X b - [ baivta)

1
Sd—nz

fr(@)=p i=1 f(o)=p P!
1 & . 1 . .
<sup |22 D20 ?) = dla)| + | D bla) - [ la)dvla)
q i—1 - 1
¢ fr(a)=p

Here the first term tends to zero because ¢ is uniformly continuous on 0K and
the second term tends to zero because of the choice of p = 7(x) and the continuity
of ¢ on P'. O

Corollary 4.2. We have w.pu = v. In particular, p(E) = 1 implies v(r(E)) =1

Proof. This follows immediately from Proposition 4.1. O

We next want to find the relation between the Lyapunov exponent A\ of f
with respect to the measure v and the sum A; + Ay of the Lyapunov exponents
of f with respect to . The answer is the following

Theorem 4.3. If f : C> — C2? is a nondegenerate homogeneous polynomial
map of degree d, then, with the notation above, A\; + A2 = A + logd.

Proof. Let (z,w) be coordinates on C2, [z : w] homogeneous coordinates on P!
and (¢ := z/w. The map f then looks like f({) =p(¢,1)/q(¢,1). The Jacobian
of f is given by det Df = p.qw — ¢:pw- If (z,w) are such that w # 0 and
q(z,w) # 0 then the norm of the derivative of f at the point ¢ = z/w in the
Euclidean metric on C ~ {w # 0} is given by

1
q(¢,1)2 (p-(¢, 1)q(¢, 1) — q.(¢, Dp(C, 1))‘

4Gz, w)? (p2(z,w)q(z,w) — g (z,w)p(z,w))|,
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where we have used the homogeneity of p,q, p.,q.. Therefore, the norm of the
derivative of f in the spherical metric on P! is

£ _ 1+|<|2 w o Wz w) — U
FO| = 1 | e - e ) = e )
N i O ORI
= P G aIE | @ W w) = 4wl >>‘
L P P

= ICE T g m)p P @)z w) = (7wl )]

The last line follows from the relations zp., + wp,, = dp and zq. + wq,, = dg,
which are true since p and ¢ are homogeneous of degree d. By continuity we
get that the expression in the last line is the norm of the derivative of f in the
spherical metric at the point ¢ for any ¢ € P'. We may now iterate this. If
(z,w) € C2, (zi,w;) = fi(z,w) and {; = f1(¢) = z;/w; for i > 0, then

F1(¢)

(70| = il
=0

n—1

1 12 12

-1I 1 Jal” + lwil” \det D f(z;, w;)]
g Az P+ Jwia ]?

1 |(z,w)]?
- =W Df"
dm | (zp,wy)|? [det DF?(z,w)l

so we arrive at
1 ; 2. 1w
=1 my! logd = — log ————
—log|(f")'(O)] +logd = —log o))
Now supp(p) is a compact subset of C* — {0}. Therefore, if (z,w) € supp(i),
then log(|(z,w)|/|(zn,wy)|) is bounded so for p-almost all (z,w) € supp(u), the
right hand side in (4.3) tends to A\; + A2 whereas, by Corollary 4.2, the left hand
side tends to A 4+ logd as n — o0o. This completes the proof. O

1
+ Elog|deth”(z,w)|. (4.3)

We are now in position to prove the main result of this paper.
Theorem 4.4. IfV is small enough and f € V, then
A+ X2 =logd + A(fln)-
Proof. This follows from Theorem 4.3 and Corollary 3.3. O

As a special case we consider mappings of the type f(z,w) = (p(z,w),w?),
where p is a homogeneous polynomial of degree d such that p(z,0) = 0 only if
z = 0. Then the corresponding rational map f is the polynomial map f(C) =
p(¢,1). If now V is small and f € V, then f is close to the map ¢ — (¢
and the Lyapunov exponent is logd by the Brolin-Manning formula (0.2). By
Theorem 4.4 we therefore get
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Corollary 4.5. If V is sufficiently small and f € V is a map of the form
fz,w) = (p(z,w), q(z,w)) where the homogeneous part of q(z,w) of degree d
is the monomial w?, then the Lyapunov exponents of f satisfy A1 + X2 = 2logd.

(B]
[BJ]
[BS1]
[BS2]
[FLM]
FS1]

[FS2]
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REGULAR POLYNOMIAL ENDOMORPHISMS OF C*

ERIC BEDFORD AND MATTIAS JONSSON

0. INTRODUCTION

We consider a polynomial mapping f : C¥ — C¥ k > 1 as a dynamical system.
We let P* denote complex projective space and view CF as an affine coordinate
chart. Thus II := P* — C* is isomorphic to P*~! and will be considered as
the hyperplane at infinity. We study mappings f of degree d > 2 which have
a continuous (and thus holomorphic) extension to P*. It follows that the hy-
perplane II is completely invariant, i.e. IT = f(II) = f~!(II). We let fr; denote
the induced dynamical system at infinity. II is (super)-attracting in the normal
direction, so the basin A of points which are attracted to II in forward time is
an open set containing II.

To study the dynamics of f, we follow the approach introduced in [HP] and
developed more generally and systematically in [FS1-3]. Namely, there is an
invariant current 7', and the exterior powers T :==T A --- AT, 1 < < k, are
well defined, positive, closed currents of bidimension (k —1, k —1). The supports
Jy := supp(T") serve as a family of intermediate Julia sets. In this paper we will
be concerned with the measures p := T* and g := Tll“[_l (corresponding to fir).
In favor of brevity we denote their supports by J and J, respectively. Equally
important will be the restriction of T#~! to A, which will be written 75~ A.

In the study of the dynamics of a one-dimensional polynomial p: C — C,
a special role is played by the point at infinity. There is a conformal mapping
©, the Bottcher coordinate, which is defined in a neighborhood of infinity, and
which conjugates p to the canonical model ¢ — (% near infinity. If the filled
Julia set K is connected, then ¢ in fact extends to a conformal equivalence
¢ : C— K — C —D. This leads naturally to the study of .J in terms of
external rays, a powerful tool developed by Douady and Hubbard [DH]. The
point at infinity, being completely invariant, can also play the role of the pole
for a Green function for the set C — K; this serves as the starting point for
the use of potential-theoretic methods in the study of polynomial mappings, as
was introduced by Brolin [B] and further developed by Sibony (see [CG]) and
Tortrat [T].

In our study of polynomial mappings of C*¥, we will use the function G,
defined in (1.1), which measures the superexponential rate at which orbits ap-
proach II. If we set K := P¥ — A C CF, then G is the pluricomplex Green

113
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function for K with logarithmic pole along II. We will replace the point at
infinity in the one-dimensional case by Jp, the Julia set at infinity. And we
will replace the one-dimensional set C — K by the set W#(Jyy), consisting of
points which are attracted to Jp in forward time. The main objective of this
paper is to study 7#~!'L_ A. We show that, if f is (uniformly) expanding on
Jrr, the support of T*=1_ A is W*(.Ji), and we show how T*~'_ A provides a
connection between up and pu.

Define a small neighborhood Ay of II by Ay := {G > log+}. Results in
hyperbolic dynamics imply that W#(J) N Ap is equal to the union of complex
disks W§ (a), each of which is properly embedded in Ag. It follows that W*(.Ji)
has the structure of a Riemann surface lamination outside the set |J,,~, f~"(C),

where C is the hypersurface of critical points of f in C*, i.e. the set where f is
not locally invertible. We denote this lamination by W?* (.Ji).

Our first use of W#(.Ji) is to obtain a laminar structure for TF='_A. In
general the leaves of W?(Ji) can be dense in W#(Jr). However, we show that
there is a (small) closed subset S of A such that W#*(Jg) — S is a union of
Riemann surfaces {W, : a € Jii}, and each W, has the structure of a complex
disk which is properly embedded in A — S. For pp-almost every a € Jy, the
disk W, defines a current of integration [IW,] with finite mass, and T#*~' L 4 is
a laminar current of the form [[W,] um(a).

Second, we investigate the dynamics of f on W*(Jy1). Let fp, be the homo-
geneous part of f of degree d, and let G, be the homogeneous Green function
for fr. The sets Wi (Jm), Wy o(Jn) and Wy ((a) are defined in the same way
as W*(.Jn), W§(J) and W§(a), but using f, instead of f. We show that the
restriction of f to Wy (Jm) is conjugate to the restriction of f, to Wy o(Jm).
Moreover, this conjugation can be extended as follows. There is a closed sub-
set Sp of Wi(Jm), such that restriction of f to W*(Jg) — S is conjugate to
Wg(Jn) — Sp. The set Sp, is a union of rays of the form {z = as;1 < s < r},
where a € C*, G(a) =0 and r > 1.

Third, we use the stable lamination W*(J) to construct a family of curves
& which play a role analogous to that played by the external rays for a polynomial
mapping of C. An external ray v € £ corresponds to the image of a radial line
in ‘H under the conjugacy mentioned in the previous paragraph. (Equivalently,
external rays are lines where the harmonic conjugate of the restriction G|w, is
locally constant.) We may identify € with Ji x S', and we consider the measure
wr @ % on &. For up @ %—almost every point (a, ) € £, the corresponding ray
v(a,8) has a well defined endpoint e(a,f) € J. Further,

de
ex(pum @ 2—) = p-
m
Fourth, we consider Lyapunov exponents. As in [BS2] we find it useful to
work with a measure p. on the set of critical points; this measure is defined
by pe := [C] A (T* 1L A). If v is an ergodic measure, then by general results
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of smooth ergodic theory, there are Lyapunov exponents A\;(v), 1 < j < k.
We consider the quantity A(v) =3 ; A;(v), which gives the time average of the

infinitesimal rate of volume growth, lim,,_, < log|det D f™(z)|, of f at v-almost
every point z. By [FS3] the measures p and um are ergodic. Using the laminar
structure of T#~1_ A, we show that the values of A for ;1 and pyy are related as

follows:
A(p) = A(pn) + logd + /G,uc. (5.1)

This generalizes the formula for polynomials in dimension one, as formulated by
Przytycky [Pr], as well as the 2-dimensional formula of Jonsson [J1].

Finally, we restrict ourselves to k = 2 and the case where u. = 0, i.e., where
there are no critical points in the sense that W*(J) N C = 0. It follows that
S = 0, so each disk W, is properly embedded in A. An interesting question
is whether the endpoint map e defined above is continuous. Examples from
one-dimensional dynamics show that this is not always true. However, we show
that if f satisfies a suitable hyperbolicity condition (I), then e maps £ Holder
continuously onto J. Conditions which together imply (1) are: (1) f is Axiom
A, (2) all repelling periodic points belong to J, and (3) W*(Jg)NC = 0.

The difficult part in proving that e is continuous is to show that the bound-
ary of any disk W, accumulates only at J. To do this we must show that there
are no saddle connections; i.e., there can be no intersection between W#(.Jir) and
W(S;), where S; is the part of the nonwandering set in C? which is hyperbolic
of index one. One consequence of our result is that J is given as a topological
quotient, of the space Jg x dD. Our hope is that this will provide a starting
point for a more detailed study of the topology of J.

Let us note that related results have been obtained by other authors. Corol-
lary 4.4 and Theorem 6.5 have been obtained independently by G. Peng [Pe].
Hubbard and Papadopol [HP] have considered a problem which is in some sense
dual to what we have described above, and which was influential in motivating
our approach. In particular, they considered the case of a superattracting fixed
point at the origin and interpreted P*~1 as the fiber of the blow-up of C* over
the origin. The dynamics of regular polynomial endomorphisms were also stud-
ied by Heinemann [H], who focused on the behavior of f on K rather than the
behavior at infinity. Finally, Fornass and Sibony [FS4] considered hyperbolic
maps on P?; their results apply to provide different proofs of Theorem 4.1 and
Corollary 4.7.

The organization of the paper is as follows. In the first two sections we recall
results on Green functions and invariant currents for general regular polynomial
endomorphisms of C*. Then, in Section 3 we start assuming that fiy is expanding
on Ji and show that W§(Jm) is the union of local stable disks W§(a). The
laminar structure of T*~!'_ A is discussed in Section 4 and used in Section 5
to prove (5.1). We define external rays in Section 6 and describe how they
provide a link between the measures p and pp. In the same section we discuss
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Bottcher coordinates, which provide a model for the dynamics of f on W*(.Jm).
Finally, in the last two sections, we focus on regular polynomial endomorphisms
of C? satisfying suitable hyperbolicity conditions; in particular we introduce
condition (f). Different hyperbolicity conditions are discussed in Section 7 and
in Section 8 we prove that if f satisfies (1), then the endpoint map e maps &
Holder continuously onto J. For the convenience of the reader we have gathered
some basic facts on hyperbolicity for endomorphisms in Appendix A.

List of notation

f regular polynomial endomorphism of C* of degree d.
fn homogeneous part of f of degree d.
IT hyperplane at infinity.

i restriction of f to II.

m projection of C¥ — {0} on II or Ck*! — {0} on P*.
A basin of II for f.

Ap basin of II for fj.

K complement of A.

G Green function for f.

Ghn homogeneous Green function for fj.
PG Robin function for G.

T invariant current for f.

Ts invariant current for fj.

Tu invariant current for fiy.

I Tk,

T Téfl.

J support of u.

Jm support of ur.

W#(Jn) stable set of Jy for f.

Wi (Jm) stable set of Jy for fp.

A subset of A where G > log L.

Anp subset of Aj where G}, > log L.

A, £(4o)-

W3 (Jn) W (Jir) N Ao.

Wy o(Jm) W (Jn) N App.

W§(a) local stable disk for f at a € Jy.

Wi o(a) local stable disk for f, at a.
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W (a) global stable manifold of a.

A(p) sum of Lyapunov exponents of f with respect to u.
Apmn) sum of Lyapunov exponents of fij with respect to p.
C critical set of f.

e critical measure.

We(Jn) stable lamination for f.

Coo Unso f7(C).

S union of “bad” gradient lines in W*(Jy).

Sh union of gradient lines in W} (Jm).

W*(Jrr) W (Jm) — S.

Wa component of W#(a) — S containing a.

& set of external rays.

S1 union of basic sets of unstable index 1.

So union of basic sets of unstable index 2.

v(.J) backwards attracting basin for .J.

unstable set of S;.

== =
Sy

S

local stable manifold at p.

=

W(q) local unstable manifold at g.
W*(p) global stable manifold at p.
W3H(4) global unstable manifold at §.

1. REGULAR POLYNOMIAL ENDOMORPHISMS AND THEIR GREEN FUNCTIONS

In the following two sections we summarize several basic results that we will
use. These may be found in [HP], [FS1-3], and [U]. We recommend the unified
treatment in [FS3]. Throughout this paper, we will let f be a regular polynomial
endomorphism of C* of degree d > 2. This means that the components of f are
polynomials of degree d and that the homogeneous part fj of degree d of f satis-
fies f, '(0) = {0}. Alternatively, f is regular if and only if liminf | f(2)|/|2|¢ > 0
as |z| — oc.

We will use the compactification P* of C*, ie. we let z = (z1,...,2;)
denote (inhomogeneous) coordinates on C*, and [z :#] = [21 : ... : 2, : t] denote
homogeneous coordinates on P*, and we choose the embedding of C* in P*
given by z — [z : 1]. In the same notation, let IT = {t = 0} be the hyperplane
at infinity of P¥. Then II may be identified with P*~! using homogeneous
coordinates [z] = [z1 : ... : 2;]. We equip P* with the Fubini-Study metric and
measure distances and volumes in that metric unless otherwise stated.

A regular polynomial endomorphism f extends to an endomorphism of P*¥,
still denoted by f, by the formula f[z : t] = [t?f(z/t) : t%]. In fact, a holomorphic
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endomorphism of P* has a completely invariant hyperplane exactly when it may
be identified with a regular polynomial endomorphism of CF.

There is a projection 7 : C* — {0} — P*~1 given by 7(2) = [2]. It is clear
that the extension of  to P* —{[0 : 1]} given by 7z : #] = [] is holomorphic and
that the restriction of 7 to II is the identity, with the identification IT ~ P*~!
above.

The hyperplane IT is completely invariant under f. In fact, the set of regular
polynomial endomorphisms of C* can easily be identified with the set of holo-
morphic endomorphisms P* having a completely invariant hyperplane. Under
the identification IT ~ P*~! the restriction of f to II is a holomorphic endo-
morphism of P*~1  which in homogeneous coordinates is given by [2] — [fr(2)]-
When precision is needed, we will denote the map f on C*, P* and IT by fcs,
fpr and fi1, respectively.

We let. K be the compact set of points in C* with bounded forward orbits
and define A := P*¥ — K. The function

G(2) = lim d " log" "(2)| (L1)

gives the (super-exponential) rate at which the orbit of 2 € C* approaches
II. This is continuous and plurisubharmonic on C* and coincides with the
pluricomplex Green function of K. We will therefore also call G the Green
function of f. The homogeneous Green function for the homogeneous part f; of
f of maximal degree d is defined in an analogous way, namely as

Gi(2) = lim d™"log|f{(2)] (1.2)

The functions G and G, are continuous on C* and C*¥ — {0}, respectively. We
use log instead of logt so that G, is logarithmically homogeneous.
It will also be useful to define maps f and f, on C**! by the formulae

Flz,t) = (¢7f(2/1),1%)
Fulz,t) = (¢ ful2/t),19).

The homogeneous Green functions for f and f, are given by

G(z,t) = 1i_>m d~"log|f™(z,t)|

Ghr(z,t) = ILm din10g|fi?(zat)|

for (z,t) € C*1 —{0}.

The projection 7 : C¥+1—{0} — P* given by 7(2,t) = [z : t] semiconjugates
fto f,and f to fs,ie. for=mofand foom = 7o f. We have used the
letter 7 for two different projections but it should be clear in each case which
one we are refering to.

From the definitions we easily prove the following result.
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Lemma 1.1. The Green functions satisfy the following relations (whenever they
are defined)

G(f(2) = d-G(2),
Gr(fu(2)) = d-Gr(2),
G(f(z,1) =d-G(z,1),

Gr(fn(z,1)) = d-Gp(z,1),
é(z,t) = G(z/t) +loglt,
Gh(z,t) = Gu(z) = G(2,0)

It is easy to see that G(z) and G, (z) behave like log |z| + O(1) as |z| = 0.
Later on we will need the following more precise result.

Lemma 1.2. The asymptotics of G and G}, at 11 are given by

Gi(2) =log 2| + pal2]
G(z) =log |z| + palz] + o(1),

where [z] is the projection of C¥ — {0} on Il defined above and pg is continuous
on IL

Remark. pg is the Robin function for G (cf. [BT]).

Proof. Since GGy, is homogeneous we have
Gn(z) =log|z| + Gn(2/2]).

Here the second term is continuous in z and depends only on the projection
[2] of z on TI. Hence there exists a continuous function pg on II such that
Gn(z/)z|) = pglz]. This proves the first formula. To prove the second we use
Lemma 1.1 and write

G(z) =G(z,1)
=log |z| + G(2/|2],0) + (G (2/|2],1/|2]) = G(2/]2],0))
= log|z| + palz] + o(1),

where the last line follows from the continuity of G on C*+1 — {0}. m|

2. INVARIANT CURRENTS

Using Green functions we may define invariant currents; see [FS3] for a more gen-
eral discussion of these. The purpose of this section is to recall some definitions
and to see how the different invariant currents are related.

To begin, we have positive closed currents Tce and T} cx on C* defined
by Tcr = %dch and T}, o = %ddCGh. We also have positive closed currents
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Tpr and T}, pr on PF defined by 7 (Tpr) = %ddcé and (T}, pr) = %ddcdh,
where 7 : Ck*1 — {0} — PF* is the projection. The last two currents can be
calculated explicitly as follows. Let U C P* be an open set and s : U — CF+1
a holomorphic section of the line bundle 7 : C¥*! — {0} — P*. Then TL.U =
s-dd®(G o s) and TR LU = 5-dd°(G}, o s), where TL U denotes the restriction
of T to U. Finally, there is a unique, positive, closed current Ty on II with
the property that 7*(T) = T} c» with the projection 7 : CF — {0} = II. To
explain this last assertion, we note that, a priori, #*(T11) is defined only as a
current on C*¥ — {0}. However, it is a positive current, so we may extend it to
P by assigning it to have mass zero on {0}. Correspondingly, on the right hand
side of the equation, since G, is continuous on C* — {0}, it follows that T}, c»
puts no mass on the origin {0}. Finally, let us note that the current 711 may be
constructed explicitly, using a section of the bundle 7 : C¥ — {0} — II.

We remark that if Uy, is the open subset of P* where z; # 0, then

[21 ..otz t) = (21 /28y oy Zl—1 /28, 1, 8] 21)
is a section of the bundle 7 : C¥** — {0} — P* on Uy, and
[21: .. 226l = (21/2ky - -+ Z6—1/ 28, 1)

is a section of 7 : C¥ — {0} — II on Uy NTI. Similar sections can be defined
on the sets U; = {z; # 0} and U; NIl for j = 1,...,k — 1. We also note that
[2:1] = (2,1) is a section of 7 : C¥+1 — {0} — P* over {t # 0}.

The currents above are related, as will be shown in the following lemma.
We recall that if S = ;-dd°u is a positive closed current of bidegree (1,1) on a
complex manifold with continuous potential u, and M is a complex submanifold,
then the slice S|y is well-defined and is equal to the current on M defined by
Sl = 57 (dd”)|ar (ulnr).-

Lemma 2.1. The invariant currents defined above are related as follows.

Tck = Tpk |_Ck
Th7Ck = Th7pk I_Ck
Tn = (Tpx)In = (Tp,pr)|n-

Proof. These statements follow easily from the remarks above and Lemma 1.1.
To prove the first relation we observe that

1
Tpr L CF = 5 dd°G(2,1)

1 c

- Tck.
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The second relation is proved in the same way. As for the third, we have

1
(Tpk|n)|_(2'k 79 0) = %dch(zl/zk, e ,zk_l/zk, 1,0)

1
= %dchh(zl/zk, .. .,zk_l/zk, 1)
= THI_(Zk ;é 0)

Permuting the variables, we obtain (Tpx|m)L(z; # 0) = TnL(z; # 0) for
1<j<k-1,s0 Tp«|n = Tr. The proof that T}, px|m = T1r is identical. O
In view of Lemma 2.1 we may simplify our notation and use only the currents
T = Tpr and T, = T}, pr on P*, restricting them to C* or taking the slice on IT
whenever needed.
Although the maps f and f; are not submersions, they define pullbacks of
the invariant currents 7" and T}.

Lemma 2.2. The following relations hold

FT=d-T,
f}tTh =d- Tha
fii(Tn) =d - Tn.

Since the currents T' and T}, have continuous local potentials, we may define
T7 and T; for 1 < j < k; these are positive closed currents of bidegree (7, 7) which
satisfy f*(T7) = T/ and f;(T]) = d/T]. Most important for us will be the
currents T#~1, T/~ of bidimension (1,1), and g := T* and pr := (T|m)**, of
bidimension (0,0). Note that p and ur are represented by probability measures
on C* and II, respectively. We will denote their supports by J = supp(u) and
Ji = supp(pm).
Remark. In the notation of [HP] the latter two sets would be called J;, and
Ji,k—1, respectively. We use J and Jp for brevity, as we will not be using the
other intermediate Julia sets.

Proposition 2.3. The following formula holds on P*.
TH ! = / (7= (a)] pn(a). 2.1)
Proof. We know that 7*(Ti) = T, (CF — {0}). Thus T} 'L (CF - {0}) =

7 (TE™') = m*(un). Hence, by the definition of 7* as integration over the fibers
of 7, we have

TE (St - (o) = [ [+ (@) - {a)] o).
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Now we note that since T}, has continuous local potentials on P*¥ — {[0 : 1]}, the
current T,’f_l puts no mass at {0} or at II. Hence T,’f_l coincides with the trivial
extension of T} 'L (C* — {0}) to P*. Further, since {a} is a set of measure
zero with respect to [r71(a)], it follows that [r~1(a)] and [7~'(a) — {a}] define
the same current on P*. Thus the equation above yields (2.1). O

Let Cgr, Cpr, and Cyy be the critical sets of fcr, fpr, and fi1, respectively.
Thus we have
CPk = Cck U H

angﬂﬂ.

3. LOCAL STABLE DISKS NEAR Jpg

Everything said so far is true for all regular polynomial endomorphisms of CF.
We now want to understand the dynamics of f on the stable set of Jy, i.e.

We(Jn) = {z € P*;d(f"(z), Jn) — 0}.

To do this successfully, we impose restrictions on the dynamics of f. Namely,
we assume that frr is (uniformly) expanding on J;. This means that there exist
constants ¢ > 0 and A > 1 such that

|Dfyv] > c\"v| x € Ju, ve T, n>1 (3.1)

If f is expanding on Ji and a € Ji, then the tangent space T,P* splits into
a direct sum E“(a) ® E*(a), where E%(a) = T,II and E*®(a) is the eigenspace
of Df, associated with the zero eigenvalue. We clearly have Df,(E*/*(a)) C
EY/'$(frr(a)), and E*/%(a) depends continuously on a. Therefore, with the defi-
nition given in Appendix A, frr is hyperbolic on Jy.

The expansion of fir on Jy will allow us to understand the structure of
W#(Jm). In this section we will restrict our attention to a small neighborhood
of II, so let Ay := {G > log 1} and W (Jux) := W*(Ju) N Ao.

The stable manifold theorem asserts that there is a local stable manifold at
each point of Jir. The global stable manifold W#*(a) of a € Jr is by definition
the set of points z € P* such that d(f"(z), f*(a)) — 0 as n — co. We now
define the local stable disk W§(a) at a € J to be the connected component
of W#(a) N Ap containing a. By a complex disk we will mean the image of a
holomorphic injective immersion of the unit disk into P*.

Theorem 3.1. If € is small enough, then W§(a) is a complex disk which is
properly embedded in Ag for all a € J. Moreover, W (a) depends continuously
on a.

It is possible to deduce Theorem 3.1 from the stable manifold theorem. We
will, however, give a direct and fairly detailed proof, using the graph transform
method, because we need some of the constructions in Section 6.
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Proof. Let us embed f in a holomorphic one-parameter family f;, |7| < 2,
defined by fr = f 4+ 7(f — fn). We do this only because we need it in Section
6. Note that fo = f5, is homogeneous. To avoid cumbersome notation we write
f instead of f.. Our first task is to define good coordinate charts at the points
in Jg. Pick @ = (a@1,...,a) with (@) = a and |a| = 1. Permute coordinates
so that |(~7/k| = maxi<;<k |(~L]'|. Let ¢ = (Cl, .. -,Ck—l)a where Cj = Z]'/Zk — dj/dk
and let ¢ = 1/z;,. We denote the ball |(| < d; by U, = U,(d1), the disk |t] < 2
by Vi, = V,(d2) and the polycylinder U, x V,, by B, = B,(8) = B,(01,d2) for
81 > 82 > 0. Note that II corresponds to {t = 0} and the line 7—*(a) to {¢ = 0}.
Also, the Euclidean metric on B, and the Fubini-Study metric on P* differ by at
most a multiplicative constant C' > 0. The expansion of fir on Ji implies that
if a,b € Jo and a # b, then there is an n > 0 such that d(f{}(a), fi(b)) > 3Cd;.
After replacing f by an iterate we may assume that (3.1) holds withn =1,¢=1
and A = 3C.

Let us introduce some more terminology. A vertical disk in B, is a disk of
the form {¢ = const} and a vertical-like disk is the graph of a holomorphic map
U, — V,. Similarly we define horizontal and horizontal-like disks (although,
strictly speaking, these are not disks if k > 2).

By choosing 1 > d; > d2 > 0 we get that for all @ € Jy and for all f = f;
with |7] < 2:

(1) f(Ba) N Bi(a) C Ugn(a) X Vir(a)(02/2).

(2) f_l(BfH(a)) NnB, C Ua(61/2) x V,.

(3) If ¥ is a horizontal disk in B,, then f(X) N By (q) is a horizontal-like disk
in By, (q) and the restriction of f to ¥ N f_l(BfH(a)) is a biholomorphism.

(4) The critical set C = Ccr of f does not meet B,,.

(5) If ¥’ is a vertical-like disk in B, on which G is harmonic, then G|s/ has no
critical points.

Here (1)—(3) follows from (3.1), (4) follows from the fact that Cmp N Jg = 0
and (5) is a consequence of Lemma 1.2. Conditions (1)—(3) are illustrated in the
picture below.

/Q
=

F(Ba))  p(xm)

Ba Bin(a)

To produce stable manifolds we have to iterate backwards. We claim that
(6) If &' is a vertical-like disk in By (4), then f~(3')N B, is a vertical-like disk

in B,.

To see this, note that f~(X') N B, is an analytic set in B,. Let ¥ be a
horizontal disk in B,. We claim that f(X) intersects ¥’ in exactly one point.
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Indeed, by (3) we may write f(X) N By, = {t = g(¢)} and X' = {{ = h(t)},
where g and h are holomorphic. Hence the intersection between these two sets is
the unique fixed point of the holomorphic map goh : U, (a)(61) = Ugpy(a)(62/2).
By (3) it follows that ¥ intersects f~1(%')N B, in exactly one point. This proves
that the latter set is a vertical-like disk.

Now define By = B, N f~ ' (Bfy(a) N ... N f"(Byn(a)) for n > 0 and
B = Np>oBy. The latter set is the local stable manifold of a, i.e. it consists
of the points tracking a in positive time. Using the Kobayashi metric on U,, it
follows from (2) and (3) that there is a constant k£ > 0 such that the diameter
of ¥ N B is less that k27" for every horizontal disk ¥ in B, and all a € Jm.
We claim that Bg° is a vertical-like disk. Indeed, the estimate above implies
that ¥ N BY° consists of at most one point for every ¥. On the other hand,
repeated applications of (6) show that the set v,(a), defined inductively by
vo(a) = {0} x V, and v,(a) = f~ (ya—1(fu(a))) N By, is a vertical-like disk in
B. Hence y,(a) converges to a vertical-like disk. By the remark above, this
disk must be exactly Bg°.

The sets BS° are pairwise disjoint, because if a ;é b, then there exists an
n > 0 such that f{}(b) ¢ Byx(a)(36). Hence BZ, Fa@ N B =0, so B and By°
are disjoint.

Note that if §5 < d2 and 6] = &, then BS°(d") is the restriction to V, (d5) of
the vertical-like disk defining B;°(6). We next show that the disks BS° depend
continuously on a. Let 05 < do and M be larger than the Lipschitz constant
for all f, on P¥. Assume that b is close to a and choose n maximal so that
M"C3|b — a| < (63 4 63)/% — (6% + 6:2)'/2. Then B{° is contained in B?, and
the latter set intersects every horizontal disk in a set of diameter at most xK27".
Hence B;° depends continuously on a.

Let € > 0 be so small that if € W§(Ju), then z € B, for some a. By
the definition of B2° we see that if z € Ag N W*(a), then f"(z) € Bf”(a) for

large n. Thus 2 € By° for some b € Jn with ffj(b) = fii(a). Since the sets
Bg® are disjoint, it follows that the connected component W§ (a) of W#(a) N Ay
containing a is the subset of B$° containing a. Hence (5) implies that W (a) is
a complex disk, properly embedded in Ay and depending continuously on a. O

Remark. We note that the proof shows that W?*(a) N Ay is the union of the local
stable disks W§(b), where fii(a) = f{y(b) for some n > 0.

Proposition 3.2. For € > 0 small enough we have

Ws () = | Wel(a

a€Jn

Proof. This can be proved by showing that the inverse limit space :IE has local
product structure (see Proposition A.6), but we will give a direct proof. The
inclusion “D” is trivial, so suppose that € W (J). After replacing f by an
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iterate we may assume that (3.1) holds withn =c=1and A =3. Let M > 1
be larger than the Lipschitz constant for f on P*. Let n > 0 be so small that
if @ € Jig,then all branches of f;;* are single-valued on the ball B(fr(a), 4Mn)
in II and the branch mapping fri(a) to a maps B(fu(a),4Mn) into the ball
B(a,2Mn). Now let € W§(Jm). Let n be so large that d(f"*7(x), Ju) < n for
j > 0 and pick points a; € Ji such that d(f"*(z),a;) < n for j > 0. Then
(a;j)j>0 is an 2Mn-pseudoorbit in Jm, i.e. d(fu(a;),a41) < 2Mn. Let g; be
the branch of f7' on B(fn(a;),4Mn) mapping fri(a;) to a;. Then gj(aji1) €
B(fu(aj_1),4Mn) so the point b9) := Gjo...0g;(aj11) is well-defined. Moreover
d(f5(b9)),a;) < 2Mn for 0 < i < j. Letting j — oo and using the compactness
of Jir we find a point b € Ji such that d(f(b),a;) < 3Mn for all i > 0. Hence
d(f™i(z), fE(b)) < 4Mn for all i > 0. Assume that 4CMn < §, with C' and §
from the proof of Theorem 3.1. Tt follows that f™(xz) € W#(b), so z € W¥(e),
where ¢ € J is a point with f{i(c) = b. By the remark following the proof of
Theorem 3.1, this gives the corollary. O

The pictures below show slices of W*(.Ji) by complex lines {z = ¢} for the
map f(z,w) = (22 = 0.1,w? — 22 + 0.2z — 0.5i). In the coordinate ( = w/z, we
have fri(¢) = ¢2 — 1. The first picture is the Julia set of fr;. By Proposition
3.2, the slices above converge (suitably scaled) to this picture as ¢ — oco. The
remaining five pictures show the slices by the lines {z = 2}, {z = 1.3}, {z = 1.2},
{z =115}, {z=1.1}.

4. STRUCTURE OF T*~! oN THE BASIN OF II

In this section we use the local stable disks to analyze the structure of T%~!
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on the basin A of TI. Proposition 2.3 gives us a hint on what to expect: if f
is homogeneous, then the local stable disks W§(a) lie inside the lines 7 !(a)
and TF~1_ A is the average with respect to the measure pup of the currents of
integration over 77! (a) N A.

In the non-homogeneous case the situation will be similar, but more com-
plicated. We start by proving the laminar formula (4.1) for T*~' L A; in terms
of the local stable disks W (a). This induces a formula for for T%~1 on each
compact subset of A. In Section 6 we will go further and produce a laminar
formula for T*~! on all of A.

Finally we will deduce some dynamical consequences of the laminar struc-
ture of T*~'. Namely, the support of T*~!'_ A is exactly the set W*(.Jir) and
each global stable manifold W*(a) is dense in W?(.Jp).

Theorem 4.1. If fyj is expanding on Jy and € is small enough, then

T4y = [ W (@) o). (4.1)

Proof. Tt follows from Proposition 2.3 that

1 . B
e (T A) LAy

= i U ([ 1@ 0 ) (@) )

for all n > 0. We claim that the left hand side tends to T#*~!_ Ay and the right
hand side tends to [[W§(a)] uri(a) as n — oo.

To prove the first part of the claim, it suffices to show that d"Gp o f* — G
uniformly on compact subsets of 7—'(4y). Now the function H := G} — G is
continuous on C*¥+1 — {0} and satisfies H(az,at) = H(z,t) for a # 0. Further,
H = 0 on 7~ '(IT) according to Lemma 1.1 and f™(7~'(4p)) — =~ '(I) as
n — 00. Hence

Grofr—G = (Guofr-Gofr)
1

_dnHof"

1
)

= of

As for the second part of the claim, we calculate

dn(lt—l) () </ [77" (a) N Ao] Mn(a)) L A

- / ﬁ [f7" (7 (a) N Ao) N Ao] pui(a).
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From the proof of Theorem 3.1 we know that f~"(7~!(a) N Ag) N Ag is a union
of d"*-1) disjoint complex disks ¥n(b), where b runs through the preimages of
a under f". Hence we get

/W{” [f7™ (7 (a) N Ag) N Ao] pi(a) :/ﬁ > [w®)] pnla)

fr(b)=a

= [ @) i (™) @)
= [ (@) (o)

Moreover, from the same proof it follows that -, (a) converges to the local stable
disk W§(a). Moreover, the volumes of +,(a) are uniformly bounded, so by
bounded convergence the last line above converges to [[W; (a)] pr(a) as n — oo,
completing the proof. |

Theorem 4.1 allows us to describe the support of 7%~ A in dynamical
terms.

Corollary 4.2. If fi is expanding on .Ji, then supp(T*~' L A) = W*(Jp).

Proof. Tt follows from Theorem 4.1 and Proposition 3.2 that the support of
Tk=1_ Ay is equal to W*(Jir) N Ag. This proves the corollary, because the sets
supp(T*~'L A) and W*(J) are both completely invariant and any compact
subset of either of them is mapped by some iterate of f into Ag. |

We would like to have a formula similar to (4.1) on all of A. One idea is to
try to extend the complex disks W§(a) to closed complex varieties in A, using
the fact that f(W§(a)) is compactly contained in W§(a). With this in mind we
define A, := f7"(4p) = {G > d "log 1} and

Wi(a) == f7" (W5 (f"(a))) ,

for a € Jg and n > 0. Then W;(a) is a (possibly disconnected) complex
subvariety of A,. Note that W2(a;) = W3 (az2) as soon as f™(a1) = f™(az), so
W (a) will contain d®*—1) different local disks. Thus the union over n > 0 of
W (a) will not be a complex subvariety of A. One might try to get around this
problem by taking the irreducible component containing a of W (a) and hope
that the union over n > 0 of these components would be a complex subvariety
of A. However, this union may contain infinitely many local stable disks (see
the end of this section for an example).

We will return to the problem of finding a global laminar structure for
T*=1_ A in Section 6. At any rate we can now present a formula on each
compact subset of A.
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Corollary 4.4. If fr1 is expanding on Ji and € is small enough, then for every
n > 0 we have

T4, = [ Vi) (o)

Proof. This is an easy consequence of Theorem 4.1. Indeed,

. 1
T* 1I_An=m(f) (T* 1L A)

— = U ([ 5@ o))

= i [ [ 0 @)] im0

= s [ 7 0% G @)) m(a)

= [ = Wi@) sn(a)

O

As indicated above, the sets W;?(a) will be very large for large n. This is
made precise by the following result.

Proposition 4.5. If fi1 is expanding on Jy, then for every a € Jn we have

1

m [W;(a)] — T'k_1 LA

asn — oo.
To prove Proposition 4.5 we need an auxiliary result.

Lemma 4.6. Given a € Jp and n > 0, define

1 1 n\*
Uil,n,a ‘= m Z Oy = W(fn) g
I (b)=a

Then pm,pn,q — ftr as n — oo for every a € Jir.

Proof of Lemma 4.6. It is a general result of Fornaess and Sibony [FS3, Lemma
8.3] that prn,q — pm for pm-a.e. a € J. In the presence of expansion, however,
we can say more. Take any a € Jg and a small ball U in II containing a. We
may assume that U does not intersect the postcritical set of frr. Then, for n > 0,
f~"(U) is a union of d**~1) disjoint open sets, the diameter of which tend to
zero uniformly as n — oco. Take any point o' € U for which pr pq — pum as
n — oo. It then follows that p,n,. — pm as well. O
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Proof of Proposition 4.5. For any m > 0 and n > m we have

e W) 0 An] = s [ (770 (W) 0 40

T =" U W (b)
from(B=a

= = O ([ IO ma)

which by Lemma 4.6 converges to

1

i ) (T do) = TL A,

as n — oo. This completes the proof. O

Recall the notation W#(a) for the global stable manifold of a. Note that
W#(a) is the increasing union of W(a) over all n > 0.

Corollary 4.7. If fr is expanding on Jy, then W#(a) is dense in W3 (Jr) for
all a € Jn.

Proof. This is clear in view of Proposition 4.5. O

We give the following example to show that the global stable manifolds
W#(a) may be quite complicated.

Example. Consider f(z,w) = (2% + ¢,w?), where ¢ € C is outside the Man-
delbrot set. We have fi(¢) = ¢?>. The line {w = 0} is completely invariant
and does not intersect W (Jir). Define new coordinates on C x C* by (u,v) =
®(z,w) = (z/w,1/w). Then ® conjugates f to the homogeneous map g(u,v) =
(u? 4+ cv?,v?). Let G be the Green function for f, G, be the homogeneous Green
function for g, and let G be the Green function for the one-dimensional polyno-
mial ¢ = ¢? +¢. Then G(z,w) = max(G.(z),log|w|) and G (u,v) = —log|w| +
Gy(z,1) = —loglw| + Ge(z). Now Wé(Jn) = {(z,w);Ge(z) = log|w| > 0}
so ®(W*(Jm)) = X,, where X, := {(u,v);G4(u,v) = 0,7(u,v) ¢ K.}. Here
K, is the filled Julia set for the polynomial map ¢ — ¢% + ¢. Hubbard and
Papadopol [HP, Proposition 8.4] showed that X, is a Riemann surface lamina-
tion, all of whose leaves are dense in X,. Hence the same is true for W*(Jr).
In fact, the leaves of the Riemann surface foliation are exactly the global sta-
ble manifolds W#(a), so these are dense in W#*(.Ji1). Further evidence for the
complicated structure of W?(a) was given by Barrett [B] who showed that the
Corona Problem fails on the leaves of X,. Hence it fails on W?(a) for a € Ji.
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5. LYAPUNOV EXPONENTS.

In this section we prove a formula for the sum A(f) of the Lyapunov exponents
of a regular polynomial endomorphism f of C*. The only assumption we make
is that frr is expanding on Jir so that the current Tk=1_ A has the laminar
structure given by Theorem 4.1. A special case of (5.1) below was proved in [J1].

Let us recall the notion of Lyapunov exponents. For more details we refer
to [Y]. The sum of the Lyapunov exponents of f with respect to p is the number
A(f) defined by the property that

o1 n _
Jim —log | det Df" ()] = A(f),

for p-a.e. z € P*. That this is well-defined is part of the statement of Oseledec’s
Theorem. Hence A(f) measures average volume growth of the map f™ at u-a.e.
point. The individual Lyapunov exponents measure the average growth of the
derivative of f™ in different directions; we will not give the precise definition
since we do not need it.

Our formula for A(f) will involve the integral of the Green function against
a critical measure so we begin by defining the latter measure as

1
fhe = 2—dch AT*TLA) = [C] A (T A),
Y

where H = log |det Df|.

Then p. is a well-defined positive measure because T has a continuous
potential, and so the mass of dd°H A T*~! is finite. For later reference we note
that the asymptotics of H at II are given by

H(2) = k(d = 1)log|z| + prlz] + o(1),

where [z] is the projection of z on IT and pyr is the Robin function of H. It is easy
to see that pg is continuous on II — Cy and depends only on the homogeneous
part fp of f of degree d.

We will need the following application of Green’s formula. The proof is left
to the reader.

Lemma 5.1. Let M be a Riemann surface, a a point on M, ¢ a coordinate on
M with £(a) = 0 and w,v harmonic functions on M — {a} with

u(§) = ¢, log |f|71 + pu +0(1),
v(§) = ¢y log |f|71 + py +0(1),

as £ — 0, where cy,cy,pu, and p, are constants. Then, if § > 0 is so small that
D C ((M), we have

/ (ud®v — vd®u) = cypy — CyPu-
|§]=0
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Theorem 5.2. If f is a regular polynomial endomorphism of C* with fr ex-
panding on Jr, then

A(f) = logd + A(fu) + /Guc. (5.1)

Proof. From the ergodic theorem we have

A(f)z/Hu-

Fix a large number R and let y be a test function supported in {G < 3R} that
satisfles 0 < x < 1 and x = 1 in a neighborhood of {G < 2R}. Then xH is
continuous and compactly supported, and the integral above is equal to

/ XH(dd°G)* = / Gdd® (xH) A (dd°G)*1
= / x1Gdd® (xH) A (dd°G)*=1
+ / x2Gdd® (xH) A (dd°G)*—1,

where x; is a test function supported on {G < 2R} which satisfies 0 < y; <1
and x = 1 in a neighborhood of {G < R} and where x2» =1 — x1.

We may assume that R is so large that . is supported in {G < R}. Then,
since x = 1 in a neighborhood of supp(x1), the first term above is, by definition
of the critical measure, equal to

/XIGUCZ/GUC-

As for the second term, Theorem 4.1 tells us that for R > $logl it can be
written as

[ i@ /W;(a) wGdd(cH) = [ pnla) /Wg(a)add%xm
_ / pr(a) / (Gd°H — Hi*G)
OW; (a)

= /(PH — k(d —1)pg) pu(a).

The first equality follows because x1 H = H is harmonic on W§(a) N {G < 2R}
and x- is identically one outside the same set. The second line is an integration
by parts, and the last equality is a consequence of Lemma 5.1.

It remains to evaluate the last integral. To do so we first note that the
Robin functions pg and pg depend only on the homogeneous part of degree d
of f. We may therefore assume that f = f; is homogeneous and make use of
the following result.
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Lemma 5.3. Let f be any homogeneous regular polynomial endomorphism of
Ck, and let |det(Df)| and |det(Dfr)| be the Jacobians of f and fi in the
Euclidean metric on C* and the Fubini-Study metric on II, respectively. Then

k
|det(Df)(2)] = d.- (M) | det(D fu)[]-

2|

Proof of Lemma 5.3. Pick any zy € C¥ — {0}. After pre- and post-composing
with dilations and unitary maps, we may assume that f(zo) = z0 = (0,...,0,1).
Since zg and [zp] are now fixed points, the choices of metrics are irrelevant when
computing the Jacobians. We use local coordinates (£,s) on P* and ¢ on II,
where & = z;/z, for 1 <i <k —1 and s = t/z;. In these coordinates,

f(fas) = (fl(gal)/fk(fa]-)a e '7fk*1(€71)/fk(€71)58d/fk(fa 1))7
fH(g) = (fl(gal)/fk(fa]-)a .. 7fk71(€71)/fk(€71))

Since the first k¥ — 1 coordinates in f(,s) do not depend on s, we see that

det D f(&, 5)|(e,5)=(0,1) = d - det D fri(§)]¢—o,
which completes the proof. O
We continue the proof of Theorem 5.2. Let

e = )

217

This is a well-defined continuous function on II and from the equations G(z) =
log|z] + pgz] and G o f = dG we get

logh = dpc — pG o fu, (5.2)
so by invariance of um
/loghun =(d- 1)/paun.
On the other hand, Lemma, 5.3 shows that
pr = logd +log|det D fr| + klogh, (5.3)

so by (5.2) and (5.3) we arrive at

/(pH —k(d—1)pg)pn = logd + /log | det D frr| purr
= logd + A(fm),

which completes the proof of Theorem 5.2. |
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6. EXTERNAL RAYS AND BOTTCHER COORDINATES

In this section we will do three things. First, we will continue the work in Section
4 and give a laminar formula for T*~! on all of A. Second, we will show how
to define external rays and a measure on the set of these. Every ray starts at
Ji, and almost every ray lands at a point of J. The family of rays gives the
connection between the measure pup and the measure p. Finally, we will give
variations on the idea of giving a Bottcher coordinate for the restriction of f to
W (Jm).

We start by discussing the laminar structure of W#(Jir). Recall from Sec-
tion 3 that we may choose € > 0 so that W (Jg) = W*(Jg) N Ap is the disjoint
union of local stable disks W§(a), each of which is a complex disk properly em-
bedded in Ag. Tt follows that W§(Jm) is a Riemann surface lamination. Now the
iterates of f are local biholomorphisms outside the set C_oo := J,,50 f~"(C)-
The expansion of fii on Jp implies that C_o, N W*(Jn) is closed and nowhere
dense in W#(Jrr). Thus W?(Jn) —C_« is also a lamination, which we denote by
W#(Jm). If a € Ji, then W#(a) — C_« is a disjoint union of leaves of W?*(.Ji).
We know from Corollary 4.7 that W#(a) is dense in W#*(Jir). The precise struc-
ture of W#(a) depends on if, and how, W#(Jr) intersects C. At the end of
section 4 we gave an example where each W#(a) was a connected Riemann sur-
face. On the other hand, if W#(Jr) does not intersect the critical set, then we
will see below that W#(Jy) is the disjoint union of complex disks, each of which
is properly embedded in A.

Next we define a set S to be removed from W?(Jr). Each point z €
W#(Jn) — C—_s has the following properties: (1) z is contained in a unique
leaf L, of W*(Jm), (2) L, is nonsingular at z, and (3) the gradient of G|, is
nonvanishing at z. Thus z is contained in a unique gradient line of G/lyys(sy)-
We let W*(Jy) denote the set of points # € W*(Jy) — C_o for which the
gradient line v, starting at » and moving in the direction of increasing G has
an unlimited continuation, i.e. limse,, G(s) = 4+00. Denote W*(J) — W*(Ji)
by S. Heuristically speaking, S consists of all points x for which the gradient
line encounters C_o, If € W*(.Jir), then there is an n > 0 and a neighborhood
U of x such that f™ maps U biholomorphically into Ag. Thus {G > r} NS is
compact for » > 0. Similarly, the set A — S is open. For a € Jy, we write W,
for the connected component of W*(.J;;) containing a. By the construction of
W (Ji), there is a well-defined gradient flow inside each set W,, following the
lines of increasing values of G.

Theorem 6.1. For each a € Jyg, W, is simply connected, and W, is a properly
embedded disk in A — S. For pp a.e. a, W, has finite area as a subset of P¥,
and we have the laminar formula

TE1_ A= / (W] ot (a). (6.1)

Proof. If v is a closed curve in W,, then we may apply the gradient flow to
until the image lies inside the disk W (a). Since the image of « is contractible
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inside this disk, the original curve v was contractible. For r > 0, we observe
that W, N{G > r} is a relatively compact subset of W*(a). Thus W,N{G > r}
has finite area, and it follows that the area of W, is locally finite inside A, so
the current of integration [IW,] is well defined. By Corollary 4.4 and by the fact
that the sets W, N A, are (modulo a set of zero area) just a finite subdivision
of W2(a), we have that

/ (Wl Ap)m(a) = TH LA,

and thus (6.1) holds. Hence

/ W, s (a) < T

Since the current 7%~ has finite mass, it follows that [[W,]umn(a) has finite
mass, so that for up almost every a, W, has finite area. O

For each a € Jy there is a harmonic conjugate function G% for G|w, in the
sense that
0 = eGHGL
is an analytic function. The choice of G is unique up to the choice of an
additive real constant. Note that G is constant along the gradient lines on W,.
We consider domains H, of the form

H,=C-(DU(JR)), (6.2)

where R; is a ray of the form (ewi,rjeief], and for each € > 0 there are only

finitely many j for which r; > 1+ €.

Lemma 6.2. For each a € J, there is a domain H, of the form (6.2) such that
©0a : Wo — H, is a conformal equivalence. If ¢, := (p,)~' : Hy — W, and if
W, has finite area, then the radial limits lim,_,+ v, (re’’) exist for a.e. 6.

Proof. The first two assertions were proved above. It remains to show that radial
limits exist almost everywhere. We work in affine coordinates in C* C P*. Let
@ € CF denote a point with |a| = 1 such that m(a) = a € P*¥~!. Thus we
may write ¢, (¢) = (7@ + ho({), where h, is analytic on H,. Away from the
hyperplane at infinity, the Euclidean metric on C* is equivalent to the Fubini-
Study metric on P*. The condition that T, has finite area in P* is equivalent,
to [ [Vhae|> < co. It follows that

1 1 i0
/ |Vh, (1‘@"9)|2 rdr = / |78ha(§:e ) |2 rdr < 0o
0 0

for almost every . Thus radial limits exist for these values of 6. |
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Let us define the set £ of external rays as the set of gradient lines in W (.Jry).
For each a € Jy, the unit tangent directions in the tangent space T,W, at a give
a natural parametrization of the set of external rays which lie in W,. Thus the
measure iy & % is defined on £. By Lemma 6.2, we may define an endpoint
map e : £ = 0K for ug ® %—a.e. ray. For every ray v € £ and r > 0, we let

er(y) =yN{G =r}. Thus lim,_,o+ e, = e holds for almost every ray v € £.
Theorem 6.3. e.(un ® %) = U.

Proof. Let us first fix a € Jy and consider the mapping e, restricted to a
manifold W,; it is well defined except possibly at a finite number of points. For
r > 0, the measure defined by the restriction of 5-d°G to W, N {G = r} is the
image, under the gradient flow, of the measure %. We note that this measure
is the same as 5-d(d°GL{G > r}). Thus, continuing to restrict to Wy, we have
e*(%) = 5-dd° max(G,r).

Let us next consider the current

1
= —d°GATH! :
v, 271_d G A L{G >r}

Note that d(v,) = (3=dd° max(G,r))¥. By the laminar structure of TF 1A
and by the properties of the restriction of e, to W,, we have that

(er)e(in © 92 = (5-dd* max(G, ) (6.3)

This is taken by using the result for each a and integrating with respect to pup.
Now since lim,_,g+ e, = e almost everywhere, we have that the left hand side
of (6.3) converges to e, (um ® 2£) as r decreases to 0. Next, since max(G,r) de-
creases to G, it follows that the right hand side of (6.3) converges to (5= dd°G)* =
1 as r decreases to 0. This completes the proof. O

Now we proceed to give some interpretations of the Bdéttcher coordinate.
The idea is to describe the dynamics on W (Jir) or W#(.Ji) in simple terms,
just as the ordinary Béttcher coordinate conjugates a polynomial mapping of C
to ¢ — ¢%. First we set

"= {a} x Ha, (6.4)
a€Jm
and we let ¥ : % — W*(Ji1) denote the mapping such that ¥(a,-) = ¢,. Note
that H and ¥ depend on the choice of additive real constants in G;. In any
case, ¥ is a Bottcher coordinate in the following sense.

Proposition 6.4. For each a € Jy, there is a v, € S' such that

f(\I,(aa C)) = \I’(fl_[(a)a VaCd)' (65)

Proof. By construction we have log|¢,| = G on W,. From the formula G o f =
d-G we get [ ry(a)0f| = |0a]?, so there exists v, € S* such that ¢ (a)0f = vaypl.
This is equivalent to (6.5). |
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Proposition 6.4 gives a Béttcher coordinate on all of W#(Jir) but has the
drawback that the constants v, depend on the choice of G%. Moreover, it is not a
priori clear that the set H is open in Ji X (C —D) or that ¥ is continuous. These
problems are eliminated in the next version of the Bottcher coordinate. The idea
is that, as in one dimension, we will conjugate f to its homogeneous part f; of
maximal degree. We work locally near IT and use the notations W} ,(.Jir) and
Wi o(a) for the sets defined in the same way as Wy (Ju) and W (a) but using
fn instead of f. The following result is similar to Theorem 9.3 in [HP].

Theorem 6.5. If fi1 is expanding on Jm, then for small € > 0 there is a conju-
gacy © between (fn, Wy (Jn)) and (f, W§(Jn)). Furthermore, © maps W’ ;(a)
conformally onto W§(a) for all a € Jr.

Proof. The idea is to define the conjugacy as lim, . f~" o f;'. We resume the
notation from the proof of Theorem 3.1. It is here that we use the embedding of
[ in the one-parameter family f, = f +7(f — fx). Define W} (a) and W}, (/i)
just as W§ (a) and W§ (Jm) but using f, instead of f. By the proof of Theorem 3.1
we may assume that are W;O(a) pairwise disjoint complex disks whose union is
exactly W7o (Jn) for || < 2. We have that f"(f (W} (a)))N By ; is contained
in a vertical-like disk in B,. By the construction of B, there are d" locally
defined branches of f=" mapping f!(W (a) — {a}) into By . These branches
depend holomorphically on 7. Let %, , be the branch obtained by analytic
continuation of ¢,0,, = id. Then %, , is well-defined on W,f,o(a), depends
continuously on a and holomorphically on 7. We may pass to the limit and define
Ya,r = liMp_yo0 Vg, rn. Now 9, - maps level sets of G}, to the corresponding level
sets of G and v, , maps W,io(a) into BgY,. Hence Hurwitz’s theorem implies
that ¢,,, is a biholomorphism of W}’ ;(a) onto W} ,(a). Moreover, 1, - depends
continuously on a and holomorphically on 7. If we define ©, : Wy ((Jn) —
W2o(Jn) by ©-(z) = ¢a,-(2) for z € Wy ;(a), then ©; is a homeomorphism
for each 7. We claim that O, conjugates f to f. To see this, fix a € Jg and
note that the two mappings g, := f; o ¢y and h; := vy (a),- © fn both map
Wy o(a) onto W7, (fr(a)) as branched coverings, depend holomorphically on 7
and satisfy G, o g, = G- o h, = d - G}. Hence there exists v, € C, depending
holomorphically on 7, with |v;| = 1 and g,(v;z) = h.(x). Thus v, is constant
so since G, = hg we must have g, = h, for all 7. This completes the proof. O

In fact, we may extend the conjugacy in Theorem 6.5 as follows. Namely,
W; () is a complex disk in P* of the form {z = (@;|¢| > ro}, where 7(a) = q,
la| = 1 and r, > 0. By using the coordinate ( on W} ;(a) we may therefore
identify the restriction of © to W,f’o(a) with a parameterization ¢, as above.
This, and Proposition 6.4 imply the following result.

Corollary 6.6. If fr1 is expanding on Jri, then there is a closed subset Sy of
W3 (Jn) and a conjugacy © between (fn, Wi (Jn) — Si) and (f,W*(Jm) — S).
The set Sy, is a union of rays of the form {z = as;1 < s < r}, where a € CF,
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Gnr(a) =0 and r > 1. Further, ©® maps (7~ (a) N Ay) — Sy conformally onto W,
for all a € Jy.

Using Corollary 6.6 we can make a more precise choice of the conjugacy
¥ in Proposition 6.4, at least in dimension k£ = 2. Namely, if £ = 2, then the
restriction of the tautological line bundle 7 : C?—{0} — P! to 7! (Cyy) is trivial.
Further, the set Wy ;(Ji) is a topological disk bundle over Jii whose fibers are
subsets of the fibers of the bundle 7. Also, CpN.Jg = 0, since f1 is expanding on
Ji, so there exists a homeomorphism ¥, : J x (C — D) — W (J) such that
Wy (a,00) = a and ¥y maps the disk {a} x (C—D) conformally onto 7 *(a) N Ap,.
Let H = U, (Wi (Jn)—Sp) and ¥ = © 0¥, where S, and © are as in Corollary
6.6. Then H is a domain of the type (6.4) and ¥ is a homeomorphism of H onto
W#(Jn) — S. Further,

f o \Il(aaC) = \Il(fﬂ(a)ayagd)a

where v, € S' depends continuously on a. Hence we have.

Theorem 6.7. If k =2 and fn is expanding on Jii, then there is an open set
H in Jg x (C — D) of the type (6.4) and a homeomorphism ¥ : H — W*(Jp)
satistying (6.5) with v, depending continuously on a.

We give an example to show that we cannot always obtain v, = 1 in The-
orem 6.7. Let f(z,w) = (w?,2%). Then Jy is a circle on II and we can use
coordinates ( = z/w,t = 1/w in a neighborhood of Jy;. In these coordinates f
is given by ((,t) — (1/¢2,#2/¢?), Ju by |¢| = 1, = 0, and the Green function
by G = —log|t|. Hence fi is expanding on Ji and H = Jg x (C — D). It
follows that any Bottcher coordinate is of the form ¢,(¢,t) = c(a)/t, where ¢
is a self-map of the circle S*. The numbers v, associated with ¢, are given by
vy = ¢(1/a?)a?/c(a)?, so v, = 1 if and only if c¢(a)? = e¢(1/a®)a®. The corre-
sponding map ¥ is continuous on Jp X (C — D) if and only if ¢ is continuous.
If this is the case, then ¢ lifts to a continuous map C : R — R such that
C(s+ 1) = C(s) +n for some integer n and the equation c(a)? = ¢(1/a?)a® to
2C(a) = C(—2a) + 2a + m for some m. Replacing a by a + 1 and subtracting
the old equation yields 2n = —2n + 2, which is impossible.

We end this section by discussing the particularly interesting case when the
stable set of Ji does not meet the critical set, i.e. W*(Jg)NC = 0. Then S = 0,
each stable disk W, is properly embedded in A and H, = C—-Dforala In
this case we may strengthen Theorem 6.3 as follows.

Theorem 6.8. If fi1 is expanding on J and W*(Jg) N C = (, then for pp
almost every a and any choice of harmonic conjugate Gy, the embedding 1, :
C — D — P* — J is proper.

Proof. We have observed that if W#(Jq) NC = 0, then W, is a topological disk
properly embedded in A. By Theorem 6.3, the radial limits lim, 1 ¢, (re??) exist
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and belong to J for df almost every 6 and um almost every a. Further, for un
almost every a, W, has finite area as a subset of P*. Tt follows from a Theorem
of Alexander [A] (see also [Ro]) that ¢, : C — D — P* — J is proper. m|

In dimension k = 2 we have a homeomorphism ¥ : .Ji; x (C—D) — W*(Ji)
satisfying the relation (6.5). Theorem 6.8 says that, in a measure theoretic sense,
most of the disks W, have their boundaries in J, but that does not imply that
U extends continuously to Ji x S'. We will return to this problem in Section 8.

7. AXIOM A AND STRONG HYPERBOLICITY IN DIMENSION 2.

So far we have worked with fairly general regular polynomial endomorphisms of
C*, only assuming that fr is expanding on Jy. This allowed us to understand
the dynamics in the set W#*(Jy). Thus, in dimension 2 we have a complete
description of the dynamics in A, because all points in A — W9 (.Ji1) are in the
basin of an attracting periodic point in II. However, the condition that f is
expanding on Jir does not rule out the possibility of very complicated dynamics
of f on K, even in dimension 2. For example, if p and ¢ are any two monic
polynomial maps of C of degree d > 2 and f(z,w) = (p(2),q(w)), then the
map fr is always given by fr(¢) = ¢¢, which is expanding on J. Hence a
regular polynomial endomorphism of C? with fi expanding on Ji can have
as complicated dynamics as any polynomial map of C. Moreover, Gavosto [G]
has shown that a holomorphic endomorphism of P? can have infinitely many
attracting basins and her examples are in fact regular polynomial endomorphisms
f of C? with f expanding on Ji.

In the next section we will need further assumptions on the dynamics on f
in order to prove that the external rays land continuously on .J, something which
allows us to describe .J as a topological quotient of Ji x S'. Here we digress
and discuss hyperbolicity for regular polynomial endomorphisms. We restrict
our attention to dimension 2.

The literature on hyperbolic dynamics is vast, but most expositions consider
only diffeomorphisms. A regular polynomial endomorphism of C? of degree d > 2
is not invertible, so the theory becomes different. A general treatment of the
dynamics of possibly non-invertible maps can be found in [Ru], but it is scarce
with details. For the convenience of the reader we give the definitions and results
we need in Appendix A. More details can be found in [J2]. We also refer to [FS4],
where the authors study hyperbolic endomorphisms of P2.

Suppose that f is a regular polynomial endomorphism of C2; as usual we
regard f as a holomorphic map of P2. Since f is not injective, we will often have
to work with histories of points instead of the points themselves. Precisely, a
history of a point z € P? is a sequence (;);<o of points in P? such that 2o = z
and f(z;) = z;41 for all ¢ < 0. We will use the notation # for a history (z;).

Let L be a compact subset of P2 with f(L) = L. We refer to Appendix A for
a definition of what it means for f to be hyperbolic on L. Let us only recall that
the definition involves the set L of histories in L. There is a natural projection
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7 : L — L such that (&) = zo. We say that L has unstable index i if the stable
bundle E® has constant dimension 2 —4 on L. If L has unstable index 2, then f
is said to be expanding on L (see Appendix A for an alternative definition). If
f is hyperbolic on L, then to every point in z € L and every history & € L there
is an associated local stable and unstable manifold respectively, defined by

Wi(z) = {y € P%d(fi(y), fi(x)) < & Vi > 0}
Wi(#) = {y € P% 3§ € P2,x(9) = y, d(y, #:) < § Vi <0},

for small 6 > 0. Then W§(z) and W (#) are complex submanifolds of P2, If
f is expanding on L, then the local stable manifolds are empty and the local
unstable manifold at # is a neighborhood of zq in P2.

We also define global stable manifolds by declaring

W?(z) = {y € P*;d(f'(y), f'(x)) = 0 as i — oo}
W (#) ={yeP*3Ije P2, 7(j) = y,d(y;, ;) = 0 as i — —oo}.

Note that if n > 0,y € Land f*(y) = f™(z), then W?(z) contains W§(y). Hence
the global stable manifolds are in general large and quite complicated objects
(compare with Corollary 4.7; see also [FS4]). The unstable manifolds will also be
fairly complicated in general; we will have more to say about this in Section 8.
All of this should be contrasted with the case of polynomial automorphims of C2,
where the global stable and unstable manifolds are immersed copies of C [BS].

We next discuss Axiom A regular polynomial endomorphisms of C2. Recall
that a point € P? is wandering if for every neighborhood V of z there exists
an n > 1 such that f*(V)NV # 0. The non-wandering set Q of f is the set of all
non-wandering points; it is a compact set. A regular polynomial endomorphism
f of C? is said to be Axiom A if the periodic points of f are dense in  and f is
hyperbolic on Q. If f is Axiom A, then Smale’s spectral decomposition theorem
(Theorem A.9) asserts that {2 can be written in a unique way as a finite union
of disjoint compact sets €2;, called basic sets, such that f(Q;) = Q; and flq, is
transitive, i.e. has a dense orbit. Thus each basic set has a well-defined unstable
index.

Let us investigate what the possible basic sets are for a Axiom A regular
polynomial endomorphism f of C2. To do this, we first observe that the four
sets I, C? — K, int(K) and K are all completely invariant and see what basic
sets each one of them may contain.

To begin with, it is clear that Q(f) NII = Q(fir). Now fi1 is a rational map
and from one-dimensional dynamics we know that fi; is Axiom A if and only if
fu is expanding on Jyy (see [Mi]). Hence, if f is Axiom A, then the basic sets in
IT are Jp, which is of unstable index 1, and a finite union of attracting periodic
points, all of whose unstable index is zero.

All the points in the open set C? — K are attracted to IT so (C2 — K)NQ
is empty. It is clear that {f™} is normal on the interior of K, so if f is Axiom
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A, then the only basic sets in int(K) are attracting periodic points, all of whose
unstable index are zero.

The boundary of K contains the most complicated dynamics. Clearly, no
basic sets in 0K can have unstable index 0. Let S and S; be the union of the
basic sets in QK of index 2 and 1, respectively. We note that S; can be empty,
as in the example f(z,w) = (2% + ¢,w? + ¢), with ¢ outside the Mandelbrot set.
On the other hand, J is a basic set of unstable index 2 (see [FS2]), so J C Ss.
The question arises whether this inclusion is ever strict or, equivalently, whether
f can have repelling periodic points outside J. Hubbard and Papadopol [HP]
have in fact given an example of a regular polynomial endomorphism of C? with
a repelling periodic point outside J but is seems difficult to check whether their
map can be made Axiom A.

We say that f is strongly hyperbolic if it is Axiom A and f~1(S3) = Ss.
This is slightly weaker than the definition of strong hyperbolicity in [FS4]. As
mentioned above, it is not completely clear whether strong hyperbolicity is equiv-
alent to Axiom A, but we do have the following.

Lemma 7.1. Let f be an Axiom A regular polynomial endomorphism of C2.
Then f is strongly hyperbolic if and only if So = J, i.e. if all repelling periodic
points are contained in J.

Remark. A proof is given in [FS4]. We give it here for the convenience of the
reader.

Proof. The “only if” part is trivial since f~!(J) = .J, so suppose that f is
Axiom A and f~!(Sy) = Sy but Sy # J. Let N be an open neighborhood of
J such that f~'(N) C N and Np>of "(N) = J. Then N — J contains only
wandering points, so S — J is at a positive distance from J and is therefore a
completely invariant compact set. Let N’ be an open neighborhood of Sy — J
disjoint from .J with f=*(N') C N’. Then N’ has positive capacity and if z € N’
then (f™)*8,/d*" cannot converge to p as n — oo. This contradicts Lemma 8.3
in [FS3]. |

Let f be a strongly hyperbolic regular polynomial endomorphism of C2. It
follows from Corollary A.10 and the above discussion that any history of a point
C? which is not an attracting periodic point must converge to either J or S;.
We define the unstable set of J to be the set of points in C? all of whose histories
converge to J, i.e.

Wu(J)={z € C% (3 €Cr(d)=x)= 2 — J as i — —o0}.

We note that this definition differs from the one in [FS4], where W*(.J) is defined
as the set of points having at least one history converging to .J. On the other
hand we define the unstable set of S; as

W*(S))={ze€C*%3t ¢ (/3\2,7r(£) =x,x; - S asi — —o0}.
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Let N be a neighborhood of J in C? as in the proof of Lemma 7.1. Clearly
N C W*(J) and every point in C? which is not an attracting periodic point is
contained in precisely one of the sets W*(.JJ) and W"(Sy).

Lemma 7.2. If x € W*(J), then there exists an n > 0 such that f~"(z) C N.
In particular, W*(J) is open in C? and W*(S}) is closed in C? except possibly
at some of the attracting periodic points.

Proof. Let Z be the set of points y in C? such that for all n > 0, there is a point
in f~"(y) outside N. It is clear that if y € Z, then y has at least one preimage
in Z, so every point y € Z has a whole history inside Z. Such a history cannot
converge to J so it follows that Z N W¥*(J) = @), which completes the proof. O

In the next section we will assume that f satisfies a slightly different hyper-
bolicity criterion, which we now discuss.

Definition 7.3. A regular polynomial endomorphism f of C? satisfies condition

(1) if the following four properties hold:

(t1) fu is expanding on Jyi.

(t2) f is expanding on J.

(t3) The nonwandering set of f in K consists of J and a hyperbolic set Sy of
unstable index 1 with f(S;) = S;.

(t4) W*(51) = Ujzes, W"(2).

Condition (}) is exactly the hyperbolicity assumption that we need for the
proof of the main result in Section 8 (Theorem 8.2). It is a weaker condition
than strong hyperbolicity:

Proposition 7.4. Let f be a regular polynomial endomorphism of C2. If f is
strongly hyperbolic, then f satisfies condition (7).

Proof. Suppose that f is strongly hyperbolic. From the above discussion we
know that f satisfies conditions (1), (2) and ({3). Finally (4) follows from
Corollary A.10. |

8. LANDING OF DISKS.

In this section we consider a regular polynomial endomorphism f of C? with f
expanding on Ji and W#(Jg) NC = §. We know from Section 6 that W*(Jn)
is laminated by complex disks W,, a € Ji, each of which is properly embedded
in A. Moreover, there exists a homeomorphism ¥ : J x (C — D) — W#(Jn),
whose restrictions 1, = ¥(a,-) maps C — D conformally onto W,. We have
G(¥(a,()) = log|¢| and f(¥(a,()) = ¥(fu(a),v.(?), where v, € S' depends
continuously on a.

It is a natural question to ask whether the disks W, land on .J, i.e. if ¥
extends continuously to Jir x S'. Without any further assumptions, this need not
be the case. Indeed, if 22 + ¢ is a quadratic polynomial map of C with connected,



142 ERIC BEDFORD AND MATTIAS JONSSON

but not locally connected Julia set, then results from one-dimensional dynamics
[CG] imply that f(z,w) = (22 + ¢,w? + ¢) is a counterexample.

This shows that in order for ¥ to extend it is necessary to impose additional
conditions on the dynamics of f. In dimension one, a sufficient (although not
necessary) one is for the map to be expanding on its Julia set (and that the
critical points have bounded orbits).

In this section we give conditions on the dynamics of f which will ensure
that the map ¥ does extend continuously to J x S*. The reason for working in
dimension 2 is that in the proof we will consider unstable manifolds, view these
as Riemann surfaces, and use the uniformization theorem. This strategy would
fail dismally in dimension k& > 2.

Definition 8.1. We say that a regular polynomial endomorphism f of C? satis-

fies condition (1) if f satisfies condition (1) defined in Section 7 and W*(Jg)NC =

(0, i.e. if the following five properties hold:

(1) fu is expanding on Ji.

(2) f is expanding on J.

(t3) The nonwandering set of f in K consists of J and a hyperbolic set S; of
unstable index 1 with f(S1) = S;.

(t4) We have W*(S;) = WH(z).

(t5) We(Jn)nC = 0.

i€§1

It follows from Proposition 7.4 that if f is strongly hyperbolic and satisfies
(15), then f satisfies (}). It is proved in [J1] that perturbations of the map
£(z,) = (24, w) satisfy (1),

We say that a stable disk W, lands on J if ¢, extends continuously to C-D
and 1, (S') C J. Tt is our goal to prove the following result.

Theorem 8.2. If the regular polynomial endomorphism f of C? satisfies con-
dition (%), then all the stable disks W, land on J. More precisely, there exist
constants C' < oo and a > 0 such that

d(1a(C),%a(¢") < Cd(¢, ()%, (8.1)

for all a € Jn and all , ¢'e C-D. Furthermore, ¥ extends to a continuous
map of Ji x (C — D) into W#(Jy) U J.

The main difficulty in proving Theorem 8.2 is to show that W, accumulates
only at J for all a. To do this, we must show that there are no saddle connections
between S; and Jiy, i.e. that there is no complete orbit (z;);cz such that x; — Sy
ast — —oo and z; = Ji as i — oo.

Lemma 8.3. If f satisfies condition (1), then W*(Jg) N W*(S;) = 0.

We postpone the proof of Lemma 8.3 for the moment and show instead how
it implies Theorem 8.2.
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Proof of Theorem 8.2. The expansion of f on J implies that there exists a
neighborhood N of J with f~1(N) C N, A > 1 and a metric equivalent to the
Euclidean metric such that |D f(z)v| > Mv| for all z € N and all v € T,,C? with
respect to this metric. By Lemma 7.2 and Lemma 8.3 we know that the set
We(Jn) N {1l < G < d} is a compact subset of the open set W*(.J) so by pulling
back by f we see that there exists an R > 1 such that ¥(Jg x (Dgr — D)) C N.
Let a > 0 be so small that d* < A\. We may assume that R?~'d® < X. Recall
that v, satisfies

$a(€) = 9 (Yfn(a) (val?)) , (8-2)

for |¢| > 1, where g is a suitable, locally well-defined branch of f~! and |v,| = 1.
By differentiating (8.2) and using the estimates above we get, for 1 < |{| < R,

DY (O)] <A1 DY g0y (vaC?) | dI¢) (8.3)

Define

m(r) = sup sup |Dva(()l,
a€Ju |¢|=r

for 1 < r < R. Then there exists a constant C’ < oo such that
m(r) < C'(r — 1)1, (8.4)

for R < r < R. Using the estimate (8.3) we prove inductively that (8.4) holds
for 1 < r < R. Integrating (8.4) we see that ), extends continuously to C-D
and that (8.1) holds. The continuity of ¥ on Ji x (C — D) follows from (8.1)
and the fact that the restriction of ¥ to Ji x (C — D,.) is continuous for each

r>1. O

We now turn to the proof of Lemma 8.3 and proceed in a number of steps.
First we show that there is a dichotomy for the stable disks W, expressed by
the following lemma. The dichotomy will be used on several occasions.

Lemma 8.4. Let W, be the stable disk oan point a € J. Then either W, N
W*(S1) = 0 or there exists a point & € Sy such that W} C W"(&), where
wr =W, — {a}.

The key observation in proving the dichotomy is the following.

Lemma 8.5. If U is a simply connected open subset of a punctured stable disk
W, then all branches of f~ |y for all i > 0 are well-defined and holomorphic
on U and they form a normal family there.

Proof. That the branches are well-defined follows from condition (i5). If V
is relatively compact in U then all branches of f~% on V map V into a fixed
compact subset of C2. Thus they form a normal family on U. |



144 ERIC BEDFORD AND MATTIAS JONSSON

Proof of Lemma 8.4. Suppose that y € W, N W*(S1). Then by condition ({4)
there exists a point # € S; such that y € WH(%), i.e. y has a history g such
that d(y;,z;) — 0 as i = —oo. Let U be any simply connected open subset of
W containing y and let g; be the unique sequence of branches of f~¢|¢; such
that g;(y) = y;- Then {g;} is equicontinuous by Lemma 8.3, so there is a small
neighborhood V' of y in U such that the maximal distance from g¢;(V) to x;
is uniformly small as i — co. Hence V' C W%(%) and, by normality of {g;},
U C W"(&). Since U was arbitrary it follows that W C W*(%). O

Corollary 8.6. Let Jf; be the set a € Ji such that W} C W*(Sy). Then Jy is
closed, fu(J) = Ji and Ji # Jn.

Proof. If a ¢ Ji;, then WX N W*(S;) = 0 by Lemma 8.4. Hence W, N {G = 1}
is a compact subset of the open set W*(J) so by continuity there is an open
neighborhood X of a in Ji such that W, N {G =1} C W*(J) for all b € X. By
Lemma 8.4 it follows that X N J; = 0 and we conclude that Ji — Jj; is open.
That fr(Jf;) = Jj; follows from the fact that f(W*(S1)) = W¥(S1).

Finally suppose Jj; = Ji. Then W*(Ji) C Jn U W¥(S1), so W#(Jm) does
not intersect W*(.J). This contradicts Theorem 6.3, because W"(.J) contains a
neighborhood of J = supp(p). m|

Recall that we say that a stable disk W, lands on J if ¢, extends continu-
ously to St and ¢, (S*) C J.

Lemma 8.7. There exists a dense set of b € J such that Wj, lands on J.

Proof. Since periodic points are dense in Jir and Ji — Jj; is open and nonempty,
we can find a periodic point &’ € Jm — Jjj, say of period n. Furthermore, f
is expanding on J, so there exists a neighborhood N of J and A > 1 with
fHN)C N and

D" (y)v] = ALl (8.5)

for all y € N and all tangent vectors v (we may have to increase n). Now the
annulus ¢y (D2 — D,,-») in Wy is a compact subset of W¥(.J), so the inverse
images under sufficiently high iterates of f of points in this annulus will be in
N. In particular, since b’ is periodic, it follows that there exists an R > 1 such
that ¢y (Dr — D) C N. Then, using the estimate (8.5) above, we may prove
that vy extends to a Holder continuous map of C- D, mapping S! into J. The
proof is very similar to the proof of the first part of Theorem 8.2 and is therefore
omitted.

We conclude that Wy lands on .J and so does W, for all preimages b of b’
under iterates of f. Such preimages are dense in Jr. O

The picture below illustrates the effect of a saddle connection. Here W is
in the unstable set of S; whereas W}, lands on J. The stable disks in the middle
are of the form W), , where b,, are preimages of b converging to a. Note that the
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disks W, are very “bent” for large n. The idea in the proofs below is to show
that this is impossible.

al | | | I b
A | & Wb
S1 J

K

i

It follows from Lemma 8.4 that for each a € Jj| there exists a (not necessarily
unique) history p, in Sy such that W* C W¥(p,). In general, an unstable
manifold W*(§) of a history ¢ in Sy is a complicated object, but, as we will see,
the information that W) C W¥(p,) implies that W*(p,) is in fact an algebraic
subvariety of C2. Recall that the image of a holomorphic map of a compact
Riemann surface into P? is an algebraic variety. The authors thank Jeff Diller
for useful conversations on the proof of the following result.

Lemma 8.8. If J[; # 0, then there exists an a € Jf; such that W*(p,) is an
algebraic subvariety of C2.

Proof. Take any point a € Jf; and a complete orbit (a;);cz with ag = a. Let
(pi)icz be a complete orbit in Sy such that W7, C W*((piy;);<o) for all i. We
write p; for the history (pi4;)j<o. If § > 0is small enough, then the local unstable
manifolds W (p;) are complex disks for all 4 and there exist biholomorphisms
n; : D5, = W (p;) with |Dn;(0)] = 1 and complex numbers \; # 0 such that

ni(Ai-1¢) = f(mi-1(0)), (8.6)

for all ¢ and all |{| < §;—1. Since f is hyperbolic on S;, the numbers §; are
uniformly bounded from below and A\;—, ---Aj—1 — 00 as n — oo for all 7, so
(8.6) allows us to extend 7; to maps of C into W¥(p;) by defining

Ni(Ain - Aie1Q) = f"(mi-n(Q)),

for n > 0.

The maps 7); are surjective by the definition of W¥(p;) but they need not
be injective. However, the global unstable manifolds W*(p;) have a natural
structure as abstract Riemann surfaces given by the maps 7;. More precisely,
for each i we define a Riemann surface X; as the quotient C/ ~, where z ~ w
if there are open sets U 3 z and V' 3 w such that n;(U) = n;(V). Then the map
n; factors as n; = n} om;, where m; : C — X; is surjective, 0} : X; — C? is locally
injective and the set of points (z,w) € X; x X; with z # w and n}(z) = n}(w)
is discrete. We will be sloppy and make no distinction between the unstable



146 ERIC BEDFORD AND MATTIAS JONSSON

manifold W*(p;) and the Riemann surface X;. Hence we will sometimes view
W(p;) as a subset of C? and sometimes as an abstract Riemann surface. The
precise meaning should be clear from the context.

Now the Riemann surface W*(p;) cannot be hyperbolic, because n; maps
C into it so W¥(p;) is biholomorphic to C*, C or P'. The last case cannot
occur, because then W*(p;) would be an algebraic subvariety of P2, which is
impossible. Hence W*(p;) is biholomorphic to C* or C for all i.

Write W; instead of W,, and note that W*(p;) has an open subset biholo-
morphic to W}. Let ¥; be the Riemann surface obtained from W*(p;) by filling
in the hole at a;. Then ¥; is biholomorphic to C or P! for all 5. If &; is bi-
holomorphic to P! for some 4, then ¥; is an algebraic subvariety of P2 (in fact
a line) and we are done, so assume that ¥; is biholomorphic to C for all 4.

Suppose that (X; — W;) "W (Jy) # 0 for some i. Then (X; —W;)NW;, # 0
for some b € Ji, b # a;. By the dichotomy given in Lemma 8.4 we then have
that W C (X; — W;) so by filling in the hole at b we see that the closure of X;
in P2 is an algebraic subvariety of P2, which implies that W¥(p;) is algebraic in
this case too.

Let us now suppose that ¥; is biholomorphic to C and that (X; — W;) N
W#(J) = 0 for all i. Then there exist unique biholomorphisms y; : C = %;
such that x;(0) = a; and x;(¢) = ¥:(1/¢) + o(1) as ¢ — 0, where we write v;
instead of 1),,. Note that f induces holomorphic maps of ¥; onto ¥;,;. Hence
we may define entire maps h; by x; o h; = f o x;—1 for all i. The restriction of
f to W;_; is a branched covering of W; of degree d, branched only at a;. This
implies that h;(¢) = (% exp(u;(¢)) where u; is entire. Moreover, the condition
(Z; —Wy) N W3 (Jn) = 0 implies that the inverse image of W; in ;_; is exactly
W;_1. Therefore limsup |h;({)| > 0 as || — oo and this is only possible if u; is
constant. Hence we may write h;(¢) = ¢;(¢ for some constants ¢; # 0.

We claim that x;(¢) = ¥;(1/¢) on D for all 4. To see this, let g; = G o x;.
Then, for each i, g; > 0 is continuous and subharmonic on C* and harmonic in
a punctured neighborhood of the origin. Recall that G(v¢;(1/()) = —log|(| for
[¢| < 1. Hence it follows from the definition of x; that g;(¢) = —log|¢] + o(1)
as ( = 0. Now the equation G o f = dG translates into g; o h; = dg;—1,
ie. gi(ci¢?) = dgi—1(¢). Tterating this we see that g;(¢) depends only on |(].
Since g¢; is harmonic in a punctured neighborhood of the origin it follows that
9i(¢) = A;log|¢| + B; for some constants A;,B;. But then the asymptotic
formula above shows that A; = —1 and B; = 0, i.e. ¢;({) = —log|(| near the
origin. We conclude from the equation g; o h; = dg;—1 that |¢;| = 1. Write
; for the Bottcher coordinate on W, i.e. the inverse of ¢;. Then the function
(0i(xi(0)))™ = ¢ + O(¢?) is holomorphic near the origin and

log | (i (xi(O))) ™' = =G (xi(Q)) = —gi(¢) = log [¢|-

Thus (p;(xi(¢))) ™! = ¢ near the origin, i.e. x;(¢) = 1;(1/¢) near the origin so
the latter identity must hold on all of D.
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The equation ¢;(¢) = G(¢;(1/¢)) on |[¢| < 1 implies that g; =0 on || =1
for all i. We saw above that g;(¢) depends only on ||, so for each i either g; = 0
on |¢| > 1 or there exists an R; > 1 such that g; > 0 for |(| > R;.

If g; = 0 for |¢| > 1, then x; maps C — D into the bounded set K and
must therefore extend to a holomorphic map of P! into P2. Hence W¥(p;) is
algebraic.

If g; > 0 for || > R;, then x; maps |{| > R; into C?> — K, and by our
previous assumption, the image does not intersect W#(Jy) = supp(T'L A), so g;
is harmonic on |¢| > R;. Hence there exist constants A; > 0 and B; such that
9:(¢) = A;log|¢| + B; for |¢| > R;. Since G(z) = log|z| + O(1) as x — II, this
implies that |x;(¢)| < C|¢|* as ¢ — oo, so again y; extends to a holomorphic
map of P! into P2. Hence W¥(p;) is algebraic, which completes the proof of
Lemma 8.8. O

We are now in position to prove Lemma 8.3.

Proof of Lemma 8.3. Suppose that W*(Jg) N W*(S;) # 0. Then Ji; # 0 so
Lemma 8.8 shows that there exist a € Jp, a history p in S; and an irreducible
polynomial P(z,w) such that W; C W*(p) = {P = 0}. Clearly W*(p)NJ =0
so there exists an € > 0 such that |P| > 2¢ on J.

By Lemma 8.7 there is a dense set of b’s such that W, lands on J. If we
choose b close enough to a, then by continuity W, will intersect the open set
|P| < €, so every component U of {¢ € D*;|P(15(())| < €} is relatively compact
in D*. Then P is a holomorphic function without zeros on U, so —log|P|
is harmonic on U. But |P| < € on U and |P| = € on 9U, contradicting the
maximum principle for —log |P| on U. This completes the proof of Lemma 8.3.
O

Theorem 8.2 allows us to describe J as a topological quotient of Ji x S!.

Corollary 8.9. If f satisfies condition (1), then the restriction of ¢ to Jy x S*
maps Jg x S continuously onto J.

Proof. Tt follows from Theorem 8.2 that the restriction of ¥ to Jg x S! maps
J xSt continuously into J. On the other hand, the push-forward of the measure
s ® % under this map is the measure p according to Theorem 6.3, so the map
must be surjective. O

Corollary 8.10. If f satisfies condition () and Jp is connected, then J is
connected. If Jy is also locally connected, then so is J. O

Proof. If Jy is connected (and locally connected) then Jpy x St is connected (and
locally connected) so the statement to be proved follows from Corollary 8.9. O

APPENDIX A. HYPERBOLICITY FOR ENDOMORPHISMS.

In this appendix we present some basic results on hyperbolicity for smooth en-
domorphisms. More details can be found in [J2]. Our main references are [Ru]
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and [PS], see also [FS4]. No proofs are given in this appendix; they can be found
in the above references.

Let f be a C'*° endomorphism of a finite-dimensional Riemannian manifold
M. Let L be a compact subset of M with f(L) = L and define

L ={(zi)i<o;2; € L, f(x;) = g1}

Then L is a closed subset of LN hence compact. We will often use the notation
& for a point (2;);<o in L. The restriction flo lifts to a homeomorphlsm f of L
given by f((z;)) = (zi+1). There is a natural projection 7 from L to L sending
Z to zp and the pullback under 7 of the restriction to L of the tangent bundle
of M is a bundle on L which we call the tangent bundle T; . Explicitly, a point
in T} is of the form (#,v) where Z € L and v is a tangent vector in T,, M. The
derivative D f lifts to a map D f of T; in a natural way.

Now f is said to be hyperbolic (or prehyperbolic) on L if there exists a
continuous splitting T; = E* ¢ E° which is invariant under D f and such that
Df is expanding on E* and contracting on E*. More precisely, D f(Ev/¢) c Ev/*
and there are constants ¢ > 0 and A > 1 such that for all n > 1

D) > Aol v € B
|Df™(0)] < ¢ 'A "] v e E°.

Remark. It is possible to make a smooth change of metric in a neighborhood of
L and obtain ¢ = 1 in the equation above.

Note that whereas the fiber of the unstable bundle E* at a point # € L
depends on the whole history Z of zq, the fiber of E* at Z depends only on the
point zy. Hence the dimension of the fiber of E* at a point # depends only on
Tg, so the dimensions of the fibers of the bundles E* and E? are locally constant.

As a special case of the above we say that f is expanding on L if the bundle
E? is trivial. This means that there exist constants ¢ > 0 and A > 1 such that
|Df"(z)v] > cA\"|v| for all z € L, v € T, M and all n > 1.

Perhaps the most fundamental basic result in hyperbolic dynamics is the
stable manifold theorem. For each point p in L and each history ¢ in ﬁ, we
define local stable and unstable manifolds by

Wi(p) ={y € M;d(f'(y), f'(p)) <6 Vi>0}
W5'(q) = {y € M;3y,7(9) = y,d(yi,q:) < Vi <0},

for small § > 0.

The following theorem asserts that the local (un)stable manifolds are indeed
nice objects. For a proof see [Ru] or [PS] ([Ru] contains an outline of a proof,
whereas [PS] proves a more general theorem).
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Theorem A.1 (Stable Manifold Theorem). If§ is small enough, then
(i) Forallp e L and all § € L, W3 (p) and W§'(§) are embedded C™ submani-
folds of M tangent to E*(p) and E*(§) at p and qo, respectively.
(ii) W3 (p) and W4*(§) depend continuously on p and §, respectively.
(iii) If x € W§(p), then d(f"(z), f"(p)) — 0 exponentially fast as n — oo.
Similarly, every point x in W¥(§) has a unique history & such that x; €
W“(fJ (@) for all j <0 and d(z;,q;) — 0 exponentially fast as j — —oc.

If 6 is small enough, then by continuity W§(p) and W3*(§) are almost flat,
i.e. C' close to the tangents at p and qo, respectively for all p € L and all ¢ € L.
Therefore W3 (p) and Wj*(q) intersect in at most one point.

Definition A.2. We say that L has local product structure if § can be chosen
so that W§(p) N W§(§) C L for all p and §.

If L has local product structure, p € L, § € L and if p,qo are sufficiently
close, then W3 (p) and Wj*(g) intersect in exactly one point € L and z has a
history & such that z; € Wy (fJ (¢)) for all 7 < 0. It is not a priori clear that
# € L, ie. that x; € L for all j < 0. We therefore make another definition.

Definition A.3. We say that L has local product structure if § can be chosen so
that if the intersection W§(p) N W#(§) is nonempty, then it consists of a unique
point x € L and the unique history & of x with x; € Wf(fj (q)) for all j < 0 is
contained in L.

Definition A.4. Let n > 0. An n-pseudoorbit in M is a sequence (T;)j¢, t.],
where —oo < t; < ts < 00, such that d(f(x;),z;11) < 0 for t; < i < ty. An
n-pseudoorbit (), +,] is e-shadowed by an orbit (y;)is, +,) if d(yi,z:) < € for all
i€ [tl,tg].

For proofs of the remaining results in this appendix see [J2].

Theorem A.5 (Shadowing Lemma). Suppose that L has local product
structure. Then for each ¢ > 0 there exists an n > 0 such that every 7-
pseudoorbit in L can be e-shadowed by an orbit in L.

Using shadowing we control the orbits of f staying near L in positive or
negative time.

Proposition A.6 (Fundamental Neighborhood). Let L be a hyperbolic
set for a map f. Assume that L has local product structure. Then L has a
neighborhood U in M such that
(i) If v € U and f(z) € U for all j > 0, then x € W§(p) for some p € L.
(ii) If x € U and z has a history & with z; € U for all i < 0, then x € W{(q)
for some § € L.
(iii) If (z;)icz is a complete orbit in U then z; € L for all i.

Next we consider Axiom A endomorphisms. A point & € M is wandering
if it has a neighborhood V such that f*(V) NV = 0 for all n > 1; otherwise
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it is called non-wandering. The non-wandering set () of f is the set of all non-
wandering points; it is a closed set.

Definition A.7. f is said to be Axiom A if its non-wandering set satisfies

(i) Q is compact.

(ii) Periodic points are dense in Q.
(iii) f is hyperbolic on .
Remark. If Q satisfies (i) and (ii), then f(Q2) = €, so (iii) makes sense. Also, if
f is Axiom A, then periodic points (under f) are dense in €).

The next proposition shows that the preceding results apply to open Axiom

A endomorphisms.

Proposition A.8. If f is Axiom A and open, then Q) has local product struc-
ture.

Theorem A.9 (Spectral decomposition). If f is an open Axiom A endomor-
phism, then Q can be written in a unique way as a disjoint union Q = U._ Q;,
where each ); is compact, satisfies f(2;) = Q; and f is transitive on Q;. The
sets §; are called the basic sets of f. Morover, each ; can be further de-
composed into a finite disjoint union €; = Ui<j<n,$); j, where €); ; is compact,
f(Qi,j) = Qi7j+1 (Qi7ni+1 = Qi,l) and fn’ is miXng on each Qi7j-

Our final result in this appendix describes forward and backward orbits for
an Axiom A endomorphism.

Corollary A.10. Assume that f is Axiom A and M is compact.

(i) If z € M, then there is a unique basic set ; such that fi(z) — €; as
j — oo. Moreover, there is a (not necessarily unique) p € ; such that
d(f7(z), f/(p)) — 0 as j — oo.

(i) If& € M, then there is a unique basic set Q); such that x; — Q; as j — —o0.
Moreover, there is a (not necessarily unique) § € fl\z such that d(zj,q;) — 0
as j — —oo.
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