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utterly impossible as are all these events they are probablyas like those which may have taken place as any otherswhich never took person at all are ever likely to be.J. Joyce





PREFACEBy writing these words I complete a doctoral thesis, thereby passing a mile-stone in my life. It is a pleasure to express my gratitude to the people whohelped me on the way:� My advisor Michael Benedicks for professional assistance and candid en-thusiasm all along.� All the people at the Department of Mathematics for providing a pleasantatmosphere to work in, and the department itself for its generous supportduring my time as a graduate student.� Nessim Sibony for introducing me to the �eld of dynamics in several com-plex variables.� John Erik Forn�ss and Berit Stens�nes for hosting my visit to the Univer-sity of Michigan.� Eric Bedford for many fruitful discussions, for reading large parts of themanuscript, and for kindly consenting to having our joint work being in-cluded in this thesis.� My family, especially my older sisters Monika and Elinor for, allegedly,�rst teaching me mathematics.� My dear friend Johanna for a great many great days together.
Stockholm, September 1997Mattias Jonsson



vi



viiABSTRACTThis paper deals with di�erent aspects of dynamical systems in several com-plex variables. It contains the following six papers.I. Hyperbolic dynamics of endomorphisms. We provide a written ac-count of semilocal and global results for hyperbolic dynamics of endomor-phisms.II. Holomorphic motions of hyperbolic sets (submitted for publication).We study how hyperbolic sets of holomorphic automorphisms and endo-morphisms vary under holomorphic perturbations of the map.III. Some properties of 2-critically �nite holomorphic maps of P2 (toappear in Ergodic Theory Dynam. Systems). We sharpen previous resultsby Fornaess and Sibony and by Ueda, by showing that repelling periodicpoints, as well as the preimages of any given point, are dense in P2 for a2-critically �nite map.IV. Dynamics of polynomial skew products on C2: exponents, con-nectedness and expansion. Polynomial skew products on C2 are holo-morphic maps of P2 whose dynamics resemble that of a one-dimensionalpolynomial. We study the relation between the critical set, connectednessof Julia sets, Lyapunov exponents, and expansion.V. Sums of Lyapunov exponents for some polynomial maps of C2(accepted by Ergodic Theory Dynam. Systems). Using a laminar structurefor the invariant current, we prove a formula for the sum of the Lyapunovexponents of some polynomial maps of C2 with respect to an invariantmeasure of maximal entropy.VI. Regular polynomial endomorphisms of Ck (with E. Bedford). Westudy the dynamics of polynomial endomorphisms of Ck that extend holo-morphically to Pk; these are called regular. Using techniques from pluripo-tential theory and hyperbolic dynamics we prove results analogous to thosefor polynomial mappings of C.
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SUMMARY0. IntroductionThis thesis contains six papers, each of which deals with dynamical systems inseveral complex variables. I have chosen to group the papers into the followingthree categories.1. General dynamics in several complex variables (Papers I-II).2. Critically �nite maps (Paper III).3. Polynomial endomorphisms of Ck (Papers IV-VI).In section 1 below I give some general background to each of these categoriesabove, rather than describing my own results. This background is not intendedto cover everything known in the �eld; I apologize for any omissions. Briefintroductions to the six papers in the thesis are then given in section 2. Thepapers are not presented in chronological order. A certain overlap betweensections 1 and 2 is unavoidable; I hope that the reader will bene�t from it.1. Background1.1. General complex dynamics. In this thesis a dynamical system in severalcomplex variables means a holomorphic mapping f : M ! M , where M is acomplex manifold. Understanding the dynamics of f means understanding theasymptotic behavior of orbits in M under f .1.1.1. Complex dynamics in one variable. Complex dynamics is often illustratedby Newton's method for solving polynomial equations. Let p(z) be a polynomialin one variable. Newton's method is a numerical algorithm for �nding the zerosof p; it goes as follows. Let w be a zero of p, and let z0 be an approximation of w.By the de�nition of derivative, p(z) � p(z0)+p0(z0)(z�z0), the complex numberz1 := z0� p(z0)=p0(z0) should be a better approximation of w. By repeating theprocedure we obtain complex numbers z2; z3; : : : , which, hopefully, converge tothe exact zero w.De�ne the rational functionf(z) = z � p(z)=p0(z): (1.1)Then the successive approximations above are given by zn := fn(z0), wherefn = f � � � � � f . Hence, understanding the behavior of Newton's method meansunderstanding the dynamics of the rational function f .More generally, one studies iterations of a general rational map f on theRiemann sphere Ĉ, i.e. not necessarily of the type f(z) = z � p(z)=p0(z). Agood reference for this is [CG]. It turns out that the sphere naturally divides1



2 SUMMARYinto two parts: the Fatou set F , where the dynamics is \tame" and the Julia setJ , where the dynamics is \chaotic". More precisely, F is the largest open setwhere the family ffng of iterates is a normal family, and J is the complementof F . The Julia set can be characterized in many other ways, for instance as theclosure of the repelling periodic points of f . A quite di�erent characterizationwas found by Lyubich [L] and by Freire, Lopez, Ma~n�e [FLM]. Namely, f has aunique invariant probability measure � of maximal entropy and the support of� is exactly J . Further, � describes the distribution of periodic points, i.e.limn!1 1dn + 1 Xfn(a)=a �a = �: (1.2)In addition, � describes the distribution of preimages of points. This means thatif a 2 Ĉ is any point (with two possible exceptions), thenlimn!1 1dn Xfn(b)=a �b = �: (1.3)If f is a polynomial map of C, then J can be described as the boundary ofthe set of points with bounded orbits. See section 1.3.1 for more details.1.1.2. Polynomial automorphisms of C2. As mentioned above, the most generalkind of complex dynamical system is for us a holomorphic mapping f :M !M ,where M is a complex manifold. We still de�ne the Fatou set F of f to be thelargest open set where the family ffng is normal. As for the Julia set, thede�nition J =M � F is only one out of many, inequivalent, possibilities.In any case the above situation is too general for obtaining a lot of inter-esting results. So far, most results in dynamical systems in several complexvariables deal with two classes of mappings: polynomial automorphisms of C2and holomorphic endomorphisms of complex projective space Pk.The study of polynomial automorphisms of C2 has been pursued by many au-thors, including Friedland and Milnor [FM], Hubbard and Oberste-Vorth [HO1],[HO2], Forn�ss and Sibony [FS1], and Bedford, Lyubich and Smillie [BS1], [BS2],[BS3], [BS4], [BS5], [BLS2], [BLS1]. It is not possible to give a survey on thetheory in the limited space available here, so we will contend ourselves withindicating a few de�nitions and results.An important property of a polynomial automorphism f of C2 is that it isinvertible and that its inverse is a polynomial automorphism as well. This meansthat may consider both positive and negative iterates fn, n 2 Z. Most conceptsand results for f therefore come in pairs: one for the positive iterates of f andone for the negative iterates.The polynomial automorphisms of C2 of degree d � 2 fall naturally into twogroups. The �rst one is the set Ed of elementary maps. These are simple tounderstand dynamically and we will say nothing more about them. The secondgroup is denoted Hd; its elements are a�nely conjugate to �nite compositions



SUMMARY 3of maps of the type f(z; w) = (p(z) + aw; z);where p is a monic polynomial of degree d � 2 and a 6= 0. For simplicity wewill call an element of Hd a H�enon map (in [FM] the elements in Hd are calledcompositions of generalized H�enon transformations).Many results on H�enon maps are inspired by dynamics of polynomial maps ofC (see section 1.3.1. Two very important objects in the theory are the positiveclosed currents �+ and �� of bidegree (1,1), which are invariant for f and f�1,respectively. Their supports J+ and J� are exactly the Julia sets of f andf�1, i.e. the complements of the largest open sets where ffngn�0 and ffngn�0form normal families. In fact, Forn�ss and Sibony showed that �+ and ��are the unique positive closed currents of unit mass supported on J+ and J�,respectively. The currents �+ and �� have a property similar to (1.3): if X isany algebraic curve in C2 of degree r, thenlimn!+1 1dnr [f�n(X)] = �+; (1.4)where [X ] denotes the current of integration over X . A similar formula holdsfor ��.The wedge product � := �+ ^ �� is well-de�ned and � is an invariant prob-ability measure on C2. In fact, � is the pluricomplex equilibrium measure ofthe compact set K consisting of points in C2 with bounded forward and back-ward orbits. Further, � describes the distribution of periodic points in the senseof (1.2).1.1.3. Complex dynamics on Pk. The second widely studied class of dynamicalsystems in higher dimensions are endomorphisms of complex projective spacePk for k � 1. Note that P1 can be identi�ed with the Riemann sphere Ĉ,so endomorphisms of Pk may be viewed as generalizations of rational maps onĈ. The main di�erence between a polynomial automorphism of C2 and anendomorphism of Pk is that the latter is not invertible.Just as for H�enon maps, pluripotential theory has been a key idea to theunderstanding of the dynamics of endomorphisms of Pk . The study of dynamicsonPk using pluripotential theory was initiated by Hubbard and Papadopol [HP],and developed more generally and systematically by Forn�ss and Sibony [FS4],[FS5], [FS3].An important object in the theory is a positive invariant closed current T ofbidegree (1; 1) on Pk. This corresponds to the current �+ for H�enon maps andin the case k = 1, T is the exactly the measure � of maximal entropy describedin section 1.1.1. One way of viewing T is as the asymptotic distribution ofpreimages of algebraic hypersurfaces. This means that if f is a holomorphicmap of Pk of degree d � 2 (with some restrictions on the dynamics) and X is



4 SUMMARYan algebraic hypersurface of Pk of degree r, thenlimn!+1 1dnr [f�n(X)] = T: (1.5)The support of T , which we denote by J1, is the Julia set of f in the sensethat ffng is a normal family exactly on Pk � J1. However, if k > 1, then J1does not carry all the properties of the Julia set in one dimension. For example,the periodic points of f will not be dense in J1 in general. For this reason onede�nes the wedge products T l = T ^ � � � ^T , l = 1; : : : ; k. These are well de�nedpositive closed currents and a result by Russakovskii and Shi�man shows that T lcan be viewed as the asymptotic distribution of preimages of algebraic varietiesof codimension l. For the exact statement we refer to [RSh]; see also [RSo].We write Jl := supp(T l). It is clear that Jk � � � � � J1. The question ofcharacterizing Jl in terms of normal families is only partly solved.Of special importance is the measure � := T k. Forn�ss and Sibony [FS3]proved that it is mixing and of maximal entropy and that it describes the dis-tribution of preimages of points in the following sense: there is a pluripolar setE � Pk such that if a =2 E, thenlimn!1 1dkn Xfn(b)=a �b = �: (1.6)More recently, Briend [Bri2] showed that � describes the distribution of peri-odic points, i.e. a formula similar to (1.2) holds.1.1.4. Hyperbolic rational maps on Ĉ. Many results in dynamical systems re-quire a priori assumptions on the dynamics; these often involve (uniform) hy-perbolicity.In the case of rational maps on Ĉ this is fairly easy to describe. Namely, arational map f is hyperbolic if there exists an n � 1 such that jDfn(z)j > 1 forall z 2 J . This condition has a characterization in terms of the critical points off : f is hyperbolic if and only if all critical points of f are in basins of attract-ing periodic points. Let us give some examples to show how the hyperbolicityassumption a�ects the dynamics of f .The �rst example concerns Fatou components. There is a classi�cation ofFatou components for a general rational map, but if f is hyperbolic, then thedescription is simpler: the Fatou set consists of basins of attracting periodicpoints.Second, the hyperbolicity of f a�ects the geometry of the Julia set: if f ishyperbolic, then the Hausdor� dimension of J satis�es 0 < HD(J) < 2.A third consequence is that a hyperbolic map f is J-stable, meaning that if gis su�ciently close to f , then g is hyperbolic, and there exists a homeomorphism� : Jf ! Jg such that g � � = � � f . This result is due to Ma~n�e, Sad andSullivan [MSS]. We will have more to say about it in section 1.1.7.



SUMMARY 51.1.5. Axiom A maps. An interesting class of dynamical systems are the Ax-iom A maps. These include, for instance, the hyperbolic rational maps on Ĉdiscussed in section 1.1.4. However, the de�nition of Axiom A has nothing todo with complex structure, so let us for a moment consider a smooth mappingf :M !M , where M is a �nite-dimensional, smooth, Riemannian manifold.To de�ne Axiom A we need the notion of the nonwandering set and of ahyperbolic set. A point x 2 M is nonwandering if it has no neighborhood Usuch that fn(U) \ U = ; for all n � 1. The nonwandering set is the set ofnonwandering points; it is a closed set and we denote it by 
.The de�nition of a hyperbolic set is most easily formulated for di�eomor-phisms, but since we will study maps which are not invertible we consider thegeneral case. Suppose that � is a compact subset of M such that f(�) = �.If � is a single point, i.e. a �xed point, then � is hyperbolic if and only if thetangent space at � splits into two invariant subspaces on which Df is expandingand contracting, respectively. This de�nition can be generalized to any compactset � with f(�) = �. The details can be found in Paper I. Su�ce it to say thatthe de�nition involves the set�̂ = f(xi)i�0;xi 2 �; f(xi) = xi+1g:of histories in �. The set �̂ is sometimes called the natural extension or theinverse limit space of �.We now say that a map f :M !M is Axiom A if(i) 
 is compact.(ii) The periodic points for f are dense in 
.(iii) f is hyperbolic on 
.Every Axiom A map admits a spectral decomposition. This means that thenonwandering set 
 of f can be written in a unique way as a �nite disjoint unionof compact invariant sets 
i on which f is topologically transitive. The sets 
iare called the basic sets of f .De�ne an ordering on the basic sets by saying that 
i > 
j if there existsa complete orbit (xn)n2Z such that xn ! 
i as n ! �1 and xn ! 
j asn! +1. We say that f satis�es the no-cycle condition if there is no nontrivialcycle for the ordering >.The no-cycle condition has rami�cations for the global stability of f . Let ussay that f is 
̂-stable if ĝj
̂g is conjugate to f̂ j
̂f for g close to f . Here f̂ isthe shift map f̂((xi)) = (f(xi)). The 
̂-stability theorem asserts that if f is anopen Axiom A mapping of a compact manifold and f has no cycles, then f is
̂-stable. See Paper I for more details.1.1.6. Axiom A in complex dynamics. We will now discuss Axiom A in thesetting of holomorphic endomorphisms of Pk, k � 1 and H�enon maps on C2.



6 SUMMARYTo begin with, a rational map on Ĉ ' P1 is Axiom A if and only if it ishyperbolic. In this case, the basic sets are J and a �nite number of attractingperiodic points.In [BS1], Bedford and Smillie did a similar analysis for H�enon maps. Theyshowed that f 2 Hd is Axiom A if and only if f is hyperbolic on J . In this case,the basic sets of f are J and a �nite number of attracting (or repelling) periodicpoints. Moreover, f is topologically mixing on J and satis�es the no-cyclescondition. Thus f is 
-stable.Hyperbolicity for a H�enon map also has consequences for the Julia sets J+and J� and for the currents �+ and �� de�ned above. For example, J+ isfoliated by global stable manifolds of the points of J , and each leaf (i.e. eachstable manifold) is dense in J+. This laminar structure passes over to the current�+, which is a uniformly laminar current. This means, loosely speaking, that�+ is locally of the form �+ = Z [Ma] �(a);where [Ma] is the current of integration over a complex diskMa and � is a positive�nite measure, which is called the transversal measure for the stable foliation.The laminar structure of �+ and �� also give a geometric interpretation of howthese two currents intersect to form the measure � = �+ ^ ��. In fact Bedford,Lyubich and Smillie [BLS2] were able to carry many of the above ideas througheven without the Axiom A assumption.The theory of Axiom A holomorphic endomorphisms of Pk is still not fullydeveloped. Most results are known only for k = 2. Even so, the theory is not ascomplete as for rational maps on Ĉ or for H�enon maps, and many questions re-main open. What is mentioned here is mainly due to Fornaess and Sibony [FS6],who were the �rst to study hyperbolicity for endomorphisms of P2.Let f : P2 ! P2 be an Axiom A endomorphism. By spectral decompositionwe may write its nonwandering set as 
 = S0 [ S1 [ S2, where Si is the unionof basic sets of unstable index i (S0 is attracting, S1 is of saddle type and S2 isrepelling). These three sets are all nonempty.We have that J2 is a basic set of f and J2 � S2. It would be interesting toknow whether J2 = S2. This is equivalent to that all repelling periodic pointsbelong to J2. In fact Hubbard and Papadopol [HP] have given an example of aholomorphic map on P2 with a repelling periodic point outside J2, but is notclear whether their example can be made Axiom A.It would also be interesting to know whether an Axiom A map on P2 canhave any cycles. In fact, as far as the author knows, there is no known exampleof an Axiom A map with two di�erent basic sets S11 , S21 in S1, such that S11 > S21for the ordering de�ned above.In [FS6], Forn�ss and Sibony were particularly interested in the dynamicsof so called s-hyperbolic maps. These are Axiom A maps satisfying additionalassumptions (in particular that S2 = J2). They obtained results similar to those



SUMMARY 7for hyperbolic H�enon maps, of which we mention a few. First, they showed thatthe Julia set of f is the union of J2 and the stable set of S1, i.e. J1 = J2[W s(S1).Then they considered a basic set S11 in S1 which is minimal for the ordering >above, and proved that T is a laminar current near S11 . Further, they constructedan unstable current � near S11 similar to �� for H�enon maps. The support ofthis current is exactly the unstable set of S11 and � has a laminar structure.Finally, they showed how T and � intersect at S11 to form an ergodic invariantmeasure � := T ^ � whose support is exactly S11 .1.1.7. Holomorphic motions. In section 1.1.4 we mentioned that a hyperbolicrational map f on Ĉ is J-stable. This means, in particular, that if fa, a 2 Dis a holomorphic family of rational maps with f0 = f hyperbolic, then there isan r > 0 and for all a 2 Dr a homeomorphism ha : J(f) ! J(fa) such thatfa � ha = ha � f . Moreover, h0 = id and fa is a hyperbolic rational map. Nowconsider a repelling periodic point z 2 J of f . The conjugacy ha must map zto a repelling periodic point za of fa and the implicit function theorem impliesthat za depends holomorphically on aIn fact, the whole set Ja depends holomorphically on a. The proper way toexpress this is via holomorphic motions. A general de�nition goes as follows.Let D be the unit disk, M a complex manifold and X a subset of M . Then aholomorphic motion of X parameterized by D is a continuous map � : D�X !M such that:(i) �(0; �) = id.(ii) �(�; x) : D !M is holomorphic for every x 2 X .(iii) �(a; �) : X !M is injective for every a 2 D.Holomorphic motions were introduced by Ma~n�e, Sad and Sullivan [MSS], whoproved that if ffaga2D : Ĉ ! Ĉ is a holomorphic family of rational functions,such that f = f0 is hyperbolic, then there is an r > 0 and a holomorphic motionh : Dr � J !M such that for each a 2 Dr(i) Ja := h(a; J) is the Julia set for fa and fa is hyperbolic.(ii) The map ha := h(a; �) : J ! Ja is a homeomorphism and fa � ha = ha � f .In fact, the assumption on f in [MSS] is (potentially) weaker than hyper-bolicity. Holomorphic motions in Ĉ, such as those in the result by Ma~n�e, Sadand Sullivan, exhibit strong geometric properties. For instance, each map �(a; �)above is quasiconformal, and the continuity assumption of � is redundant. Theseproperties do not hold in higher dimension.However, the result that the Julia set of a hyperbolic rational map is a holo-morphic motion is true in a more general context. This is the content of PaperII of this thesis, where we prove that a hyperbolic set of a di�eomorphism, or anexpanding set of an endomorphism moves holomorphically with the parameter.The precise statement can be found in the summary of Paper II.



8 SUMMARYAs for hyperbolic sets of endomorphisms, the situation is slightly more com-plicated. It can be formulated in terms of strongly analytic multifunctions, butagain we refer to the summary of Paper II for details.1.2. Critically �nite maps.1.2.1. Construction of chaotic maps. One approach to critically �nite maps isthe following: given a complex manifold M , how do we �nd an everywherechaotic, holomorphic dynamical system f : M ! M? The question is vague,because it is not clear what is meant by chaotic. However, let us agree that amapping f is chaotic if either(i) The Fatou set of f is empty.(ii) The repelling periodic points of f are dense in M .We will be concerned with the caseM = Pk, k = 1; 2, but let us start with themuch easier situation when M is a torus, M = C=�, where � is a lattice in C.Then the map g(u) = 2u clearly satis�es (i) and (ii). From g we may constructa map f : Ĉ ! Ĉ as follows. Let p : T ! Ĉ be the Weierstrass function. Thisis a branched cover of the sphere of degree 2 such that p(�u) = p(u) for allu 2 T. Since g preserves the �bers of p, it follows that there is a holomorphicmap f : Ĉ ! Ĉ of degree 4, such that f � p = p � g. Hence f satis�es (i) and (ii)as well. Such rational maps were �rst considered by Latt�es, and are thereforecalled Latt�es examples.1.2.2. 1-critically �nite maps on Ĉ. Let us now try to nail down the dynamicalcharacteristics of a Latt�es example f which makes it a chaotic map. It followsfrom the formula f � p = p � g that the critical values of f are also critical valuesof p. Let C be the critical set of f and de�ne the sets D := Sn�1 fn(C) andE := Tj�0 f j(D). Then D and E are �nite sets and the points in E are repellingperiodic points for f . Let us call a map f satisfying the conditions in the lastsentence a 1-critically �nite map (or a Thurston map).It is known that any 1-critically �nite map satis�es (i) and (ii). There aremany proofs of this result. In fact, Thurston [Th] classi�ed 1-critically �nitemaps and showed that they have even stronger properties than (i) and (ii). Forinstance, the measure � of maximal entropy is equivalent to Lebesgue measureon Ĉ.1.2.3. 2-critically �nite maps on P2. The natural generalizations to dimension2 of 1-critically �nite maps of Ĉ are the 2-critically �nite maps of P2. For thede�nition see the summary of Paper III. Examples of 2-critically �nite mapsof P2 include those constructed from 1-critically �nite maps of Ĉ; see [U2] fordetails. In fact, it is not easy to �nd examples which are not of this type, butthey do exist [FS2].Forn�ss and Sibony [FS2],[FS4] initiated the study of critically �nite mapson P2 and showed, among other things, that the Fatou set of a 2-critically �nite



SUMMARY 9map is empty. To be exact, they proved this result under an additional technicalassumption. Ueda [U2] later gave a proof in the general case.The above result shows that a 2-critically �nite map of P2 is chaotic in thesense of (i), but it does not imply (ii). In Paper III it is shown that in fact (ii)does hold. More precisely, if f : P2 ! P2 is 2-critically �nite, then(i) If E � P2 is a nonempty closed subset with f�1(E) � E, then E = P2.(ii) Repelling periodic points of f are dense in P2.Later on Briend [Bri1] sharpened (ii) by proving that the repelling periodicpoints are distributed according to the measure � := T 2. By (i) the support of� is all of P2. It is unknown to the author whether � is always equivalent toLebesgue measure.Ueda [U1] has given another result in the same direction. Namely, he provedthat if Z is a connected complex space and  : Z ! P2 is a holomorphic mapsuch that the family ffn �  g is normal on Z, then  is constant.1.3. Polynomial endomorphisms of Ck.1.3.1. Polynomial maps in one variable. What distinguishes a polynomial map-ping p(z) = zd + : : : of C of degree d � 2 from a general rational mapping ofĈ is the presence of a completely invariant point, namely 1. This point a�ectsthe dynamics of p in several ways.First, the dynamics near in�nity is easily described in terms of the B�ottchercoordinate. This is the unique holomorphic function ' de�ned near1 such that'(z) = z + O(1) as z ! 1 and ' � p = 'd. Hence ' conjugates p to thehomogeneous polynomial � ! �d.Second, the Julia set J of p is given as J = @K, where K is the set of pointswith bounded orbits. The maximum principle shows that C �K is connected,so J is connected if and only if K is connected.Third, the dynamics of p may be studied by using potential theory on C.This approach was pioneered by Brolin [Bro], and developed further by Sibony(see [CG]) and Tortrat [To]. The connection between dynamics and potentialtheory is given by the function G(z) := limn!1 d�n log+ jpn(z)j. Indeed, G isthe Green function of the compact set K and the measure � of maximal entropyis exactly harmonic measure on J , i.e. � = 12�ddcG. In addition, G = log j'jwhenever ' is de�ned.The B�ottcher coordinate is useful for studying the connectivity of J . Usingthe equation p �' = 'd we may try to extend ' to all of Ĉ�K. This will workas long as we do not encounter any critical values of p. In fact, a careful analysisshows that J is connected if and only if no critical point of p is in the basin ofattraction of 1.In the important case when J is connected, ' extends to a conformal equiv-alence of Ĉ �K onto Ĉ � �D. This leads naturally to the study of J in termsof external rays, a powerful method introduced by Douady and Hubbard [DH].The external rays are images under  := '�1 of a ray in Ĉ � �D. Thus the set



10 SUMMARYof external rays can be identi�ed with the circle S1. Further, the radial limite(�) := limr!1+ '(rei�) exists for almost every � 2 S1 and e�( d�2� ) = �, whered�2� denotes normalized Lebesgue measure on the circle.In fact, it is possible to de�ne external rays even if J is not connected. Theendpoint map e is still well-de�ned and has the same property as above.Suppose J is connected. It is natural to ask whether the external rays landcontinuously on J , i.e. if e maps S1 continuously onto J . This is equivalent to Jbeing locally connected, something which is not always true. However, it doeshold in some situations, e.g. if p is hyperbolic.We close this section by considering Lyapunov exponents. The general de�-nition of Lyapunov exponents can be found in the summary of Paper V. Su�ceit to say that there is a number �(p), called the Lyapunov exponent of p withrespect to �, such that limn!1 1n log jDpn(z)j = �(p) for �-a.e. z 2 J . There isan interesting formula for �(p), formulated by Przytycki [P].�(p) = log d+ Xp0(c)=0G(c);where d is the degree of p. Papers IV-VI contain various generalizations of thisequation. An interesting consequence of the above formula is that the followingstatements are equivalent for a polynomial mapping p of C of degree d � 2:(i) J is connected.(ii) All critical points of p have bounded orbits.(iii) � = log d.1.3.2. Polynomial endomorphisms of Ck. All polynomial maps of C extend toholomorphic mappings of Ĉ ' P1. The corresponding statement is false inhigher dimension. For instance, no H�enon map in C2 of degree d � 2 extendscontinuously to P2.In this thesis we focus on polynomial endomorphisms of Ck that do extendcontinuously (and thus holomorphically) to Pk . We call them regular. Theycan also be characterized by the growth condition lim inf jxj!1 jfn(x)j=jxjd > 0,where d is the (algebraic) degree of f .Some results from one dimension continue to hold for a regular polynomialendomorphism f of Ck. For instance, let K be the set of bounded orbits of f ,and let F be the Fatou set, i.e. the largest open set where ffng forms a normalfamily. Then K is compact, @K \ F = ; and int(K) � F .Other results are true with slight modi�cations. For instance, de�ne G :=limn!1 d�n log+ jfnj. Then G is the pluricomplex Green function of K. Themeasure � of maximal entropy satis�es � = ( 12�ddcG)k and is therefore thepluricomplex equilibrium measure of K. Its support Jk is exactly the Shilovboundary of K.It is also possible to generalize the concept of B�ottcher coordinates and ex-ternal rays to polynomial endomorphisms of Ck. This is done in Paper VI; willonly describe a few of the ideas here. The hyperplane � := Pk � Ck ' Pk�1



SUMMARY 11is completely invariant and the restriction of f to � is a holomorphic mappingf�. For the purposes of Papers V and VI, the roles played in one dimension of1 and Ĉ �K are played by J� and W s(J�) in Pk. Here J� is the (k � 1)thJulia set of f� in the sense of section 1.1.3 and W s(J�) is the stable set of J�,i.e. the set of points in Pk attracted to J�. Note that if k = 2, then � ' Ĉ, sof� can be viewed as a rational map and J� is the (one and only) Julia set of f�.If f is a homogeneous regular polynomial endomorphism of Ck, then W s(J�)is contained in the complex homogeneous cone over J� in Ck � f0g. Further,W s(J�) has the structure of a Riemann surface lamination, whose leaves aredisks contained in complex lines through the origin. The Green function G isharmonic on each leaf and we may de�ne the external rays inW s(J�) as gradientlines of G on the leaves of the lamination.In Paper VI we do a similar construction for a nonhomogeneous polynomialendomorphism f under the assumption that f� is (uniformly) expanding on J�.Then W s(J�) may not be a Riemann surface lamination, but it is a laminationoutside a small closed set. On the remaining part of W s(J�) we may de�neexternal rays. These rays land, in a measure theoretic sense, on Jk, the Shilovboundary of K. For details on this, see paper VI.The main tool for studying the properties of external rays is the current T k�1.Let A be the basin of attraction of �. Then the support of T k�1 A, i.e. therestriction of T k�1 to A, is exactly W s(J�) and the laminar structure of the setW s(J�) parallels that of the current T k�1 A.The condition in one dimension that no critical point is attracted to 1 hasan equivalent in Ck, namely that the critical set of f does not intersectW s(J�).Under this condition, the stable set W s(J�) is a Riemann surface lamination,where each leaf is a complex diskWa properly embedded in A. It is an interestingquestion whether the disks Wa land continuously on J , i.e. if the embeddings ofĈ� �D de�ning Wa extend continuously to S1. In Paper VI we prove that if thedimension k is two and f satisi�es suitable hyperbolicity assumptionsm then thedisks do land continuously.2. Summary of resultsPaper I. The purpose of Paper I is to provide a written account of some resultsin hyperbolic dynamics for endomorphisms. We consider both semilocal andglobal dynamics. All the material is very well known for di�eomorphisms, butharder to �nd in the noninvertible case. Paper I will hopefully improve thesituation, although some or all of the results (and proofs) are previously known.One out of many good references for dynamics of di�eomorphisms is [S]. Forthe setting of this paper, the main references are [R] and [PS]. Many proofs aretaken from, or inspired by, [R].The building blocks in hyperbolic dynamics are hyperbolic sets. These aregeneralizations of hyperbolic �xed points. We consider a C1 mapping f ofa �nite-dimensional C1 manifold M . Let � be a compact subset of M with



12 SUMMARYf(�) = � and denote by �̂ the set of histories in �, i.e.�̂ = f(xi)i�0;xi 2 �; f(xi) = xi+1g:Then �̂ is compact and the shift f̂((xi)) := (f(xi)) de�nes a homeomorphismf̂ of �̂. The set �̂ or the pair (�̂; f̂) is sometimes called the natural extensionor the inverse limit of �. We will use the notation x̂ for a history (xi)i�0 in�. De�ne the tangent bundle T�̂ as the set of pairs (x̂; v), where x̂ 2 �̂ andv 2 Tx0M . The derivative of f lifts to a map Df̂ of T�̂.We say that f is hyperbolic on � or that � is a hyperbolic set if T�̂ splits intoa direct sum Eu �Es of continuous invariant subbundles such thatjDf̂n(v)j � c�njvj v 2 EujDf̂n(v)j � c�1��njvj v 2 Es;for some constants c > 0 and � > 1 and for all n � 1.Many properties of hyperbolic �xed points generalize to hyperbolic sets. Letus mention two of these. First, hyperbolic sets are persistent. This means thatif g is C1-close to f , then g has a hyperbolic set �g close to � = �f and there isa homeomorphism conjugating f̂ j�̂f to ĝj�̂g. Second, a hyperbolic set has localstable and unstable manifolds. De�neW s� (p) = fx 2M ; d(f i(x); f i(p)) < � 8i � 0gW u� (q̂) = fx 2M ; 9x̂; x0 = x; d(xi; qi) < � 8i � 0g;for p 2 �, q̂ 2 �̂ and � > 0. The stable manifold theorem asserts that if �is small enough, then W s� (p) and W u� (q̂) are smooth embedded disks, varyingcontinuously with p and q̂, respectively. For more details see Theorem 1.2 in thepaper.The local (un)stable manifolds allow us to analyze the dynamics of f neara hyperbolic set �, especially if an additional condition is satis�ed. Supposewe have a point p 2 �, a history q̂ 2 �̂ and an orbit (xi)i2Z in M such thatd(xi; f i(p)) < � for all i � 0 and d(xi; qi) < � for all i � 0. If, under theseconditions, the orbit (xi) is contained in �, then we say that �̂ has local productstructure. An important consequence of local product structure is shadowing.Corollary 2.5. Assume that �̂ has local product structure. For every � > 0there exists an � > 0 such that if (xi)i2Z is a sequence of points in � withd(f(xi); xi+1) < � for all i, then there is an f-orbit (yi)i2Z in � such thatd(yi; xi) < � for all i.We also have a shadowing result for �̂. In fact, we �rst prove that �̂ admitsshadowing and then deduce the above result as a corollary.We now focus on global dynamics. A point x 2 M is nonwandering if it hasno neighborhood U with fn(U) \ U = ; for all n � 1. An endomorphism f isAxiom A if (1) 
 is compact, (2) periodic points for f are dense in 
, and (3) f



SUMMARY 13is hyperbolic on 
. We will mainly consider mappings that are open. The �rstresult on Axiom A maps isProposition 3.3. If f is an open Axiom A endomorphism, then 
̂ has localproduct structure.Thus we may do shadowing in 
 or 
̂. Further, we have the following spectraldecomposition theorem.Corollary 3.5. The nonwandering set 
 of an open Axiom A endomorphism fcan be uniquely decomposed into a �nite union of compact invariant sets 
i onwhich f is topologically transitive.The sets 
i are called the basic sets of f . We prove Corollary 3.5 by liftingthe situation to 
̂ and applying standard arguments for di�eomorphisms.Finally we consider Axiom A endomorphisms with no cycles. To explain this,let f be an open Axiom A endomorphism of a compact manifold M and de�nean ordering on the basic sets of f by declaring that 
j > 
k if there is an orbit(xi)i2Z such that xi ! 
j as i! �1 and xi ! 
k as i!1. The mapping fis said to have no cycles if there are no nontrivial cycles for the ordering >. Thereason for introducing the no-cycle condition is the following 
̂-stability theorem.Theorem 4.3. If f is an open Axiom A endomorphism of a compact manifoldM with no cycles, then f is 
̂-stable, i.e. if g su�ciently close to f , then 
g isclose to 
f , and f̂ j
̂f and ĝj
̂g are conjugate.Paper II. We consider a holomorphic family fa :M !M , a 2 D, of holomor-phic endomorphisms of a complex Hermitian manifold M parameterized by theunit disk D.For terminology and results on hyperbolic dynamics we refer to Paper I.Assume that f = f0 has a hyperbolic subset � = �0 (in the paper we useK instead of �). We ask ourselves in what way � is persistent when we varythe parameter a. From general hyperbolic dynamics we know that for a smallenough, there will be a hyperbolic set �a close to � such that f̂aj�̂a is conjugateto f̂ j�̂.If � is a hyperbolic �xed point, then the implicit function theorem impliesthat a ! �a de�nes a holomorphic curve in M . For general �, the assignmenta! �a de�nes a strongly analytic multifunction in the following sense.Theorem B. Let fa be as above. Then there is an r > 0 and a continuous maph : Dr � �̂!M such that(1) For each a 2 Dr, �a := ha(�̂) is a hyperbolic set for fa, where ha = h(a; �).(2) For each a 2 Dr, the map ha satis�es the relation fa �ha = ha � f̂ and liftsto a homeomorphism ĥa : �̂! �̂a, which is just the identity for a = 0.(3) The map h(�; x̂) : Dr !M is holomorphic for each x̂ 2 �̂.



14 SUMMARY(4) The set Sa2Drfag��a in Dr �M is the union of graphs of holomorphicmaps from Dr to M .There are several, inequivalent, de�nitions of analytic multifunctions in higherdimension (see [A] for a discussion) but the notion of strongly analytic multi-functions de�ned in Paper II is stronger than them all.Theorem B simpli�es in two cases. First, if the mappings fa are invertible,then �̂a may be identi�ed with �a and the assignment a! �a is a holomorphicmotion of �.Theorem A. Let ffag be a holomorphic family of holomorphic automorphismsof a Hermitian manifold M parameterized by D. Suppose that f = f0 has ahyperbolic subset �. Then � moves holomorphically with the parameter a at a =0. More precisely, there exists an r > 0 and a continuous map h : Dr ��!Msuch that(1) �a := h(a;�) is a hyperbolic subset for fa for all a 2 Dr.(2) The map ha := h(a; �) : �! �a is a homeomorphism and fa � ha = ha � ffor all a 2 Dr.(3) The map h(�; x) : Dr !M is holomorphic for all x 2 �.The second case is when � is an expanding set. This means that there existconstants c > 0 and � > 1 such thatjDfn(x)vj � c�njvjfor all x 2 �, v 2 TxM and all n � 1. The assignment a! �a is a holomorphicmotion in this situation too.Theorem C. If ffag is a holomorphic family of endomorphisms and � is anexpanding set for f = f0, then � moves holomorphically with a at a = 0 in thesense of Theorem A.Paper III. In the third paper in this thesis we consider 2-critically �nite mapsof the complex projective plane P2. The de�nition of these involve three con-ditions, which we now describe. If f is a holomorphic map of P2, then we letC = C1 denote its critical set and de�neD1 := [n�1 fn(C1)E1 := \j�0 f j(D1):The �rst condition is that the set D1 is algebraic or, equivalently, that the unionde�ning D1 is �nite. In this case E1 is algebraic too. The second condition isthat E1 and C1 has no common irreducible component. This means that thereis no component of the critical set which is mapped into itself by some iterate



SUMMARY 15of f . A map f satisfying these two conditions is called 1-critically �nite. If f is1-critically �nite, then we de�neC2 := C1 \E1D2 := [n�1 fn(C2)E2 := \j�0 f j(D2):It is a result by Ueda [U2], that these are �nite sets. Now the third condition ona 2-critically �nite map is that C2 \E2 = ;. This means that f has no periodiccritical point.In a similar way one de�nes k-critically �nite maps of Pk, but we will stickto the case k = 2.The purpose of Paper III is to show that a 2-critically �nite map f is \ev-erywhere chaotic". To motivate this, we recall the result by Forn�ss and Si-bony [FS4], and Ueda [U2], saying that a 2-critically �nite map has empty Fatouset. In Paper III we prove more. The �rst main result is the following.Theorem 2.2. If f is 2-critically �nite and E � P2 is a closed, nonempty setwith f�1(E) � E, then E = P2.Another way of saying this is that the preimages of any point are dense in P2.If we apply this result with E = J1, the Julia set of f , then we see that J1 = P2,i.e. the result by Forn�ss and Sibony, and Ueda. However, that result is usedin the proof of Theorem 2.2. On the other hand, we may apply Theorem 2.2 toE = J2, where J2 = P2 is the support of the measure � of maximal entropy.Hence we get that J2 = P2 for any 2-critically �nite map.Note that the notation in Paper III deviates slightly from the one in thissummary. In particular, J1 and J2 are called J0 and J1, respectively.The second main result in Paper III is that repelling periodic points are densein P2 for any 2-critically �nite map of P2. This has later been strengthenedby Briend [Bri1], [Bri2], who showed that the repelling periodic points of f aredistributed according to the measure �, which, by the above remark, is supportedon all of P2.Paper IV. A (polynomial) skew product on C2 is a map of the formf(z; w) = (p(z); q(z; w));where p and q are polynomials of the same degree d � 2 and p(z) = zd+O(zd�1)),q(z; w) = wd+O(wd�1). Such a map f extends to a holomorphic map of P2 andmaps any vertical line fzg �C ' C to another vertical line fp(z)g �C ' C bya polynomial map qz. There are two reasons for studying the dynamics of skewproducts on C2. First, they provide a good source of examples of holomorphicmaps on P2. Second, they can be viewed as compositions of di�erent polynomial



16 SUMMARYmaps of C. The importance of considering polynomial skew products was alsostressed by Heinemann [He1], [He2].To the map f of C2 (or P2) we can associate a Green function G, measuringthe rate of escape to in�nity, a positive closed current T = ddcG, and an invariantprobability measure � = T ^ T (see section 1.3.2). The component p of f alsohas a Green function Gp and an invariant measure �p = ddcGp. Its Julia setis Jp = supp(�p). Finally, for each vertical line fzg �C we can de�ne a Greenfunction Rz, a probability measure �z and a Julia set Jz .The �rst result concerns the relation between �, �p and �z .Theorem 2.2. For any skew product f we have� = Z �z �p(z):This gives a partial dynamical characterization of the set J2 = supp(�).Proposition 3.2. J2 = [z2Jpfzg� Jz :To the measure � we can associate two Lyapunov exponents �1 and �2, mea-suring the average growth of expansion of fn. See the summary of Paper V formore details.Theorem 2.6. For any skew product f on C2 of degree d � 2 we have�1 = log d+ Xp0(c)=0Gp(c)�2 = log d+ Z 0@ X@q@w (z;c)=0G(z; c)1A �p(z):From Theorem 2.6 we see that �1; �2 � log d, something which is not generallytrue for polynomial maps of C2.For a polynomial map p of C there is an interesting relationship between theLyapunov exponent �(p), the value of Gp at the critical points of p and theconnectedness of Jp, see section 1.3.1. The following result generalizes this to askew product.Theorem 4.10. If f is a skew product on C2 of degree d � 2, then the followingare equivalent(i) Jp is connected and Jz is connected for all z 2 Jp.(ii) Gp(c) = 0 for all critical points c of p and G(z; c) = 0 for all (z; c) 2 Jp�Cwith @q@w (z; c) = 0.(iii) �1 = �2 = log d.



SUMMARY 17The set of all skew products on C2 of a given degree d � 2 can be identi�edwith CN , N = N(d). Let Md be the subset of CN corresponding to skew prod-ucts satisfying (i){(iii) above. This set should be thought of as a connectednesslocus.Theorem 5.2. Md is compact in CN .Finally we give a criterion for expansion of f on J2. Let PC be the closure ofthe postcritical set of f , i.e. PC = Sn�1 fn(C).Theorem 6.3. Let f be a skew product on C2. Then f is expanding on J2 ifand only if J2 \ PC = ;.It is unknown whether Theorem 6.3 holds for general holomorphic endomor-phisms of Pk, k � 2.As a consequence of the proof of Theorem 6.3 we obtain.Corollary 6.5. If f is a skew product on C2 and f is expanding on J2, thenJ2 = [z2Jpfzg� Jz :This result was previously known in special cases [He1].Paper V. An important result in smooth ergodic theory is Oseledec's theorem,concerning the existence of Lyapunov exponents. For simplicity we formulate inonly for an ergodic measure. See e.g. [Y] for a more general treatment.Theorem (Oseledec). Let f be a smooth mapping of a Riemannian manifold Mof dimension k and let � be an ergodic invariant probability measure. Then thereexists a set E � M with �(E) = 1, positive integers m1; : : :ml with Pmi = k,and real numbers �1 < � � � < �l with the following properties. For each x 2 Ethere is a sequence of subspaces; =M0(x) (M1(x) ( � � � (Ml(x) = TxM;such that dim(Mi) = mi andlimn!1 1n log jDfn(x)vj = �ifor v 2Mi �Mi�1.The numbers �i are called the Lyapunov exponents of f with respect to themeasure �.In Paper V we study the situation when f is a regular polynomial endomor-phism of C2 of degree d � 2. As invariant measure we use � = T ^ T , whichForn�ss and Sibony proved to be ergodic. See section 1.1.3 for more details. Let� be the sum of the Lyapunov exponents of f with respect to �. Thus� = limn!1 1n log j detDfn(x)j



18 SUMMARYfor �-a.e. x 2 C2.The main result in Paper V is a formula for �. Recall that the restriction f�of f to � is a rational map. Let �� denote its measure of maximal entropy (seesection 1.1.1) and �(f�) the Lyapunov exponent of f� with respect to ��.Theorem 3.2. If f is a regular polynomial endomorphism of C2 of degree d � 2,such that f is su�ciently close to the mapping (z; w)! (zd; wd), then� = log d+ �(f�);where �(f�) is the Lyapunov exponent of f� with respect to ��.The main tool in the proof is a laminar description of the current T . Moreprecisely we prove that W s(J�) is the disjoint union of complex disks Wa, eachof which is properly embedded in A. Here A = P2�K is the basin of attractionof �. The disksWa have uniformly bounded area and T A is a laminar currentof the form T A = R [Wa]��(a).Paper V was written before Paper VI. Theorem 3.2 above is proved in a moregeneral version in Paper VI and the notation used in this summary follows thelatter paper.Paper VI. In the sixth and last paper of this thesis we undertake an investi-gation of the dynamics of a regular polynomial endomorphism f of Ck. Thegeneral idea is to study the dynamics of f in a similar way as the dynamicsof a polynomial mapping of C, i.e. through the Green function, the B�ottchercoordinate and external rays. We use the notation introduced in section 1.3.2 inthe summary.The restriction f� = f j� is a holomorphic endomorphism of the hyperplane� ' Pk�1 at in�nity. Let A denote the basin of attraction of �. We areconcerned with the invariant measure �� of maximal entropy for f� and itssupport J�. An assumption that we impose is that f� is (uniformly) expandingon J�; see the summary of Paper II for the de�nition. The expansion impliesthat f has local stable manifolds near J�.We are able to carry out the construction of B�ottcher coordinates and externalrays in Ck. The set J� naturally takes the place of 1 and W s(J�) the placeof C �K. A key to the understanding of external rays is the current T k�1 A,which denotes the restriction of T k�1 to A, the basin of attraction of �. Weshow that the support of this current is exactly W s(J�). The latter set has thestructure of a Riemann surface lamination Ws(J�) outside a small closed set,and this lamination goes hand in hand with a laminar structure of T k�1 A.Using the laminar structure we prove a formula for the sum of the Lyapunovexponents of f , generalizing the corresponding result in Paper V. To state this,we need a critical measure, which we de�ne as �c := T k�1 ^ [C], where C is thecritical set of f . Let �(f) and �(f�) be the sums of the Lyaounov exponents of



SUMMARY 19f and f� with respect to the measures � and ��, respectively. Then we have.�(f) = log d+�(f�) + Z G�c:We de�ne external rays as gradient lines of the Green function G restricted tothe leaves of Ws(J�). The set E of external rays can be identi�ed with J� � S1and carries the natural measure ��
 d�2� . Let e : E ! @K be the endpoint map,de�ned by following the rays along decreasing values of G. We show that e isa.e. well de�ned, measurable, and pushes forward the measure �� 
 d�2� to �.The one-dimensional B�ottcher coordinate conjugates a polynomial to its ho-mogeneous part of highest degree. We show that if f is a regular polynomialendomorphism of Ck, then the restriction of f to a neighborhood of � inW s(J�)is conjugate to the homogeneous part f0 of highest degree restricted to a neigh-borhood of � inside the complex homogeneous cone C(J�).In the special case when k = 2 and no critical point of f is in W s(J�), thenthe latter set is a disjoint union of complex disks, each of which is properlyembedded in A. Under suitable hyperbolicity assumptions we show that theendpoint map e maps J� � S1 H�older continuously onto J2. The main crux inshowing that the endpoint map e is continuous is to show that the boundariesof the disks Wa accumulate only on J2. In particular, we must show that nodisk Wa intersects an unstable manifold W u(q̂) of a history q̂ belonging to ahyperbolic set outside J2. Compare with the discussion in Section 1.1.6.That e maps J� � S1 continuously onto J2 implies that J2 is a topologicalquotient of J� � S1. It would be interesting to know what identi�cations e canintroduce. References[A] Aupetit, B. Analytic multifunctions and their applications. In Gauthier, P. M.,Sabidussi, G., editor, Complex Potential Theory, pages 1{74. Kluwer Academic Pub-lishers, 1994.[Bri1] Briend, J. Exposants de Liapouno� et points p�eriodiques d'endomorphismes holomor-phes de CPk. C. R. Acad. Sci. Paris S�er. I Math. 323(1996), 805{808.[Bri2] Briend, J. Exposants de Liapouno� des endomorphismes holomorphes de CPk.Preprint.[Bro] Brolin, H. Invariant sets under iteration of rational functions. Ark. Mat. 6(1965), 103{144.[BLS1] Bedford, E., Lyubich, M., Smillie, J. Distribution of periodic points of polynomialdi�eomorphisms of C2. Invent. Math. 114(1993), 277{288.[BLS2] Bedford, E., Lyubich, M., Smillie, J. Polynomial di�eomorphisms of C2 IV: The mea-sure of maximal entropy and laminar currents. Invent. Math. 112(1993), 77{125.[BS1] Bedford, E., Smillie, J. Polynomial di�eomorphisms of C2: Currents, equilibrium mea-sure and hyperbolicity. Invent. Math. 103(1991), 69{99.[BS2] Bedford, E., Smillie, J. Polynomial di�eomorphisms of C2 II: Stable manifolds andrecurrence. J. Am. Math. Soc. 4(1991), 657{679.[BS3] Bedford, E., Smillie, J. Polynomial di�eomorphisms of C2 III: Ergodicity, exponentsand entropy of the equilibrium measure. Math. Ann. 294(1992), 395{420.
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HYPERBOLIC DYNAMICS OF ENDOMORPHISMSMATTIAS JONSSONAbstract. We present the theory of hyperbolic dynamics of endomor-phisms in. Topics covered are hyperbolic sets, stable manifolds, local prod-uct structure, shadowing, spectral decomposition and 
̂-stability.0. IntroductionIn this paper we study a smooth mapping f of a manifold M as a dynamicalsystem. We will discuss both semilocal and global dynamical properties of f ,but always under some hyperbolicity assumption. The main examples we havein mind are holomorphic endomorphisms of complex projective space Pk, k � 1but we will state the results in greater generality.There are many excellent and detailed expositions on di�erentiable dynamics,e.g. [S], but they usually consider only invertible systems, such as di�eomor-phisms of a compact manifold. As for noninvertible maps, the attitude seemsto be that most results for di�eomorphisms continue to hold when interpretedcorrectly, but it is di�cult to �nd a detailed written account; the purpose of thispaper is to improve upon that. We do not claim that our results are new. Ourmain references are [R] and [PS].The building blocks in hyperbolic dynamics are hyperbolic sets. These aregeneralizations of hyperbolic �xed points, i.e. �xed points where the derivativehas no eigenvalue of modulus one. For the precise de�nition of what it meansfor a compact, invariant set � to be hyperbolic, we refer to section 1, but thede�nition involves the set�̂ = f(xi)i�0;xi 2 �; f(xi) = xi+1g:of histories in �.A hyperbolic set � has local stable and unstable manifolds at each point; seeTheorem 1.2 for details. Another basic feature of hyperbolic sets is persistenceunder perturbations. This means that if f is hyperbolic on � = �f and gis close to f , then g has a hyperbolic set �g close to �f such that f̂ j�̂f andĝj�̂g are conjugate. Here f̂ is the shift f((xi)) = (f(xi)). For more details1991 Mathematics Subject Classi�cation. 58F15.Key words and phrases. Hyperbolic dynamics, shadowing, local product structure, spectraldecomposition,stability. 23



24 MATTIAS JONSSONsee Proposition 1.4. Note that the sets �f and �g themselves need not behomeomorphic.Many results on the dynamics near a hyperbolic set � are best formulatedin terms of �̂. With this in mind we introduce the concept of local productstructure for �̂. The de�nition says that if (p̂(i))i2Z and (q̂(i))i2Z are orbits in�̂ and (x̂(i))i2Z is an orbit which follows (p̂(i)) in positive time and follows (q̂(i))in negative time, then x̂(i) is in fact an orbit in �̂.Under the assumptions of local product structure for �̂ we prove shadowingresults for �̂ and �, saying that an approximate orbit in �̂ (�) is always closeto an honest orbit in �̂ (�). It seems di�cult to prove this result for � without�rst proving it for �̂.Hyperbolicity of a compact set � is a semilocal condition, only involving thedynamics in a neighborhood of �. Axiom A, however, is a global condition, i.e.a condition on the dynamics of f on all of M . For most results on Axiom Amaps we will make two assumptions, namely that M is compact, and that f isan open mapping. These assumptions are needed in some of the proofs; they arealways satis�ed for nonconstant holomorphic endomorphisms of Pk.The nonwandering set 
 of f is, by de�nition, the set of points x 2M havingno neighborhood U such that fn(U) \ U = ; for all n � 1. If M is compact,then all orbits of f converge to 
 in forward and backward time. We say that fis Axiom A if periodic points are dense in 
 and f is hyperbolic on 
.The �rst consequence of Axiom A is that 
̂ has local product structure; thusthe shadowing results mentioned above apply. We use this to prove versions ofSmale's spectral decomposition theorem for 
̂ and 
, saying that 
̂ (
) is the�nite disjoint union of compact invariant sets, called basic sets, on which f̂ (f)is topologically transitive. Again it seems di�cult to prove this for 
 withoutgoing via 
̂.Finally we address stability. An endomorphism f is called 
̂-stable if f̂ j
̂fis conjugate to ĝj
̂g for all g su�ciently close to f . De�ne a relation on thebasic sets of an Axiom A endomorphism f by saying that 
j > 
k if thereis an orbit (xi)i2Z such that xi ! 
j as i ! �1 and xi ! 
k as i ! 1.Then f is said to have no cycles if there is no nontrivial sequence of basic sets
i0 < 
i1 < � � � < 
ik = 
i0 We prove that if f is Axiom A and has no cycles,then f is 
̂-stable. Axiom A in itself does not imply 
̂-stability.The paper starts by recalling the de�nition of a hyperbolic set for an endomor-phism and stating some basic properties, including the stable manifold theoremand persistence. This is done in section 1. The proofs here are only sketched, asthe (long) details can be found elsewhere. In section 2 we consider local productstructure for a hyperbolic set and prove shadowing results. Then, in section 3,we de�ne Axiom A endomorphisms, show that their nonwandering sets have thesuitable local product structure and prove the spectral decomposition theorem.



HYPERBOLIC DYNAMICS OF ENDOMORPHISMS 25Finally, in the last section we study 
̂-stability and prove that an open AxiomA endomorphism f of a compact manifold M with no cycles is 
̂-stable.1. Hyperbolic sets and the stable manifold theoremIn this section we will give the de�nition of a hyperbolic set and state somebasic facts about them. In particular we will be concerned with persistenceunder perturbations and existence of local stable and unstable manifolds.Suppose f is a C1 endomorphism of a C1 �nite-dimensional Riemannianmanifold M . Let � be a compact subset of M with f(�) = � and de�ne �̂ tobe the set of histories in �, i.e.�̂ = f(xi)i�0;xi 2 �; f(xi) = xi+1g:Then �̂ is a closed subset of �N , hence compact. We will often use the notationx̂ for a point (xi)i�0 in �̂. Every distance d on � de�nes a distance on �̂, alsodenoted by d, by d(x̂; ŷ) =Xi�0 2id(xi; yi):The restriction f j� lifts to a homeomorphism f̂ of �̂ given by f̂((xi)) = (xi+1).There is a natural projection � from �̂ to � sending x̂ to x0 and the pullbackunder � of the restriction to � of the tangent bundle of M is a bundle on �̂which we call the tangent bundle T�̂. Explicitly, a point in T�̂ is of the form(x̂; v) where x̂ 2 �̂ and v is a tangent vector in Tx0M . The derivative Df liftsto a map Df̂ of T�̂ in a natural way.Now f is said to be hyperbolic on �, or that � is a hyperbolic set, if there existsa continuous splitting T�̂ = Eu�Es which is invariant under Df̂ and such thatDf̂ is expanding onEu and contracting onEs. More precisely,Df̂(Eu=s) � Eu=sand there exist constants c > 0 and � > 1 such that for all n � 1jDf̂n(v)j � c�njvj v 2 EujDf̂n(v)j � c�1��njvj v 2 Es:Remark 1.1. It is possible to make a smooth change of metric in a neighbor-hood of � and obtain c = 1 in the equation above.Note that whereas the �ber of the unstable bundle Eu at a point x̂ 2 �̂depends on the whole history x̂ of x0, the �ber of Es at x̂ depends only on thepoint x0. Hence the dimension of the �ber of Eu at a point x̂ depends only onx0, so the dimensions of the �bers of the bundles Eu and Es are locally constant.As a special case of the above we say that f is expanding on � if the bundleEs is trivial. This means that there exist constants c > 0 and � > 1 such thatjDf̂n(x)vj � c�njvj for all x 2 �, v 2 TxM and all n � 1.



26 MATTIAS JONSSONPerhaps the most fundamental result in hyperbolic dynamics is the stablemanifold theorem. For each point p in � and each history q̂ in �̂, we de�ne localstable and unstable manifolds byW s� (p) = fy 2M ; d(f i(y); f i(p)) < � 8i � 0gW u� (q̂) = fy 2M ; 9ŷ; �(ŷ) = y; d(yi; qi) < � 8i � 0gfor small � > 0. The following theorem asserts that the (un)stable manifolds areindeed nice objects.Theorem 1.2. (Stable Manifold Theorem) If � is small enough, then(i) For all p 2 � and all q̂ 2 �̂, W s� (p) and W u� (q̂) are embedded C1 disks inM tangent to Es(p) and Eu(q̂) at p and q0, respectively.(ii) W s� (p) and W u� (q̂) depend continuously on p and q̂, respectively.(iii) If x 2 W s� (p), then d(fn(x); fn(p)) ! 0 exponentially fast as n ! 1.Similarly, every point x in W u� (q̂) has a unique history x̂ such that xj 2W u� (f̂ j(q̂)) for all j � 0 and d(xj ; qj)! 0 exponentially fast as j ! �1.Let us sketch a proof of Theorem 1.2. The idea is to consider the set B(�̂;M)of bounded maps of �̂ into M . This is a Banach manifold modeled on theBanach space of bounded sections of T�̂. De�ne a map F of B(�̂;M) by F(h) =f �h � f̂�1. Then the projection � is a �xed point of F and the assumption thatf was hyperbolic on � means exactly that � is a hyperbolic �xed point. By ageneral stable manifold theorem for hyperbolic �xed points in Banach spaces itfollows that F has a local (un)stable manifold. The (un)stable manifolds of fare then obtained as fh(x)g, where h runs over the (un)stable manifold of F .To do all of this precisely, and to verify that (i){(iii) holds, requires a nontrivialamount of work, which we will not go into here. A proof of a more generaltheorem can be found in [PS].A special case of a hyperbolic set � is a hyperbolic �xed point p. This meansthat f(p) = p and Dfp has no eigenvalue of modulus one. Theorem 1.2 is theneasier to prove and the method of proof yields the following \Lambda Lemma"or \Inclination Lemma". For an outline of the proof see [R].Proposition 1.3. If p is a hyperbolic �xed point of f and � is an embeddedC1 submanifold of M intersecting W s� (p) transversely near p, then for n largeenough fn(�) contains an embedded manifold �n, which is C1-close to W u� (p̂),where p̂ = (: : : ; p; p). Similarly, if �0 is an embedded C1 submanifold of Mintersecting W u� (p̂) transversely near p, then f�n(�0) contains a submanifold�0n, which is C1-close to W s� (p) for large n.We close this section by stating a persistence property for hyperbolic sets.Proposition 1.4. If f is hyperbolic on � = �f and g is C1-close to f , thenthere exists a continuous map h : �̂!M close to the projection �(x̂) = x0 suchthat g � h = h � f̂ and that g is hyperbolic on �g := h(�f ). The map h lifts to a



HYPERBOLIC DYNAMICS OF ENDOMORPHISMS 27homeomorphism ĥ : c�f ! c�g with ĝ � ĥ = ĥ � f̂ , and h depends continuously ong in the Cr topology, 1 � r � 1.Let us sketch a proof of this. Consider the Banach manifold C(�̂;M) ofcontinuous maps of �̂ into M and de�ne a selfmap Fg of C(�̂;M) for each g byFg(h) = g�h� f̂�1. Again � is a hyperbolic �xed point of Ff , so for g su�cientlyclose to f , Fg has a hyperbolic �xed point hg, depending continuously on g. Thisis the map h above.2. Local product structure and shadowingWe now use the local stable and unstable manifolds to analyze the dynamicsnear a hyperbolic set �. In particular we will de�ne the notion of local productstructure on �̂ and show how this implies that pseudoorbits in �̂ (�) can beshadowed by real orbits in �̂ (�).Let � be a hyperbolic set for an endomorphism f . If � is small enough, thenby continuity W s� (p) and W u� (q̂) are almost at, i.e. C1-close to the tangent atp and q0, respectively for all p 2 � and all q̂ 2 �̂. Therefore, by the continuityof Eu and Es, W s� (p) and W u� (q̂) intersect in at most one point. In particular,if p = q0, then W s� (p) \W u� (q̂) = fq0g, which impliesProposition 2.1. If f is hyperbolic on �, then f j� is expansive, i.e. there is a� > 0 such that if (xi)i2Z and (yi)i2Z are two orbits in � with d(xi; yi) < � forall i, then xi = yi for all i. The same result holds if only (xi) is assumed to bein �.More generally we say that � has local product structure if � can be chosenso that W s� (p) \W u� (q̂) � �.If � has local product structure, if p 2 �, q̂ 2 �̂ and if p,q0 are su�cientlyclose, then W s� (p) and W u� (q̂) intersect in exactly one point x 2 � and x has ahistory x̂ such that xj 2 W u� (f̂ j(q̂)) for all j � 0. It is not a priori clear thatx̂ 2 �̂, i.e. that xj 2 � for all j � 0. It will be useful in the sequel to assumethis, so we state the following de�nition.De�nition 2.2. We say that �̂ has local product structure if � can be chosen sothat if the intersection W s� (p) \W s� (q̂) is nonempty, then it consists of a uniquepoint x 2 � and the unique history x̂ of x with xj 2 W u� (f̂ j(q̂)) for all j � 0 iscompletely contained in �̂. See Figure 1.If �̂ has local product structure, then there exist �0 > 0 and � > 0 such thatif p 2 �, q̂ 2 �̂ and d(p; q0) < �0, then there is a unique history x̂ 2 �̂ such thatx0 2 W s� (p) \W u� (q̂) and xj 2 W u� (f̂ j(q̂)) for all j � 0. Furthermore,d(x0; p) � �d(p; q0); (2.1)d(x̂; q̂) � �d(p; q0) (2.2)We de�ne [p; q̂] to be this history x̂.



28 MATTIAS JONSSONf f q0q�1q�2x�2 x�1 x0 pWu� (f̂�2(q̂)) Wu� (f̂�1(q̂)) Wu� (q̂)
Ws� (p)

Figure 1. Local product structure for �̂.De�nition 2.3. Let � > 0. An �-pseudoorbit in M is a sequence (xi)[t1;t2],where �1 � t1 < t2 � 1, such that d(f(xi); xi+1) < � for t1 � i < t2. An�-pseudoorbit (xi)[t1;t2] is �-shadowed by an orbit (yi)[t1;t2] if d(yi; xi) < � for alli 2 [t1; t2]. In a similar way we de�ne (shadowing of) pseudoorbits in M̂ or �̂.Theorem 2.4. (Shadowing Lemma for �̂). If � is a hyperbolic set for fand �̂ has local product structure, then for each � > 0 there exists an � > 0 suchthat every �-pseudoorbit in �̂ can be �-shadowed by an orbit in �̂.Proof. Since f̂ is uniformly continuous on �̂ it su�ces to prove the result for aniterate of f (we may have to shrink �). Let (x̂(i))[t1;t2] be a �-pseudoorbit in �̂,where x̂(i) = (x(i)j )j�0. Using the compactness of �̂ and a diagonal process wemay assume that �1 < t1 < t2 < 1. After relabeling, then, we may assumethat t2 = 0 and �1 < t1 < 0.We will construct points ŷ(i) 2 �̂ for t1 � i � 0 such that(ŷ(i); f̂(ŷ(i)); : : : ; f̂ i(ŷ(i)))�-shadows the �-pseudoorbit (x̂(i); x̂(i+1); : : : ; x̂(0)):We de�ne ŷ(i) = (y(i)j )j�0 inductively byŷ(0) = x̂(0);ŷ(i�1) = f̂�1([y(i)0 ; f̂(x̂(i�1))]);see Figure 2. The idea behind this is that f̂k(ŷ(i�1)) is close to f̂k�1(ŷ(i)) fork � 1 and close to f̂k(x̂(i�1)) for k � 0.We have to check that the de�nition above makes sense. Let �0, � and � bethe constants in (2.1) and (2.2). After replacing f by an iterate we may assumethat there exists an � < 1=2 such that f contracts stable directions by a factor� and expands unstable directions by a factor max(�; 1)=�. Choose �,�0 > 0 so



HYPERBOLIC DYNAMICS OF ENDOMORPHISMS 29f f fy(i�1)�1 y(i�1)0 y(i�1)1x(i�1)�1 x(i�1)0 x(i�1)1 y(i)0 y(i)1y(i�1)2Wu� (f̂�1(x̂(i�1))) Wu� (x̂(i�1)) Wu� (f̂(x̂(i�1)))Ws� (y(i)0 ) Ws� (y(i)1 )Figure 2. De�nition of the shadowing orbit.small that � + �0 < �0�(� + �0) < �0:Assume inductively that t1 < i � 0, that ŷ(i) is well-de�ned, and thatd(x̂(i); ŷ(i)) =Xj�0 2jd(x(i)j ; y(i)j ) < �0:Then d(y(i)0 ; x(i�1)1 ) < � + d(x(i)0 ; y(i)0 )< � + �0< �0;so [y(i)0 ; f̂(x̂(i�1))], and hence ŷ(i�1), is well-de�ned. Since x(i�1)j and y(i�1)jbelong to the same local unstable manifold for all j � 0 it follows thatd(x̂(i�1); ŷ(i�1)) � ��d(f̂(x̂(i�1)); f̂(ŷ(i�1)))� �d(x(i�1)1 ; ŷ(i)0 )� �(d(x(i�1)1 ; x(i)0 ) + d(x(i)0 ; y(i)0 ))� �(� + �0);which by assumption is less than �0. Hence it follows inductively that ŷ(i) iswell-de�ned for t1 � i � 0.We now complete the proof by showing that (ŷ(i); : : : ; f̂ i(ŷ(i))) �-shadows(x̂(i); : : : ; x̂(0)). First, if t1 < i � 0, then it follows from (2.1) thatd(y(i)0 ; y(i�1)1 ) � �d(y(i)0 ; x(i�1)1 )� �(d(y(i)0 ; x(i)0 ) + d(x(i)0 ; x(i�1)1 ))� �(�0 + �):



30 MATTIAS JONSSONNow we let i � t � 0 and estimated(x̂(t); f̂ t�i(ŷ(i))) � d(x̂(t); ŷ(t)) + t�i�1Xj=0 d(f̂ j(ŷ(t�j)); f̂ j+1(ŷ(t�j�1))):The �rst term is bounded by �0. The terms in the last sum can be written asd(f̂ j(ŷ(t�j)); f̂ j+1(ŷ(t�j�1))) =Xs�0 2sd(y(t�j)s+j ; y(t�j�1)s+j+1 )= X�j�s�0+ Xs<�j :Note that y(t�j)s+j and y(t�j�1)s+j+1 are on the same local stable manifold if s+ j � 0,so the �rst sum is bounded byX�j�s�0 2s�s+jd(y(t�j)0 ; y(t�j�1)1 ) � 2�j1� 2��(�0 + �):The second sum is bounded byXs<�j 2s(d(y(t�j)s+j ; x(t�j)s+j ) + d(x(t�j)s+j ; x(t�j�1)s+j+1 ) + d(x(t�j�1)s+j+1 ; y(t�j�1)s+j+1 ))� 2�j(d(ŷ(t�j); x̂(t�j)) + d(x̂(t�j); f̂(x̂(t�j�1))) + d(x̂(t�j�1); ŷ(t�j�1)))� 2�j(�0 + � + �0):Thus d(x̂(t); f̂ t�i(ŷ(i))) < �, where � = 5�0 + 2� + 2�(�0 + �)=(1 � 2�) can bemade arbitrarily small by choosing � and �0 appropriately.Once we can shadow orbits in �̂ it is fairly easy to do shadowing in �.Corollary 2.5. (Shadowing Lemma for �). Suppose that �̂ has local prod-uct structure. Then for each � > 0 there exists an � > 0 such that every �-pseudoorbit in � can be �-shadowed by an orbit in �.Proof. By Theorem 2.4 there exists an �0 > 0 such that every �0-pseudoorbit in�̂ can be (�=2)-shadowed by an orbit in �̂. Fix m > 0 so that 21�mdiam(�̂) <�0=2. Let A � 2 be larger than the Lipschitz constant for f on � and let� < A�m�1min(�0; �)=2.Now suppose (xi)[t1;t2] is an �-pseudoorbit in �. If t2 < 1, then we de�nexi = f i�t2(xt2) for i � t2 and if t1 > �1, then we pick any history q̂ of xt1in �̂ and declare xi = qi�t1 for i � t1. In this way we obtain an �-pseudoorbit(xi)i2Z in �.De�ne a sequence (x̂(i))i2Z of points in �̂ byx̂(i) = (ẑ(i); f(xi�m); : : : ; fm�1(xi�m); fm(xi�m));



HYPERBOLIC DYNAMICS OF ENDOMORPHISMS 31where ẑ(i) is any history of xi�m in �̂. We claim that (x̂(i)) is an �0-pseudoorbitin �̂. Indeed, for any i 2 Z we haved(f̂(x̂(i�1)); x̂(i)) � 21�md(f̂(ẑ(i�1)); ẑ(i)) + X1�m�j�0 2jd(x(i�1)j+1 ; x(i)j )� 21�mdiam(�̂) + X1�k�m 2k�md(fk+1(xi�m�1); fk(xi�m))< �0=2 + X1�m�j�0 2jAm+jd(f(xi�m�1); xi�m)� �0=2 +Am+1�� �0:By Theorem 2.4 we can �nd an orbit (ŷ(i))i2Z in �̂ which �=2-shadows (x̂(i)). Ifwe let yi = y(i)0 , then yi is an orbit in � and we haved(yi; xi) � d(y(i)0 ; x(i)0 ) + d(x(i)0 ; xi)� d(ŷ(i); x̂(i)) + d(fm(xi�m); xi)� �=2 + m�1Xj=1 d(f j(xi�j); f j�1(xi�j+1))� �=2 + m�1Xj=1 Aj�1�< �:Hence (yi) �-shadows (xi) and we are done.Using shadowing we can control the orbits of f staying near � in positiveor negative time. A neighborhood U of � with the properties in the followingcorollary will be called a fundamental neighborhood.Corollary 2.6. (Fundamental neighborhood). Let � be a hyperbolic set fora map f such that �̂ has local product structure. Then, for any su�ciently smallneighborhood U of � in M we have(i) If x 2 U and f j(x) 2 U for all j � 0, then x 2 W s� (p) for some p 2 �.(ii) If x 2 U and x has a history x̂ with xi 2 U for all i � 0, then x 2 W u� (q̂)for some q̂ 2 �̂.(iii) If (xi)i2Z is a complete orbit in U then xi 2 � for all i.(iv) If g is C1-close to f , then the set �g in Proposition 1.4 is given by�g = fx0; (xi)i2Z is a g-orbit completely contained in Ug:In particular, �̂g has local product structure.



32 MATTIAS JONSSONProof. We will apply Corollary 2.5 with � = �=2. Assume that � � � and de�neU := fx 2M ; d(x;�) < �=2g, with � from Corollary 2.5.(i) Pick points zi in � for i � 0 with d(xi; zi) < �=2. Then (zi)i�0 is an�-pseudoorbit in � so by Corollary 2.5 there is an orbit (pi)i�0 in � which�=2-shadows (zi). It follows that d(pi; xi) < �=2 + �=2 � � for all i � 0 sox 2W s� (p), where p = p0.(ii) As in (i) we construct an �-pseudoorbit (zi)i�0 in � such that d(xi; zi) <�=2 for all i � 0. Corollary 2.5 provides us with a point q̂ 2 �̂ such thatd(qi; xi) < �=2 + �=2 � � for all i, so x 2W u� (q̂).(iii) From (i) and (ii) we �nd p 2 � and q̂ 2 �̂ such that x 2 W s� (p) \W u� (q̂).Since �̂ has local product structure this implies that x 2 �.(iv) We have �g � U by Proposition 1.4 so we only have to prove the reverseinclusion. Let (xi)i2Z be a g-orbit completely contained in U . By shrinkingU we may assume that if g is close to f , then (xi) may be �=2-shadowedby an f -orbit (yi) in � and hence �-shadowed by the g-orbit (zi) in �gcoming from the conjugacy in Proposition 1.4. Thusx0 2 W s� (z0) \W u� ((zi)i�0) = fz0g 2 �g:3. Axiom A endomorphismsThe results up to now have been of a semilocal nature, i.e. they concern thedynamics near a compact set. In order to study global dynamical propertieswe now restrict our attention to Axiom A endomorphisms. Our goal here is toprove the spectral decomposition theorem, which allows us to understand thedynamics of f near its nonwandering set. For the proof we will assume that fis an open mapping.Let f be an C1 endomorphism of a C1 manifold M . A point x 2 M isnonwandering if it has no neighborhood V such that fn(V ) \ V = ; for alln � 1. The nonwandering set 
 of f is the set of all nonwandering points; it isa closed set.De�nition 3.1. f is said to satisfy Axiom A if its nonwandering set satis�es(i) 
 is compact.(ii) Periodic points are dense in 
.(iii) f is hyperbolic on 
.Remark 3.2. If 
 satis�es (i) and (ii), then f(
) = 
, so (iii) makes sense.Also, if f is Axiom A, then periodic points (under f̂) are dense in 
̂.The following proposition shows that the results in section 2 apply to openAxiom A endomorphisms.Proposition 3.3. If f is an open Axiom A map, then 
̂ has local product struc-ture.
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qi q0ixi q00

p00x0
Wu� (f̂i(q̂))

Wu� (f̂i(q̂0))U Ws� (p00)Ws�� (q00)
f�i(U)f�i fm(f�i(U))

Wu� (q̂0) Wu�� (p̂0)f�m(f�i(U))Figure 3. Local product structure for 
̂.Proof. Choose �� > � > 0 so small that if p̂; q̂ 2 
̂ and W s� (p0) and W u� (q̂)intersect in a unique point, thenW s��(q0) andW u��(p̂) intersect in a unique point.Now let p̂ and q̂ be any two points in 
̂ such that W s� (p0) and W u� (q̂) intersectin a unique point x. Then x has a history x̂ such that xj 2 W u� (f̂ j(q̂)) for allj � 0. We have to prove that x̂ 2 
̂.We �rst consider the case when p̂ and q̂ are periodic, say of periods l andm, respectively. Let g = f lm and let U be any neighborhood of x. By Propo-sition 1.3, gj(U) contains a manifold C1-close to W u� (q̂) and g�j(U) contains amanifold C1-close to W s� (p0) for all large j. Therefore gj(U) and g�j(U) inter-sect in a point near x� :=W s��(q0)\W u��(p̂) for all large j, so x is nonwandering,i.e. x 2 
.For general p̂, q̂ let x̂ be the history de�ned above, let i � 0 and let U be anyneighborhood of xi. Then f�i(U) is a neighborhood of x, because f is open.Since periodic points are dense in 
̂ we may �nd periodic points p̂0, q̂0 in 
̂ closeto p̂, q̂ such that W s� (p00) intersects W u� (q̂0) in f�i(U) and W u� (f̂ i(q̂0)) intersectsU . Then the above argument shows that fk(U) intersects f�k(U) for in�nitelymany k � 0. Hence xi is nonwandering for all i � 0, so x̂ 2 
̂. See Figure 3 foran illustration of the proof.Theorem 3.4. (Spectral decomposition of 
̂). If f is an open Axiom Aendomorphism, then 
̂ can be written in a unique way as a disjoint union 
̂ =[li=1
̂i, where each 
̂i is compact, satis�es f̂(
̂i) = 
̂i and f̂ is transitive on
̂i. The sets 
̂i are called the basic sets of f̂ . Morover, each 
̂i can be furtherdecomposed into a �nite disjoint union 
̂i = [1�j�ni
̂i;j , where 
i;j is compact,f̂(
̂i;j) = 
̂i;j+1 (
̂i;ni+1 = 
̂i;1) and f̂ni is mixing on each 
̂i;j .Proof. From Proposition 3.3 we know that 
̂ has local product structure. Choose�; �0 > 0 as in the discussion preceding (2.1) and (2.2). If p̂ 2 
̂ is a periodichistory, say of period l, then we let Ŵ u� (p̂) be the set of histories x̂ 2 
̂ suchthat d(xi; pi) < � for all i � 0. Similarly, we let Ŵ u(p̂) be the set of histories



34 MATTIAS JONSSONx̂ 2 
̂ such that d(xi; pi)! 0 as i! �1. Then Ŵ u(p̂) = [j�0f̂ jl(Ŵ u� (p̂)). LetXp̂ be the closure of Ŵ u(p̂) in 
̂.Suppose that p̂ 2 
̂ is periodic of period l. We �rst prove that if ŷ 2 
̂ andd(ŷ; Xp̂) < �0, then ŷ 2 Xp̂. We may assume that ŷ is periodic, say of period m.Take any point x̂ 2 Ŵ u(p̂) with d(ŷ; x̂) < �0 and let ẑ = [y0; x̂]. Then ẑ 2 Ŵ u(p̂),which implies that f̂ j(ẑ) 2 Ŵ u(p̂) if j � 0 and l divides j. But f̂ j(ẑ) is close toŷ if j is large and m divides j, so ŷ 2 Xp̂.The next step is to prove that if p̂ and q̂ are two periodic points in 
̂ of periods land m, respectively, then either Xp̂ = Xq̂ or Xp̂\Xq̂ = ;. First suppose q̂ 2 Xp̂.By the preceding paragraph Xp̂ is open, so we may �nd  2 (0; �) such thatŴ u (q̂) � Xp̂. Then f jlmŴ u (q̂) � Xp̂ for all j � 0, so Xq̂ � Xp̂. On the otherhand, Xq̂ is open and intersects Xp̂, so we may �nd x̂ 2 Xq̂ \ Ŵ u(p̂). But it iseasy to see that f̂m(Xq̂) = Xq̂ so f̂�jlm(x̂) 2 Xq̂ for all j � 0, which impliesthat p̂ 2 Xq̂ . Therefore q̂ 2 Xp̂ implies Xp̂ = Xq̂. Now suppose p̂ and q̂ areperiodic and that Xp̂ and Xq̂ are not disjoint. Then they intersect in an openset, which contains a periodic history r̂, so the previous argument shows thatXp̂ = Xr̂ = Xq̂.The di�erent sets Xp̂ form a disjoint open covering of the compact set 
̂so they are �nite in number. It is clear that f̂(Xp̂) = Xf̂(p̂) so f̂ induces apermutation of the di�erent sets Xp̂. Let 
̂i;j , i = 1; : : : ; l, j = 1; : : : ; ni bethe distinct sets Xp̂, labeled so that f̂(
̂i;j) = 
̂i;j+1, for j = 1; : : : ; ni where
̂i;ni+1 = 
̂i;1. Let 
̂i = [nii=1
̂i;j for i = 1; : : : ; l. Then f̂(
̂i) = 
̂i andf̂ni(
̂i;j) = 
̂i;j for all i; j.We prove that f̂ni is mixing on 
̂i;j for all i; j. Let U and V be two open setsin 
̂i;j . We have to show that f̂ tni(U) \ V 6= ; for all su�ciently large t. Let p̂be a periodic point in U , say of period l. Then Xf̂sni(p̂) = 
̂i;j so we may �ndpoints x̂(s) in Ŵ u(f̂sni(p̂)) \ V for s = 0; : : : ; l� 1. For every su�ciently large twe may then �nd 0 � s � l � 1 such that f̂�tni(x̂(s)) 2 U so f̂ tni(U) \ V 6= ;.Hence f̂ni is mixing on 
̂i;j for all i; j and this implies that f̂ is transitive on 
ifor all i.As we see next, the spectral decomposition of 
̂ induces one of 
.Corollary 3.5. (Spectral decomposition of 
). If f is an open Axiom Aendomorphism, then 
 can be written in a unique way as a disjoint union 
 =[li=1
i, where each 
i is compact, satis�es f(
i) = 
i and f is transitive on
i. The sets 
i are called the basic sets of f . Morover, each 
i can be furtherdecomposed into a �nite disjoint union 
i = [1�j�ni
i;j , where 
i;j is compact,f(
i;j) = 
i;j+1 (
i;ni+1 = 
i;1) and fni is mixing on each 
i;j .Proof. We de�ne 
i;j = �(
̂i;j), where � : 
̂ ! 
 is the projection. We claimthat the 
i;j 's are pairwise disjoint. If not, then there exist periodic points p and



HYPERBOLIC DYNAMICS OF ENDOMORPHISMS 35q of periods l and m, respectively, such that Xp̂\Xq̂ = ; but �(Xp̂)\�(Xq̂) 6= ;.Let x be a point in 
 with two histories x̂(1) 2 Xp̂, x̂(2) 2 Xq̂. If j � 0, thenf̂ jlm(x̂(1)) 2 Xp̂, f̂ jlm(x̂(2)) 2 Xq̂ and d(f̂ jlm(x̂(1)); f̂ jlm(x̂(1))) ! 0 as j ! 1.This is a contradiction, because d(X̂p̂; X̂q̂) � �0.Thus the sets 
i;j are pairwise disjoint. They are compact because 
i;j iscompact for all i; j and � is continuous. It remains to be seen that fni is mixingon 
i;j . This is easy, because if U and V are two open subsets of 
i;j , thenÛ := ��1(U) and V̂ := ��1(V ) are open subsets of 
̂i;j and f̂ tni(Û)\ V̂ 6= ; forsu�ciently large t. It follows that f tni(U)\ V 6= ; for su�ciently large t, whichcompletes the proof.It follows easily from the de�nition of the nonwandering set that if M iscompact and (xi)i2Z is a complete orbit in M , then xi ! 
 as i! �1. In theAxiom A case we can say more. Using the fact that the basic sets are compact,disjoint and f -invariant, we easily prove the following result.Lemma 3.6. Assume that M is compact and that f is an open Axiom A endo-morphism. If x 2 M , then there exists a basic set 
j such that f i(x) ! 
j asi!1. Similarly, if x̂ is a history in M̂ , then there exists a (possibly di�erent)basic set 
j such that xi ! 
j as i! �1.Combining Lemma 3.6 and Corollary 2.6 we obtain.Proposition 3.7. Assume that f is an open Axiom A endomorphism and thatM is compact.1. (i) If x 2M , then there exists a unique basic set 
j such that f j(x)! 
jas j ! 1. Moreover, there exists a (not necessarily unique) p 2 
i suchthat d(f j(x); f j(p))! 0 as j !1.2. (ii) If x̂ 2 M̂ , then there exists a unique basic set 
i such that xj ! 
ias j ! �1. Moreover, there exists a (not necessarily unique) q̂ 2 c
i suchthat d(xj ; qj)! 0 as j ! �1.4. 
̂-stability and the no-cycle conditionGiven a dynamical system we may ask whether it is stable under perturba-tions. The answer to this fairly vague question depends on what we mean bystability. In this section we de�ne the notion of 
̂-stability and give su�cientconditions for it in terms of hyperbolicity.Let f : M ! M be an Axiom A endomorphism. For this section we willassume that f is open and M is compact. Let 
 = S1�i�l 
i be the spectraldecomposition for f . De�ne a relation < among the basic sets 
i by declaringthat 
i < 
j if W s(
i) \W u(
j) 6= ;. HereW s(
j) = fx 2M ; f i(x)! 
j as i!1gW u(
j) = fx 2M ; 9x̂; �(x̂) = x; xi ! 
j as i! �1g



36 MATTIAS JONSSONLet us �rst show that there are no trivial cycles for the relation <.Lemma 4.1. For any i we have W s(
i) \W u(
i) = 
i.Proof. The proof is similar to that of Proposition 3.3. Let (xk)k2Z be a completeorbit with xk ! 
i as jkj ! 1. We have to show that x0 2 
i and it su�ces toshow that x0 is nonwandering. Choose �0 as in the discussion preceding (2.1). ByProposition 3.7 there exist k > 0, y 2 
i and ẑ 2 c
i such that xk 2 W s� (y) andx�k 2 W u� (ẑ). Let U be an open neighborhood of x0. Then fk(U) is open andintersects W s� (y). Now f is transitive on 
i so we may �nd j � 0 and y0 2 
1such that W s� (y0) \ fk(U) 6= ; and d(f j(y0); z0) < �0. We may replace f j(y0) bya periodic point u of period m. Hence W s� (u)\ fk+j(U) 6= ;. Similarly, we may�nd a periodic history v̂ 2 c
i of period n such that W u� (v̂) \ f�k(U) 6= ; andd(v0; u) < �0. By Proposition 1.3 fk+j+ml(U) contains a manifold C1-close toW u� (v̂) and f�k�nl(U) contains a manifold C1-close to W s� (u) for large l. Hencef2k+j+(m+n)l(U) \ U 6= ; for large l, so x0 is nonwandering.We say that f satis�es the no-cycle condition or, simply, that f has no cycles ifthere is no nontrivial chain
i1 < 
i2 < � � � < 
in = 
i1 :De�nition 4.2. An endomorphism f : M ! M is 
̂-stable if there exists aneighborhood U of f and for every g 2 U a homeomorphism � : 
̂f ! 
̂g withĝ �� = �� f̂ . Here 
f and 
g are the nonwandering sets of f and g respectively.We now come to the main result in this section. For simplicity we restrict ourattention to compact manifolds M .Theorem 4.3. If M is compact and f : M ! M is an open Axiom A endo-morphism with no cycles, then f is 
̂-stable.Remark 4.4. The proof will show that the conjugacy � can be chosen close tothe identity. Note that the conjugacy takes place on the level of histories | thesets 
f and 
g need not be homeomorphic.Let us make some observations before starting with the proof. By spectraldecomposition, 
 is the disjoint union of the basic sets 
i, 1 � i � l and thereare fundamental neighborhoods Ui of 
i in the sense of Corollary 2.6.In particular, if g is C1-close to f , then g has hyperbolic sets 
i;g , 1 � i � lcontained in Ui and there are homeomorphisms �i : 
̂i;f ! 
̂i;g conjugating f̂to ĝ. Thus 
g;i has local product structure, periodic points for g are dense in
i;g and the restriction of g to 
i;g is transitive. In particular 
i;g is containedin the nonwandering set 
g of g. To prove that f is 
̂-stable, it therefore su�cesto prove that 
g is exactly the union of the sets 
i;g . In general, there is noreason for this to be true. Picture 4 illustrates an Axiom A di�eomorphism fof, say, the two-dimensional sphere admitting an 
-explosion, meaning that the
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p rq Figure 4. An 
-explosion.nonwandering set for the original map f (a �nite set) is much smaller than thenonwandering set for the perturbed map g (an in�nite set). The nonwanderingset of f consists of six sources and sinks, marked with big circles, and threesaddle points p, q and r. These are the basic sets of f . The nonwanderingset of g contain perturbations of these nine points, but also all the transverseintersection between unstable and stable manifolds in the second picture.The main tool in proving Theorem 4.3 is the existence of a �ltration, whichwe now describe. If f is Axiom A and has no cycles, then we may label the basicsets of f in such a way that 
i > 
j implies i > j.Proposition 4.5. Let f : M ! M be an open Axiom A map with no cycles,where M is compact. Then there is an integer m � 1, fundamental neighborhoodsUj of 
j and compact sets ; = M0 � M1 � � � � � Ml = M , such that U1 =int(M1), fm(Mj) � int(Mj) for 1 � j � l, and fm(Mj � Uj) � int(Mj�1) for2 � j � l.We postpone the proof of Proposition 4.5 and show instead how to deduce
̂-stability.Proof of Theorem 4.3. Let g be C1-close to f . As mentioned above it su�ces toshow that the nonwandering set 
g of g is the union of the sets 
j;g , 1 � j � l,so let (xi)i2Z be a g-orbit completely contained in 
g. If g is close enough to f ,then Proposition 4.5 holds with f replaced by g. Hence there is a j, 1 � j � l,such that xi 2 Uj for all i. But then xi 2 
j;g for all i by Corollary 2.6.Thus it remains to construct the �ltration in Proposition 4.5. Figure 5 il-lustrates the �rst two steps in the construction of the �ltration. Here 
1 is anattracting set, by the labeling of 
i, and M1 = U1 is a neighborhood of 
1.Next, W u(
2) is in the stable set of 
1 and M2 is the union of M1 and a neigh-borhood of W u(
2)�M1. It will take some care to de�ne this neighborhood sothat the properties in Proposition 4.5 hold.We start the proof of Proposition 4.5 with a preliminary result.Lemma 4.6. The set �k := Si�kW u(
i) is compact and Si�kW s(
i) is anopen neighborhood of �k for 1 � k � l.Proof. We �rst show that �k is closed, hence compact. Let x 2 W u(
i0 ) forsome i0 � k. We must show that x 2 W u(
i) for some i � k. Pick histories
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1M1 M1
1 
2Wu(
2)M2 U2

Figure 5. Construction of the �ltration.ŷ(�), � � 1, such that y(�)0 ! x as �!1 and y(�)s ! 
i0 as s! �1 for all �.By passing to a subsequence we may assume that ŷ(�) converges to a history ẑ.Let I be the set of i such that ŷ(�) accumulates on 
i as � ! 1. Moreprecisely, i 2 I if there exist �k ! 1 and sk � 0 such that y(�k)sk ! 
i ask !1. The proof now goes through a number of steps.Lemma 4.7. There is an i 2 I such that x 2W u(
i).Proof of Lemma 4.7. Recall that ŷ(�) ! ẑ as �!1. We have z0 = x and thereis an i such that zs ! 
i as s ! �1. We claim that i 2 I . To see this, picksk with d(zsk ;
i) < 1k for k > 0. If �k is large enough, then d(y(�k)sk ;
i) < 1k ,which proves that i 2 I .Lemma 4.8. If i 2 I, i 6= i0, then there is a j 2 I, j 6= i such that 
j > 
i.Proof of Lemma 4.8. Pick �0 > 0 such that�0 < 12 min1�i1<i2�l d(
i1 ;
i2)By assumption there exist �k ! 1 and sk � 0 such that y(�k)sk ! 
i. Choosetk < sk minimal such that d(y(�k)tk ;
i) < �0. This is possible because i 6= i0.De�ne ŵ(k) by w(k)s = y(�k)s+tk . By passing to a subsequence we may assume thatŵ(k) ! ŵ as k ! 1. We claim that ws ! 
i as s ! 1. To see this we �rstconsider the case when sk � tk !1. Then d(w(k)s ;
i) < �0 for 0 � s � sk � tk,so we must have ws ! 
i as s!1. The second case is when sk� tk is boundedas k ! 1. By passing to a subsequence we may assume that sk � tk = r � 0for all k. But then d(w(k)r ;
i)! 0 as k !1 so wr 2 
i. Thus ws ! 
i is thiscase too.Similarly, we have ws ! 
j as s ! �1 for some j. Hence 
j > 
i and wehave j 6= i by Lemma 4.1. It remains to be seen that j 2 I . But for each m � 1we may choose um < 0 such that d(zum ;
j) < 1m . Then we �nd �m ! 1 suchthat d(y(�m)um+tm ;
j) < 1m . This shows that j 2 I .
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k
Ws(
k)

W V V 0 V 00Wu(
k)V 00 Figure 6. Dynamics near 
kWe now continue the proof of Lemma 4.6. By Lemma 4.7, Lemma 4.8 and theno-cycle property there exists a chain
i0 > 
i1 > � � � > 
il ;such that x 2W u(
il). Again by the no-cycle property we must have il � i0 � kso x 2 �k. This proves that �k is compact. Similarly we may prove thatM � Si�kW s(
i) = Si>kW u(
i) is compact so Si�kW s(
i) is open and itcontains 
k by the labeling of the basic sets.Proof of Proposition 4.5. We construct the setsMk and choose the fundamentalneighborhoods Uk inductively. Compare with Figure 5. First note that 
1 is anattracting set, becauseW u(
1) = [1�j�lW u(
1) \W s(
j) = 
1by Lemma 4.1 and the labeling of the 
i. Hence, if U1 is small enough andM1 = U1, then we can �nd m � 1 such that fm(M1) � U1. Note that �1 =
1 � int(M1). Now suppose that 2 � k � l and that we have an integerm0 � 1 and compact sets ; = M0 �M1 � � � � �Mk�1 such that �j � int(Mj),fm0(Mj) � int(Mj) for 1 � j � k � 1, and fm0(Mj � Uj) � int(Mj�1) for2 � j � k � 1.If x 2 W u(
k), then x 2 W s(
i) for some i < k by Lemma 4.1 and thelabeling of the 
i. Given �; �; �0; �00 > 0, de�ne the setsW ,V ,V 0,V 00 as follows. Wis the open �-neighborhood of 
k inW u(
k), V (V 0) is the closed �-neighborhood(�0-neighborhood) ofW inM , and V 00 is the closed �00-neighborhood ofW u(
k)�(Mk�1 [W ) in M . See Figure 6.By the hyperbolicity of f on 
k we may choose m1 � 1 and � > 0 suchthat for every m � m1 and every �00 > 0 there exist �0 > � > 0 such thatfm(V 0) � V [ int(V 00).Now W u(
k)� (W [ int(Mk�1)) is compact, so by the induction hypothesisthere is an m2 � m1 such that fm2(W u(
k) �W ) � int(Mk�1). Choose �00



40 MATTIAS JONSSONso small that fm2(V 00) � int(Mk�1) and �nd �0 > � > 0 such that fm2(V 0) �V [ int(V 00).Hence, if we let m = m0m2, Uk = int(V 0) and Mk = Mk�1 [ V 00 [ V 0, thenMk is an open neighborhood of �k, fm(Mk) � int(Mk), and fm(Mk � Uk) �int(Mk�1). This completes the induction.References[R] Ruelle, D. Elements of di�erentiable dynamics and bifurcation theory. Academic Press,1989.[PS] Pugh, C, Shub, M. Ergodic attractors. Trans. Amer. Math. Soc. 312(1989), 1{54.[S] Shub, M. Global stability of dynamical systems. Springer-Verlag, 1987.Dept. of Mathematics, Royal Institute of Technology, 100 44 Stockholm, SwedenE-mail address: mjo@math.kth.se
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HOLOMORPHIC MOTIONS OF HYPERBOLIC SETSMATTIAS JONSSONAbstract. We show how hyperbolic sets for holomorphic families of en-domorphisms of a complex Hermitian manifold give rise to holomorphicmotions or analytic multifunctions.0. IntroductionLet M be a complex Hermitian manifold and ffaga2D a holomorphic familyof endomorphisms of M , where D is the unit disk. This means that the mapD �M ! M , de�ned by (a; x) ! fa(x) is holomorphic. Suppose that f = f0has a compact surjectively invariant subset K, i.e. f(K) = K. For example, Kcould be a �xed point or a periodic orbit, but also a more complicated set suchas the Julia set of a rational function. We may then ask if K is persistent underthe perturbation fa of the map f . For instance, if K is a �xed point of f , thenwe ask if fa has a �xed point Ka near K for a small enough. A su�cient (albeitnot necessary) condition for this is that the �xed point K is hyperbolic, meaningthat the derivative of f at K has no eigenvalue of modulus one.There is a natural notion of hyperbolicity for general sets K. Let us �rstconsider the case when the maps fa are di�eomorphisms. The precise de�nitioncan then be found in e.g. [R] and will not be stated here, but it says, loosely, thatthe tangent bundle over K splits continuously into two invariant subbundles onwhich the derivative of f is expanding and contracting, respectively.One basic result in real dynamics is that hyperbolic sets are persistent un-der perturbations in the map f (see [R]). In our case this means that if a issmall enough, then fa has a hyperbolic set Ka close to K, and there exists ahomeomorphism ha close to the identity conjugating f jK to fajKa .If K is a hyperbolic �xed point, then it follows from the implicit functiontheorem that the �xed pointKa of fa depends holomorphically on a. The naturalgeneralization of this to more general sets K is the notion of a holomorphicmotion, the de�nition of which is given in section 1.Theorem A. Let ffaga2D be a holomorphic family of di�eomorphisms of aHermitian manifold M parameterized by the unit disk D. Suppose that f = f01991 Mathematics Subject Classi�cation. Primary: 32H50, Secondary: 58F23,58F15.Key words and phrases. Holomorphic motions, analytic multifunctions, hyperbolic sets,holomorphic dynamics.Partially supported by a grant from NFR (Swedish Natural Science Research Council).41



42 MATTIAS JONSSONhas a hyperbolic subset K. Then K moves holomorphically with the parametera at a = 0. More precisely, there exist r > 0 and a holomorphic motion h :Dr �K !M such that for each a 2 Dr(1) Ka := h(a;K) is a hyperbolic subset for fa.(2) The map ha := h(a; �) : K ! Ka is a homeomorphism and fa �ha = ha �f .Let us now return to the situation of a holomorphic family ffag of endomor-phisms of a Hermitian manifold M . There is a notion of a hyperbolic set K inthis setting too [R]. Again, we will not give the precise de�nition, but let usnote that it involves the set K̂ = f(xk)k�0;xk 2 K; f(xk) = xk+1g of backwardsorbits in K.The real theory [R] tells us that for a small enough, fa has a hyperbolic setKa close to K and there exists a continuous surjective map ha : K̂ ! Ka.Now K and Ka need not be homeomorphic so K does, in general, not moveholomorphically with a. Nevertheless, the dependence of Ka on a reects thecomplex structure; one way of saying this is that a! Ka is a strongly analyticmultifunction, the de�nition of which is given in section 1.Theorem B. Let ffaga2D be a holomorphic family of endomorphisms of a Her-mitian manifold M parameterized by the unit disk D. Suppose that f = f0 hasa hyperbolic subset K. Then K̂ moves holomorphically with the parameter a ata = 0 and a ! Ka is a strongly analytic multifunction. More precisely, thereexist r > 0 and a continuous map h : Dr � K̂ !M such that(1) For each a 2 Dr, Ka := ha(K̂) is a hyperbolic set for fa, where ha =h(a; �).(2) For each a 2 Dr the map ha satis�es the relation fa �ha = ha � f̂ and liftsto a homeomorphism cha : bK ! cKa, which is just the identity for a = 0.(3) The map h(�; x̂) : Dr !M is holomorphic for each x̂ 2 K̂.(4) The set Sa(fag �Ka) in Dr �M is foliated by holomorphic graphs overDr.Sometimes a hyperbolic set K does move holomorphically with the parametereven for endomorphisms. An important situation when this happens is when Kis a repellor, meaning that the derivative of f is expanding on the whole tangentbundle over K (see De�nition 1.3).Theorem C. If ffag is a holomorphic family of endomorphisms and K is arepellor for f = f0, then K moves holomorphically with a at a = 0 in the senseof Theorem A.Theorem C applies to show that the Julia set of a rational function movesholomorphically with the parameter on the open set of parameter space con-sisting of hyperbolic maps. In [MSS], the authors prove that in fact one has aholomorphic motion for a (possible larger) open dense set of parameter space.



HOLOMORPHIC MOTIONS OF HYPERBOLIC SETS 431. DefinitionsIn this section we recall the de�nitions of holomorphic motions and analyticmultifunctions. For notational simplicity we will let these be parameterized bythe unit disk.De�nition 1.1. Let D be the unit disk, M a complex manifold and X a subsetof M . Then a holomorphic motion of X parameterized by D is a continuousmap � : D �X !M such that:(1) �(0; �) = id.(2) �(�; x) : D !M is holomorphic for every x 2 X .(3) �(a; �) : X !M is injective for every a 2 D.Holomorphic motions have mostly been studied for subsets of the Riemannsphere. In [MSS] Ma~ne, Sad and Sullivan proved the celebrated �-lemma, whichsays that each map �(a; �) is quasiconformal and that the continuity assumptionon � is redundant. Later on S lodkowski [S], strengthening previous results,proved that a holomorphic motion of any subset X of Ĉ can be extended to aholomorphic motion of the whole Riemann sphere.In higher-dimensional complex manifolds, such extension and continuity prop-erties do not hold in general. Indeed, it is easy to construct a holomorphic motionof a subset X of C2, such that all the maps �(a; �) are discontinuous for a 6= 0.Moreover, the role of quasiconformality is not clear, at least not for arbitrarysets X . Some results on quasiconformality and holomorphic motions in higherdimension can be found in [ABR].Next we discuss analytic multifunctions. Let M be a complex manifold.Then a multifunction from D to M is a map K from D to the set K(M) ofcompact subsets of M . K is called continuous (upper semicontinuous) if it iscontinuous (usc) in the Hausdor� metric on K(M). Its graph is de�ned by�(K) = Sa2D(fag�K(a)) and it is easy to see that K is usc i� �(K) is closedin D �M .De�nition 1.2. A strongly analytic multifunction is an usc multifunction Ksuch that �(K) is the union of graphs of holomorphic maps from D to M .From the de�nition it follows that a strongly analytic multifunction K isboth continuous and an analytic multifunction in the sense of [A]. The latterstatement means that if D �� D is open and  is plurisubharmonic in a neigh-borhood of �(KjD), then �(�) := supf (�; x);x 2 K(�)g is subharmonic onD. Also note that a holomorphic motion can be viewed as a strongly analyticmultifunction K such that �(K) is the union of disjoint graphs.Analytic multifunctions appear naturally in complex dynamics. For exam-ple, Baribeau and Ransford [BR] proved that if fa is a holomorphic family ofrational functions, then a! J�a is a analytic multifunction, where J�a is the uscregularization of the Julia set Ja of fa, i.e. the graph �(a ! J�a ) is the closureof the graph �(a! Ja).



44 MATTIAS JONSSONLet us �nally give the de�nition of a repellor as is needed in the statement ofTheorem C.De�nition 1.3. Let f be a holomorphic endomorphism of a Hermitian manifoldM and K a compact invariant set. Then K is said to be a repellor if there existsc > 0; � > 1 such that jfn� vj � c�njvj for all tangent vectors v over K and alln � 1. 2. ProofsProof of Theorem A. From the real theory [R] we know that we may �nd anr > 0 and for all a 2 Dr a continuous map ha : K !M such that Ka := ha(K)is a hyperbolic subset for fa, ha : K ! Ka is a homeomorphism and the relationfa � ha = ha � f holds. Moreover h0 is the inclusion K ,! M and the mapa ! ha is C1 as a map from D to the real Banach manifold C(K;M) ofcontinuous functions of K into M . All of this is proved using the ImplicitFunction Theorem on C(K;M).We want to prove that the map a ! ha(x) is holomorphic for all x 2 Kand depend continuously on x. But the smoothness of a ! ha implies thata ! ha(x) is C1 and that all derivatives of ha(x) with respect to a dependcontinuously on x. Fix b 2 Dr and let � be the section of the tangent bundleof M over Kb de�ned by �(hb(x)) := @@�aha(x)ja=b; this makes sense since hbis a homeomorphism. Then � is a continuous, hence bounded, section of TMover the compact set Kb. We want to prove that � � 0. From the relationfa � ha = ha � f we easily get � � fb = (fb)��, where (fb)� is the derivativeof fb. But then the following lemma tells us that � � 0, which completes theproof.Lemma 2.1. Let K be a hyperbolic set for an endomorphism f of a Riemannianmanifold M and let (xi)i2Z be an orbit in K. Suppose that � is a boundedsection of the tangent bundle over (xi), i.e. �(xi) 2 TxiM , with the property�(xi+1) = f�(xi)�(xi). Then �(xi) = 0 for all i.Proof. We prove the lemma in the case when f is a di�eomorphism | themodi�cations in the endomorphism case are left to the reader. There is a con-tinuous f�-invariant splitting of the tangent bundle over K into unstable andstable bundles Eu and Es, respectively, so we may write � = �u + �s, where�u and �s are bounded sections over (xi) of Eu and Es, respectively. Wethen have that �u(xi+1) = f�(xi)�u(xi) and �s(xi+1) = f�(xi)�s(xi). Sup-pose that �u(xi) 6= 0 for some i. Then the expansion along Eu gives thatj�u(xi+n)j = jfn� (xi)�u(xi)j ! 1 as n ! 1. This contradicts the assumptionthat �u was bounded. Hence �u � 0. In the same way, we see that �s � 0 so� � 0.Proof of Theorem B. The proof is very similar to that of Theorem A. The exis-tence of r and h satisfying (1){(2) follows from the real theory [R]. This time h



HOLOMORPHIC MOTIONS OF HYPERBOLIC SETS 45is constructed using the Implicit Function Theorem on the real Banach manifoldC(K̂;M) of continuous functions from K̂ to M . To prove (3) we take b in Drand consider the map � from cKb to TKb de�nd by �( bhb(x̂)) := @@�aha(x̂)ja=b.Then � is well-de�ned since bhb is a homeomorphism. Moreover, � is continuous,hence bounded, and satis�es the relation �� bfb = (fb)��. Therefore, if (xi) is anyorbit in Kb, then Lemma 2.1 shows that �((xi)) = 0. This proves (3). Finally(4) follows immediately from (3).Proof of Theorem C. Let ha be as in Theorem B. We claim that there exists ahomeomorphism ga : K ! Ka such that ga � � = ha, where � : K̂ ! K is theprojection �((xk)) = x0. To see this, take any x 2 K and let x̂ = (xk) andŷ = (yk) be two points in K̂ with �(x̂) = �(ŷ) = x (i.e. x0 = y0 = x). We mustshow that ha(x̂) = ha(ŷ). Suppose that this is not the case and let x(a) = ha(x̂)and y(a) = ha(ŷ). Then for n � 0 we haved(fna (x(a)); fna (y(a))) � d(fna (x(a)); fn(x)) + d(fna (y(a)); fn(x)) � c(a);where c(a) ! 0 as a ! 0. Hence the forward orbits of x(a) and y(a) are veryclose if a is small. Because of the expansion, this is only possible if x(a) = y(a).Therefore, the map ha : K ! Ka is well-de�ned. It remains to be seen thata ! ha(x) is holomorphic for all x 2 K but this follows immediately from thefact that the maps a! ha(x̂) are holomorphic.It is also possible to give a direct proof of Theorem C without using TheoremB. Let us sketch how to do this. The idea is to use Sullivan's telescope construc-tion as described in [HO]. For simplicity we assume that the constant c in thede�nition of a repellor is equal to one; this can be achieved by changing the met-ric on M slightly (a construction originally due to Mather). Let U0(x) be the ballof radius � > 0 centered at x 2 K. The expansion implies that f�1(U0(f(x)))has a unique component contained in U0(x) for x 2 K if � is small enough. Callthis component U1(x). Inductively we �nd a nested sequence (telescope) of opensets fUn(x)gn�0 for x 2 K and the expansion implies that the diameter of Un(x)is uniformly exponentially small. In particular the intersection \n�0Un(x) (thefocus of the telescope) is the single point x. If a is small enough, then we mayconstruct a perturbed telescope fUn;a(x)gn�0 for x 2 K so that Un;a(x) is aconnected component of f�na (U0(fn(x))). We will still have that the diameterof Un;a(x) is uniformly exponentially small, so the focus of the telescope is awell-de�ned point ha(x). It is easy to see, using the fact that expansion on Kis bounded above, that ha(x) depends continuously on x | in fact ha is H�oldercontinuous. Exchanging the roles of f and fa we see that (for a small enough)ha is a homeomorphism, which is bi-H�older. De�ne Ka := ha(K). It is clearfrom the construction that ha conjugates f on K to fa on Ka. Finally, for �xedx, ha(x) is given as a uniform limit of functions holomorphic in a so a! ha(x)is holomorphic. This completes the second proof of Theorem C.



46 MATTIAS JONSSON3. examplesOur �rst example concerns polynomial di�eomorphisms of C2, for which weuse [BS] as a reference. We only consider di�eomorphisms which are conjugateto �nite compositions of (generalized) H�enon maps.A polynomial di�eomorphism of C2 is said to be hyperbolic if it is hyperbolicon its non-wandering set; in this case the non-wandering set consists of a basicset J of unstable dimension one and a �nite number of repelling or attractingperiodic points.It follows from Theorem A that if ffaga2D is a holomorphic family of poly-nomial di�eomorphisms of C2 and f = f0 is hyperbolic, then J moves holomor-phically with a at a = 0.The second example is of a polynomial endomorphism f of C2, de�ned byf(z; w) = (z2; w2). The non-wandering set 
 of f is the union 
0[
1[
2, where
0 = f(0; 0)g, 
1 = fjwj = 1; z = 0g [ fjzj = 1; w = 0g, 
2 = fjzj = jwj = 1g.In this case f is hyperbolic on all of 
 and it has unstable dimension i on 
i.We now embed f in a holomorphic family ffag of endomorphisms of C2with f0 = f . It then follows from from Theorem C that the set 
2 movesholomorphically with a for a small enough; the same is true for 
0. On the otherhand, the set 
1 does not move holomorphically in general. To see this, considerthe component K = fjzj = 1; w = 0g of 
1. We embed f0 in the holomorphicfamily ffag de�ned by fa(z; w) = (z2; w2 + az); jaj < 1=4. Then the Riemannsurface Va = fw2 = r2zg is invariant, where r = 1=2�p1=4� a and the branchof the root is chosen so that p1=4 = 1=2. If we use z as a variable on Va, thenthe dynamics on Va is given by z ! z2. Hence Ka = fjzj = 1; w2 = r2zg. Fora 6= 0 this is a �ber bundle over the circle fjzj = 1; w = 0g with a two point setas a �ber and it is clear that Ka is not a holomorphic motion of K.In fact, the discontinuity of Ka in this example is misleadingly simple. If wetake fa(z; w) = (z2; w2 +w=10 + az), then one can see that the set Ka, which isa perturbation of the set K0 = fjzj = 1; w = 0g for small a 6= 0 is a �ber bundleover the circle jzj = 1 with Cantor sets as �bers.Acknowledgment. This work was partially done when the author was visitingthe University of Michigan and he wants to thank the Department of Mathe-matics for its hospitality. References[A] Aupetit, B. Analytic multifunctions and their applications. In Gauthier, P. M.,Sabidussi, G., editor, Complex Potential Theory, pages 1{74. Kluwer Academic Pub-lishers, 1994.[ABR] Astala, K., Balogh, Z., Reimann, H. M. Lempert mappings and holomorphic motionsin Cn. Preprint.[BR] Baribeau, L., Ransford,T.J. Meromorphic multifunctions in complex dynamics. ErgodicTheory Dynam. Systems 12(1992), 39{52.[BS] Bedford, E., Smillie, J. Polynomial di�eomorphisms of C2: Currents, equilibrium mea-sure and hyperbolicity. Invent. Math. 103(1991), 69{99.
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SOME PROPERTIES OF 2-CRITICALLY FINITEHOLOMORPHIC MAPS OF P2MATTIAS JONSSONAbstract. We de�ne 2-critically �nite maps of P2 and show that theyhave no nontrivial closed backward invariant sets. In particular, their Juliasets J1, de�ned as the support of a natural invariant measure, are equal toP2. We also prove that repelling periodic points are dense for such maps.0. IntroductionThe present paper deals with the dynamics of 2-critically �nite holomorphicmaps on P2. These are natural generalizations of the so called Thurston maps onP1 which by de�nition are rational maps all of whose critical points are strictlypreperiodic (we do not allow superattracting periodic points). See x1 for precisede�nitions.Our �rst main result is that if f : P2 ! P2 is 2-critically �nite then f hasno nontrivial closed backward invariant set. More precisely, if E is a nonemptyclosed set with f�1(E) � E then E = P2.Our second main result is that repelling periodic points are dense in P2 forany 2-critically �nite f : P2 ! P2.We use two major tools for proving the above results. The �rst one isKobayashi hyperbolicity. More precisely, we apply two theorems of M. Green[Gr1], [Gr2] which together tell us that the complement in P2 of certain unionsof algebraic curves is complete hyperbolic and hyperbolically embedded. Thesecond tool is a theorem of Ueda [Ue1] which says that families of branches ofinverse iterates of f are normal whenever they are de�ned.In dimension one, a 1-critically �nite map is a Thurston map and both ourmain results are equivalent to the well-known fact that such maps have emptyFatou sets. Indeed, Thurston [Th] has given a topological classi�cation of themand proved that they admit an expanding metric with singularities at the post-critical points.The study of 2-critically �nite maps ofP2 was initiated by Forn�ss and Sibony[FS3], [FS1] (they use a slightly di�erent de�nition and call their maps strictlycritically �nite, see Remark 1.10). In [FS1] they proved that, under a technical1991 Mathematics Subject Classi�cation. Primary: 32H50; Secondary: 32H20.Key words and phrases. Holomorphic dynamical systems, critically �nite, invariant set,periodic points, Kobayashi hyperbolic. 49



50 MATTIAS JONSSONassumption on the postcritical set, 2-critically �nite maps have empty Fatousets, i.e. that their Julia sets J0 are all of P2. Ueda [Ue1] later gave a proofwithout this technical assumption. It is easy to see that for general holomorphicself-maps of Pk, J0 is a nonempty closed completely invariant set which containsall the repelling periodic points of f . Hence our main results are stronger thanthe results in [FS1] and [Ue1].Furthermore, J0 is only one possible generalization of the Julia set in onevariable. Another natural candidate is the support J1 of the \Green measure"describing the distribution of preimages of quasi-every point (cf [FS2] and x2).Alternatively, one can consider the set where iterates are not normal even on1-dimensional subvarieties (cf [FS2]). All these Julia sets share the commonproperty that they are nonempty closed completely invariant sets, so our �rstmain result imply that they are equal to P2 for 2-critically �nite maps.The results in this paper are restricted to P2 and the arguments to provethem cannot, in general, be generalized to Pk with k � 3. The main reason forthis is that when analyzing a k-critically �nite map f : Pk ! Pk we often needto study the restriction of f to algebraic subvarieties of Pk of dimension between1 and k � 1. This is possible in dimension 2, because then the subvarieties havenormalizations that are nonsingular compact Riemann surfaces - in fact theymust be Riemann spheres or tori. In Pk for k � 3, the situation need not bethat simple.The paper is divided into four sections. In x1 we de�ne what we mean bya k-critically �nite holomorphic map of Pk and analyze the structure of thepostcritical set in the case k = 2. Then in x2 we prove our �rst main result,that a 2-critically �nite map of P2 has no nontrivial closed backward invariantset. After that we turn to the study of periodic points and prove that repellingperiodic points are dense for a 2-critically �nite map of P2. This is proved in x3.Finally, in x4, we address the question of determining asymptotic distributionof periodic points of a 2-critically �nite map of P2. We show that a certainconjecture about the limits of families of branches of inverse iterates implies that(repelling) periodic points are distributed according to the \Green measure".1. Critically finite maps and their postcritical setsLet us �x some notation and de�nitions which will be used throughout thepaper. For general information on holomorphic dynamical systems on Pk , see[FS1], [FS2] and [FS4]. The maps that we call k-critically �nite will be general-izations of Thurston maps in one dimension, so let us �rst de�ne the latter.De�nition 1.1. A rational map f : P1 ! P1 is a Thurston map if the post-critical set of f is �nite and f has no superattracting periodic points.Remark 1.2. One often allow Thurston maps to have superattracting periodicpoints but the above de�nition is more convenient for our purposes.



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 51If f : Pk ! Pk is a holomorphic map, we let C1 be its critical set, i.e. the setof points p where dfp is non-invertible. Then C1 is algebraic of codimension 1.We let D1 := [j>0f jC1 and E1 := \j>0f jD1. Note that D1 is the postcriticalset of f and that if D1 is closed then E1 is the !-limit set of C1.De�nition 1.3. We say that f is 1-critically �nite if D1, and hence E1 arealgebraic sets and C1 and E1 have no common irreducible component.Note that D1 is algebraic i� the sequence of sets ff jC1gj is preperiodic. Inthat case, f l1+1D1 = f l1D1 for some minimal l1 � 1 so E1 = f l1D1 and C1; D1and E1 all have codimension 1.Inductively we de�ne j-critically �nite maps of Pk; 1 < j � k as follows:De�nition 1.4. Suppose f is (j � 1)-critically �nite. This means in particularthat the set Ej�1 has been inductively de�ned as an algebraic set of codimensionj � 1 with no irreducible component contained in C1. Then Cj := Ej�1 \ C1 =Ej�1 \ Cj�1 is algebraic of codimension j. We say that f is j-critically �niteif Dj := [i>0f iCj is algebraic and the set Ej := \i>0f iDj , which then isnecessarily algebraic of codimension j has no irreducible component containedin C1.In the case of P2 the situation is simpler, because of the following lemma byUeda (Lemma 4.2 in [Ue1]).Lemma 1.5. Let f : Pk ! Pk be 1-critically �nite. Then the set D2 :=[j>0f jC2 is algebraic of codimension 2 and is contained in sing(D1). The setE2 := \j>0f jD2 is algebraic of codimension 2 as well.Sketch of proof. Let q 2 D2. Then q = f j(p) for some p 2 C2 = C1 \ E1. SinceE1 and C1 have no common irreducible component, p must be a singular pointof C1 [ E1 and since C1 [ E1 � f�jD1 we must have p 2 sing(f�jD1). Butthen by Lemma 2.5 in [Ue1], q = f j(p) 2 sing(D1). Thus D2 � sing(D1). Nowlet V be an irreducible component of C2 = E1 \ C1. Since V � sing(D1), Vmust have codimension 2. Then for each j > 0 f jV is an irreducible algebraicset of codimension 2 contained in sing(D1) so it must coincide with one of theirreducible components of sing(D1). This shows that D2 is contained in the(�nite) union of irreducible components of sing(D1) and hence is algebraic ofcodimension 2. The set E2 is the algebraic of codimension 2 because it is theintersection of the decreasing family of algebraic sets ff j(D2)gj>0.Because of Lemma 1.5, f : P2 ! P2 is 2-critically �nite i� it is 1-critically�nite and the set E2, which by the lemma is a �nite set, contains no criticalpoint.The following are examples of 2-critically �nite maps of P2:



52 MATTIAS JONSSON[x : y : z]! [(�x+ y + z)2 : (x� y + z)2 : (x+ y � z)2][x : y : z]! [(x � y + z)2 : (�x+ y + z)2 : (x+ y � z)2][x : y : z]! [(x + y � z)2 : (�x+ y + z)2 : (x� y + z)2][x : y : z]! [(x � 2y)2 : (x � 2z)2 : x2]An example of a k-critically �nite map of Pk is the following:[x0 : � � � : xk]! [(x0 � 2x1)2 : � � � : (x0 � 2xk)2 : x20](The �rst three examples are due to Ueda [Ue2] and the two last ones toForn�ss and Sibony [FS3].)Suppose f : P2 ! P2 is 2-critically �nite. We analyze the structure of thesets E1 and E2 and the restrictions f jE1 ; f jE2 . Note that neither E1 nor E2change if we replace f by an iterate. Hence, for the time being, we may assumethat all irreducible components of E1 and all points in E2 are �xed by f .Let V be an irreducible component of E1 which is �xed by f . Then V is anirreducible algebraic set of dimension 1. Forn�ss and Sibony ([FS2], Proposition7.5) proved that f jV cannot be injective. Let V̂ be the normalization of V (see[Gu]) with projection � : V̂ ! V . Since V has dimension 1, V̂ is a compact(nonsingular) Riemann surface, and the map f jV lifts to a holomorphic mapf̂ : V̂ ! V̂We �rst prove a result about the critical set of f̂ .Lemma 1.6. Let f : P2 ! P2 be any holomorphic map and V an f-invariantirreducible algebraic curve. Let V̂ be the normalization of V with projection� : V̂ ! V and f̂ the lifting of f jV to V̂ . Then the critical set of f̂ is containedin ��1(C1 \ V ).Proof. We have that p̂ 2 ��1(p) � V̂ is critical for f̂ if and only if f̂ jÛ is non-injective for every neighborhood Û of p̂ in V̂ which can only happen if f jU isnon-injective for any neighborhood U of p in V . The latter is only possible ifp 2 C1, because otherwise f is injective in a neighborhood of p in P2.Now V̂ cannot be hyperbolic, for then some iterate of f̂ would be the identity,which is impossible since f̂ is not injective. So V̂ is a torus or the Riemannsphere.If V̂ is a torus then f̂ : V̂ ! V̂ lifts to an endomorphism of C given byz ! az + b. Since f̂ is not injective, we must have jaj > 1 so f̂ is an expandingendomorphism of the torus. In particular all periodic points of f̂ are repelling.If V̂ is the Riemann sphere then f̂ : V̂ ! V̂ is a rational map. By Lemma 1.6,its critical points are contained in the set ��1(C1\V ). Hence they are containedin the set ��1(C2 \ V ) which is (strictly) preperiodic to the set ��1(E2 \ V ),



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 53consisting of noncritical cycles. Therefore, f̂ is a Thurston map. In particular,all its periodic points are repelling.Let us summarize the above discussion in a proposition:Proposition 1.7. Let f : P2 ! P2 be 2-critically �nite. Then the normaliza-tion V̂ of every irreducible invariant component V of E1 is biholomorphic to P1or a torus. If V̂ ' P1 the lifting f̂ of the restriction f jV to V̂ is a Thurstonmap, i.e. its critical points are strictly preperiodic. If V̂ is a torus then f̂ is anexpanding endomorphism. In any case, all periodic points of f̂ are repelling.Remark 1.8. We only used the fact that V was invariant, so the proposition isalso true for all invariant irreducible curves V . A corresponding theorem is truefor maps which are only 1-critically �nite (so that they may have superattractingperiodic points). In this case Lemma 1.5 shows that the sets D2 and E2 are �niteso the same argument as above proves that the lifting of the restriction f jV toV̂ is an expanding endomorphism of a torus or a critically �nite rational map ofP1 (possibly with superattracting periodic points.We now turn to the set E2, which is �nite. We will call a periodic point p oforder r for a holomorphic map f : Pk ! Pk repelling if all eigenvalues of dfrphave modulus strictly greater than one.Proposition 1.9. If f : P2 ! P2 is 2-critically �nite then E2 is a �nite set ofrepelling periodic points for f .Proof. We know that E2 is a �nite forward invariant set, hence it must consistof periodic points. We have to show that these are repelling.Let p 2 E2. By replacing f by an iterate, we may assume that p is �xed.From Lemma 1.5 we know that p 2 sing(D1). Since p is �xed, all the iteratesof the irreducible components of D1 passing through p still pass through p andall su�ciently high iterates belong to E1. But p is noncritical, so all iterates off are local di�eomorphisms at p. This implies that in fact p 2 sing(E1). Againreplacing f by an iterate, we may assume that all the irreducible components ofE1 containing p are invariant under f . In fact, we can, and do, assume that alllocal branches of E1 at p are invariant under f .There are now several possibilities. First suppose that p 2 V where V isan irreducible component of E1 with a cusp singularity at p. As before, letV̂ be the normalization of V , � : V̂ ! V the projection and f̂ the lifting toV̂ of the restriction f jV . Let p̂ 2 ��1(p) � V̂ correspond to the cusp at p.Then p̂ is a repelling �xed point for f̂ according to Proposition 1.7. Chooselocal coordinates (x; y) around p such that p = (0; 0) and the cusp of V isparameterized by (x; y) = (tr; ts + O(jtjs+1)) where 1 < r < s and r - s. In thesame coordinates we may write f(x; y) = (ax + by + g(x; y); cx + dy + h(x; y))where g and h have no linear terms and ad � bc 6= 0 as p is noncritical. Thenf(tr; ts + : : : ) = (atr +O(jtjr+1); ctr + dts + h(tr; ts + : : : )). The condition thatthe cusp is mapped into itself yields that c = 0 and that the term h(tr; ts+ : : : )



54 MATTIAS JONSSONcontains no term of order less than s. Also, since r - s ,h(tr; ts + : : : ) containsno term of order s. Thus f(tr; ts) = (atr + O(jtjr+1); dts + O(jtjs+1)). Theinvariance of the cusp yields as = dr. In particular it holds that jaj; jdj > 1,jaj = jdj = 1 or jaj; jdj < 1. But a; d are the eigenvalues of f at p and p̂ is arepelling �xed point for f̂ , so only the �rst alternative is possible. Thus p is arepelling �xed point for f .The next possibility is that two invariant irreducible regular local branchesV1; V2 of E1 at p intersect transversally. Then p is a repelling �xed point forf jVi by Proposition 1.7 so f is expanding in the invariant directions of V1 andV2. Thus p is repelling for f .Finally, consider the case when two invariant irreducible regular local branchesV1; V2 of E1 at p intersect tangentially. Choose local coordinates (x; y) such thatp = (0; 0) and V1 = (y = 0); V2 = (y = xr + O(jxjr+1)) where r > 1. As before,we can write f(x; y) = (ax+ by + g(x; y); cx+ dy + h(x; y)) where ad� bc 6= 0.Since f(V1) � V1 we must have c = 0. Letting y = xr + O(jxjr+1) we getf(x; xr + O(jxjr+1)) = (ax + O(jxj2); dxr + O(jxjr+1)), so since f(V2) � V2 wemust have a = d. But d is the derivative of f jV1 at p and p is a repelling �xedpoint for f jV1 so jaj = jdj > 1. Now a; d are the eigenvalues of dfp so p is againa repelling �xed point for f .Remark 1.10. Forn�ss and Sibony [FS1], [FS3], [FS4] de�nes a map to bestrictly critically �nite if (translated to our notation) the sets D1 and E1 arealgebraic and fpjV is critically �nite for each irreducible component V of E1with period p. The last sentence is interpreted as: the lifting of fp to thenormalization of V is critically �nite, i.e. its critical points are preperiodic.In fact, the last condition is redundant, i.e. a map f : P2 ! P2 is strictlycritically �nite i� the setD1 is algebraic. To prove this, suppose f : P2 ! P2 hasalgebraic postcritical set D1. If the critical set C1 has no irreducible componentwhich is periodic then f is 1-critically �nite and Remark 1.8 shows that f isin fact strictly critically �nite. So, suppose some irreducible component W ofthe critical set is periodic under f . Replacing f by an iterate, we may assumethat W is invariant under f . Let Ŵ be the normalization of W with projection� : Ŵ ! W and f̂ the lifting of f jW to Ŵ . Then it is not di�cult to see thatthe critical points of f̂ must be mapped under � into the set sing(C1)\W . Butthe proof of Lemma 1.5 shows that the iterates of f map sing(C1) into the setsing(D1), hence maps the set sing(C1)\W into sing(D1)\W which is �nite. Itfollows that the postcritical set of f̂ is �nite. Now it could of course happen thatthe critical set C1 also has some other irreducible component which is strictlypreperiodic to a component V of E1. We can assume that V is invariant underf . But then we can get, in the same way as above, that the lifting of f jV to thenormalization of V has �nite postcritical set. Hence f is strictly critically �niteeven in this case.



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 552. Backward invariant setsWe recall the de�nitions of the di�erent Julia sets, J0 � J1 � � � � � Jk�1 ofa holomorphic map f : Pk ! Pk of degree d � 2 (see [FS2], [FS4] for moredetails).The map f lifts to a map F : Ck+1 n 0 ! Ck+1 n 0 via the projection� : Ck+1 n 0 ! Pk and the Green function G := limn!1 1dn log kFnk is acontinuous plurisubharmonic function on Ck+1 n 0 with the propertiesG(tx) = G(x) + log jtj; t 2 C�and G(F (x)) = dG(x):The current ddcG is then a closed positive current onCk+1n0 of bidegree (1; 1)and there is a unique positive closed current T on Pk such that ��T = ddcG.We can de�ne (ddcG)j inductively as positive closed currents of bidegree (j; j)by: (ddcG)j = ddc(G(ddcG)j�1)for 1 � j � k. There exist corresponding positive, closed currents T j = T ^� � �^T; 1 � j � k on Pk of bidegree (j; j) such that ��T j = (ddcG)j ; these satisfythe relation f�T j = djT j , and they have mass jjT j jj = 1.We de�ne Jj := supp(T j) and call it the j:th Julia set of f . The Julia setsJ0 � J1 � � � � � Jk�1 are then nonempty closed completely invariant sets. Itis known (see [FS2] or [Ue3]) that J0 is exactly the complement of the largestopen set where the family of iterates ff ig is normal.Forn�ss and Sibony [FS1] proved the following theorem (with an additionaltechnical assumption, which was removed by Ueda [Ue1]):Theorem 2.1. If f : P2 ! P2 is 2-critically �nite then J0 = P2.We will prove that in fact J1 = P2. The only property of the set J1 that wewill use is that it is closed and backward invariant. Indeed, the main result ofthis section is:Theorem 2.2. If f : P2 ! P2 is 2-critically �nite then P2 is the only nonemptyclosed backward invariant subset of P2.Our result implies Theorem 2.1 but we will use the latter to prove Theo-rem 2.2. The strategy of proof is the following: Let f : P2 ! P2 be 2-critically�nite and E be a nonempty closed backward invariant set. First we prove thatE must contain all the repelling periodic points of f (Proposition 2.6), hence, byProposition 1.9, all the points in E2. Then we prove that the preimages of E2 aredense in P2 (Proposition 2.12). From these two results it follows immediatelythat E = P2 as was claimed.



56 MATTIAS JONSSONWe need an elementary but somewhat technical lemma. In favor of brevitywe sometimes let the word preimage mean preimage under some iterate of f .The precise meaning should be clear from the context.Lemma 2.3. Let f : Pk ! Pk be k-critically �nite. Then any point in D1 hassome preimage outside D1. Hence D1 contains no nonempty backward invariantsubset.Proof. Take any point x 2 D1. If x =2 E1 then there is an N1 such thatf�N1(x) * D1. We only need to choose N1 such that fN1D1 � E1. So sup-pose that x 2 Ei for some maximal i � 1. It su�ces to prove that x hassome preimage outside Ei, because then we can argue by induction. So supposef�n(x) � Ei 8n. Then there exists an integer n1 � 1 and a point x1 2 Ci suchthat fn1(x1) = x. Since f�n1(x) � Ei we must have x1 2 Ei \ Ci = Ci+1. Butnow we can continue the process and �nd n2; n3; � � � � 1 and x2; x3; � � � 2 Ci+1such that fnj (xj) = xj�1. It follows that x 2 fn1+���+njCi+1 for j = 1; 2; : : :and hence x 2 Ei+1 which contradicts the maximality of i.Before we state our next result, we recall the following theorem by Ueda [Ue1]that will be used here and in x3.Theorem 2.4. Let f : Pk ! Pk be any holomorphic map of degree at least 2and fg�g a family of holomorphic (single-valued) branches of f�j� de�ned on anopen set U 2 Pk (i.e. f j� � g� = id on U). Then the family fg�g is normal.Remark 2.5. Ueda's result in [Ue1] is slightly more general than the statementabove but Theorem 2.4 is all that we need. Note that if f : Pk ! Pk is k-critically �nite (or 1-critically �nite) and U is a simply connected open set inPk which does not intersect the postcritical set D1 then all branches of f�j arewell-de�ned on U and Theorem 2.4 applies.Proposition 2.6. If f : Pk ! Pk is k-critically �nite, then any closed backwardinvariant set E � Pk must contain all the repelling periodic points of f .Proof. Let E be such a set. By Lemma 2.3, there is a point q 2 E nD1. Let pbe a repelling periodic point of f , say of period m. Then there is a sequence gjof holomorphic branches of f�jm de�ned on a neighborhood U of p such thatgj ! p uniformly as j ! 1. Since D1 is an algebraic set in Pk of codimension1, there exist a sequence of simply connected open sets fUigli=0 in Pk such thatU0 = U , q 2 Ul, Ui \ D1 = ; for i > 0, and Ui \ Ui+1 6= ;. Then the gjcan be analytically continued along the chain fUig, because the Ui's are simplyconnected and do not intersect the postcritical set of f (except for U0). ByTheorem 2.4, the family fgjg is normal on each Ui. By successively extractingsubsequences if necessary, we get that gj ! p on Ul so in particular gj(q) ! p.Since q belongs to the closed backward invariant set E, it follows that p 2 E.In dimension 2, we now know from Propositions 1.9 and 2.6 that any closedbackward invariant set E must contain the set E2. Hence, it su�ces to show that



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 57the preimages of E2 are dense in P2. For that we will need a couple of criteria forKobayashi hyperbolicity. For background on hyperbolicity in complex analysissee [La]. Unless otherwise stated, hyperbolic will mean Kobayashi hyperbolic.Lemma 2.7. If V � Pk is a irreducible compact (possibly singular) curve andA � V is a closed subset containing at least 3 points, then V n A is Brodyhyperbolic, i.e. there exists no nonconstant holomorphic map C ! V nA.Proof. Suppose � : C ! V n A is holomorphic. Let V̂ be the normalization ofV , with projection � : V̂ ! V . Since V is one-dimensional, V̂ is a compactRiemann surface. The map � : C ! V lifts to a map �̂ : C ! V̂ such that���̂ = �. Now Â := ��1A contains at least three points, so the Riemann surfaceV̂ n Â is hyperbolic, which means that �̂ : C ! V̂ n Â is constant. Thus � isconstant and V nA is Brody hyperbolic.It is well-known that the complement in Pk of 2k+1 lines in general positionis hyperbolic. We need a slightly di�erent result:Proposition 2.8. Let X1; : : : ; XN , where N � 2l � 1; l � 3 be distinct irre-ducible curves in P2 such that Xn1 \ � � � \Xnl = ; if 1 � n1 < � � � < nl � N .Then P2 n [Nn=1Xn is complete hyperbolic and hyperbolically embedded.Proof. The proof is a fairly easy consequence of the following two theorems byM. Green (see [Gr1] and [Gr2]):Theorem 2.9. Let D be a �nite union of (possibly singular) irreducible hyper-surfaces D1, : : : ,Dm in a compact complex manifold V . Then V nD is completehyperbolic and hyperbolically embedded in V provided1. there is no nonconstant holomorphic map C ! V nD.2. there is no nonconstant holomorphic map C ! Di1 \ � � � \ Dik n (Dj1 [� � � [Djl) for any choice of distinct indices so that fi1; : : : ; ik; j1; : : : ; jlg =f1; : : : ;mgTheorem 2.10. Suppose f : C ! Pk omits k+2 distinct irreducible hypersur-faces. Then f(C) is contained in a compact hypersurface.To prove Proposition 2.8, we apply Theorem 2.9 with D1; : : : ; Dm being thecurves X1; : : : ; XN . We �rst verify condition 1. Suppose � : C ! P2 n [Nn=1Xnis holomorphic. Since N � 4 (in fact N � 5), Theorem 2.10 shows that �(C)must be contained in a compact hypersurface V � P2. Now V must intersectevery Xn and the condition that no l of the Xn's intersect at a time impliesthat V must intersect [Nn=1Xn in at least 3 points. But then � is a mappingfrom C to V n fthree pointsg, so according to Lemma 2.7, � must be constant.Condition 2 is in fact simpler: the only nontrivial case to consider is when� : C ! X1 n (X2 [ � � � [XN ) is a holomorphic map. But the condition on theXn's imply that the �nite set [Nn=2X1 \Xn has at least three elements. Hence� is constant according to Lemma 2.7.



58 MATTIAS JONSSONProposition 2.11. If f : P2 ! P2 is 2-critically �nite and V is any irreduciblecomponent of E1 then there exists an N and a �nite collection X1; : : : ; XN ofirreducible branches of [Nn=0f�nV such that P2 n[Nn=1Xn is complete hyperbolicand hyperbolically embedded.Proof. Let X1 be any irreducible component of the critical set C1 preperiodic toV and, inductively, let Xn+1 be any irreducible component of f�1Xn for n � 1.We claim that if N is large enough, then P2 n [Nn=1Xn is complete hyperbolicand hyperbolically embedded.The claim follows from Proposition 2.8 once we prove that there is a numberl such that no l of the Xn's intersect at a time. Note that Xn \ Xm is a�nite set if m 6= n, because otherwise Xn = Xm which would imply that theirreducible component X1 of C1 be periodic, contradicting that f is 1-critically�nite. Since f is 2-critically �nite, there are numbers l1; l2 such that f l1C1 � E1,and f l2C2 � E2, f l2C2 \ C2 = ;. We will show that the number l = l1 + l2 + 1will do.For let l = l1 + l2 +1 and suppose p 2 Xn1 \ � � � \Xnl . where 1 � n1 < n2 <� � � < nl � N . Then fni(p) 2 C1; 1 � i � l. But then fni+j(p) 2 E1; j � l1; 1 �i � n. In particular, fnm(p) 2 E1 for m > l1, so that fnm(p) 2 C1 \ E1 = C2for m > l1. This implies that fnm+j(p) 2 E2; j � l2;m > l1. In particularfnl(p) 2 E2 , so that fnl(p) 2 C2 \ E2 = ;, a contradiction.Proposition 2.12. If f : P2 ! P2 is 2-critically �nite, then the preimages ofany point in E2 are dense in P2.Proof. Let p 2 E2. We show that the preimages of p are dense in some irreduciblecomponent V of E1 and that the inverse images of any irreducible componentV of E1 are dense in P2.Let V be any irreducible component of E1 containing p. Replacing f by aniterate, we may assume that V is invariant under f . Let V̂ be the normalizationof V and f̂ : V̂ ! V̂ the lifting of f jV to V̂ . Then we know from Proposition 1.7that f̂ is (equivalent to) a Thurston map on the Riemann sphere or an expandingendomorphism of a torus. Hence, if p̂ 2 V̂ is any point above p, then thepreimages of p̂ under f̂ are dense in V̂ . This implies that the preimages of punder f are dense in V .It remains to be seen that the preimages of V are dense in P2. Suppose not.Then there is an open ball U � P2 such that the restriction of the family of iter-ates ff ig to U is a family of holomorphic mappings of U into P2 n[Nn=0f�nV forallN . Now Proposition 2.11 implies that this family is normal, which contradictsthe fact that the Fatou set of f is empty (Theorem 2.1).We are now able to prove Theorem 2.2:Proof of Theorem 2.2. Let E be closed and backward invariant. By Proposi-tions 1.9 and 2.6, E must contain all the points in E2 and hence, by Proposi-tion 2.12, a dense set in P2. But E is closed so E = P2.



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 59Remark 2.13. It is also true that the holomorphic map f : Pk ! Pk de�nedby: [x0 : � � � : xk]! [(x0 � 2x1)2 : � � � : (x0 � 2xk)2 : x20]has no nontrivial closed backward invariant subset, hence all its Julia sets areequal to Pk. The proof can be sketched as follows: Suppose E is a nonemptyclosed backward invariant subset. The set E1 consists of the hyperplanes (xi =xj) for 0 � i < j � k and the set El of intersections of l di�erent hyperplanes inE1. In particular, Ek consists of the single point [1 : � � � : 1], which is a repelling�xed point. By Proposition 2.6, E must contain the point [1 : � � � : 1], so itsu�ces to prove that the preimages of this point are dense in Pk. This is doneby showing that the preimages of Ej are dense in Ej�1 for j = 1 : : : k. Theproof of this is very much the same as the proof of Proposition 2.12; since eachirreducible component of Ej is a (k�j)-plane in Pk one can apply Theorems 2.9and 2.10. The details are omitted.3. Density of periodic pointsWe now prove that repelling periodic points are dense for a 2-critically �niteholomorphic map f : P2 ! P2. The idea is to study sequences of branchesof f�j . According to Ueda's result (Theorem 2.4), such sequences always formnormal families. If the limit of an appropriate subsequence is constant, theBrouwer �xed point theorem can sometimes be used to assert the existence of aperiodic point. Our main objective will therefore be to show that certain suchlimits must indeed be constant. This leads us to the following de�nition.De�nition 3.1. Let A be the set of points a 2 P2 nD1 such that there existsa simply connected open neighborhood V � P2 n D1 of a and a sequence ofbranches fgnig of f�ni on V such that gni ! a uniformly.Remark 3.2. A priori, the set A could be empty. In fact, our main task in thissection will be to prove that it is not (Proposition 3.5). The next two resultswould, however, be true even if A was empty.Proposition 3.3. If a 2 A then every neighborhood of a contains a repellingperiodic point of f .Proof. Take V and fgnig from the de�nition of A and let V 0 and V 00 be anytwo sets homeomorphic to an open ball such that a 2 V 00 �� V 0 � V . Thengni ! a uniformly on V 0 so if i is large then gni(V 0) � V 00 �� V 0. By theBrouwer �xed point theorem, this implies that gni has a �xed point p in V 0. Weclaim that this �xed point must be attractive. Indeed, if KV 0 and KV 00 are theKobayashi-Royden metrics on V 0 and V 00 and if v 2 TpP2 then since gni is a



60 MATTIAS JONSSONbiholomorphism from V 0 to gni(V 0), we have:KV 0(p; v) = Kgni(V 0)(gni(p); gni�(v))� KV 00(p; gni�(v))> KV 0(p; gni�(v))The last inequality follows from the assumption that V 00 �� V 0. Since p is anattractive �xed point for gni it is a repelling �xed point for fni .Lemma 3.4. A is backward invariant, i.e. f�1(A) � A.Proof. Suppose a 2 A and f(a0) = a. Let V be a simply connected neighborhoodof a in P2 nD and fgnig a family of branches of f�ni de�ned on V such thatgni ! a uniformly on V . Since a0 2 P2 n D, there exists a simply connectedopen neighborhood V 0 � P2 nD1 of a0 and analytic continuations of the gni 's toV 0. By Ueda's result (Theorem 2.4) these continuations form a normal familyso a suitable subsequence of them will still converge uniformly to a on V 0. Leth be the local inverse of f at a, de�ned on V , taking a to a0. Then fh � gnig willbe a sequence of branches of inverse iterates of f on V 0, converging uniformlyto a0. Hence a0 2 A.Proposition 3.5. The set A is nonempty.Proof. According to Proposition 1.9, the set E2 consists of repelling periodicpoints for f . Take any b 2 E2. We will prove that a suitable preimage a of boutside D1 belongs to A. To do this we need to construct a family of branchesof inverse iterates converging to a. Using the fact that b is repelling, it is easy to�nd branches of inverse iterates converging to b. However, b 2 D1 and we wantthe limit to belong to P2 nD1 so the idea is to compose the branches convergingto b with a branch going from b to its preimage a. The problem with this is thatb belongs to the postcritical set D1, so the latter branch cannot be de�ned in awhole neighborhood of b. It can, however, be de�ned on simply connected opensets having b as a boundary point and not intersecting the postcritical set D1.This means that we must make the images of the branches converging to b stayin such a set. What we have to do is, therefore, to control the dynamics of fand the geometry of D1 near b. The following technical lemma contains all theinformation we need.Lemma 3.6. Let g be a germ at the origin of a holomorphic map of C2 withg(0) = (0) and dg(0) having eigenvalues �1, �2 satisfying 0 < j�1j; j�2j < 1. LetV be a germ of an analytic set of dimension 1 at the origin. Then there existopen subsets U;U 0 � C2 and a sequence fnig such that:1. 0 2 @U 0 and U 0 \ V = ;.2. U 0 is simply connected.3. gni(U) � U 0 for i large.



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 61Assuming Lemma 3.6 is true, we now continue the proof of Proposition 3.5:Take any a 2 f�kfbg nD1 for some k > 0 (the existence of such a and k followsfrom Lemma 2.3). We claim that a 2 A. Since b is periodic, say of period m,there exists a locally de�ned branch h1 of f�m near b such that h1(b) = b. Sinceb is repelling for fm, it is attractive for h1. We now invoke Lemma 3.6 above.This gives small open sets U and U 0 and a sequence fnig such that1. 0 2 @U 0 and U 0 \D1 = ;.2. U 0 is simply connected.3. hni1 (U) � U 0 for i large.4. hni1 ! b uniformly on U as i!1.Now note that there exists a j such that a 2 f j(U). Otherwise, the comple-ment in P2 of the open set [j�0f j(U) would be a nonempty closed backwardinvariant set, hence equal to P2 according to Theorem 2.2, and this is clearlyimpossible. We can therefore �nd an open simply connected neighborhood V ofa in P2 nD1 and a branch h2 of f�j de�ned on V such that h2(V ) � U .Recall that fk(a) = b. Because of properties 1 and 2 above, there exists anbranch h3 of f�k on U 0 such that limx!b;x2U 0 h3(x) = a.De�ne gi = h3 � hni1 � h2 for i large enough so that 3 holds. Then fgig isa family of well de�ned branches of inverse iterates of f de�ned on V . Sincehni1 ! b uniformly on U it follows that gi ! a uniformly on V . Hence a 2 A soA is nonempty.Proof of Lemma 3.6. We want to linearize the situation locally at the origin.Although this is not always possible (due to resonances among �1 and �2), weclaim that it is su�cient to prove the following lemma:Lemma 3.7. Let T be a complex-linear automorphism of C2 with eigenvalues�1; �2 satisfying 0 < j�1j; j�2j < 1 and let V be an analytic set of pure dimensionone in in the unit ball B � C2 such that 0 2 V . Then there exist open subsetsU;U 0 � B and a sequence fnig such that:1. 0 2 @U 0 and U 0 \ V = ;.2. U 0 is simply connected.3. Tni(U) � U 0 for i large.Let us postpone the proof of Lemma 3.7 and instead show how to deduceLemma 3.6 from it. Suppose 0 < j�2j � j�1j < 1. If there are no resonances, i.e.if �2 6= �p1 for p = 2; 3; : : : then we can linearize the situation locally (cf [Fa]),and the result follows immediately from Lemma 3.7. If �2 = �p1 with p > 1minimal, we cannot linearize in general, but after a change of coordinates wecan obtain (locally at the origin) g(x; y) = (�1x; �2y + axp) with a = 0 or 1(cf [Fa]). If a = 0 we are again in the linear setting, so suppose a = 1. Let� : C2 ! C2 be the proper map de�ned by (~x; ~y) = �(x; y) = (xp; y). Then thefollowing diagram commutes (locally at the origin):



62 MATTIAS JONSSONC2 g����! C2�??y �??yC2 T����! C2where T (~x; ~y) = (�2~x; �2~y + ~x) is linear. Since � is proper, it follows fromRemmert's theorem (see [Gu]) that �(V ) is an analytic set. Let ~V = �(V )[f~x =0g. Invoking Lemma 3.7 we get open sets ~U; ~U 0 � C2 and a sequence fnig suchthat1. 0 2 @ ~U 0 and ~U 0 \ ~V = ;.2. ~U 0 is simply connected.3. Tni( ~U) � ~U 0 for i large.Let U 01; : : : ; U 0p be the connected components of ��1( ~U 0) and U any connectedcomponent of ��1( ~U ). Since � is an unbranched analytic covering outside fx =0g � ��1( ~V ), we get that U 01; : : : ; U 0p are disjoint connected simply connectedopen sets and �jU 0j : U 0j ! ~U 0 is a biholomorphism for each j. Since U isconnected, the third condition and the commuting diagram above imply thatgni(U) � U 0j for i large, where j may depend on i. Hence, taking a subsequenceof fnig we can obtain gni(U) � U 0j 8i for a �xed j. We put U 0 = U 0j . Then wesee that:1. 0 2 @U 0 and U 0 \ V = ;.2. U 0 is simply connected.3. gni(U) � U 0 for i large.Hence Lemma 3.6 follows from Lemma 3.7.Proof of Lemma 3.7. After a linear change of coordinates we may assume thatthe matrix of T takes the form:��1 00 �2� or �� �0 ��The second form is just a slight variation of the Jordan normal form. Considerthese two separately and call them Case 1 and Case 2.Let V 0 be the analytic set V n ((x = 0)[ (y = 0)). We �rst claim that if � > 0is small then the setA� := fy; (x; y) 2 V 0; jxj; jyj < �; x > 0g � Cis a �nite union of real-analytic curves. Note that V 0 is nonsingular in thepunctured ball B(�) n (0; 0) if � is small enough. Also, since V 0 does not containthe lines x = 0 and y = 0, it is not tangent to those lines anywhere in the samepunctured ball (after shrinking � if necessary). But then the intersection of V 0with this ball is a union of graphs of �nitely many nonconstant (multi-valued)functions y = y(x) whence the claim easily follows.



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 63Case 1: By theorem of Dirichlet (see [HW]) we can �nd a sequence fnig suchthat arg(�jni) ! 0 as i ! 1, j = 1; 2. The set A� de�ned above is a union of�nitely many real analytic curves for � > 0 small. In particular, there exists anumber � 2 (��; �) such that the sector fj arg(y)� �j < 2�g is disjoint from A�for small �. This implies that the setU 0 := f(x; y); 0 < jxj; jyj < �; j arg(x)j < 2�; j arg(y)� �j < 2�gdoes not intersect the set V 0 for small �. But U 0 does not intersect the lines x = 0and y = 0 either so it must be disjoint from V . Note that U 0 is a product of twosimply connected domains, hence it is simply connected. We further de�ne:U := f(x; y); 0 < jxj; jyj < �; j arg(x)j < �; j arg(y)� �j < �gThe choice of the sequence fnig guarantees that Tni(U) � U 0 for i large. Hencethe properties 1-3 all hold.Case 2: If we let (xn; yn) = Tn(x; y) then xn=yn = x=y + n; in particulararg(xn=yn)! 0 as n!1. We choose our sequence fnig so that arg(�ni)! 0.If � > 0 is small then V has no singularities in the set f0 < jxj; jyj < �g. LetL be the set of lines corresponding to tangential directions of the set V at theorigin. These lines are well de�ned even if the origin is a singular point for someirreducible component of V . We now have three cases.The �rst case is when L contains no line of the form (y = 0) or (x = sy) withs � 0. Then we may takeU 0 := f(x; y); 0 < jxj; jyj < �; j arg(x)j < 2�; j arg(y)j < 2�g;U := f(x; y); 0 < jxj; jyj < �; j arg(x)j < �; j arg(y)j < �g;and 1-3 are easily veri�ed.The second case is when L contains some line of the form (x = sy) with s � 0but not the line (y = 0). Then we may takeU 0 := f(x; y); 0 < jxj; jyj < �; jxj > Sjyj; j arg(x)j < 2�; j arg(y)j < 2�g;U := f(x; y); 0 < jxj; jyj < �; jxj > Sjyj; j arg(x)j < �; j arg(y)j < �g;if � is small and S large. Indeed, the formula xn=yn = x=y + n shows thatTniU � U 0 for i large and U 0 does not meet V if S is large enough and � issmall. Also, U 0 is simply connected because it is homeomorphic to the setf(�; �0) 2 R2; j�j; j�0j < 2�g � f(r; r0) 2 R2; 0 < r; r0 < �; r > Sr0gwhich is a product of simply connected domains. Hence 1-3 above hold also inthis case.Finally, we are left with the third case when L contains the line (y = 0) and,perhaps, some lines of the form (x = sy) with s � 0. Since V is an analytic set,we can then �nd � > 0 such that if � > 0 is small enough, the intersectionV \ f(x; y); 0 < jxj; jyj < �; j arg(x)j < 2�; j arg(y)j < 2�; jxj > Sjyjg



64 MATTIAS JONSSONis contained in the open setf(x; y); 0 < jxj; jyj < �; j arg(x)j < 2�; j arg(y)j < 2�; jxj > Sjyj; jyj < jxj1+�g:We claim that the setsU 0 := f(x; y); 0 < jxj; jyj < �; j arg(x)j; j arg(y)j < 2�; jxj > Sjyj; jyj > jxj1+�gandU := f(x; y); 0 < jxj; jyj < �; j arg(x)j; j arg(y)j < �; jxj > Sjyj; jyj > jxj1+�gwill do if � is small enough and S is large enough. It is clear that U 0 \ V = ;and that 0 2 @U 0. Furthermore, U 0 is homeomorphic to the productf(�; �0) 2 R2; j�j; j�0j < 2�g � f(r; r0) 2 R2; 0 < r; r0 < �; r > Sr0; r0 > r1+�gand is therefore simply connected. It remains to show that Tni(U) � U 0 forlarge i. First note that if (x; y) 2 U and � is small then j arg(x=y)j < 2� sojx1=y1j = jx=y + 1j > jx=yj > S. Using this, we also getjx1j1+�jy1j = jx1j�jx1y1 j= j�j�jx+ yj�jjxy + 1j� j�j�jx+ yj�(jxy j+ 1)� j�j�(jxj+ jyj)�(1 + 1S )jxy j= j�j�jxj�(1 + jyx j)�(1 + 1S )jxy j� j�j�jxj�(1 + 1S )�(1 + 1S )jxy j� j�j�(1 + 1S )1+� jxj1+�jyjHence, if S is so large that j�j�(1 + 1S )1+� < 1 and i is large enough, we willhave that Tni(U) � U 0. This means that the properties 1-3 above hold and weare done.Theorem 3.8. Repelling periodic points for f are dense in P2.Proof. It su�ces to prove that repelling periodic points are dense in P2 n D1.Since A is nonempty and backwards invariant, it must be dense in P2. Thisfollows from Theorem 2.2. Hence if W is any open set in P2 nD1 we can �nda 2 A\W . According to Lemma 3.3, every neighborhood of a contains repellingperiodic points of f , henceW contains repelling periodic points. This completesthe proof.



SOME PROPERTIES OF 2-CRITICALLY FINITE MAPS OF P2 654. Distribution of periodic pointsLet f : P2 ! P2 be 2-critically �nite of degree d � 2. We know thatevery sequence fgig of branches of f�ni (with ni ! 1) is necessarily normal(Theorem 2.4). It is natural to ask what the possible limit functions of suchsequences are. In section 3 we showed that many such limits must be constant,indeed su�ciently many to prove the density in P2 of repelling periodic points.The following conjecture is perhaps plausible:Conjecture 4.1. All limits of sequences of branches of inverse iterates of f areconstant.In this section, we show that Conjecture 4.1 implies that the periodic pointsare distributed according to the \Green measure" � := T^T of maximal entropy.Since we know that supp(�) = J1 = P2, this is of course stronger than just sayingthat periodic points are dense in P2.We know that f has (d3n � 1)=(dn � 1) periodic points, counted with multi-plicity (cf [FS1]). De�ne probability measures �m; �m;c as:�m = dm � 1d3m � 1 Xfm(a)=a �a�m;c = 1d2m Xfm(a)=c �aThen �m and �m;c describes the distribution of periodic points of order mand preimages under fm of a point c 2 P2, respectively. Forn�ss and Sibony[FS2] proved that �m;c ! � weakly as m ! 1 for quasi-every c 2 P2. Thisis true for any holomorphic f : P2 ! P2. In the 2-critically �nite case, usingthe fact that sequences of branches of inverses of iterates form normal familieswhenever they are de�ned, one can prove that �m;c ! � weakly as m! 1 forall c 2 P2.Theorem 4.2. If Conjecture 4.1 holds then periodic points are distributed ac-cording to the measure �, i.e. �m ! � weakly as m!1.The argument given below is similar to the one given by Lyubich in [Ly] inthe one-dimensional case (for general rational functions).Proof. Let W be a simply connected open set in P2 which does not meet thepostcritical set D1. Take any c 2W , � > 0 and �nd open sets W1;W2;W3 withW3 �� W2 �� W1 �� W , �(W nW3) < �. We put r = dist(W2; @W1) > 0.SinceW is simply connected andW\D1 = ;, there are d2m well-de�ned branchesgi; i = 1; : : : ; d2m of f�m de�ned on W . If Conjecture 4.1 holds, then if m islarge enough, diam(gi(W1)) < r=2 for i = 1; : : : ; d2m. Hence, if ai := gi(c) 2 W2for some i then gi(W1) � B(ai; r=2) where B(ai; r=2) is the ball of radius r=2around ai. But B(ai; r) � W1 so gi(B(ai; r)) � B(ai; r=2) � B(ai; r) so bythe Brouwer �xed point theorem gi has a �xed point bi in B(a; r) � W1. Since



66 MATTIAS JONSSONthe sets gi(W ); i = 1; : : : ; d2m are all disjoint, the points bi; i = 1; : : : ; d2m aredistinct. Note that a �xed point for gi is a �xed point for fm. This means thatwe can associate a �xed point of fm in W1 for every preimage under fm of c inW2. Hence we have that �m(W1) � �m;c(W2) if m is large enough.Now suppose � = limk!1 �mk is a weak accumulation point of the measures�m. It then follows that �(W ) � lim k!1�mk(W1)� lim k!1�mk;c(W2)� lim k!1�mk;c(W2)� �(W3)� �(W )� �Since � > 0 was arbitrary, it follows that �(W ) � �(W ). A trivial coveringargument yields that � � � outside D1. Now it follows from the Chern-Levine-Nirenberg inequality (cf [FS2]) that � puts no mass on pluripolar sets and hencethat �(D1) = 0. Therefore, � � � everywhere. But � and � are probabilitymeasures so � = �. This shows that � is the only accumulation point of thesequence �m so we must have that �m ! � as m!1.Remark 4.3. It follows from the above proof that repelling periodic points aredistributed according to the measure �. This is because a simple argument usingthe Kobayashi-Royden metric shows that all the points bi are attractive for giand hence repelling for fm (compare the proof of Proposition 3.3).Acknowledgement. The author is grateful to N. Sibony for introducing himinto this �eld and to his advisor M. Benedicks for valuable comments.References[Fa] Fatou, P. Substitutions analytiques et �equations fonctionelles �a deux variables. Ann.Sci. �Ecole Norm. Sup. 67{142, 1924.[FS1] Forn�ss, J.E., Sibony, N. Complex dynamics in higher dimension I. Ast�erisque, 222:201{231, 1994.[FS2] Fornaess, J.E., Sibony, N. Complex dynamics in higher dimension II. In Bloom, T. et al,editor, Modern Methods in Complex Analysis, number 137 in Annals of MathematicsStudies. Princeton University Press, 1995.[FS3] Forn�ss, J.E., Sibony, N. Critically �nite rational maps on P2. The Madison Sympo-sium on Complex Analysis, Contemp. Math., vol. 137, Amer. Math. Soc., Providence,RI, 1992, pp. 245{260.[FS4] Fornaess, J.E., Sibony, N. Complex dynamics in higher dimension. In Gauthier, P.M., Sabidussi, G., editor, Complex Potential Theory, pages 131{186. Kluwer AcademicPublishers, 1994.[Gr1] Green, M. L. Some Picard theorems for holomorphic maps to algebraic varieties. Amer.J. Math., 97:43{75, 1975.[Gr2] Green, M. L. The hyperbolicity of the complement of 2n + 1 hyperplanes in generalposition in Pn and related results. Proc. Amer. Math. Soc. 66:109{113, 1977.[Gu] Gunning, R. C. Introduction to holomorphic functions of several variables I-III.Wadsworth & Brooks/Cole, 1990.
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DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2:EXPONENTS, CONNECTEDNESS AND EXPANSIONMATTIAS JONSSONAbstract. We study the dynamics of maps of C2 of the form f(z; w) =(p(z); q(z; w)), where p(z) and q(z;w) are polynomials of degree d � 2 suchthat f extends to a holomorphic map of P2. For such maps we relateexpansion and connectedness of Julia sets to behavior of the critical set.0. IntroductionFollowing the successful study of the dynamics on rational maps on the Rie-mann sphere, a great deal of research has been devoted to complex dynamics inhigher dimension, in particular to iterations of holomorphic maps of the complexprojective space Pk [FS1], [HP], [U1]. Despite many results there is still a lackof non-trivial examples whose dynamics can be analyzed in detail. In this paperwe begin a study of (polynomial) skew products on C2; these are maps of theform f(z; w) = (p(z); q(z; w)); (0.1)where p and q are polynomials of the same degree d � 2 such that f extends toa holomorphic map of P2.Another aspect of skew products of the form (0.1) is that they map anyvertical line fzg �C to another vertical line fp(z)g �C by a polynomial map.Hence the restriction of fn to fzg � C can be viewed as a composition of ndi�erent polynomial maps of C.In this paper we study the dynamics of a skew product f on C2 both as aholomorphic map on P2 and as a composition of polynomial maps of C. Resultson skew products of C2 have previously been obtained by Heinemann [H1], [H2],but his approach is quite di�erent from the one is this paper. In particular, heworks with the one-point compacti�cation C2 of C2 instead of P2. At the endof section 6 we review some of his results in the terminology of this paper.Before describing our results in more detail we introduce some notation. Tothe map f of C2 (or P2) we can associate a Green function G, measuring therate of escape to in�nity, a positive closed current T = 12�ddcG and an invariantprobability measure � = T ^ T (see [FS1], [HP] or [BJ]). The component p of1991 Mathematics Subject Classi�cation. Primary: 32H50, Secondary: 58F23,58F15.Key words and phrases. Skew products, holomorphic dynamics.69



70 MATTIAS JONSSONf also has a Green function Gp and an invariant measure �p = 12�ddcGp. ItsJulia set is Jp = supp(�p). Finally, for each vertical line fzg �C we can de�nea Green function Rz , a probability measure �z and a Julia set Jz.In Theorem 2.2 we prove that the measure � is a skew product of �p and �z:if ' is a continuous test function, thenZ '� = Z �Z '(z; w)�z(w)� �p(z):This formula provides us with a partial dynamical characterization of the setJ2 := supp(�) (Proposition 3.2).J2 = [z2Jpfzg� Jz :Using this formula and a result of Briend [B] we show that J2 is the closure of therepelling periodic points of f . This is in contrast with the example by Hubbardand Papadopol [HP] of a holomorphic map on P2 with a repelling periodic pointoutside J2 (the set J2 is de�ned for any holomorphic map of P2).For polynomial maps of C there is an interesting relationship between Lya-punov exponents, critical points, the Green function and connectedness of theJulia set. As we will see, all of this generalizes to skew products on C2.To the ergodic measure � we can associate two Lyapunov exponents �1 and�2, measuring the average growth of expansion of fn. In Theorem 2.6 we provethe following integral formulae.�1 = log d+ Xp0(c)=0Gp(c);�2 = log d+ Z 0@ X@q@w (z;c)=0G(z; c)1A �p(z):It follows that �1; �2 � log d, something which is not generally true for poly-nomial maps of C2.A particularly interesting class of polynomial maps of C are those with con-nected Julia sets. We generalize this notion to skew products f on C2 by sayingthat f has property C if Jp is connected and Jz is connected for all z 2 Jp. Thatproperty C is a good concept is shown by Theorem 4.10, which asserts that thefollowing statements are equivalent.(i) f has property C.(ii) Gp(c) = 0 for all critical points c of p and G(z; c) = 0 for all (z; c) 2 Jp�Cwith @q@w (z; c) = 0.(iii) �1 = �2 = log d.Moreover, if f has property C, then J2 is connected and Jz is connected for allz 2 C.



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 71The set of all skew products on C2 of a given degree d � 2 can be identi�edwith CN , N = N(d). Let Md be the subset of CN corresponding to skewproducts with property C. Then Md plays the role of the connectedness locusof degree d, a much studied object in the case of polynomial maps of C. Onecan ask many questions about Md; in Theorem 5.2 we answer one of them byproving that Md is compact.The dynamics of a rational map g of Ĉ is most easily understood if g isexpanding (hyperbolic) on its Julia set Jg . Such rational maps are characterizedby the condition that the closure of the postcritical set of g is disjoint fromJg. In Theorem 6.3 we prove the corresponding result for a skew product fon C2, namely that f is expanding on J2 i� the closure of the postcritical setof f is disjoint from J2. A consequence of the proof of Theorem 6.3 is that iff is expanding on J2, then z ! Jz is continuous on Jp, which together withProposition 3.2 implies that J2 = [z2Jpfzg� Jz :This generalizes a result by Heinemann [H2].The expansion of f on J2 has consequences for the geometry of the Julia setsJp, Jz and J2. In Corollary 6.9 we show that if f has property C and is expandingon J2, then Jp, J2 and Jz for z 2 Jp are all connected and locally connected.The paper is organized as follows. In section 1 we review some notions fromdynamics of polynomial maps of C and C2. In section 2 we prove the inte-gral formula for � (Theorem 2.2) and the formulae for the Lyapunov exponents(Theorem 2.6). The study of the dynamics of f on vertical lines is started insection 3 and continued in section 4, where we introduce and characterize prop-erty C (Theorem 4.10). Section 5 is devoted to the connectedness locus Md andin particular the fact that it is compact (Theorem 5.2). Finally, in section 6, weprove Theorem 6.3 about the relation between expansion on J2 and the postcrit-ical set and we derive some consequences from it. We also describe some resultsby Heinemann in our terminology.1. Polynomial maps of C and C2Polynomial skew products are polynomial maps of C2 such that the �rstcoordinate is a polynomial map of C. In this section collect some material onpolynomial maps ofC from [CG] and on polynomial maps ofC2 from [BJ]. Manyof the results from the latter paper are in turn collected from [FS1] and [HP].Let us start by de�ning the objects we want to study.De�nition 1.1. A polynomial skew product on C2 of degree d is a map of theform f(z; w) = (p(z); q(z; w)), where p and q are polynomials of degree d andwhere p(z) = zd +O(zd�1) and q(z; w) = wd +O(wd�1).For brevity we will often say skew product instead of polynomial skew product.Suppose that f(z) = (p(z); q(z; w)) is a skew product. A useful tool in the study



72 MATTIAS JONSSONof the polynomial map p is the Green function Gp, de�ned byGp(z) = limn!1 d�n log+ jpn(z)j:The set Kp = fGp = 0g is called the �lled-in Julia set of p. If we view p as arational map of C, then the Julia set of p is exactly Jp = @Kp. The asymptoticsof Gp at in�nity is given by Gp(z) = log jzj+ o(1); (1.1)this implies that Kp and Jp have logarithmic capacity 1. If we let �p denoteharmonic measure on Kp, then �p = 12�ddcGp and supp(�p) = Jp. The measure�p is often called the Brolin measure of p and it is the unique invariant measureof maximal entropy for p. We extend Gp to C2 by Gp(z; w) = Gp(z).The dynamics of p near in�nity is very simple and can be described by intro-ducing a B�ottcher coordinate. This is the unique holomorphic function 'p nearin�nity such that 'p(z) = z+O(1) as z !1, 'p �p = 'dp and log j'pj = Gp. Wecan extend 'p analytically to the set fGp > maxfGp(c); p0(c) = 0gg. In particu-lar 'p extends to C�Kp i� no critical point is attracted to in�nity and this hap-pens i� Kp and Jp are connected. If Jp is connected, then  p = '�1p maps Ĉ� �Dconformally onto Ĉ � Kp, extends measurably to S1 and ( p)�(d�=2�) = �p.By Carath�eodory's theorem  p extends continuously to S1 i� Jp is locally con-nected. This happens in particular if p is expanding (or hyperbolic) on Jp, i.e.if there exist constants c > 0, � > 1 such that jDpn(z)j � c�n for all n � 1 andall z 2 Jp.De�nition 1.1 above implies that f extends to a map of P2, also denoted byf . If we use homogeneous coordinates [z : w : t] on P2, where (z; w) 2 C2 isidenti�ed with [z : w : 1] 2 P2, then the extension of f is given byf [z : w : t] = [tdp(z=t) : tdq(z=t; w=t) : td]:The line � := (t = 0) at in�nity is completely invariant under f and wedenote f j� by f�. Note that f� is a monic polynomial map of �: if we use thecoordinate � = w=z on �, then f�(�) = q0(1; �), where q0 is the homogeneouspart of q of degree d. The point at in�nity for f� is the point [0 : 1 : 0]. Wedenote by J� and K� the Julia set and the �lled-in Julia set of f�, respectively.Note that the point [0 : 1 : 0] is superattracting for f . Hence its basin ofattraction W s([0 : 1 : 0]) is an open subset of the Fatou set of f , i.e. the set ofpoints where ffng is a locally normal family. The set of points in P2 which areattracted to J� and K� are denoted by W s(J�) and W s(K�), respectively.Just as in one variable we have a Green function G of f , measuring the rateof escape to �. It is de�ned byG(x) = limn!1 d�n log+ jfn(x)jand is continuous, nonnegative, plurisubharmonic and satis�es the fundamentalrelation G � f = dG. The de�nition of G is independent of the norm on C2. If



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 73we �x a norm on C2, then the asymptotics of G is given byG(z; w) = log j(z; w)j+ �G[z : w : 0] + o(1) (1.2)as (z; w) ! �, where [z : w : 0] is the projection of (z; w) on � and �G iscontinuous on �. The function �G is called the Robin function of G; it dependsonly on the homogeneous part f0 of degree d of f . By letting z 2 C be a periodicpoint of p we see from (1.1) and (1.2) that �G[0 : 1 : 0] = 0 for any skew productf (and any choice of norm on C2).All the points in C2 with bounded orbits form a compact set K, given byK = fG = 0g. The positive closed current T := 12�ddcG extends to a positiveclosed current on P2, also denoted by T . Much of the importance of T stemsfrom the fact that the set J1 := supp(T ) is exactly the Julia set of f , i.e. thecomplement of the Fatou set, the latter set being the set of points where ffngforms a normal family.The wedge product � := T ^ T is well-de�ned and is by de�nition harmonicmeasure on K. It has dynamical importance because � is an invariant measureof maximal entropy log d2. We denote the support of � by J2. The dynamics off on J2 are most easily understood if f is expanding on J2. This means thatthere exist constants c > 0, � > 1 such that jDfn(x)vj � c�njvj for n � 1,x 2 J2 and v 2 TxC2.The critical set plays an important role for the dynamics of a polynomial mapofC and so it does in higher dimension. Let C be the critical set of f : C2 ! C2,i.e the set of points where f is not locally invertible. We write C = C1 [ C2,where C1 = f(z; w); p0(z) = 0g and C2 = f(z; w); @q=@w(z; w) = 0g. Note thatas a map of P2 the critical set of f is given by C1 [ C2 [ �.2. Lyapunov exponentsIn this section we describe the measure � as a skew product (Theorem 2.2).This enables us to prove a formula for the Lyapunov exponents of f with respectto � (Theorem 2.6).We start by comparing the Green functions G and Gp.Lemma 2.1. G = Gp on J1.Proof. Clearly G = Gp = 0 on K and if G(z; w) > Gp(z; w), then (z; w) is inthe basin of attraction of [0 : 1 : 0], hence in the Fatou set.Theorem 2.2. Let f(z; w) = (p(z); q(z; w)) be any skew product on C2. Thenthe action of � on a test function ' is given byZ '� = Z �Z '(z; w)�z(w)� �p(z); (2.1)where �z = 12�ddcwG(z; w) is the slice of T on the vertical line fzg �C.



74 MATTIAS JONSSONProof. By Lemma 2.1, G �Gp is a continuous function on C2 which is zero onthe support of T . Hence GT = GpT , which implies that� = 12�ddc(GT )= 12�ddc(GpT )= ( 12� )2ddczGp ^ ddcwG;where the last line follows because Gp is independent of w. Applied to a contin-uous test function ', this gives exactly (2.1).Corollary 2.3. (�1)�� = �p, where �1(z; w) = z. In particular, if E � C and�p(E) = 1, then �(E �C) = 1.The map f has two Lyapunov exponents �1, �2, with respect to the ergodicinvariant measure �. They can be characterized as follows (see e.g. [Y] for moredetails). The Lyapunov exponents of f are the two numbers �1 � �2 such thatfor �-almost every point x 2 C2 there exists a subspace E2(x) of TxC2 such thatlimn!1 1n log jDfn(x)vj = �2 8v 2 E2 � 0;limn!1 1n log jDfn(x)vj = �1 8v 2 TxC2 �E2:For these x we also have limn!1 1n log j detDfn(x)j = �;where � = �1 + �2. That all of this is well de�ned follows from Oseledec'stheorem and a point x satisfying the above equations will be called Oseledecgeneric.Remark 2.4. If we regard f as a map of R4, then f has four Lyapunov expo-nents; these are �1, �1, �2, �2.Similarly, the polynomial map p of C has a Lyapunov exponent �(p) withrespect to the measure �p. We havelimn!1 1n log jDpn(z)j = �(p)for �p-a.e. z 2 C. Again z will is called Osoledec generic if the above equationholds. It follows from the chain rule and the ergodicity of � and �p that�(p) = Z log jDpj�p (2.2)� = Z log j detDf j�: (2.3)



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 75We are aiming for integral formulae for �1 and �2. There is an integral formulafor �(p), formulated by Przytycki [P].�(p) = log d+ Z Gp �c;p; (2.4)where �c;p is a critical measure de�ned by�c;p = Xp0(c)=0 �c: (2.5)Let f(z; w) = (p(z); q(z; w)) be a skew product of degree d. We will writeqz(w) instead of q(z; w). Then qz is a monic polynomial map of C of degreed. Let c1(z); : : : ; cd�1(z) be the critical points of qz, counted with multiplicity.De�ne H = log j@q=@wj. Then H(z; w) = log d+Pd�1i=1 log jw � ci(z)j. De�ne anew critical measure �c;q by�c;q = ( 12� )2ddcH ^ ddcGp = ( 12� )2ddcwH ^ ddczGp: (2.6)This means that if ' is any continuous function on C2, thenZ '�c;q = Z  d�1Xi=1 '(z; ci(z))! �p(z):We will need the following computational lemma.Lemma 2.5. If z 2 Jp, thenZ H �z(w) = log d+ 12� Z GddcwH:Proof. The subharmonic function G(z; �) can be reproduced from �z by inte-grating against the kernel log j � j. Hence it follows from the above discussionthat Z H(z; w)�z(w) = log d+ Z  d�1Xi=1 log jw � ci(z)j! �z(w)= log d+ d�1Xi=1 G(z; ci(z))= log d+ 12� Z G(z; w) ddcwH(z; w):Theorem 2.6. Let f(z; w) = (p(z); q(z; w)) be a skew product on C2 of degreed � 2. Then the Lyapunov exponents of f with respect to the measure � are



76 MATTIAS JONSSONgiven by �1 = log d+ Z Gp �c;p; (2.7)�2 = log d+ Z G�c;q; (2.8)where the critical measures �c;p and �c;q are given by (2.5) and (2.6), respec-tively.Proof. We �rst compute �(f) using (2.3).�(f) = Z log j detDf j�= Z log jDp(z)j�p(z) + Z �Z H �z(w)� �p(z)= �(p) + log d+ 12� Z �Z GddcwH� �p(z)= �(p) + log d+ Z G�c;q: (2.9)The second line follows from Theorem 2.2 and the third line from (2.2) and fromLemma 2.5.It follows from Corollary 2.3 that there exists a point (z; w) such that (z; w)is Oseledec generic for f and z is Oseledec generic for p, i.e. (2.2) and (2.3) hold.Since Df(z; w) is lower triangular we see thatdetDfn(z; w) = Dpn(z) n�1Yi=0 @q@w (zi; wi);where (zi; wi) = f i(z; w), solimn!1 1n log j n�1Yi=0 @q@w (zi; wi)j = �(f)� �(p):Hence, if v 6= 0 is a vertical vector, thenlimn!1 1n log jDfn(z; w)vj = �(f)� �(p):It follows that one of the Lyapunov exponents of f , say �2, is equal to �(f)��(p),so the other one, i.e. �1, is equal to �(p). Theorem 2.6 now follows from (2.4)and (2.9).Corollary 2.7. �1; �2 � log d.Note that it is not true in general for regular polynomial endomorphisms of C2of degree d that �1; �2 � log d. For example, if f is a homogeneous regularpolynomial endomorphism of degree 2 such that f� is a Latt�es example, thenone can see that �1 = log 2 and �2 = log 22 .



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 77Corollary 2.8.(i) �1 = log d i� Gp = 0 on C1.(ii) �2 = log d i� G = 0 on C2 \ (Jp �C).Proof. This follows from Theorem 2.6 and the continuity of G.3. Dynamics on vertical linesA skew product f(z; w) = (p(z); q(z; w)) maps vertical lines to vertical lines.In this section we will study the dynamics of f on these. For a �xed z 2 C wede�ne qz(w) = q(z; w) and q(n)z = qpn�1(z) � � � � � qz:De�ne Rz(w) := G(z; w) �Gp(z). Then Rz is a positive continuous subhar-monic function on C andRz(w) = log j(z; w)j+ �G[0 : 1 : 0]�Gp(z) + o(1)= log jwj �Gp(z) + o(1) (3.1)as w ! 1. This follows from (1.2) and the fact that �G[0 : 1 : 0] = 0. LetKz := fRz = 0g and Jz := @Kz. Then Kz and Jz are compact. The relationsG � f = dG and Gp � p = dGp imply that Rp(z) � qz = dRz. In particularqz(Kz) = Kp(z) and qz(Jz) = Jp(z).Proposition 3.1. Rz is the Green function for Kz. Moreover Jz and Kz havelogarithmic capacity exp(Gp(z)).Proof. We have to show that Rz is harmonic where Rz > 0. But Rz(w) > 0 i�(z; w) 2 W s([0 : 1 : 0]) and G is pluriharmonic on the latter set. From (3.1) weread o� that the Robin constant of Rz is �Gp(z), so the logarithmic capacity ofKz and Jz is exp(Gp(z)).Let �z := 12�ddcRz be harmonic measure on Kz. Then supp(�z) = Jz. Notethat �z is the same measure as in Theorem 2.2. Recall the notation J2 :=supp(�). The measures �z vary continuously with z, because G is continuous.Hence z ! Jz is lower semicontinuous in the Hausdor� metric.Proposition 3.2. If f is any skew product, thenJ2 = [z2Jpfzg� Jz : (3.2)Proof. This follows from Theorem 2.2 and the fact that z ! �z is continuous.Hubbard and Papadopol [HP] have constructed holomorphic maps of P2 withrepelling periodic points outside J2. This cannot happen for skew products.Corollary 3.3. J2 is the closure of the repelling periodic points of f .



78 MATTIAS JONSSON

Figure 1. Vertical Julia sets.Proof. Briend [B] has showed that repelling periodic points are dense in J2 (fora general holomorphic map of P2), so we only have to show that all repellingperiodic points belong to J2. Now if (z; w) is a repelling periodic point of f ,then z is a repelling periodic point of p, say of period k, and w is a repellingperiodic point of q(k)z . Hence z 2 Jp and ffng is not normal on fzg�C at (z; w)so w 2 Jz. By Proposition 3.2 it follows that (z; w) 2 J2.The closure in (3.2) could be removed if z ! Jz was upper semicontinuous,hence continuous, but this is not true in general. Consider e.g. the map f(z; w) =(�z2; w2+�w(2+ z)), where � is chosen so that w ! w2+�w has a Siegel diskat the origin. Then 0 =2 J�1 but 0 2 Jz for all periodic points z 6= �1 of z ! z2,so z ! Jz is discontinuous at z = �1. On the other hand, we will prove insection 6 that z ! Jz is upper semicontinuous if f is expanding on J2.The notation Jz is meant to suggest that it is the Julia set for the iterates off on the vertical line z �C. This is indeed the case.Proposition 3.4. The family ffnjfzg�Cg, viewed as a sequence of mappings offzg�C into P2, is normal exactly on fzg � (C � Jz).Proof. This is a special case of a theorem of Ueda [U3] and is implicitly containedin [FS2]. Compare with the result that ffng is normal exactly outside J1 =supp(ddcG).In Figure 1 we show two vertical Julia sets Jz for the skew productf(z; w) = (z2; w2 + 0:21iz + (�0:21 + 0:5i)):The two pictures show Jei� for � = 0:7471100934857 and � = 0:7471101934857,respectively. It seems that z ! Jz is not continuous on Jp for this map.We end this section by relating the sets Jz to the sets J2 and J1. Ideally wewould like to decide whether a point (z; w) belongs to J2 or J1 only by checking



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 79whether z is in int(Kp), Jp or C�Kp and whether w is in int(Kz), Jz or C�Kz.Such a characterization will not be true in general (compare with the discussionabove), but at least we have the following result.Proposition 3.5. Let f be any skew product on C2.(i) If z 2 C and w 2 C �Kz, then (z; w) =2 J1.(ii) If z 2 int(Kp) and w 2 Jz, then (z; w) 2 J1 � J2.(iii) If z 2 Jp and w 2 Jz, then (z; w) 2 J2.(iv) If z 2 Jp and w 2 int(Kz), then (z; w) 2 J1.(v) If z 2 C �Kp and w 2 Jz, then (z; w) 2 J1 � J2.Proof.(i) We have already observed that Rz(w) > 0 is equivalent to that (z; w) is inthe set W s([0 : 1 : 0]), which is disjoint from J1.(ii) Since Rz is not harmonic near w, G cannot be pluriharmonic near (z; w),so (z; w) 2 J1. The fact that (z; w) =2 J2 follows from Proposition 3.2.(iii) This follows from Proposition 3.2.(iv) The orbit of (z; w) is bounded, but every neighborhood of (z; w) containspoints with unbounded orbits. Hence ffng is not normal at (z; w), so(z; w) is in J1.(v) The proof is the same as for (ii).4. B�ottcher coordinates and connectedness of Julia setsFor a polynomial map p of C of degree d � 2, the Julia set Jp is connectedi� no critical point is attracted to in�nity and this happens i� the Lyapunovexponent of p is log d. In this section we analyze when the sets Jz, Jp and J2are connected for a skew product. We introduce a condition on skew products,called Property C, meaning that Jp is connected and Jz is connected for allz 2 Jp. In Theorem 4.10, we show that Property C plays the same role for skewproducts as does connectedness of the Julia set for a polynomial map of C. Themain tool for analyzing the connectedness of Jz are the B�ottcher coordinates 'z,de�ned near in�nity on each vertical line fzg�C and with similar properties asfor polynomial maps of C.Lemma 4.1. There exists a positive constant R such that fRz > Rg is biholo-morphic to a (punctured) disk and Rz is harmonic without critical points onfRz > Rg for all z 2 C.Proof. We have the asymptotic formulas (1.1) and (1.2) for G and Gp. Theseimply that if R is large enough and Rz(w) > R, then (z; w) is close to the point[0 : 1 : 0]. Hence Rz is harmonic at w and since �G[0 : 1 : 0] = 0 we haveRz(w) = log jwj �Gp(z) + gz(w); (4.1)



80 MATTIAS JONSSONwhere the functions gz are harmonic on fRz > Rg and can be made uniformlysmall by choosing R large enough. Therefore Rz has no critical points on fRz >Rg. For a �xed z we see from (4.1) that fRz > R0g is biholomorphic to apunctured disk for R0 large enough. Since Rz has no critical points on fRz > Rg,the latter domain is also a punctured disk.Proposition 4.2. For any skew product f there exists a constant R > 0 andfor any z 2 C there is a unique conformal map 'z of fRz > Rg onto j�j > eR,depending continuously on z, such that(i) 'z(w) = w + o(1) as w !1.(ii) log j'z j = Rz.(iii) 'p(z) � qz = 'dz.We will call 'z the B�ottcher coordinate of qz.Proof. Let R be as in Lemma 4.1. By (4.1) the function Rz(w) � log jwj isbounded and harmonic on the punctured disk fRz > Rg, hence has a harmonicconjugate R�z there. We may assume that R�z(1) = 0. Let 'z = exp(Rz + iR�z).Then 'z is holomorphic on fRz > Rg and satis�es (i) and (ii). To see (iii) wenote that the relation Rp(z) � qz = dRz and (ii) imply that there is a constant czof modulus 1 such that 'p(z) � qz = cz'dz . But qz is a monic polynomial so by (i)we must have cz = 1. From (ii) it follows that 'z maps fRz > Rg properly ontofj�j > eRg, so 'z is branched covering map. By (i) the sheet number is one nearw =1 so in fact 'z is a biholomorphism of fRz > Rg onto fj�j > eRg. Finallyrecall that Rz depends continuously on z, hence the same is true for 'z.We now try to extend the B�ottcher coordinates 'z analytically, using therelation (iii) above. First note that if c > 0, then every connected component offRz < cg must contain points of Jz. Indeed, otherwise Rz would be harmonic,hence constant by the minimum principle in such a component. We conclude thatif fRz < cg has several components, then Jz is disconnected. Since qz(Jz) = Jp(z)we see that if Jp(z) is disconnected, then Jz is disconnected.Let z 2 C. First suppose that Rpn(z)(w) = 0 for all critical points w of qpn(z)for all n � 0. Then we can use the formula 'pn+1(z) � qz = 'dpn(z) to extend theB�ottcher coordinates 'pn(z) to all of C�Kz. Thus 'z maps C�Kz conformallyonto C � �D.Now suppose there is an n � 0 and a critical point w of qpn(z) such thatRpn(z)(w) > 0. Then we havec = supfd�nRpn(z)(w); (z; w) 2 C2g > 0 (4.2)It follows from Lemma 4.1 that the supremum in (4.2) is achieved for some pair(n;w). Then Rpn(z) has a critical point at w, so the set fRpn(z) < dncg isdisconnected. It follows from the remarks above that Jpi(z) is disconnected forall i � n. Summing up, we have proved



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 81Proposition 4.3. Let f be a skew product on C2 and z 2 C. Then Jz isconnected i� Rpn(z)(w) = 0 for all critical points w of qpn(z) and all n � 0. IfJz is connected, then the B�ottcher coordinate 'z extends to a conformal map ofC �Kz onto C � �D.Corollary 4.4. Let X be the subset of z 2 X for which Jz is disconnected.Then X is open and p�1(X) � X.Proof. This follows from Proposition 4.3 and the continuity ofG andGp, becauseif z 2 C and (z; w) 2 C2, then for every z0 close to z there exists a w0 close tow such that (z0; w0) 2 C2.Remark 4.5. For a polynomial map p of C it is true that Jp is either connectedor has uncountably many components. For the sets Jz , the situation is di�erent.Consider for instance f(z; w) = (z2; w2 + z � 1). Then Jp = fjzj = 1g andJ1 = fjwj = 1g. Hence J�1 = q�1�1(J1) = fjw2 � 2j = 1g has exactly twocomponents.Suppose that Jz is connected for some z 2 C. Then 'z maps C � Kzconformally ontoC� �D. Let  z be the inverse of 'z, mappingC� �D conformallyonto C�Kz. Note that if we extend  z to1, then  z is the Riemann map ontoĈ �Kz. The function  z(�)=� is bounded, so the radial limits limr!1  z(rei�)exist for a.e. � 2 S1 and the extension of  z to S1 is measurable and maps S1into Jz.Proposition 4.6. If Jz is connected, then ( z)�(d�=2�) = �z.Proof. This is true because  z is the Riemann map and �z is harmonic measureon Kz.In general there is no reason why  z should extend continuously to S1 or, equiv-alently, why Jz should be locally connected. It is perfectly possible for the setJz not to be locally connected (consider J�1 for f(z; w) = (�z2; w2 + c), wherethe Julia set of w ! w2+ c is not locally connected). On the other hand we willprove in section 6 that if f is expanding on J2, then  z does extend continuouslyto S1 for all z 2 Jp.There are several ways of characterizing polynomial maps ofC with connectedJulia sets. As we will see, there is a natural generalization of this to skewproducts onC2. The relevant property for a skew product will be called propertyC and it means that Jp is connected and Jz is connected for all z 2 Jp. Wetherefore try to understand when a map has this property. Let us start with theconnectedness of Jp. The following result is really one-dimensional.Proposition 4.7. If f is a skew product on C2 of degree d � 2, then the fol-lowing statements are equivalent.(i) Gp = 0 on C1.(ii) Jp is connected.



82 MATTIAS JONSSON(iii) �1 = log d.Proof. The equivalence of (i) and (ii) was already mentioned in section 1 andCorollary 2.8 shows that (iii) is equivalent to (i).From Proposition 4.3 we see that the question whether Jz is connected isrelated to the function G�Gp on C2. Let �C2 be the closure of C2 in P2 and let
p = ((C �Kp)�C) [ (�� [0 : 1 : 0]):Then 
p is open in P2.Lemma 4.8. The function G � Gp extends to a continuous plurisubharmonicfunction on 
p.Proof. G � Gp is clearly continuous and plurisubharmonic on (C � Kp) � C.Take any point [z0 : w0 : 0] 2 � with z0 6= 0. We recall some facts from [BJ](in turn adapted from [FS1]). The functions ~G(z; w; t) := G(z; w) + log jtj and~Gp(z; w; t) := Gp(z) + log jtj, de�ned for t 6= 0, extend to plurisubharmonicfunctions on C3 � 0 which are logarithmically homogeneous of degree 1, i.e.~G(�x) � ~G(x) = ~Gp(�x) � ~Gp(x) = log j�jfor all � 2 C�. For (z; w) close to [z0 : w0 : 0] we therefore haveG(z; w)�Gp(z; w) = ~G(z; w; 1)� ~Gp(z; w; 1)= ~G(1; w=z; 1=z)� ~Gp(1; w=z; 1=z): (4.3)Now Gp is pluriharmonic on ��1(
p), where � : C3 � 0! P2 is the projection,so the right hand side of (4.3) de�nes a continuous plurisubharmonic functionin a neighborhood of [z0 : w0 : 0]. This completes the proof.Proposition 4.9. If f is a skew product on C2 of degree d � 2, then the fol-lowing statements are equivalent.(i) G = 0 on C2 \ (Jp �C).(ii) G�Gp = 0 on �C2.(iii) Jz is connected for all z 2 Jp.(iv) Jz is connected for all z 2 C and J� is connected.(v) �2 = log d.Proof. Clearly (ii) implies (i). Suppose that G = 0 on C2 \ (Jp � C). ByLemma 4.8 we can apply the maximum principle to G � Gp on �C2 \ 
p to seethat G�Gp = 0 there. Similarly we see that G�Gp = 0 on C2 \ (int(Kp)�C),so G�Gp = 0 on �C2. Hence (i) and (ii) are equivalent. Trivially (iv) implies (iii)and from Proposition 4.3 we know that (i) is equivalent to (iii). By Corollary 2.8(v) is equivalent to (i). We complete the proof by showing that (ii) implies (iv).If G�Gp = 0 on C2, then we know by Proposition 4.3 that Jz is connected forall z 2 C. Also, (ii) implies that �C2 \ � � K� so J� is connected. Hence (ii)implies (iv) and we are done.



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 83We now combine Proposition 4.7 and Proposition 4.9.Theorem 4.10. If f is a skew product on C2 of degree d � 2, then the followingstatements are equivalent.(i) Gp = 0 on C1 and G = 0 on C2 \ (Jp �C).(ii) Gp = 0 on C1 and G�Gp = 0 on �C2.(iii) Jp is connected and Jz is connected for all z 2 Jp.(iv) Jp is connected, J� is connected and Jz is connected for all z 2 C.(v) �1 = �2 = log d.Proof. Everything is a consequence of Proposition 4.7 and Proposition 4.9.De�nition 4.11. We say that a skew product on C2 of degree d � 2 has prop-erty C if f satis�es conditions (i){(v) above.Proposition 4.12. If the skew product f has property C, then J2 is connected.Proof. If f has property C, then, by de�nition, Jp is connected and Jz is con-nected for all z 2 Jp. Suppose U is a nonempty closed and open subset of J2.For z 2 Jp de�ne Uz := fw 2 Jz; (z; w) 2 Ug. Then Uz is closed and open inJz so for each z 2 Jp we have Uz = ; or Uz = Jz . Let A = fz 2 Jp;Uz = Jzg.Then A is open, closed and nonempty so A = Jp. Hence U � [z2Jpfzg�Jz andsince U is closed it follows from Proposition 3.2 that U = J2.Question 4.13. Is there a skew product on C2 such that J2 is connected but fdoes not have property C?5. Compactness of the connectedness locusFor polynomial maps of C there is an interesting interplay between dynam-ical space and parameter space. Of special interest is the connectedness locus,corresponding to polynomials with connected Julia sets.In this section we de�ne a connectedness locus Md for skew products on C2of degree d and prove that Md is compact. The proof goes along the same linesas in [BH], where the authors show that the connectedness locus for polynomialmaps of C of degree d � 2 is compact (indeed, much more is proved in [BH]).First we have to specify what our parameter space is. A general skew productof degree d � 2 can be written asf(z; w) = (Xi�d aizi; Xi+j�d bi;jziwj);where ad = b0;d = 1. After a linear change of coordinates we may assume thatad�1 = b1;d�1 = 0. This leaves us with N = N(d) = (d�1)+((d+1)(d+2)=2�2)parameters. We write f = fa;b, where a and b is the vector of ai's and bi;j 's,respectively.De�nition 5.1. The connectedness locusMd is the set of (a; b) 2 CN such thatfa;b has property C.
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Figure 2. Slices of M2.Theorem 5.2. Md is a compact subset of CN .Proof. From (i) in Theorem 4.10 it follows that Md is closed so it su�ces toshow that Md is bounded. We will let A be an unspeci�ed positive constant.Suppose that fa;b has property C. Then Jp is connected so by [BH] we have thatjaij � A for all i. From Theorem 4.10 we know that G = 0 on C2 \ (Kp �C)so  z is de�ned and maps Ĉ � �D conformally onto Ĉ �Kz for all z 2 Kp. ByKoebe's one-quarter theorem we have Kz � DA for all z 2 Kp. In particular,the critical points and critical values of qz are in DA for all z 2 Kp. Therefore,if we write qz(w) = wd + cd�1(z)wd�1 + � � �+ c0(z);then jcij � A on Kp for all i (after increasing A). It follows from the maximalityof the Green function that jci(z)j � A exp(dG(z)) for z 2 C. By increasing Aand using Cauchy's estimates we get that jc(j)i (0)j � Aj! for all i; j with i+j � d.Hence jbi;j j � A and we are done.It would be interesting to know whether Md is connected. Figure 2 shows twoslices of M2. A general skew product of degree 2 has the formf(z; w) = (z2 + a0; w2 + b0:2z2 + b0;1z + b0;0):The left hand picture shows the intersection of M2 with the line fa0 = b0;2 =b0;0 = 0g. This is the usual Mandelbrot set. In the right hand picture the line isfb0;2 = b0;0 = 0; a0 = 0:15ig. It is di�cult to see if the intersection of M2 withthis line is connected. 6. Expansion of f on J2It is well known that a rational function h is expanding on its Julia set Jhif and only if the postcritical set does not accumulate on Jh. In Theorem 6.3



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 85we prove the corresponding result for a skew product f , with Jh replaced byJ2 = supp(�).If f is any skew product on C2, then we will denote the closure of the post-critical set of f by PC. In other wordsPC = [n�1 fn(C)We start by proving the following result. The proof follows section 3 in [U2]to some extent.Proposition 6.1. Let f be a skew product on C2 such that J2 \PC = ;. Thenz ! Jz is upper semicontinuous on Jp.Before giving the proof let us introduce some notation. If z 2 Jp, then PCzis the set of w 2 C such that (z; w) 2 PC. Moreover B(w; �) denotes the diskin C centered at w with radius �.Proof. Suppose that J2 \ PC = ; but z ! Jz is not upper semicontinuousat z0 2 Jp. Then by Proposition 3.2 there exists a point w0 2 C � Jz0 suchthat (z0; w0) 2 J2. Clearly G(z0; w0) = 0 so w0 2 int(Kz0). We may �nd anincreasing sequence fnjg such that Rj := q(nj)z0 is uniformly convergent in aneighborhood of w0 and (zj ; wj) := fnj (z0; w0) converges to (z1; w1) 2 J2.By assumption there exists a � > 0 such that B(wj ; 2�) \ PCzj = ; for all j.We may assume that jwj �w1j < � for all j. Then B(w1; �)\PCzj = ; for allj. De�ne holomorphic functions gj : B(w1; �) ! C such that Rj � gj = id andgj(wj) = w0. Then fgjg is a normal family on B(w1; �).Let U be a compact neighborhood of w0 on which fRjg is uniformly conver-gent. By decreasing � and passing to a further subsequence we may assume thatgj(B(w1; �)) � U for all j. Hence Rj(U) � B(w1; �).De�ne Si;j := q(nj�ni)zi for 1 � i < j. We claim that Si;j ! id uniformly onB(w1; �) as i!1. Indeed, if w 2 B(w1; �), then w = Ri(�i) for some �i 2 U .Hence jSi;j(w)� wj = jRj(�i)�Ri(�i)j, which is small if i is large.Let V be the set where Si;j ! id locally uniformly as i!1. More precisely,w 2 V i� there exists an � > 0 such thatlim supi!1 supj>i supj��wj�� jSi;j(�)� �j = 0: (6.1)Then V is open and B(w1; �) � V by the calculation above.Pick a large number R > 0 such that if jwj > R, then jqz(w)j � 3jwj forall z 2 Jp. We then have V � �DR. Take any point x 2 @V . We claim that(z1; x) 2 J2. To prove this it is, in view of Proposition 3.2, su�cient to �nd, foreach  > 0, an increasing sequence fikg such that d(wik ; Jzik ) <  for all k. Fix > 0 and pick � 2 V with j� � xj < . It is clear from (6.1) that � 2 Kzi for allsu�ciently large i. On the other hand we claim that we can �nd sequences fikg,



86 MATTIAS JONSSONfjkg, f�kg with ik ! 1, jk > ik such that j�k � xj � =2 and jSik ;jk(�k)j > Rfor all k. If this was not true, then we would havelim supi!1 supj>i supj��xj�=2 jSi;j(�)j � R: (6.2)Hence any sequence fSik;jkgk�0 would be normal on B(x; =3) and by (6.1) mustconverge to the identity there. It would follow thatlim supi!1 supj>i supj��xj�=3 jSi;j(�)� �j = 0; (6.3)so B(x; =3) � V , contradicting our assumption that x 2 @V .It follows that we may �nd ik ! 1, jk > ik and �k 2 B(x; =2) such thatjSik;jk (�k)j > R for all k. Then �k 2 C�Kzik . We conclude that d(x;Kzik ) < and d(x;C �Kzik ) < , so d(x; Jzik ) <  for all large k. This completes theproof of the claim that (z1; x) 2 J2.By our choice of � all branches of S�1i;j are de�ned and holomorphic on B(x; �)for all i; j.Pick open sets V1,V2 with w1 2 V2 �� V1 �� V and B(x; �=4) \ V2 6= ;.If i is large enough, then Si;j is close to the identity on V1 for all j > i. Inparticular Si;j is biholomorphic on V1 and Si;j(V1) � V2. Thus there existholomorphic functions hi;j on V2 such that hi;j(V2) � V1, Si;j � hi;j = id on V2and hi;j � Si;j = id on S�1i;j (V2) \ V1. By (6.1) we have thatlim supi!1 supj>i sup�2V2 jhi;j(�) � �j = 0: (6.4)Now choose branches gi;j of S�1i;j on B(x; �) such that gi;j = hi;j on B(x; �)\ V2for large i. We claim thatlim supi!1 supj>i supj��xj��=3 jgi;j(�)� �j = 0: (6.5)If (6.5) was not true, then we could �nd ik !1, jk > ik and �k 2 B(x; �=2) suchthat jgik;jk (�k)��kj � c > 0 for all k. But this is a contradiction, because fgik;jkgis normal on B(x; �) and gik ;jk ! id uniformly on B(x; �=2)\V2. Therefore (6.5)holds, which implies that B(x; �=4) � V , again contradicting x 2 @V .Corollary 6.2. If PC \ J2 = ;, thenJ2 = [z2Jp Jz:Proof. This follows from Proposition 3.2 and Proposition 6.1.We now come to the main result of this section.Theorem 6.3. Let f be any skew product on C2. Then f is expanding on J2i� J2 is disjoint from the closure PC of the postcritical set of f .



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 87Proof. First assume that f is expanding on J2. Then J2 \ C = ; and we can�nd a neighborhood U of J2 such that f�1(U) � U and U \ C = ;. It thenfollows that U \ PC = ;.Now assume that PC \ J2 = ;. From Proposition 6.1 and Corollary 6.2 weknow that J2 = [z2JpJz and that z ! Jz is continuous on Jp. The key step isto prove the following lemma.Lemma 6.4. There exists an l � 1 such that���� @@wq(l)z (w)���� � 2for all (z; w) 2 J2.We postpone the proof of Lemma 6.4 and show instead how to prove that fis expanding on J2.The condition PC \ J2 = ; implies that the closure of the postcritical set ofp is disjoint from Jp and this, in turn, implies that p is expanding on Jp. ByLemma 6.4 we may therefore �nd an l � 1 such that���� @@wq(l)z (w)���� � 2; ���� @@z p(l)(z)���� � 2 (6.6)for all (z; w) 2 J2.Let (zi; wi)i�0 be any orbit under f l in J2, i.e. f l(zi; wi) = (zi+1; wi+1) forall i � 0. De�ne Xi = �Df l(zi; wi)��1 ;for i � 0 and Yj = �Df jl(zi; wi)��1 = X0 : : :Xj�1for j � 0. We write Xi = � ai 0bi ci � :Then (6.6) implies that jaij; jcij � 1=2 and jbij � B for all i, where B is inde-pendent of i and of the orbit (zi; wi).Similarly we write Yj = � Aj 0Bj Cj � :Then jAj j; jCj j � 2�j . We �rst prove inductively that jBj j � B for all j � 0.This is clear for j = 0 and for j � 0 we have Bj+1 = ajBj + bjCj , so jBj+1j �(jBj j+B)=2.Let k be so large that max(1; B) � 2k�5=2. Then Y2k = YkY 0k , whereY 0k = Xk : : : X2k�1 = � A0i 0B0i C 0i � :



88 MATTIAS JONSSONIt follows that jA2kj = jAkA0kj � 2�2k � 2�5=2;jC2kj = jCkC 0k j � 2�2k � 2�5=2and jB2kj = jBkA0k + CkB0kj � 21�kB � 2�5=2:From an easy calculation it now follows that the norm of the matrix Y2k =(Df2kl(z0; w0))�1 is less than 1=2. Theorem 6.3 follows, because k and l areindependent of the point (z0; w0) 2 J2.Proof of Lemma 6.4. Let R > 0 be so large that jqz(w)j � 2jwj if jwj > Rand z 2 Jp. Clearly Jz � �DR for all z 2 Jp. Pick � 2 (0; 1=2) so small that2� < d(J2; PC).LetD0 be the collection of all disks U centered at points c(U), where c(U) 2 Jzfor some z 2 Jp. If z 2 Jp, n � 1 and U 2 D0 is a disk centered at c(U) 2 Jpn(z),then all branches of (q(n)z )�1 are holomorphic and univalent on 2U , where 2Udenotes the disk of radius 2� centered at c(U). Let Dn be the collection of allpreimages of disks U 2 D0 under all these branches.Each U 2 Dn has a natural center c(U) which is mapped to the center of thecorresponding disk in D0. Let r(U) := supfjw � c(U)j;w 2 Ug be the radius ofU . By Koebe distortion we have thatB(c(U); r(U)=4) � U � B(c(U); r(U)); (6.7)for all U 2 Dn and all n � 0.To prove the lemma it is su�cient to show thatsupfr(U);U 2 Dng ! 0 as n!1; (6.8)because then we can �nd an l � 1 such that r(U) � �=2 for all U 2 Dl. BySchwarz's Lemma this implies that���� @@wq(l)z (w)���� � 2for all z 2 Jp and all w 2 Jz . This inequality and Corollary 6.2 together implyLemma 6.4.Hence it su�ces to show (6.8) and we argue by contradiction. If (6.8) doesnot hold, then there exists a � > 0, a sequence nj !1 and elements Uj 2 Dnjwith r(Uj) � 8� for all j. By (6.7) this implies that there exist zj 2 Jp, wj 2 Jzjand euclidean disks �j := B(wj ; 2�) such thatq(nj)zj (�j) � DR+1 (6.9)



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 89for all j. By passing to a subsequence we may assume that (zj ; wj) converges to(z1; w1) 2 J2 and that �j � � for all j, where � = B(w1; �). Henceq(k)zj (�) � DR+1for all k � nj and j � 1. Now B(z1; �=2) \ Jzj 6= ; for j large enough, so byupper semicontinuity of z ! Jz we have � \ Jz1 6= ;. But then there exists ann � 1 such that q(n)z1 (�) \ (C �DR+2) 6= ;:By continuity and by the choice of R we see thatq(k)zj (�) \ (C �DR+2) 6= ;;for k � n and j large enough. This contradicts (6.9).Corollary 6.5. If f is expanding on J2, then z ! Jz is continuous on Jp andJ2 = [z2Jp Jz:Corollary 6.5 generalizes a previous result by Heinemann. To see this, werecall how Heinemann de�nes the Julia set, which we will denote by J�. We saythat x =2 J� if there exists a neighborhood U of x and for each y 2 U a one-dimensional analytic set  3 y such that ffnjg is normal. Note that Heinemannworks with the one-point compacti�cation C2 [ f1g of C2. Hence J� � K. Itis not clear to the author whether J� = J2 in general, but equality holds underadditional assumptions.Proposition 6.6. Suppose f is a skew product on C2 such that f is expandingon J2 and q(n)z is expanding on Jz for all attracting periodic points of p (wheren is the period of z). Then J� = J2.Sketch of Proof. Let us say that x 2 J 0 if there exists no analytic set containingx on which ffng is normal. Then J� is the closure of J 0. We claim that J 0 = J2.To see this, write x = (z; w). If z 2 C �Kp, then x =2 J 0 by the remark above.If z 2 Jp, then x 2 J 0 i� w 2 Jz . Finally, if z 2 int(Kp), then (z; w) =2 J 0.[The assumptions in the proposition imply that f(z; w); z 2 int(Kp);w 2 Jzgis a union of stable manifolds of saddle points. Using these stable manifoldswe see that the above set does not intersect J 0. Also, f(z; w); z 2 int(Kp);w 2int(Kz)g = int(K) and f(z; w); z 2 int(Kp);w =2 Kzg \K = ;.] Hence J 0 = J2,so J� = J2.In [H1] Heinemann studied so called \Cantor skews". These are quadraticskew products of the type f(z; w) = (z2 + c; w2 + k(z)), where the Julia setof z2 + c is disconnected and supz2Jp jk(z)j < 14 . Using Theorem 6.3 it is notdi�cult to see that a Cantor skew satis�es the assumptions in Proposition 4.9.Hence it follows from Corollary 6.5 that J� = Sz2Jpfzg � Jz. This generalizes



90 MATTIAS JONSSONTheorem 3.2 in [H1] (it should be mentioned that Heinemann also proved thatthe sets Jz, z 2 Jp are Jordan curves).We now turn to some consequences of expansion on J2. First recall the resultby Sibony (see [CG]) that if p is a polynomial map of C, then its Green functionGp is H�older continuous. Moreover, if p is expanding on Jp, then Gp can bebounded from above and below on C �Kp in terms of the distance to Jp. Thenext result generalizes this to skew products.Proposition 6.7. If f is expanding on J2, then there are constants �1; �2 > 0and C1; C2 > 0 such thatC1Rz(w)�1 � d(w; Jz) � C2Rz(w)�2 (6.10)for all (z; w) 2 Jp �C with 0 < G(z; w) � 1. The left hand inequality in (6.10)is valid without the assumption that f is expanding on J2.Proof. It follows from Corollary 6.5 that the boundary of (Jp�C)\K in Jp�Cis J2. Since f is expanding on J2 there exists an l � 1, a neighborhood U of J2in Jp �C and a constant A > 0 such that2d(w; Jz) � d(wl; Jzl) � Ad(w; Jz) (6.11)for all (z; w) 2 U , where (zl; wl) = f l(z; w). Choose �1, �2 so that d�1l � A andd�2l � 2. Let R be so small that (Jp�C)\f0 < G � Rg � U and choose C1, C2so that (6.10) holds on (Jp�C)\fR � G � 1g. It then follows from (6.11) andthe fact that Rzl(wl) = dRz(w) that (6.10) holds on (Jp�C)\f0 < G � 1g.Suppose that Jz is connected for all z 2 Jp. Then the B�ottcher coordinates'z are de�ned on all of C �Kz and their inverses  z map C � �D onto C �Kzfor all z 2 Jp. The following Theorem shows that  z extend continuously to S1if f is expanding on J2.Theorem 6.8. If f is expanding on J2 and Jz is connected for all z 2 Jp, then z extends H�older continuously to C �D for all z 2 Jp. More precisely, thereexist constants C > 0 and � > 0 such thatj z(�)�  z(� 0)j � Cj� � � 0j� (6.12)in the spherical metric on Ĉ for �; � 0 2 Ĉ �D and z 2 Jp. The map (z; �) !(z;  z(�)) is continuous on Jp � (C �D) and maps Jp � S1 onto J2.Proof. It is su�cient to prove the statement for an iterate of f . Corollary 6.5implies that the boundary of (Jp �C) \K in Jp �C is J2. We may thereforechoose R > 0 such that ����@qz@w ���� � 2 (6.13)if z 2 Jp and 0 < Rz(w) � R. Let � > 0 be so small that d� < 2. We mayassume that d�Rd�1 � 2. Recall that  z satis�es z(�) = g( p(z)(�d)) (6.14)



DYNAMICS OF POLYNOMIAL SKEW PRODUCTS ON C2 91for j�j > 1, where g is a suitable branch of (qz)�1. By di�erentiating (6.14) andusing the estimate (6.13) we see thatjD z(�)j � d2 jD p(z)(�d)jj�jd�1 (6.15)for 1 < j�j � eR=d. De�ne m(r) = supz2Jp supj�j=r jD z(�)jfor r > 1. Then there exists a constant C 0 <1 such thatm(r) � C 0(r � 1)��1 (6.16)for eR=d � r � eR. Using (6.15) we see inductively that (6.16) holds for 1 < r �eR. By integrating (6.16) we see that  z extends continuously to C �D for allz 2 Jp and that (6.12) holds. That (z; �)!  z(�) is continuous is a consequenceof (6.12) and the fact that (z; �)!  z(�) is continuous on Jp �fj�j = rg for allr > 1. Finally (z; �)! (z;  z(�)) maps Jp � S1 onto J2 by Proposition 4.6 andCorollary 6.5.Corollary 6.9. If f is expanding on J2 and has property C, then the sets Jp,J2 and Jz for z 2 Jp are all connected and locally connected.Proof. The assumptions imply that p is expanding on J2, that Jp is connectedand that Jz is connected for all z 2 Jp. Hence Jp is locally connected [CG]and we have continuous surjective maps from S1 to Jz for z 2 Jp and fromJp �S1 to J2. Hence the sets Jz for z 2 Jp and J2 are all connected and locallyconnected.Acknowledgment. This work was prepared when the author was visiting theUniversity of Michigan and he thanks the Department of Mathematics for itshospitality. Special thanks go to Eric Bedford. Several results in this paper wereobtained jointly with him and his comments and remarks had a very de�niteinuence on the form and contents of the paper.References[BJ] Bedford, E., Jonsson, M. Regular polynomial endomorphisms of CN . Preprint.[B] Briend, J. Exposants de Liapouno� des endomorphismes holomorphes deCPk. Preprint.[BH] Branner, B, Hubbard, J. H. The iteration of cubic polynomials. I. The global topologyof parameter space. Acta Math. 160(1988), 143{206.[CG] Carleson, L., Gamelin, T. W. Complex Dynamics. Springer-Verlag, 1993.[FS1] Forn�ss, J.E., Sibony, N. Complex dynamics in higher dimension. In Gauthier, P.M., Sabidussi, G., editor, Complex Potential Theory, pages 131{186. Kluwer AcademicPublishers, 1994.[FS2] Forn�ss, J.E., Sibony, N. Complex dynamics in higher dimension. II. In Bloom, T. et al,editor, Modern Methods in Complex Analysis, number 137 in Annals of MathematicsStudies, pages 135{182. Princeton University Press, 1995.[H1] Heinemann, S.-M. Julia sets for holomorphic endomorphisms of Cn. Ergodic TheoryDynam. Systems 16(1996), 1275{1296.
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SUMS OF LYAPUNOV EXPONENTS FORSOME POLYNOMIAL MAPS OF C2MATTIAS JONSSONAbstract. We give a formula for the sum of the Lyapunov exponents ofa nondegenerate polynomial map f of C2 close to (z; w)! (zd; wd). Theformula only involves the behavior of f at in�nity. In particular, it followsthat the sum only depends on the homogeneous part of f of degree d.0. introductionEvery holomorphic map f of Pk of degree at least two carries a naturalinvariant mixing measure of maximal entropy (see [FS3]). To this measure � wecan assign Lyapunov exponents, which measure the rate of growth of tangentvectors. It is a result by Briend [B] that the Lyapunov exponents of f are alwaysnonnegative.In this paper we study the case when f is a polynomial map of C2 of degreed � 2, which has an extension to a holomorphic map of P2. The measure �above is then the complex equilibrium measure of the compact set K consistingof points with bounded orbits. We assume that f is close to the map (z; w) !(zd; wd). Let �1 � �2 � 0 be the Lyapunov exponents of f with respect to �.The main purpose of this paper is to give a formula for �1+�2, which measuresthe growth of the Jacobian of fn.The line � at in�nity is completely invariant under f and the restriction off to � is a rational map close to � ! �d. There is a natural invariant measure� for this rational map and we denote by �(f j�) the Lyapunov exponent ofthe restriction with respect to �. Our main result in this paper is then (cf.Theorem 4.4)Theorem. If f is su�ciently close to the map (z; w) ! (zd; wd), then theLyapunov exponents of f satisfy�1 + �2 = log d+ �(f j�): (0.1)Let us compare formula (0.1) with what is known about Lyapunov exponentsin the one-variable setting. If g(z) = zd+ : : : is a polynomial map of C of degreed, then the harmonic measure of the compact set K consisting of bounded orbitsis again the natural invariant measure � and the Green function of K satis�es1991 Mathematics Subject Classi�cation. Primary: 32H50, Secondary: 58F23.Key words and phrases. Holomorphic dynamical systems, Lyapunov exponents.93



94 MATTIAS JONSSONG = limn!1 d�n log+ jgnj. The Lyapunov exponent of g with respect to � isgiven by the Brolin-Manning formula� = log d+ Xg0(c)=0G(c): (0.2)If g is close to the map z ! zd, then all critical points have bounded orbitsand the formula reduces to � = log d. In the one-dimensional case the objectcorresponding to � is the point at in�nity f1g and it is reasonable to say thatthe Lyapunov exponent of the restriction of f to this point is zero. With thisconvention the two formulae (0.1) and (0.2) agree.In one dimension, Lyapunov exponents provide information on parameterspace. For instance, for the quadratic family pc(z) = z2 + c, the functionc ! �(pc) is proportional to the Green function of the Mandelbrot set. Inhigher dimension, parameter space is not well understood; one might hope thatLyapunov exponents could be a useful tool in its study.The proof of Theorem 4.4 consists of two parts. First we prove an integralformula for �1+�2, which implies that the sum depends only on the homogeneouspart of f of degree d. Then we prove Theorem 4.4 in the special case when f ishomogeneous of degree d.To state the integral formula mentioned above we need a few de�nitions. TheGreen function G of K is given by G = limn!1 d�n log+ jfnj; this expressionmeasures the superexponential rate of escape to in�nity. Close to the line � atin�nity we have the following asymptotic expansion for G (see Proposition 1.1)G(z; w) = log j(z; w)j+ [z : w] + o(1);where  is a continuous function on � and [z : w] denotes the projection of (z; w)on � ' P1. Similarly, if H := log j detDf j then we have the asymptotic formulaH(z; w) = 2(d� 1) log j(z; w)j+ �[z : w] + o(1);where � is continuous on � outside the critical points of f j�. The integralformula is then (cf. Theorem 3.2)Theorem. The Lyapunov exponents of f satisfy the relation�1 + �2 = Z�(� � 2(d� 1)) d�: (0.3)It is not too hard to see that the entities , � and � depend only on thehomogeneous part of f of degree d. Hence the same is true for the sum of theLyapunov exponents as well. One can check that a formula corresponding to(0.3) is valid in the one-dimensional case as well.The main ingredient in the proof of formula (0.3) above is a geometric de-scription of the current T = ddcG in the set P2 �K consisting of points withunbounded orbits. The description says that T in this set has a global laminarstructure, which we now describe. The line � at in�nity is completely invariantunder f and the restriction of f to � is, under our hypotheses, a hyperbolic



SUMS OF LYAPUNOV EXPONENTS 95rational map. The Julia set � of the restriction is therefore a hyperbolic set forf and there exists a natural invariant probability measure � whose support isexactly �. In fact, � is the restriction of T to �. We prove in Proposition 2.8that there exists an embedded analytic disk W s(p) with boundary on supp(�)through each point p of �, such that the di�erent disks are pairwise disjoint andf maps W s(p) onto W s(f(p)). The disk W s(p) is to be seen as the analyticcontinuation of the local superstable manifold at p 2 �. We then prove that theaction of the current T on a test form in the open set P2 �K is given by< T; � >= Z� d�(p) ZW s(p) �: (0.4)In fact, the same formula is valid if � is only supposed to be continuous andbounded (with respect to the Fubini-Study metric on P2) in a neighborhood ofsupp(T jP2�K). It is then not a priori clear that the right hand side is well de-�ned. However, we prove in Proposition 2.8 that the disksW s(p) have uniformlybounded volume in the Fubini-Study metric so the expression in the right handside does make sense.Local laminarity results for the current T of more general hyperbolic endo-morphisms of P2 are proven in [FS4]. Equation (0.3) shows that, in our case,the current T has a global laminar structure in all of P2 �K.In the case of a polynomial map g of C, the �rst term in the Brolin-Manningformula (0.2) is reminiscent of the behavior of g at in�nity, whereas the secondterm is an integration of the Green function against a critical measure, which inthis case is simply the sum of the point masses at the critical points of g.A similar description has recently been given by Bedford and Smillie [BS2] inthe context of polynomial di�eomorphisms of C2. They establish formulae forthe Lyapunov exponents �+ and �� with respect to the harmonic measure �of the compact set K consisting of points with bounded forward and backwardorbits. Their formulae express the Lyapunov exponents in terms of integrationof the Green functions G+ and G� against certain critical measures, which, ofcourse, in their situation are much more complicated than a �nite sum of Diracmasses.In a later paper [BJ] we will consider the problem of �nding formulae for (thesum of) the Lyapunov exponents for more general polynomial maps than thosetreated in this article.This paper is organized as follows. In the �rst section we review some basicresults from iterations of maps of P2 and prove an asymptotic formula for theGreen function in the case of a polynomial map. Then in section 2 we describethe current T in the domain P2 �K, i.e. we prove formula (0.4). The thirdsection is devoted to the proof of the integral formula (0.3). Finally, in section4, we study the case of a homogeneous polynomial map of C2 and prove themain result in the paper, namely Theorem 4.4.



96 MATTIAS JONSSONAcknowledgment. The author wants to thank N. Sibony, J.E. Forn�ss andE. Bedford for valuable comments on the material in this paper, in particularN. Sibony for outlining the proof of Theorem 2.10. He is also grateful to theUniversity of Michigan for its hospitality. The �nal thanks goes to the refereefor a very careful reading of the paper and for several most useful suggestionsand remarks. 1. Basic factsIn this section we review some basic results and de�nitions from the theory ofiterations of holomorphic maps of P2. Most of the material is lifted from [FS1]and [FS2]. In the end of the section we give the de�nition of the Lyapunovexponents �1; �2 in the context of polynomial maps of C2.Throughout this paper we let f be a polynomial map of C2 of degree d � 2such that the homogeneous part of f of degree d has no zeros outside the origin.This means precisely that f extends to a holomorphic map of P2, still denotedby f . The line � = P2 � C2 at in�nity is then completely invariant and therestriction of f to � is a rational map on � ' P1.We endow P2 with the Fubini-Study metric and all distances and volumesare measured with respect to this metric unless otherwise stated. Let us notethat the Fubini-Study metric is comparable with the Euclidean metric on C2 oncompact subsets of C2.The set Hd of all holomorphic maps of P2 of degree d is a complex variety(see [FS1]) and the set of polynomial maps of C2 that extend to P2 is a complexsubvariety, which we denote by Pd. The map (z; w) ! (zd; wd) clearly belongsto Pd. From now on, let V be a (small) neighborhood of this map in Pd.If f 2 Pd then we de�ne the Green function of f asG(z; w) := limn!1 1dn log+ jfn(z; w)j:Then G is a continuous plurisubharmonic function in all of C2 withG(z; w) = log j(z; w)j+O(1) as j(z; w)j ! 1:In fact, G is the pluricomplex Green function with pole at in�nity of the compactset K := fG = 0g consisting of points in C2 with bounded forward orbits (cf.[K]). The Green function G satis�es the fundamental relation G � f = dG.It is natural to de�ne G = 1 on �. Later on, we will need more preciseinformation on the asymptotics of G close to �. For this, it is again useful toregard f as a holomorphic map of P2. Then f lifts to a map ~f of C3 � f0gin an obvious way such that � � ~f = f � �, where � : C3 � f0g ! P2 is thenatural projection. If we use homogeneous coordinates [z : w : t] on P2 whereC2 = P2 � � is identi�ed with the set t = 1 and f(z; w) = (p(z; w); q(z; w)),then the map ~f is given by~f(z; w; t) = (tdp(z=t; w=t); tdq(z=t; w=t); td): (1.1)



SUMS OF LYAPUNOV EXPONENTS 97We de�ne the homogeneous Green function for ~f to be the function~G(z; w; t) = limn!1 1dn log j ~fn(z; w; t)j:Then ~G is continuous and plurisubharmonic on C3 � f0g and it satis�es~G(tx) = log jtj+ ~G(x) t 2 C�:The relation between G and ~G is given by~G(z; w; t) = G�zt ; wt �+ log jtj t 6= 0:Now suppose that (z; w)! p, where p 2 �. We may represent p by p = [z0 :w0], where j(z0; w0)j = 1. ThenG(z; w) = log j(z; w)j+ log j(z; w; 1)jj(z; w)j + ~G� (z; w; 1)j(z; w; 1)� ;so since ~G is continuous we getG(z; w)� log j(z; w)j ! ~G(z0; w0; 0):If we de�ne [z : w] := ~G(z; w; 0) � log j(z; w)j then  is well-de�ned and con-tinuous on � ' P1 and G(z; w) = log j(z; w)j + [z : w] + o(1) as j(z; w)j ! 1.From equation (1.1) and the de�nition of ~G above we see that ~G(z; w; 0) de-pends only on the homogeneous part of degree d of the polynomial map f . Letus summarize all this.Proposition 1.1. The Green function G has the following asymptotics at �G(z; w) = log j(z; w)j+ [z : w] + o(1) j(z; w)j ! 1:Here  is a continuous function on � ' P1 which only depends on the homoge-neous part of f of degree d.The positive closed (1; 1)-current T := ddcG is called the Green current of fand it has an extension as a positive closed current (also denoted by T ) to P2.The support of T is exactly the complement of the largest open subset of P2where the family of iterates ffng is normal. Moreover, if � is an analytic diskin P2 on which ffng is normal, then G is harmonic on ���.Since G is continuous and plurisubharmonic, the wedge product � := T ^T =(ddcG)2 is a well de�ned probability measure on C2. It is known that � is aninvariant mixing measure of maximal entropy for f . The support of � is theShilov boundary of the compact set K and � does not charge pluripolar sets.We end this section with a brief review of the notion of Lyapunov exponentsin the present context. For an introduction to Lyapunov exponents in generalwe refer to [Y]. By Oseledec's Theorem there are two numbers �1 � �2, called



98 MATTIAS JONSSONthe Lyapunov exponents of f , such that for �-almost every x 2 C2 there existsa complex subspace E2(x) of C2 of dimension 1 with the property thatlimn!1 1n log jDfn(x)vj = �2 if v 2 E2(x); v 6= 0;limn!1 1n log jDfn(x)vj = �1 if v =2 E2(x); v 6= 0and limn!1 1n log j detDfn(x)j = �1 + �2:Although we are interested in the sum of the Lyapunov exponents, we will notuse the last formula directly. Instead, we will work with the following well knownformula, which follows e.g. from the Ergodic Theorem�1 + �2 = Z log j detDf j d�:Let us �nally note that Briend [B] has proved that the Lyapunov exponentsof a general holomorphic map of Pk; k � 1 are nonnegative. In particular,�1 � �2 � 0. 2. Geometric description of T jP2�KIn this section we will prove that the restriction of the current T to the domainP2 �K has a laminar structure arising from superstable manifolds at the lineat in�nity. We start by studying these manifolds.Recall that the restriction of f to the line � at in�nity is a hyperbolic rationalmap. We denote its Julia set by � and notice that it is a hyperbolic set for fas a map of P2. From the general theory of hyperbolic dynamical systems(cf. [R]) we know that there exists a local superstable manifold through eachpoint of �. To state this precisely, let �" be the neighborhood of � de�ned by�" = fG > log 1="g.Lemma 2.1. If we de�ne the sets W s0 (p) for p 2 � asW s0 (p) = fx 2 ��; d(fnx; fnp)! 0 as n!1g;then for " small enough the following holds.(1) Each setW s0 (p) is an embedded disk intersecting � only at p and transverseto � at p.(2) The disks W s0 (p) and W s(q) are disjoint if p 6= q and W s(p) dependscontinuously on p.(3) The restriction of G to W s0 (p)�fpg is a harmonic function without criticalpoints and has a logarithmic pole at p.(4) f(W s0 (p)) is compactly contained in W s0 (f(p)).



SUMS OF LYAPUNOV EXPONENTS 99Proof. The Stable Manifold Theorem [R] provides us with local stable manifoldsof the form W sloc(p) = fx 2 P2; d(fnx; fnp) < "0 8n � 0gfor "0 > 0 small enough; these are pairwise disjoint embedded disks, varying con-tinuously with p and if x 2 W sloc(p), then d(fnx; fnp) ! 0 superexponentiallyfast as n ! 1. The disks W sloc(p) are all transverse to � because the unsta-ble direction of the hyperbolic splitting over � is along �. We may thereforeparameterize a neighborhood Z(p) of p in W sloc(p) for p 2 � as(z; w) = �z0s (1 + �p(s)) ; w0s (1 +  p(s))� s 2 D"00 ; (2.1)where j(z0; w0)j = 1 and [z0 : w0] = p and �p;  p are bounded analytic functionsdepending continuously on p with �p(0) =  p(0) = 0. If we choose "00 smallenough, then the Z(p) are embedded disks. Using Proposition 1.1 we see thaton Z(p) G(z(s); w(s)) = � log jsj+ gp(s); (2.2)where gp(s) is uniformly bounded and gp(0) = (p). Now the family fn restrictedto W sloc(p) is normal, so G restricted to W sloc(p) � fpg is harmonic. It followsthat the gp's are uniformly bounded harmonic functions on D"00 and (2.2) thenyields that G is has no critical points on Z(p) � fpg if "00 is small enough.Therefore, the intersection of Z(p) with �" is an embedded disk for all p if " issmall enough. This proves (1), (2) and (3). Finally (4) follows from the equationG � f = dG.Next we prove a few easy properties of the dynamics of f in the set P2 �K.Lemma 2.2. The hyperbolic set � has local product structure.Proof. The local unstable manifold of a (history of a) point p 2 � can be identi-�ed with a neighborhood of p in �. Therefore, if p; q 2 � are two nearby points,then the intersection of W s0 (p) and the unstable manifold of (any history of) qis exactly the point q, which belongs to �.Corollary 2.3. Let W s(�) be the stable set of �, i.e.W s(�) = fx 2 P2; d(fn(x);�)! 0 as n!1g:Then, if " > 0 is small enough, we have Sp2�W s0 (p) =W s(�) \ �".Proof. This follows from the local product structure (see [R]).Corollary 2.4. W s(�) has empty interior.Proof. It is su�cient to prove thatW s(�) has no interior near �. Indeed,W s(�)is completely invariant under f and every compact subset of W s(�) is iteratedinto any neighborhood of �. Let � be a complex line close to � and meetingevery disk W s0 (p) transversely and let � : � \ W s(�) ! � be the holonomy



100 MATTIAS JONSSONmap de�ned by �(x) = p if x 2 W s0 (p). Then � is a homeomorphism so since� has empty interior, � \W s(�) has empty interior. This is true for all linessu�ciently close to the line � so we conclude that W s(�) has no interior near�, which completes the proof.Lemma 2.5. The set W s(�) is contained in the Kobayashi hyperbolic open setU = f[z : w : t] 2 P2; j(z; w)j > 12 jtj; 110 jwj < jzj < 10jwjg:Moreover, W s(�) only intersects the critical set of f in �.Proof. Recall that f is close to the map (z; w) ! (zd; wd). Hence � is closeto the circle fjzj = jwj; t = 0g which is contained in U , so it follows fromCorollary 2.3 that W s(�) \ �" � U for " small enough. But it is easy to checkthat f�1(U) � U , so the invariance of W s(�) implies that W s(�) � U . The setU is biholomorphic to an open subset of the bidisk fjz1j < 10; jz2j < 2g and istherefore Kobayashi hyperbolic. Finally, a perturbation argument yields that Uintersects the critical set of f only in �. This completes the proof.Lemma 2.6. The set W s(�) is equal to the support of T jP2�K .Proof. Any point in P2 �K is attracted to the line � at in�nity and the re-striction of f to � is a hyperbolic rational map. Let x be any point in P2 �K.If x =2 W s(�), then the orbit of x will converge to an attracting cycle in �, aswill the orbit of points su�ciently close to x. It follows that ffng is normal in aneighborhood of x so x =2 supp(T ). On the other hand, W s(�) has empty inte-rior by Corollary 2.4, so if x 2 W s(�) then every neighborhood of x will containpoints whose orbits converge to an attracting cycle in �, whereas the orbit of xitself is attracted to �. Therefore ffng is not normal in any neighborhood of xand x 2 supp(T ).Corollary 2.7. The support of the current T jP2�K only intersects the criticalset of f in �.Proof. This follows immediately from Lemma 2.5 and Lemma 2.6.Now we want to extend the disks W s0 (p) away from �" by pulling them backby f�1. Recall that f(W s0 (p)) is compactly contained in W s0 (f(p)) for all p 2 �.Let us de�ne a sequence of disksW s0 (p) ��W s1 (p) ��W s2 (p) �� : : :for every p 2 � as follows. First, we let W s1 (p) be the connected componentof f�1(W s0 (f(p))) containing W s0 (p). Note that f�1(W s0 (f(p))) is contained inW s(�) and therefore, by Lemma 2.5, meets the critical set of f only at �. Hencef is a local biholomorphism at every point of f�1(W s0 (f(p))) � � so the latterset is an embedded manifold. In fact f�1(W s0 (f(p))) is an embedded manifold,because its intersection with �" is the union of the disks W s0 (q) for f(q) = f(p).



SUMS OF LYAPUNOV EXPONENTS 101We claim that f�1(W s0 (f(p))) has d di�erent components, each containingexactly one of the disks W s0 (q) with f(q) = f(p). If this was not true, thenthere would exist two di�erent preimages q1 and q2 of f(p) and a curve � insidef�1(W s0 (f(p))) joining q1 and q2. The curve f(�) would then be homotopicrel. p to the constant curve at p and if f(�) and the deformed curves weresu�ciently nice at p, then the homotopy would lift to a homotopy rel. fq1; q2g of� to a constant curve. This is impossible. It follows that W s1 (p) is an embeddedmanifold, which is furthermore a branched cover of degree d of the diskW s0 (f(p)),branched only at p. Hence W s1 (p) is an embedded disk containing W s0 (p) as arelatively compact subset and intersecting � only at p. From the equationG � f = dG and Lemma 2.1 it follows that G has no critical points on W s1 (p)for p 2 �. It is also clear that W s1 (p) \W s1 (q) = ; if p 6= q.We now repeat the procedure and inductively construct, for each p 2 �, asequence of embedded disks fW sn(p)gn�0 with the following properties.(1) W sn(p) is compactly contained in W sn+1(p) and f maps W sn+1(p) ontoW sn(f(p)) as a branched covering of degree d, branched only at p.(2) G is harmonic on W sn(p)� fpg and has no critical points there.(3) The disks W sn(p) and W sn(q) are disjoint if p 6= q.Let W s(p) be the increasing union of all the W sn(p) over n � 0. Note thatW s(p) is not the superstable manifold at p in the usual sense but rather theconnected component containing p of the superstable manifold at p. We arriveat the following.Proposition 2.8. If V is su�ciently small, then for any f 2 V the followingproperties hold(1) W s(p) is an embedded disk for all p 2 � and W s(p) \W s(q) = ; if p 6= q.(2) G is harmonic without critical points on W s(p)� fpg for all p 2 �.(3) If W s(�) is de�ned as in Corollary 2.3, thensupp(T jP2�K) =W s(�) = [p2�W s(p):(4) We have that W s(�) \ K � supp(�). In particular, the boundary of thedisk W s(p) is contained in supp(�) for all p 2 �.(5) The volumes jW s(p)j of W s(p) in the Fubini-Study metric on P2 are uni-formly bounded.Proof.(1) We have that W s(p), being the increasing union of embedded disks, isbiholomorphic to either C or D. To see that W s(p) is a disk we notethat W s(p) is contained in the Kobayashi hyperbolic set U de�ned inLemma 2.5. If p 6= q, then W s(p) and W s(q) are disjoint, because W sn(p)and W sn(q) are disjoint for all n � 0.(2) This is clear since G is harmonic without critical points onW sn(p) for n � 0.



102 MATTIAS JONSSON(3) We know from Lemma 2.6 that the sets supp(T jP2�K) and W s(�) areequal so we only need to show that the latter set is equal to Sp2�W s(p).But these two sets are completely invariant under f and the orbit of a pointin any one of them approaches the line � at in�nity. Hence the equalityto be proved follows from Corollary 2.3.(4) We will make heavy use of the assumption that f is close to the mapf0(z; w) = (zd; wd), which is Axiom A and satis�es the No-Cycles condi-tion. Let us briey verify this. The non-wandering set of f0 has sevencomponents 
0i , i = 1; : : : ; 7. Here 
01 = f[0 : 0 : 1]g, 
02 = f[0 : 1 : 0]gand 
03 = f[1 : 0 : 0]g are attracting �xed points, 
04 = fjzj = jwj; t = 0g,
05 = fjtj = jzj; w = 0g and 
06 = fjwj = jtj; z = 0g have unstable index 1and 
07 = fjzj = jwj = jtjg has unstable index 2. It is easy to see that f0 istransitive on 
0i and that periodic points are dense in 
0i for all i. Hencef0 is Axiom A (i.e. hyperbolic on its non-wandering set and with periodicpoints dense there) and its basic sets are exactly 
0i . We write 
0i � 
0jif there exists an orbit (xk)k2Z under f0 such that xk ! 
0i as k ! �1and xk ! 
0j as k ! 1. It is then easy to verify that f0 satis�es theNo-Cycles condition, i.e. there is no nontrivial sequence i0; i1; : : : ; ik = i0such that 
0i0 � 
0i1 � � � � � 
0ik .Hence, by Smale's 
-stability theorem (cf. [R]), we can assume that theperturbed map f is Axiom A and that the basic sets of f are close (in theHausdor� metric) to those of f0. In particular, f has three basic sets 
5,
6 and 
7 inside @K; these are perturbations of 
05,
06 and 
07, respec-tively. We know that supp(�) is completely invariant and that f jsupp(�) isexpanding and topologically transitive [FS2]. Hence supp(�) is a basic setso in fact 
7 = supp(�).Now suppose that there is a point x 2 (W s(�) \ K) � supp(�). Byde�nition, the orbit of x must converge to the non-wandering set of f andsince the orbit of x is contained in @K and supp(�) is repelling, the orbitmust converge to 
5 [ 
6. But the orbit is contained in the closed setW s(�) so we conclude that the sets W s(�) and 
5 [
6 have a nonemptyintersection. This is a contradiction, because W s(�) is contained in theset U de�ned in Lemma 2.5 and 
i is close to 
0i for all i.(5) It is clear that jW s0 (p)j is uniformly bounded if " is small enough. Let An(p)for n 2 Z be the annuli de�ned by An(p) := W s(p) \ fdn < G < dn+1g.For n su�ciently large we have An(p) � W s0 (p) for p 2 �. Also, for eachn, the volumes jAn(p)j are uniformly bounded, because if m is su�cientlylarge, then fm(An(p)) �W s0 (p) for p 2 �. It is therefore su�cient to provethat there exist constants C < 1 and � > 1 such that for n su�cientlylarge negative and all p 2 � we have jAn(p)j � C�n. Since the sets jAn(p)jare uniformly far away from the line � at in�nity for n large negative, itsu�ces to prove the same estimate in the Euclidean metric on C2.



SUMS OF LYAPUNOV EXPONENTS 103For the unperturbed map f0(z; w) = (zd; wd) we have jDf0(x)vj = djvjfor all x 2 
07 and all v 2 C2. If V is small enough and f 2 V then bycontinuity we will have jDf(x)vj � 3d4 jvj for all x in a small neighborhoodof supp(�) and all v 2 C2. In particular, it follows from (4) that the lastestimate will hold for x 2 An(p) for all su�ciently large negative n and allp 2 �.Now f : An�1(p) ! An(f(p)) is a covering map of order d. Hence, forn large negative and p 2 � we havejAn(f(p))jeucl = 1d ZAn�1(p) jDf jAn�1(p)j2� 1d (3d4 )2jAn�1(p)jeucl� 98 jAn�1(p)jeucl:It follows that jAn(p)jeucl � C( 98 )n for n su�ciently large negative, whichcompletes the proof.We have shown that the union of the disks W s(p) is equal to the support ofthe current T in the open set P2 �K. Our next objective is to describe theaction of T in this set on test forms in terms of integration over the W s(p).Let us �rst note that the slice of T on the invariant line � at in�nity is ameasure � which satis�es f�� = d �. In fact � is the unique invariant measureof maximal entropy for the restriction of f to �( cf. [L], [FLM], [HP] or [FS2]).The support of � is exactly the hyperbolic set �.We may try to de�ne a current S on P2 �K by declaring< S; � >:= Z� d�(p) ZW s(p) �; (2.3)for a smooth form � with compact support in P2 �K. Since the W s(p) are em-bedded disks with uniformly bounded volume, this makes sense and de�nes S as apositive closed (1; 1)-current. In fact, formula (2.3) de�nes < S; � > for bounded(in the metric on P2) continuous (1; 1)-forms in a neighborhood of W s(�). Thechange of variables formula implies that f�[W s(p)] =Pf(q)=p[W s(q)]. Togetherwith the fact that f�� = d � this shows that f�S = dS.We arrive at the main theorem in this section.Theorem 2.9. We have T = S on P2 �K. More precisely, if � is a boundedcontinuous (1; 1)-form in a neighborhood of supp(T jP2�K), then< T jP2�K ; � >= Z� d�(p) ZW s(p) �: (2.4)We will prove that Theorem 2.9 follows from the following weaker statement.The author is grateful to N. Sibony for the idea of its proof.



104 MATTIAS JONSSONTheorem 2.10. Equation (2.4) holds if � is continuous with compact supportin a small neighborhood of the line � at in�nity.Proof of Theorem 2.9. We assume that Theorem 2.10 has been proven and let� be a bounded continuous (1; 1)-form in a neighborhood of supp(T jP2�K). Wemay assume that � is de�ned, continuous and bounded in all of P2 �K. Letf ngn�0 be a sequence of continuous functions with 0 �  n � 1,  n = 1 onfG > 2=ng and  n = 0 on fG < 1=ng. Then< T jP2�K ;  n� >!< T jP2�K ; � >and < S; n� >!< S; � >as n ! 1 because S and T are positive currents with �nite mass. Hence wemay assume that � is continuous with compact support in P2 �K. Now let Vbe a neighborhood of � on which the statement in Theorem 2.10 is true. Wemay assume that the support of � does not intersect �, because otherwise wejust write � = �1 + �2 where supp(�1) � V and where supp(�2) \ � = ;.There exists an n � 0 such that fn(supp(�)) is contained in V � �. Thesupport of S and T jP2�K only meets the critical set of fn at � (Corollary 2.7),so after multiplying � with a suitable cut-o� function we may assume that fnis a local biholomorphism in a neighborhood of every point of supp(�). Butthen (fn)�� is a well-de�ned continuous form with support in V so using theproperties f�T = d T and f�S = dS we obtain< T; � > = 1dn < T; (fn)�� >= 1dn < S; (fn)�� >=< S; � > :Proof of Theorem 2.10. Recall that f is close to the map (z; w)! (zd; wd). Let� : W s(�) ! � be the holonomy map de�ned by following the leaves of thestable foliation, i.e. �(x) = p if x 2W s(p). It is clear that � commutes with f .There is an open set of lines such that every line � in this open set is veryclose to the line �, intersects every leaf of W s(�) transversely and in exactlyone point and that the intersection point is in �".For such a � the restriction of � to � \W s(�) is a homeomorphism onto �which is close to the canonical projection � on �. The slice T j� is a measure on� supported on � \W s(�). The key observation is the following.Lemma 2.11. The relation ��(T j�) = � holds. In other words, the measure �is a transversal measure of the foliation fW s(p)gp2� of W s(�).



SUMS OF LYAPUNOV EXPONENTS 105Theorem 2.10 follows from Lemma 2.11. Indeed, Lemma 2.11 holds for anopen set of lines �, so we can use slicing theory for currents to prove Theo-rem 2.10. See [BS1] for details on this kind of argument.Proof of Lemma 2.11. The idea of the proof is to use the property f�T = d Ttogether with the fact that fn(�) approaches � very fast as n!1.Take any continuous function � on P2 such that � � � = � on � \W s(�). Itsu�ces to show that Z� �(T j�) = Z� � d�:We may use coordinates � = z=w and t = 1=w in a neighborhood of �. Notethat �(�; t) = � in these coordinates. Cover � by a �nite union of bidisksBi = Di �D�, where Di are small disks in � centered at points of � and � > 0is small. We may assume that each Bi intersects the closure of the postcriticalset of f only at � and that � \W s(�) is contained in the union of the Bi's.We may also assume that � \Bi \� = ; for all i. Because of the hyperbolicity(in particular the \Lambda Lemma") we have that for all i and all n � 0 theset fn� \ Bi has �nitely many components, each of which is a graph over Di,uniformly close to Di as n!1. Since these components are disks which do notintersect the closure of the postcritical set of f , we see that f�n(fn� \Bi) \ �consists of dn distinct disks fEij ; j = 1; : : : ; dn. LetgDij = fn(fEij) and fgij be thesingle-valued branch of f�n de�ned on gDij with values in fEij . Note that if fnis not injective on � \W s(�), then the disks gDij will not all be di�erent.Let Dij = �(gDij) = Di, gij be the single-valued branch of (f j�)�n such thatgij � � = � � fgij on gDij and let Eij = gij(Dij). Then ffEijgi;j and fEijgi;j arecovers of � \W s(�) and �, respectively. Choose a C1 partition of unity f�igsubordinate to the cover fDig of � and let f�ijg and let ff�ijg be the partitionsof unity subordinate to the previous two covers de�ned by the properties �i =�ij � gij and �i � � = f�ij � fgij , respectively. We then haveZ� �(T j�) =Xi;j ZgEij (f�ij�) �T jgEij�= d�nXi;j ZgEij (f�ij�) (fgij)� �T jgDij�= d�nXi;j ZgDij ((f�ij�) � fgij) �T jgDij�= d�nXi;j ZgDij (�i � �) (� � fgij) �T jgDij�= d�nXi;j ZDij �i �� � gij � � � ��1� �� �T jgDij� :



106 MATTIAS JONSSONHere the second line follows from the property f�T = d T , and lines three and�ve from the change of variables formula. A similar computation shows thatZ� � d� = d�nXi;j ZDij �i (� � gij) �T jDij� :Now, as n ! 1, gDij is uniformly close to Dij and fgijg is equicontinuous so�i(� � gij �� � ��1) is uniformly close to �i(� � gij). Since the slice measure T jSdepends continuously on S this implies thatj ZDij �i(� � gij � � � ��1)��(T jgDij )� ZDij �i(� � gij) (T jDij )jis uniformly small as n!1. Hence it follows thatj Z� �(T j�)� Z� � d�jis arbitrarily small, which completes the proof.3. the integral formulaHaving described the current T in the domain P2 �K as a laminar current,we now proceed to obtain an integral formula for the sum �1 + �2 of the theLyapunov exponents of f . Perhaps the most striking about this formula is thatit only depends on the homogeneous part of f of degree d.Let us recall the following asymptotic expansion from Proposition 1.1.G(z; w) = log j(z; w)j+ [z : w] + o(1);where [z : w] is the projection of (z; w) on � ' P1. If H = log j detDf j, thenwe have a similar formula:H(z; w) = 2(d� 1) log j(z; w)j+ �[z : w] + o(1):Note that  and � depend only on the homogeneous part of f of degree d. Thisis easy to see for � and was shown in Proposition 1.1 for . As before, let � bethe measure on � � � de�ned by � = T j�. We will need the following result,which is a fairly straightforward application of Green's formula.Lemma 3.1. Let M be a Riemann surface, p a point on M , � a coordinate onM with �(p) = 0 and u; v harmonic functions on M � fpg withu(�) = cu log j�j�1 + �u + o(1);v(�) = cv log j�j�1 + �v + o(1)as � ! 0, where cu,cv,�u, and �v are constants. Then, if � is a positivelyoriented simple closed C1-curve homotopic to a circle j�j = �, we haveZ�(udcv � vdcu) = cu�v � cv�u:



SUMS OF LYAPUNOV EXPONENTS 107Let us now state and prove the integral formula for the sum of the Lyapunovexponents of f .Theorem 3.2. If V is su�ciently small and f 2 V, then�1 + �2 = Z�(� � 2(d� 1))d�:Proof. Let � be a smooth function on C2 with 0 � � � 1, � = 1 on P2 � �"=2and � = 0 on �"=3. Then�1 + �2 = Z H d�= Z (�H) d�= Z (�H) ddcG ^ T= Z Gddc(�H) ^ T= ZP2�K Gddc(�H) ^ T:Here the �rst line is well-known and follows e.g. from the Ergodic Theorem. Thesecond line holds since � = 1 in a neighborhood of supp(�) and the fourth linesince the potential G of T is continuous. Finally, the last line is true since thecurrent T is of order zero and G = 0 on K.Now H is pluriharmonic outside the critical set of f and the latter set doesnot intersect the support of supp(T jP2�K) outside �. Hence ddc(�H) is smoothand bounded in a neighborhood of supp(T jP2�K) so Theorem 2.9 yields�1 + �2 = ZP2�K Gddc(�H) ^ T= Z� d�(p) ZW s(p)Gddc(�H)= Z� d�(p) ZW s0 (p)Gddc(�H)= Z� d�(p) Z@W s0 (p)(GdcH �HdcG):Here the third line follows because �H is harmonic on W s(p)\ (P2��"=2) andthe fourth line from an integration by parts. If we apply Lemma 3.1 (with thecoordinate � given by (2.1)), then we get�1 + �2 = Z�(� � 2(d� 1))d�;and the proof is complete.



108 MATTIAS JONSSONCorollary 3.3. If V is su�ciently small and f 2 V, then �1 + �2 depends onlyon the homogeneous part of f of degree d.Proof. This is clear since the measure � and the functions � and  in the state-ment of Theorem 2.9 depend only on the homogeneous part of degree d of f .4. homogeneous polynomialsFrom Corollary 3.3 we know that, for the maps we are considering, the sum ofthe Lyapunov exponents depends only on the homogeneous part of f of maximaldegree. This motivates a further study of Lyapunov exponents for homogeneouspolynomial maps of C2 and will lead us to the main result of the paper.Suppose f is a nondegenerate homogeneous map of C2 of degree d, i.e.f(z; w) = (p(z; w); q(z; w)) with p and q homogeneous of degree d, and f�1(0) =f0g. We may then de�ne a rational map f̂ : P1 ! P1 in a natural way by lettingf̂ [z : w] = [p(z; w) : q(z; w)]. Note that f̂ can be identi�ed with the restrictionof f to �.Let � = T j� be the unique invariant measure of maximal entropy for f̂ . We�rst prove a result about the relation between � and �. There is a naturalprojection � : C2 � f0g ! P1 such that �(z; w) = [z : w]. We know thatsupp(�), being the Shilov boundary of K, is contained in @K. Since � does notcharge pluripolar sets, this shows that @K has positive capacity. Furthermore,since f is homogeneous, the intersection of @K with a complex line of the form��1(p) is a circle which we denote by Sp. Let �p be the Lebesgue measure onSp, normalized so that �p(Sp) = 1. We haveProposition 4.1. If � is a continuous function on C2, thenZ � d� = ZP1 d�(q) ZSq � d�q : (4.1)Proof. We will use the following two results (see [FS2]). First, if p 2 P1 withat most two exceptions, then ((f̂n)��p)=dn ! � weakly as n ! 1. Second, forany x 2 C2 outside a set of capacity zero we have ((fn)��x)=d2n ! � weaklyas n! 1. Therefore, we may �nd an x 2 C2 such that the above convergenceresults are true for p = �(x) and x, respectively. We may assume that x is inthe set @K, because we noticed above that the latter set has positive capacity.Also, we may assume that no preimage of x is in the critical set of f , because theset of x without this property has capacity zero. For any n � 1, the preimagesof x are then grouped into dn groups, where each group consists of dn pointsfx(q)1 ; : : : ; x(q)dn g equidistributed on the circle Sq , and where q runs through thedn preimages of p = �(x) under f̂ . Hence, if � is a continuous function on C2,then < 1d2n (fn)��x; � >= 1dn Xf̂n(q)=p 1dn dnXi=1 �(x(q)i ): (4.2)



SUMS OF LYAPUNOV EXPONENTS 109Here the left hand side converges to < �; � > by the choice of x, so we onlyneed to check that the right hand side of (4.2) converges to the right hand sideof (4.1). Let �̂ be the continuous function on P1 de�ned by �̂(q) =< �q; � >.Then we get������ 1dn Xf̂n(q)=p 1dn dnXi=1 �(x(q)i )� ZP1 d�(q) ZSq � d�q������� 1dn Xf̂n(q)=p ����� 1dn dnXi=1 �(x(q)i )� �̂(q)�����+ ������ 1dn Xf̂n(q)=p �̂(q)� ZP1 �̂(q) d�(q)������� supq ����� 1dn dnXi=1 �(x(q)i )� �̂(q)�����+ ������ 1dn Xf̂n(q)=p �̂(q)� ZP1 �̂(q) d�(q)������ :Here the �rst term tends to zero because � is uniformly continuous on @K andthe second term tends to zero because of the choice of p = �(x) and the continuityof �̂ on P1.Corollary 4.2. We have ��� = �. In particular, �(E) = 1 implies �(�(E)) = 1Proof. This follows immediately from Proposition 4.1.We next want to �nd the relation between the Lyapunov exponent � of f̂with respect to the measure � and the sum �1 + �2 of the Lyapunov exponentsof f with respect to �. The answer is the followingTheorem 4.3. If f : C2 ! C2 is a nondegenerate homogeneous polynomialmap of degree d, then, with the notation above, �1 + �2 = �+ log d.Proof. Let (z; w) be coordinates on C2, [z : w] homogeneous coordinates on P1and � := z=w. The map f̂ then looks like f̂(�) = p(�; 1)=q(�; 1). The Jacobianof f is given by detDf = pzqw � qzpw. If (z; w) are such that w 6= 0 andq(z; w) 6= 0 then the norm of the derivative of f̂ at the point � = z=w in theEuclidean metric on C ' fw 6= 0g is given by���� 1q(�; 1)2 (pz(�; 1)q(�; 1)� qz(�; 1)p(�; 1))����= ���� wq(z; w)2 (pz(z; w)q(z; w)� qz(z; w)p(z; w))���� ;



110 MATTIAS JONSSONwhere we have used the homogeneity of p; q; pz; qz. Therefore, the norm of thederivative of f̂ in the spherical metric on P1 is���f̂ 0(�)��� = 1 + j�j21 + jf̂(�)j2 ���� wq(z; w)2 (pz(z; w)q(z; w)� qz(z; w)p(z; w))����= jzj2 + jwj2jp(z; w)j2 + jq(z; w)j2 ���� 1w (pz(z; w)q(z; w)� qz(z; w)p(z; w))����= 1d jzj2 + jwj2jp(z; w)j2 + jq(z; w)j2 jpz(z; w)qw(z; w)� qz(z; w)pw(z; w)j :The last line follows from the relations zpz + wpw = dp and zqz + wqw = dq,which are true since p and q are homogeneous of degree d. By continuity weget that the expression in the last line is the norm of the derivative of f̂ in thespherical metric at the point � for any � 2 P1. We may now iterate this. If(z; w) 2 C2, (zi; wi) = f i(z; w) and �i = f̂ i(�) = zi=wi for i � 0, then���(f̂n)0(�)��� = n�1Yi=0 ���f̂ 0(�i)���= n�1Yi=0 1d jzij2 + jwij2jzi+1j2 + jwi+1j2 jdetDf(zi; wi)j= 1dn j(z; w)j2j(zn; wn)j2 jdetDfn(z; w)j ;so we arrive at1n log j(f̂n)0(�)j + log d = 2n log j(z; w)jj(zn; wn)j + 1n log j detDfn(z; w)j: (4.3)Now supp(�) is a compact subset of C2 � f0g. Therefore, if (z; w) 2 supp(�),then log(j(z; w)j=j(zn; wn)j) is bounded so for �-almost all (z; w) 2 supp(�), theright hand side in (4.3) tends to �1+�2 whereas, by Corollary 4.2, the left handside tends to �+ log d as n!1. This completes the proof.We are now in position to prove the main result of this paper.Theorem 4.4. If V is small enough and f 2 V, then�1 + �2 = log d+ �(f j�):Proof. This follows from Theorem 4.3 and Corollary 3.3.As a special case we consider mappings of the type f(z; w) = (p(z; w); wd),where p is a homogeneous polynomial of degree d such that p(z; 0) = 0 only ifz = 0. Then the corresponding rational map f̂ is the polynomial map f̂(�) =p(�; 1). If now V is small and f 2 V , then f̂ is close to the map � ! �dand the Lyapunov exponent is log d by the Brolin-Manning formula (0.2). ByTheorem 4.4 we therefore get
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REGULAR POLYNOMIAL ENDOMORPHISMS OF CkERIC BEDFORD AND MATTIAS JONSSON0. IntroductionWe consider a polynomial mapping f : Ck ! Ck, k > 1 as a dynamical system.We let Pk denote complex projective space and view Ck as an a�ne coordinatechart. Thus � := Pk � Ck is isomorphic to Pk�1 and will be considered asthe hyperplane at in�nity. We study mappings f of degree d � 2 which havea continuous (and thus holomorphic) extension to Pk. It follows that the hy-perplane � is completely invariant, i.e. � = f(�) = f�1(�). We let f� denotethe induced dynamical system at in�nity. � is (super)-attracting in the normaldirection, so the basin A of points which are attracted to � in forward time isan open set containing �.To study the dynamics of f , we follow the approach introduced in [HP] anddeveloped more generally and systematically in [FS1-3]. Namely, there is aninvariant current T , and the exterior powers T l := T ^ � � � ^ T , 1 � l � k, arewell de�ned, positive, closed currents of bidimension (k� l; k� l). The supportsJl := supp(T l) serve as a family of intermediate Julia sets. In this paper we willbe concerned with the measures � := T k and �� := T k�1� (corresponding to f�).In favor of brevity we denote their supports by J and J�, respectively. Equallyimportant will be the restriction of T k�1 to A, which will be written T k�1 A.In the study of the dynamics of a one-dimensional polynomial p : C ! C,a special role is played by the point at in�nity. There is a conformal mapping', the B�ottcher coordinate, which is de�ned in a neighborhood of in�nity, andwhich conjugates p to the canonical model � ! �d near in�nity. If the �lledJulia set K is connected, then ' in fact extends to a conformal equivalence' : C � K ! C � �D. This leads naturally to the study of J in terms ofexternal rays, a powerful tool developed by Douady and Hubbard [DH]. Thepoint at in�nity, being completely invariant, can also play the role of the polefor a Green function for the set C � K; this serves as the starting point forthe use of potential-theoretic methods in the study of polynomial mappings, aswas introduced by Brolin [B] and further developed by Sibony (see [CG]) andTortrat [T].In our study of polynomial mappings of Ck, we will use the function G,de�ned in (1.1), which measures the superexponential rate at which orbits ap-proach �. If we set K := Pk � A � Ck, then G is the pluricomplex Green113



114 ERIC BEDFORD AND MATTIAS JONSSONfunction for K with logarithmic pole along �. We will replace the point atin�nity in the one-dimensional case by J�, the Julia set at in�nity. And wewill replace the one-dimensional set C � K by the set W s(J�), consisting ofpoints which are attracted to J� in forward time. The main objective of thispaper is to study T k�1 A. We show that, if f� is (uniformly) expanding onJ�, the support of T k�1 A is W s(J�), and we show how T k�1 A provides aconnection between �� and �.De�ne a small neighborhood A0 of � by A0 := fG > log 1�g. Results inhyperbolic dynamics imply that W s(J�) \ A0 is equal to the union of complexdisks W s0 (a), each of which is properly embedded in A0. It follows that W s(J�)has the structure of a Riemann surface lamination outside the set Sn�0 f�n(C),where C is the hypersurface of critical points of f in Ck, i.e. the set where f isnot locally invertible. We denote this lamination by Ws(J�).Our �rst use of Ws(J�) is to obtain a laminar structure for T k�1 A. Ingeneral the leaves of Ws(J�) can be dense in W s(J�). However, we show thatthere is a (small) closed subset S of A such that W s(J�) � S is a union ofRiemann surfaces fWa : a 2 J�g, and each Wa has the structure of a complexdisk which is properly embedded in A � S. For ��-almost every a 2 J�, thedisk Wa de�nes a current of integration [Wa] with �nite mass, and T k�1 A isa laminar current of the form R [Wa]��(a).Second, we investigate the dynamics of f on W s(J�). Let fh be the homo-geneous part of f of degree d, and let Gh be the homogeneous Green functionfor fh. The sets W sh(J�), W sh;0(J�) and W sh;0(a) are de�ned in the same wayas W s(J�), W s0 (J�) and W s0 (a), but using fh instead of f . We show that therestriction of f to W s0 (J�) is conjugate to the restriction of fh to W sh;0(J�).Moreover, this conjugation can be extended as follows. There is a closed sub-set Sh of W sh(J�), such that restriction of f to W s(J�) � S is conjugate toW sh(J�) � Sh. The set Sh is a union of rays of the form fz = as; 1 � s � rg,where a 2 Ck, Gh(a) = 0 and r > 1.Third, we use the stable laminationWs(J�) to construct a family of curvesE which play a role analogous to that played by the external rays for a polynomialmapping of C. An external ray  2 E corresponds to the image of a radial linein H under the conjugacy mentioned in the previous paragraph. (Equivalently,external rays are lines where the harmonic conjugate of the restriction GjWa islocally constant.) We may identify E with J��S1, and we consider the measure��
 d�2� on E . For ��
 d�2� -almost every point (a; �) 2 E , the corresponding ray(a; �) has a well de�ned endpoint e(a; �) 2 J . Further,e�(�� 
 d�2� ) = �:Fourth, we consider Lyapunov exponents. As in [BS2] we �nd it useful towork with a measure �c on the set of critical points; this measure is de�nedby �c := [C] ^ (T k�1 A): If � is an ergodic measure, then by general results



REGULAR POLYNOMIAL ENDOMORPHISMS 115of smooth ergodic theory, there are Lyapunov exponents �j(�), 1 � j � k.We consider the quantity �(�) =Pj �j(�), which gives the time average of thein�nitesimal rate of volume growth, limn!1 1n log j detDfn(x)j, of f at �-almostevery point x. By [FS3] the measures � and �� are ergodic. Using the laminarstructure of T k�1 A, we show that the values of � for � and �� are related asfollows: �(�) = �(��) + log d+ Z G�c: (5:1)This generalizes the formula for polynomials in dimension one, as formulated byPrzytycky [Pr], as well as the 2-dimensional formula of Jonsson [J1].Finally, we restrict ourselves to k = 2 and the case where �c = 0, i.e., wherethere are no critical points in the sense that W s(J�) \ C = ;. It follows thatS = ;, so each disk Wa is properly embedded in A. An interesting questionis whether the endpoint map e de�ned above is continuous. Examples fromone-dimensional dynamics show that this is not always true. However, we showthat if f satis�es a suitable hyperbolicity condition (z), then e maps E H�oldercontinuously onto J . Conditions which together imply (z) are: (1) f is AxiomA, (2) all repelling periodic points belong to J , and (3) W s(J�) \ C = ;.The di�cult part in proving that e is continuous is to show that the bound-ary of any disk Wa accumulates only at J . To do this we must show that thereare no saddle connections; i.e., there can be no intersection betweenW s(J�) andW u(S1), where S1 is the part of the nonwandering set in C2 which is hyperbolicof index one. One consequence of our result is that J is given as a topologicalquotient of the space J� � @D. Our hope is that this will provide a startingpoint for a more detailed study of the topology of J .Let us note that related results have been obtained by other authors. Corol-lary 4.4 and Theorem 6.5 have been obtained independently by G. Peng [Pe].Hubbard and Papadopol [HP] have considered a problem which is in some sensedual to what we have described above, and which was inuential in motivatingour approach. In particular, they considered the case of a superattracting �xedpoint at the origin and interpreted Pk�1 as the �ber of the blow-up of Ck overthe origin. The dynamics of regular polynomial endomorphisms were also stud-ied by Heinemann [H], who focused on the behavior of f on K rather than thebehavior at in�nity. Finally, Forn�ss and Sibony [FS4] considered hyperbolicmaps on P2; their results apply to provide di�erent proofs of Theorem 4.1 andCorollary 4.7.The organization of the paper is as follows. In the �rst two sections we recallresults on Green functions and invariant currents for general regular polynomialendomorphisms ofCk. Then, in Section 3 we start assuming that f� is expandingon J� and show that W s0 (J�) is the union of local stable disks W s0 (a). Thelaminar structure of T k�1 A is discussed in Section 4 and used in Section 5to prove (5.1). We de�ne external rays in Section 6 and describe how theyprovide a link between the measures � and ��. In the same section we discuss



116 ERIC BEDFORD AND MATTIAS JONSSONB�ottcher coordinates, which provide a model for the dynamics of f on W s(J�).Finally, in the last two sections, we focus on regular polynomial endomorphismsof C2 satisfying suitable hyperbolicity conditions; in particular we introducecondition (z). Di�erent hyperbolicity conditions are discussed in Section 7 andin Section 8 we prove that if f satis�es (z), then the endpoint map e maps EH�older continuously onto J . For the convenience of the reader we have gatheredsome basic facts on hyperbolicity for endomorphisms in Appendix A.List of notationf regular polynomial endomorphism of Ck of degree d.fh homogeneous part of f of degree d.� hyperplane at in�nity.f� restriction of f to �.� projection of Ck � f0g on � or Ck+1 � f0g on Pk.A basin of � for f .Ah basin of � for fh.K complement of A.G Green function for f .Gh homogeneous Green function for fh.�G Robin function for G.T invariant current for f .Th invariant current for fh.T� invariant current for f�.� T k.�� T k�1� .J support of �.J� support of ��.W s(J�) stable set of J� for f .W sh(J�) stable set of J� for fh.A0 subset of A where G > log 1� .Ah;0 subset of Ah where Gh > log 1� .An f�n(A0).W s0 (J�) W s(J�) \ A0.W sh;0(J�) W sh(J�) \ Ah;0.W s0 (a) local stable disk for f at a 2 J�.W sh;0(a) local stable disk for fh at a.



REGULAR POLYNOMIAL ENDOMORPHISMS 117W s(a) global stable manifold of a.�(�) sum of Lyapunov exponents of f with respect to �.�(��) sum of Lyapunov exponents of f� with respect to ��.C critical set of f .�c critical measure.Ws(J�) stable lamination for f .C�1 Sn�0 f�n(C).S union of \bad" gradient lines in Ws(J�).Sh union of gradient lines in W sh(J�).~W s(J�) W s(J�)� S.Wa component of W s(a)� S containing a.E set of external rays.S1 union of basic sets of unstable index 1.S2 union of basic sets of unstable index 2.W u(J) backwards attracting basin for J .W u(S1) unstable set of S1.W s� (p) local stable manifold at p.W u� (q̂) local unstable manifold at q̂.W s(p) global stable manifold at p.W u� (q̂) global unstable manifold at q̂.1. Regular polynomial endomorphisms and their Green functionsIn the following two sections we summarize several basic results that we willuse. These may be found in [HP], [FS1-3], and [U]. We recommend the uni�edtreatment in [FS3]. Throughout this paper, we will let f be a regular polynomialendomorphism of Ck of degree d � 2. This means that the components of f arepolynomials of degree d and that the homogeneous part fh of degree d of f satis-�es f�1h (0) = f0g. Alternatively, f is regular if and only if lim inf jf(z)j=jzjd > 0as jzj ! 1.We will use the compacti�cation Pk of Ck, i.e. we let z = (z1; : : : ; zk)denote (inhomogeneous) coordinates on Ck, and [z : t] = [z1 : : : : : zk : t] denotehomogeneous coordinates on Pk, and we choose the embedding of Ck in Pkgiven by z 7! [z : 1]. In the same notation, let � = ft = 0g be the hyperplaneat in�nity of Pk. Then � may be identi�ed with Pk�1 using homogeneouscoordinates [z] = [z1 : : : : : zk]. We equip Pk with the Fubini-Study metric andmeasure distances and volumes in that metric unless otherwise stated.A regular polynomial endomorphism f extends to an endomorphism of Pk,still denoted by f , by the formula f [z : t] = [tdf(z=t) : td]. In fact, a holomorphic



118 ERIC BEDFORD AND MATTIAS JONSSONendomorphism of Pk has a completely invariant hyperplane exactly when it maybe identi�ed with a regular polynomial endomorphism of Ck.There is a projection � : Ck � f0g ! Pk�1 given by �(z) = [z]. It is clearthat the extension of � to Pk�f[0 : 1]g given by �[z : t] = [z] is holomorphic andthat the restriction of � to � is the identity, with the identi�cation � ' Pk�1above.The hyperplane � is completely invariant under f . In fact, the set of regularpolynomial endomorphisms of Ck can easily be identi�ed with the set of holo-morphic endomorphisms Pk having a completely invariant hyperplane. Underthe identi�cation � ' Pk�1 the restriction of f to � is a holomorphic endo-morphism of Pk�1, which in homogeneous coordinates is given by [z]! [fh(z)].When precision is needed, we will denote the map f on Ck, Pk and � by fCk ,fPk and f�, respectively.We let K be the compact set of points in Ck with bounded forward orbitsand de�ne A := Pk �K. The functionG(z) = limn!1 d�n log+ jfn(z)j (1:1)gives the (super-exponential) rate at which the orbit of z 2 Ck approaches�. This is continuous and plurisubharmonic on Ck and coincides with thepluricomplex Green function of K. We will therefore also call G the Greenfunction of f . The homogeneous Green function for the homogeneous part fh off of maximal degree d is de�ned in an analogous way, namely asGh(z) = limn!1 d�n log jfnh (z)j: (1:2)The functions G and Gh are continuous on Ck and Ck � f0g, respectively. Weuse log instead of log+ so that Gh is logarithmically homogeneous.It will also be useful to de�ne maps ~f and ~fh on Ck+1 by the formulae~f(z; t) = (tdf(z=t); td)~fh(z; t) = (tdfh(z=t); td):The homogeneous Green functions for ~f and ~fh are given by~G(z; t) = limn!1 d�n log j ~fn(z; t)j~Gh(z; t) = limn!1 d�n log j ~fnh (z; t)j:for (z; t) 2 Ck+1 � f0g.The projection � : Ck+1�f0g ! Pk given by �(z; t) = [z : t] semiconjugates~f to f , and ~fh to fh, i.e. f � � = � � ~f and fh � � = � � ~fh. We have used theletter � for two di�erent projections but it should be clear in each case whichone we are refering to.From the de�nitions we easily prove the following result.



REGULAR POLYNOMIAL ENDOMORPHISMS 119Lemma 1.1. The Green functions satisfy the following relations (whenever theyare de�ned) G(f(z)) = d �G(z);Gh(fh(z)) = d �Gh(z);~G( ~f(z; t)) = d � ~G(z; t);~Gh( ~fh(z; t)) = d � ~Gh(z; t);~G(z; t) = G(z=t) + log jtj;~Gh(z; t) = Gh(z) = ~G(z; 0):It is easy to see that G(z) and Gh(z) behave like log jzj+O(1) as jzj ! 1.Later on we will need the following more precise result.Lemma 1.2. The asymptotics of G and Gh at � are given byGh(z) = log jzj+ �G[z]G(z) = log jzj+ �G[z] + o(1);where [x] is the projection of Ck�f0g on � de�ned above and �G is continuouson �.Remark. �G is the Robin function for G (cf. [BT]).Proof. Since Gh is homogeneous we haveGh(z) = log jzj+Gh(z=jzj):Here the second term is continuous in z and depends only on the projection[z] of z on �. Hence there exists a continuous function �G on � such thatGh(z=jzj) = �G[z]. This proves the �rst formula. To prove the second we useLemma 1.1 and writeG(z) = ~G(z; 1)= log jzj+ ~G(z=jzj; 0) + ( ~G(z=jzj; 1=jzj)� ~G(z=jzj; 0))= log jzj+ �G[z] + o(1);where the last line follows from the continuity of ~G on Ck+1 � f0g.2. Invariant CurrentsUsing Green functions we may de�ne invariant currents; see [FS3] for a more gen-eral discussion of these. The purpose of this section is to recall some de�nitionsand to see how the di�erent invariant currents are related.To begin, we have positive closed currents TCk and Th;Ck on Ck de�nedby TCk = 12�ddcG and Th;Ck = 12�ddcGh. We also have positive closed currents



120 ERIC BEDFORD AND MATTIAS JONSSONTPk and Th;Pk on Pk de�ned by ��(TPk) = 12�ddc ~G and ��(Th;Pk) = 12�ddc ~Gh,where � : Ck+1 � f0g ! Pk is the projection. The last two currents can becalculated explicitly as follows. Let U � Pk be an open set and s : U ! Ck+1a holomorphic section of the line bundle � : Ck+1 � f0g ! Pk. Then T U =12�ddc( ~G � s) and Th U = 12�ddc( ~Gh � s), where T U denotes the restrictionof T to U . Finally, there is a unique, positive, closed current T� on � withthe property that ��(T�) = Th;Ck with the projection � : Ck � f0g ! �. Toexplain this last assertion, we note that, a priori, ��(T�) is de�ned only as acurrent on Ck � f0g. However, it is a positive current, so we may extend it toPk by assigning it to have mass zero on f0g. Correspondingly, on the right handside of the equation, since Gh is continuous on Ck � f0g, it follows that Th;Ckputs no mass on the origin f0g. Finally, let us note that the current T� may beconstructed explicitly, using a section of the bundle � : Ck � f0g ! �.We remark that if Uk is the open subset of Pk where zk 6= 0, then[z1 : : : : : zk : t]! (z1=zk; : : : ; zk�1=zk; 1; t=zk)is a section of the bundle � : Ck+1 � f0g ! Pk on Uk, and[z1 : : : : : zk]! (z1=zk; : : : ; zk�1=zk; 1)is a section of � : Ck � f0g ! � on Uk \ �. Similar sections can be de�nedon the sets Uj = fzj 6= 0g and Uj \ � for j = 1; : : : ; k � 1. We also note that[z : 1] 7! (z; 1) is a section of � : Ck+1 � f0g ! Pk over ft 6= 0g.The currents above are related, as will be shown in the following lemma.We recall that if S = 12�ddcu is a positive closed current of bidegree (1; 1) on acomplex manifold with continuous potential u, andM is a complex submanifold,then the slice SjM is well-de�ned and is equal to the current on M de�ned bySjM = 12� (ddc)jM (ujM ).Lemma 2.1. The invariant currents de�ned above are related as follows.TCk = TPk CkTh;Ck = Th;Pk CkT� = (TPk)j� = (Th;Pk)j�:Proof. These statements follow easily from the remarks above and Lemma 1.1.To prove the �rst relation we observe thatTPk Ck = 12�ddc ~G(z; 1)= 12�ddcG(z)= TCk :



REGULAR POLYNOMIAL ENDOMORPHISMS 121The second relation is proved in the same way. As for the third, we have(TPk j�) (zk 6= 0) = 12�ddc ~G(z1=zk; : : : ; zk�1=zk; 1; 0)= 12�ddcGh(z1=zk; : : : ; zk�1=zk; 1)= T� (zk 6= 0):Permuting the variables, we obtain (TPk j�) (zj 6= 0) = T� (zj 6= 0) for1 � j � k � 1, so TPk j� = T�. The proof that Th;Pk j� = T� is identical.In view of Lemma 2.1 we may simplify our notation and use only the currentsT = TPk and Th = Th;Pk on Pk, restricting them to Ck or taking the slice on �whenever needed.Although the maps f and fh are not submersions, they de�ne pullbacks ofthe invariant currents T and Th.Lemma 2.2. The following relations holdf�T = d � T;f�hTh = d � Th;f��(T�) = d � T�:Since the currents T and Th have continuous local potentials, we may de�neT j and T jh for 1 � j � k; these are positive closed currents of bidegree (j; j) whichsatisfy f�(T j) = djT j and f�h(T jh) = djT jh . Most important for us will be thecurrents T k�1, T k�1h , of bidimension (1,1), and � := T k and �� := (T j�)k�1, ofbidimension (0,0). Note that � and �� are represented by probability measureson Ck and �, respectively. We will denote their supports by J = supp(�) andJ� = supp(��).Remark. In the notation of [HP] the latter two sets would be called Jk andJ�;k�1, respectively. We use J and J� for brevity, as we will not be using theother intermediate Julia sets.Proposition 2.3. The following formula holds on Pk.T k�1h = Z ���1(a)� ��(a): (2:1)Proof. We know that ��(T�) = Th (Ck � f0g). Thus T k�1h (Ck � f0g) =��(T k�1� ) = ��(��). Hence, by the de�nition of �� as integration over the �bersof �, we have T k�1h (Ck � f0g) = Z ���1(a)� fag� ��(a):



122 ERIC BEDFORD AND MATTIAS JONSSONNow we note that since Th has continuous local potentials on Pk �f[0 : 1]g, thecurrent T k�1h puts no mass at f0g or at �. Hence T k�1h coincides with the trivialextension of T k�1h (Ck � f0g) to Pk. Further, since fag is a set of measurezero with respect to [��1(a)], it follows that [��1(a)] and [��1(a)� fag] de�nethe same current on Pk. Thus the equation above yields (2.1).Let CCk , CPk , and C� be the critical sets of fCk , fPk , and f�, respectively.Thus we have CPk = CCk [ �C� = CCk \ �:3. Local stable disks near J�Everything said so far is true for all regular polynomial endomorphisms of Ck.We now want to understand the dynamics of f on the stable set of J�, i.e.W s(J�) = fx 2 Pk; d(fn(x); J�)! 0g:To do this successfully, we impose restrictions on the dynamics of f . Namely,we assume that f� is (uniformly) expanding on J�. This means that there existconstants c > 0 and � > 1 such thatjDfnx vj � c�njvj x 2 J�; v 2 Tx�; n � 1: (3:1)If f is expanding on J� and a 2 J�, then the tangent space TaPk splits intoa direct sum Eu(a) � Es(a), where Eu(a) = Ta� and Es(a) is the eigenspaceof Dfa associated with the zero eigenvalue. We clearly have Dfa(Eu=s(a)) �Eu=s(f�(a)), and Eu=s(a) depends continuously on a. Therefore, with the de�-nition given in Appendix A, f� is hyperbolic on J�.The expansion of f� on J� will allow us to understand the structure ofW s(J�). In this section we will restrict our attention to a small neighborhoodof �, so let A0 := fG > log 1�g and W s0 (J�) :=W s(J�) \ A0.The stable manifold theorem asserts that there is a local stable manifold ateach point of J�. The global stable manifold W s(a) of a 2 J� is by de�nitionthe set of points x 2 Pk such that d(fn(x); fn(a)) ! 0 as n ! 1. We nowde�ne the local stable disk W s0 (a) at a 2 J� to be the connected componentof W s(a) \ A0 containing a. By a complex disk we will mean the image of aholomorphic injective immersion of the unit disk into Pk.Theorem 3.1. If � is small enough, then W s0 (a) is a complex disk which isproperly embedded in A0 for all a 2 J�. Moreover,W s0 (a) depends continuouslyon a.It is possible to deduce Theorem 3.1 from the stable manifold theorem. Wewill, however, give a direct and fairly detailed proof, using the graph transformmethod, because we need some of the constructions in Section 6.



REGULAR POLYNOMIAL ENDOMORPHISMS 123Proof. Let us embed f in a holomorphic one-parameter family f� , j� j < 2,de�ned by f� = f + �(f � fh). We do this only because we need it in Section6. Note that f0 = fh is homogeneous. To avoid cumbersome notation we writef instead of f� . Our �rst task is to de�ne good coordinate charts at the pointsin J�. Pick ~a = (~a1; : : : ; ~ak) with �(~a) = a and j~aj = 1. Permute coordinatesso that j~akj = max1�j�k j~aj j. Let � = (�1; : : : ; �k�1), where �j = zj=zk � ~aj=~akand let t = 1=zk. We denote the ball j�j < �1 by Ua = Ua(�1), the disk jtj < �2by Va = Va(�2) and the polycylinder Ua � Va by Ba = Ba(�) = Ba(�1; �2) for�1 > �2 > 0. Note that � corresponds to ft = 0g and the line ��1(a) to f� = 0g.Also, the Euclidean metric on Ba and the Fubini-Study metric on Pk di�er by atmost a multiplicative constant C > 0. The expansion of f� on J� implies thatif a; b 2 J� and a 6= b, then there is an n � 0 such that d(fn�(a); fn�(b)) > 3C�1.After replacing f by an iterate we may assume that (3.1) holds with n = 1, c = 1and � = 3C.Let us introduce some more terminology. A vertical disk in Ba is a disk ofthe form f� = constg and a vertical-like disk is the graph of a holomorphic mapUa ! Va. Similarly we de�ne horizontal and horizontal-like disks (although,strictly speaking, these are not disks if k > 2).By choosing 1� �1 � �2 > 0 we get that for all a 2 J� and for all f = f�with j� j < 2:(1) f(Ba) \Bf�(a) � Uf�(a) � Vf�(a)(�2=2).(2) f�1(Bf�(a)) \ Ba � Ua(�1=2)� Va.(3) If � is a horizontal disk in Ba, then f(�) \ Bf�(a) is a horizontal-like diskin Bf�(a) and the restriction of f to � \ f�1(Bf�(a)) is a biholomorphism.(4) The critical set C = CCk of f does not meet Ba.(5) If �0 is a vertical-like disk in Ba on which G is harmonic, then Gj�0 has nocritical points.Here (1){(3) follows from (3.1), (4) follows from the fact that C� \ J� = ;and (5) is a consequence of Lemma 1.2. Conditions (1){(3) are illustrated in thepicture below. f�Ba Bf�(a)f(Ba)) f(�)To produce stable manifolds we have to iterate backwards. We claim that(6) If �0 is a vertical-like disk in Bf�(a), then f�1(�0)\Ba is a vertical-like diskin Ba.To see this, note that f�1(�0) \ Ba is an analytic set in Ba. Let � be ahorizontal disk in Ba. We claim that f(�) intersects �0 in exactly one point.



124 ERIC BEDFORD AND MATTIAS JONSSONIndeed, by (3) we may write f(�) \ Bf�(a) = ft = g(�)g and �0 = f� = h(t)g,where g and h are holomorphic. Hence the intersection between these two sets isthe unique �xed point of the holomorphic map g �h : Uf�(a)(�1)! Uf�(a)(�2=2).By (3) it follows that � intersects f�1(�0)\Ba in exactly one point. This provesthat the latter set is a vertical-like disk.Now de�ne Bna = Ba \ f�1(Bf�(a)) \ : : : \ f�n(Bfn�(a)) for n � 0 andB1a = \n�0Bna . The latter set is the local stable manifold of a, i.e. it consistsof the points tracking a in positive time. Using the Kobayashi metric on Ua, itfollows from (2) and (3) that there is a constant � > 0 such that the diameterof � \ Bna is less that �2�n for every horizontal disk � in Ba and all a 2 J�.We claim that B1a is a vertical-like disk. Indeed, the estimate above impliesthat � \ B1a consists of at most one point for every �. On the other hand,repeated applications of (6) show that the set n(a), de�ned inductively by0(a) = f0g � Va and n(a) = f�1(n�1(f�(a))) \ Ba, is a vertical-like disk inBna . Hence n(a) converges to a vertical-like disk. By the remark above, thisdisk must be exactly B1a .The sets B1a are pairwise disjoint, because if a 6= b, then there exists ann � 0 such that fn�(b) =2 Bfn�(a)(3�). Hence B1fn�(a) \B1fn�(b) = ;, so B1a and B1bare disjoint.Note that if �02 < �2 and �01 = �1, then B1a (�0) is the restriction to Va(�02) ofthe vertical-like disk de�ning B1a (�). We next show that the disks B1a dependcontinuously on a. Let �02 < �2 and M be larger than the Lipschitz constantfor all f� on Pk. Assume that b is close to a and choose n maximal so thatMnC3jb � aj < (�21 + �22)1=2 � (�21 + �022 )1=2. Then B1b is contained in Bna , andthe latter set intersects every horizontal disk in a set of diameter at most �2�n.Hence B1a depends continuously on a.Let � > 0 be so small that if x 2 W s0 (J�), then x 2 Ba for some a. Bythe de�nition of B1a we see that if x 2 A0 \W s(a), then fn(x) 2 B1fn�(a) forlarge n. Thus x 2 B1b for some b 2 J� with fn�(b) = fn�(a). Since the setsB1a are disjoint, it follows that the connected component W s0 (a) of W s(a) \A0containing a is the subset of B1a containing a. Hence (5) implies that W s0 (a) isa complex disk, properly embedded in A0 and depending continuously on a.Remark. We note that the proof shows that W s(a)\A0 is the union of the localstable disks W s0 (b), where fn�(a) = fn�(b) for some n � 0.Proposition 3.2. For � > 0 small enough we haveW s0 (J�) = [a2J�W s0 (a):Proof. This can be proved by showing that the inverse limit space cJ� has localproduct structure (see Proposition A.6), but we will give a direct proof. Theinclusion \�" is trivial, so suppose that x 2 W s0 (J�). After replacing f by an



REGULAR POLYNOMIAL ENDOMORPHISMS 125iterate we may assume that (3.1) holds with n = c = 1 and � = 3. Let M � 1be larger than the Lipschitz constant for f on Pk. Let � > 0 be so small thatif a 2 J�,then all branches of f�1� are single-valued on the ball B(f�(a); 4M�)in � and the branch mapping f�(a) to a maps B(f�(a); 4M�) into the ballB(a; 2M�). Now let x 2 W s0 (J�). Let n be so large that d(fn+j(x); J�) < � forj � 0 and pick points aj 2 J� such that d(fn+j(x); aj) < � for j � 0. Then(aj)j�0 is an 2M�-pseudoorbit in J�, i.e. d(f�(aj); aj+1) < 2M�. Let gj bethe branch of f�1� on B(f�(aj); 4M�) mapping f�(aj) to aj . Then gj(aj+1) 2B(f�(aj�1); 4M�) so the point b(j) := Gh�: : :�gj(aj+1) is well-de�ned. Moreoverd(f i�(b(j)); ai) < 2M� for 0 � i � j. Letting j !1 and using the compactnessof J� we �nd a point b 2 J� such that d(f i�(b); ai) < 3M� for all i � 0. Henced(fn+i(x); f i�(b)) < 4M� for all i � 0. Assume that 4CM� < �, with C and �from the proof of Theorem 3.1. It follows that fn(x) 2 W s(b), so x 2 W s(c),where c 2 J� is a point with fn�(c) = b. By the remark following the proof ofTheorem 3.1, this gives the corollary.The pictures below show slices of W s(J�) by complex lines fz = cg for themap f(z; w) = (z2 � 0:1; w2 � z2 + 0:2z � 0:5i). In the coordinate � = w=z, wehave f�(�) = �2 � 1. The �rst picture is the Julia set of f�. By Proposition3.2, the slices above converge (suitably scaled) to this picture as c ! 1. Theremaining �ve pictures show the slices by the lines fz = 2g, fz = 1:3g, fz = 1:2g,fz = 1:15g, fz = 1:1g.

4. Structure of T k�1 on the Basin of �In this section we use the local stable disks to analyze the structure of T k�1



126 ERIC BEDFORD AND MATTIAS JONSSONon the basin A of �. Proposition 2.3 gives us a hint on what to expect: if fis homogeneous, then the local stable disks W s0 (a) lie inside the lines ��1(a)and T k�1 A is the average with respect to the measure �� of the currents ofintegration over ��1(a) \ A.In the non-homogeneous case the situation will be similar, but more com-plicated. We start by proving the laminar formula (4.1) for T k�1 A0 in termsof the local stable disks W s0 (a). This induces a formula for for T k�1 on eachcompact subset of A. In Section 6 we will go further and produce a laminarformula for T k�1 on all of A.Finally we will deduce some dynamical consequences of the laminar struc-ture of T k�1. Namely, the support of T k�1 A is exactly the set W s(J�) andeach global stable manifold W s(a) is dense in W s(J�).Theorem 4.1. If f� is expanding on J� and � is small enough, thenT k�1 A0 = Z [W s0 (a)] ��(a): (4:1)Proof. It follows from Proposition 2.3 that1dn(k�1) (fn)� �T k�1h A0� A0= 1dn(k�1) (fn)��Z ���1(a) \ A0���(a)� A0;for all n � 0. We claim that the left hand side tends to T k�1 A0 and the righthand side tends to R [W s0 (a)]��(a) as n!1.To prove the �rst part of the claim, it su�ces to show that d�n ~Gh � ~fn ! ~Guniformly on compact subsets of ��1(A0). Now the function H := ~Gh � ~G iscontinuous on Ck+1 � f0g and satis�es H(�z; �t) = H(z; t) for � 6= 0. Further,H = 0 on ��1(�) according to Lemma 1.1 and ~fn(��1(A0)) ! ��1(�) asn!1. Hence 1dn ~Gh � ~fn � ~G = 1dn � ~Gh � ~fn � ~G � ~fn�= 1dnH � ~fn= o( 1dn ):As for the second part of the claim, we calculate1dn(k�1) (fn)��Z ���1(a) \ A0� ��(a)� A0= Z 1dn(k�1) �f�n ���1(a) \ A0� \A0� ��(a):



REGULAR POLYNOMIAL ENDOMORPHISMS 127From the proof of Theorem 3.1 we know that f�n(��1(a) \A0)\A0 is a unionof dn(k�1) disjoint complex disks n(b), where b runs through the preimages ofa under fn. Hence we getZ 1dn(k�1) �f�n ���1(a) \A0� \ A0� ��(a) = Z 1dn(k�1) Xfn(b)=a [n(b)] ��(a)= Z [n(a)] 1dn(k�1) ((fn)� ��)(a)= Z [n(a)] ��(a):Moreover, from the same proof it follows that n(a) converges to the local stabledisk W s0 (a). Moreover, the volumes of n(a) are uniformly bounded, so bybounded convergence the last line above converges to R [W s0 (a)]��(a) as n!1,completing the proof.Theorem 4.1 allows us to describe the support of T k�1 A in dynamicalterms.Corollary 4.2. If f� is expanding on J�, then supp(T k�1 A) =W s(J�).Proof. It follows from Theorem 4.1 and Proposition 3.2 that the support ofT k�1 A0 is equal to W s(J�) \ A0. This proves the corollary, because the setssupp(T k�1 A) and W s(J�) are both completely invariant and any compactsubset of either of them is mapped by some iterate of f into A0.We would like to have a formula similar to (4.1) on all of A. One idea is totry to extend the complex disks W s0 (a) to closed complex varieties in A, usingthe fact that f(W s0 (a)) is compactly contained in W s0 (a). With this in mind wede�ne An := f�n(A0) = fG > d�n log 1�g andW sn(a) := f�n (W s0 (fn(a))) ;for a 2 J� and n � 0. Then W sn(a) is a (possibly disconnected) complexsubvariety of An. Note that W sn(a1) = W sn(a2) as soon as fn(a1) = fn(a2), soW sn(a) will contain dn(k�1) di�erent local disks. Thus the union over n � 0 ofW sn(a) will not be a complex subvariety of A. One might try to get around thisproblem by taking the irreducible component containing a of W sn(a) and hopethat the union over n � 0 of these components would be a complex subvarietyof A. However, this union may contain in�nitely many local stable disks (seethe end of this section for an example).We will return to the problem of �nding a global laminar structure forT k�1 A in Section 6. At any rate we can now present a formula on eachcompact subset of A.



128 ERIC BEDFORD AND MATTIAS JONSSONCorollary 4.4. If f� is expanding on J� and � is small enough, then for everyn � 0 we have T k�1 An = Z 1dn(k�1) [W sn(a)] ��(a):Proof. This is an easy consequence of Theorem 4.1. Indeed,T k�1 An = 1dn(k�1) (fn)� �T k�1 A0�= 1dn(k�1) (fn)��Z [W s0 (a)] ��(a)�= 1dn(k�1) Z �f�n (W s0 (a))� ��(a)= 1dn(k�1) Z �f�n (W s0 (fn(a)))� ��(a)= Z 1dn(k�1) [W sn(a)] ��(a):As indicated above, the sets W sn(a) will be very large for large n. This ismade precise by the following result.Proposition 4.5. If f� is expanding on J�, then for every a 2 J� we have1dn(k�1) [W sn(a)]! T k�1 Aas n!1.To prove Proposition 4.5 we need an auxiliary result.Lemma 4.6. Given a 2 J� and n � 0, de�ne��;n;a := 1dn(k�1) Xfn�(b)=a �b = 1dn(k�1) (fn�)��a:Then ��;n;a ! �� as n!1 for every a 2 J�.Proof of Lemma 4.6. It is a general result of Forn�ss and Sibony [FS3, Lemma8.3] that ��;n;a ! �� for ��-a.e. a 2 J�. In the presence of expansion, however,we can say more. Take any a 2 J� and a small ball U in � containing a. Wemay assume that U does not intersect the postcritical set of f�. Then, for n � 0,f�n(U) is a union of dn(k�1) disjoint open sets, the diameter of which tend tozero uniformly as n ! 1. Take any point a0 2 U for which ��;n;a0 ! �� asn!1. It then follows that ��;n;a ! �� as well.



REGULAR POLYNOMIAL ENDOMORPHISMS 129Proof of Proposition 4.5. For any m � 0 and n � m we have1dn(k�1) [W sn(a) \ Am] = 1dn(k�1) hf�m �f�(n�m) (W s0 (a)) \ A0�i= 1dn(k�1) 24f�m0@ [fn�m(b)=aW s0 (b)1A35= 1dm(k�1) (fm)��Z [W s0 (b)]��;n�m;a(b)� ;which by Lemma 4.6 converges to1dm(k�1) (fm)� (T A0) = T Amas n!1. This completes the proof.Recall the notation W s(a) for the global stable manifold of a. Note thatW s(a) is the increasing union of W sn(a) over all n � 0.Corollary 4.7. If f� is expanding on J�, then W s(a) is dense in W s(J�) forall a 2 J�.Proof. This is clear in view of Proposition 4.5.We give the following example to show that the global stable manifoldsW s(a) may be quite complicated.Example. Consider f(z; w) = (z2 + c; w2), where c 2 C is outside the Man-delbrot set. We have f�(�) = �2. The line fw = 0g is completely invariantand does not intersect W s(J�). De�ne new coordinates on C�C� by (u; v) =�(z; w) = (z=w; 1=w). Then � conjugates f to the homogeneous map g(u; v) =(u2+cv2; v2). Let G be the Green function for f , Gg be the homogeneous Greenfunction for g, and let Gc be the Green function for the one-dimensional polyno-mial � ! �2+ c. Then G(z; w) = max(Gc(z); log jwj) and Gg(u; v) = � log jwj+Gg(z; 1) = � log jwj + Gc(z). Now W s(J�) = f(z; w);Gc(z) = log jwj > 0gso �(W s(J�)) = Xg, where Xg := f(u; v);Gg(u; v) = 0; �(u; v) =2 Kcg. HereKc is the �lled Julia set for the polynomial map � ! �2 + c. Hubbard andPapadopol [HP, Proposition 8.4] showed that Xg is a Riemann surface lamina-tion, all of whose leaves are dense in Xg. Hence the same is true for W s(J�).In fact, the leaves of the Riemann surface foliation are exactly the global sta-ble manifolds W s(a), so these are dense in W s(J�). Further evidence for thecomplicated structure of W s(a) was given by Barrett [B] who showed that theCorona Problem fails on the leaves of Xg . Hence it fails on W s(a) for a 2 J�.



130 ERIC BEDFORD AND MATTIAS JONSSON5. Lyapunov exponents.In this section we prove a formula for the sum �(f) of the Lyapunov exponentsof a regular polynomial endomorphism f of Ck. The only assumption we makeis that f� is expanding on J� so that the current T k�1 A has the laminarstructure given by Theorem 4.1. A special case of (5.1) below was proved in [J1].Let us recall the notion of Lyapunov exponents. For more details we referto [Y]. The sum of the Lyapunov exponents of f with respect to � is the number�(f) de�ned by the property thatlimn!1 1n log j detDfn(x)j = �(f);for �-a.e. x 2 Pk. That this is well-de�ned is part of the statement of Oseledec'sTheorem. Hence �(f) measures average volume growth of the map fn at �-a.e.point. The individual Lyapunov exponents measure the average growth of thederivative of fn in di�erent directions; we will not give the precise de�nitionsince we do not need it.Our formula for �(f) will involve the integral of the Green function againsta critical measure so we begin by de�ning the latter measure as�c := 12�ddcH ^ (T k�1 A) = [C] ^ (T k�1 A);where H = log j detDf j.Then �c is a well-de�ned positive measure because T has a continuouspotential, and so the mass of ddcH ^ T k�1 is �nite. For later reference we notethat the asymptotics of H at � are given byH(z) = k(d� 1) log jzj+ �H [z] + o(1);where [z] is the projection of z on � and �H is the Robin function of H . It is easyto see that �H is continuous on � � C� and depends only on the homogeneouspart fh of f of degree d.We will need the following application of Green's formula. The proof is leftto the reader.Lemma 5.1. Let M be a Riemann surface, a a point on M , � a coordinate onM with �(a) = 0 and u; v harmonic functions on M � fag withu(�) = cu log j�j�1 + �u + o(1);v(�) = cv log j�j�1 + �v + o(1);as � ! 0, where cu,cv,�u, and �v are constants. Then, if � > 0 is so small that�D� � �(M), we have Zj�j=�(udcv � vdcu) = cu�v � cv�u:



REGULAR POLYNOMIAL ENDOMORPHISMS 131Theorem 5.2. If f is a regular polynomial endomorphism of Ck with f� ex-panding on J�, then �(f) = log d+�(f�) + Z G�c: (5:1)Proof. From the ergodic theorem we have�(f) = Z H �:Fix a large number R and let � be a test function supported in fG < 3Rg thatsatis�es 0 � � � 1 and � = 1 in a neighborhood of fG � 2Rg. Then �H iscontinuous and compactly supported, and the integral above is equal toZ �H(ddcG)k = Z Gddc(�H) ^ (ddcG)k�1= Z �1Gddc(�H) ^ (ddcG)k�1+ Z �2Gddc(�H) ^ (ddcG)k�1;where �1 is a test function supported on fG < 2Rg which satis�es 0 � �1 � 1and � = 1 in a neighborhood of fG � Rg and where �2 = 1� �1.We may assume that R is so large that �c is supported in fG < Rg. Then,since � = 1 in a neighborhood of supp(�1), the �rst term above is, by de�nitionof the critical measure, equal toZ �1G�c = Z G�c:As for the second term, Theorem 4.1 tells us that for R � 12 log 1� it can bewritten asZ ��(a) ZW s0 (a) �2Gddc(�H) = Z ��(a) ZW s0 (a)Gddc(�H)= Z ��(a) Z@W s0 (a)(GdcH �HdcG)= Z (�H � k(d� 1)�G)��(a):The �rst equality follows because �1H = H is harmonic on W s0 (a) \ fG � 2Rgand �2 is identically one outside the same set. The second line is an integrationby parts, and the last equality is a consequence of Lemma 5.1.It remains to evaluate the last integral. To do so we �rst note that theRobin functions �G and �H depend only on the homogeneous part of degree dof f . We may therefore assume that f = fh is homogeneous and make use ofthe following result.



132 ERIC BEDFORD AND MATTIAS JONSSONLemma 5.3. Let f be any homogeneous regular polynomial endomorphism ofCk, and let j det(Df)j and j det(Df�)j be the Jacobians of f and f� in theEuclidean metric on Ck and the Fubini-Study metric on �, respectively. Thenj det(Df)(z)j = d � � jf(z)jjzj �k j det(Df�)[z]j:Proof of Lemma 5.3. Pick any z0 2 Ck � f0g. After pre- and post-composingwith dilations and unitary maps, we may assume that f(z0) = z0 = (0; : : : ; 0; 1).Since z0 and [z0] are now �xed points, the choices of metrics are irrelevant whencomputing the Jacobians. We use local coordinates (�; s) on Pk and � on �,where �i = zi=zk for 1 � i � k � 1 and s = t=zk. In these coordinates,f(�; s) = (f1(�; 1)=fk(�; 1); : : : ; fk�1(�; 1)=fk(�; 1); sd=fk(�; 1));f�(�) = (f1(�; 1)=fk(�; 1); : : : ; fk�1(�; 1)=fk(�; 1)):Since the �rst k � 1 coordinates in f(�; s) do not depend on s, we see thatdetDf(�; s)j(�;s)=(0;1) = d � detDf�(�)j�=0;which completes the proof.We continue the proof of Theorem 5.2. Leth[z] = jf(z)jjzjd :This is a well-de�ned continuous function on � and from the equations G(z) =log jzj+ �G[z] and G � f = dG we getlogh = d �G � �G � f�; (5:2)so by invariance of �� Z logh�� = (d� 1) Z �G ��:On the other hand, Lemma 5.3 shows that�H = log d+ log j detDf�j+ k logh; (5:3)so by (5.2) and (5.3) we arrive atZ (�H � k(d� 1)�G)�� = log d+ Z log j detDf�j��= log d+�(f�);which completes the proof of Theorem 5.2.



REGULAR POLYNOMIAL ENDOMORPHISMS 1336. External Rays and B�ottcher CoordinatesIn this section we will do three things. First, we will continue the work in Section4 and give a laminar formula for T k�1 on all of A. Second, we will show howto de�ne external rays and a measure on the set of these. Every ray starts atJ�, and almost every ray lands at a point of J . The family of rays gives theconnection between the measure �� and the measure �. Finally, we will givevariations on the idea of giving a B�ottcher coordinate for the restriction of f toW s(J�).We start by discussing the laminar structure of W s(J�). Recall from Sec-tion 3 that we may choose � > 0 so that W s0 (J�) =W s(J�) \A0 is the disjointunion of local stable disks W s0 (a), each of which is a complex disk properly em-bedded in A0. It follows thatW s0 (J�) is a Riemann surface lamination. Now theiterates of f are local biholomorphisms outside the set C�1 := Sn�0 f�n(C).The expansion of f� on J� implies that C�1 \W s(J�) is closed and nowheredense in W s(J�). ThusW s(J�)�C�1 is also a lamination, which we denote byWs(J�). If a 2 J�, then W s(a) � C�1 is a disjoint union of leaves of Ws(J�).We know from Corollary 4.7 that W s(a) is dense in W s(J�). The precise struc-ture of W s(a) depends on if, and how, W s(J�) intersects C. At the end ofsection 4 we gave an example where each W s(a) was a connected Riemann sur-face. On the other hand, if W s(J�) does not intersect the critical set, then wewill see below that W s(J�) is the disjoint union of complex disks, each of whichis properly embedded in A.Next we de�ne a set S to be removed from W s(J�). Each point x 2W s(J�) � C�1 has the following properties: (1) x is contained in a uniqueleaf Lx of Ws(J�), (2) Lx is nonsingular at x, and (3) the gradient of GjLx isnonvanishing at x. Thus x is contained in a unique gradient line of GjWs(J�).We let ~W s(J�) denote the set of points x 2 W s(J�) � C�1 for which thegradient line x starting at x and moving in the direction of increasing G hasan unlimited continuation, i.e. lims2x G(s) = +1. Denote W s(J�) � ~W s(J�)by S. Heuristically speaking, S consists of all points x for which the gradientline encounters C�1 If x 2 ~W s(J�), then there is an n � 0 and a neighborhoodU of x such that fn maps U biholomorphically into A0. Thus fG � rg \ S iscompact for r > 0. Similarly, the set A � S is open. For a 2 J�, we write Wafor the connected component of ~W s(J�) containing a. By the construction of~W s(J�), there is a well-de�ned gradient ow inside each set Wa, following thelines of increasing values of G.Theorem 6.1. For each a 2 J�, Wa is simply connected, and Wa is a properlyembedded disk in A � S. For �� a.e. a, Wa has �nite area as a subset of Pk,and we have the laminar formulaT k�1 A = Z [Wa]��(a): (6:1)Proof. If  is a closed curve in Wa, then we may apply the gradient ow to until the image lies inside the disk W s0 (a). Since the image of  is contractible



134 ERIC BEDFORD AND MATTIAS JONSSONinside this disk, the original curve  was contractible. For r > 0, we observethat Wa \fG > rg is a relatively compact subset of W s(a). Thus Wa \fG > rghas �nite area, and it follows that the area of Wa is locally �nite inside A, sothe current of integration [Wa] is well de�ned. By Corollary 4.4 and by the factthat the sets Wa \ An are (modulo a set of zero area) just a �nite subdivisionof W sn(a), we have thatZ ([Wa] An)��(a) = T k�1 An;and thus (6.1) holds. Hence Z [Wa]��(a) � T k�1:Since the current T k�1 has �nite mass, it follows that R [Wa]��(a) has �nitemass, so that for �� almost every a, Wa has �nite area.For each a 2 J� there is a harmonic conjugate function G�a for GjWa in thesense that 'a := eG+iG�ais an analytic function. The choice of G�a is unique up to the choice of anadditive real constant. Note that G�a is constant along the gradient lines on Wa.We consider domains Ha of the formHa = Ĉ� ( �D [[j Rj); (6:2)where Rj is a ray of the form (ei�j ; rjei�j ], and for each � > 0 there are only�nitely many j for which rj > 1 + �.Lemma 6.2. For each a 2 J�, there is a domain Ha of the form (6.2) such that'a : Wa ! Ha is a conformal equivalence. If  a := ('a)�1 : Ha ! Wa, and ifWa has �nite area, then the radial limits limr!1+  a(rei�) exist for a.e. �.Proof. The �rst two assertions were proved above. It remains to show that radiallimits exist almost everywhere. We work in a�ne coordinates in Ck � Pk. Let~a 2 Ck denote a point with j~aj = 1 such that �(~a) = a 2 Pk�1. Thus wemay write  a(�) = ��1~a + ha(�), where ha is analytic on Ha. Away from thehyperplane at in�nity, the Euclidean metric on Ck is equivalent to the Fubini-Study metric on Pk. The condition that Wa has �nite area in Pk is equivalentto RHa jrhaj2 <1. It follows thatZ 10 jrha(rei�)j2 rdr = Z 10 j@ha(rei�)@r j2 rdr <1for almost every �. Thus radial limits exist for these values of �.



REGULAR POLYNOMIAL ENDOMORPHISMS 135Let us de�ne the set E of external rays as the set of gradient lines in ~W s(J�).For each a 2 J�, the unit tangent directions in the tangent space TaWa at a givea natural parametrization of the set of external rays which lie in Wa. Thus themeasure �� 
 d�2� is de�ned on E . By Lemma 6.2, we may de�ne an endpointmap e : E ! @K for �� 
 d�2� -a.e. ray. For every ray  2 E and r > 0, we leter() =  \ fG = rg. Thus limr!0+ er = e holds for almost every ray  2 E .Theorem 6.3. e�(�� 
 d�2� ) = �.Proof. Let us �rst �x a 2 J� and consider the mapping er restricted to amanifold Wa; it is well de�ned except possibly at a �nite number of points. Forr > 0, the measure de�ned by the restriction of 12�dcG to Wa \ fG = rg is theimage, under the gradient ow, of the measure d�2� . We note that this measureis the same as 12�d(dcG fG > rg). Thus, continuing to restrict to Wa, we havee�( d�2� ) = 12�ddcmax(G; r).Let us next consider the current�r := 12�dcG ^ T k�1 fG > rg:Note that d(�r) = ( 12�ddcmax(G; r))k . By the laminar structure of T k�1 Aand by the properties of the restriction of er to Wa, we have that(er)�(�� 
 d�2� ) = ( 12�ddcmax(G; r))k : (6:3)This is taken by using the result for each a and integrating with respect to ��.Now since limr!0+ er = e almost everywhere, we have that the left hand sideof (6.3) converges to e�(�� 
 d�2� ) as r decreases to 0. Next, since max(G; r) de-creases to G, it follows that the right hand side of (6.3) converges to ( 12�ddcG)k =� as r decreases to 0. This completes the proof.Now we proceed to give some interpretations of the B�ottcher coordinate.The idea is to describe the dynamics on W s0 (J�) or W s(J�) in simple terms,just as the ordinary B�ottcher coordinate conjugates a polynomial mapping of Cto � ! �d. First we set H = [a2J�fag �Ha; (6:4)and we let 	 : H ! ~W s(J�) denote the mapping such that 	(a; �) =  a. Notethat H and 	 depend on the choice of additive real constants in G�a. In anycase, 	 is a B�ottcher coordinate in the following sense.Proposition 6.4. For each a 2 J�, there is a �a 2 S1 such thatf(	(a; �)) = 	(f�(a); �a�d): (6:5)Proof. By construction we have log j'aj = G on Wa. From the formula G � f =d�G we get j'f�(a)�f j = j'ajd, so there exists �a 2 S1 such that 'f�(a)�f = �a'da.This is equivalent to (6.5).



136 ERIC BEDFORD AND MATTIAS JONSSONProposition 6.4 gives a B�ottcher coordinate on all of ~W s(J�) but has thedrawback that the constants �a depend on the choice of G�a. Moreover, it is not apriori clear that the set H is open in J��(Ĉ� �D) or that 	 is continuous. Theseproblems are eliminated in the next version of the B�ottcher coordinate. The ideais that, as in one dimension, we will conjugate f to its homogeneous part fh ofmaximal degree. We work locally near � and use the notations W sh;0(J�) andW sh;0(a) for the sets de�ned in the same way as W s0 (J�) and W s0 (a) but usingfh instead of f . The following result is similar to Theorem 9.3 in [HP].Theorem 6.5. If f� is expanding on J�, then for small � > 0 there is a conju-gacy � between (fh;W sh;0(J�)) and (f;W s0 (J�)). Furthermore, � maps W sh;0(a)conformally onto W s0 (a) for all a 2 J�.Proof. The idea is to de�ne the conjugacy as limn!1 f�n � fnh . We resume thenotation from the proof of Theorem 3.1. It is here that we use the embedding off in the one-parameter family f� = fh+�(f�fh). De�ne W s�;0(a) andW s�;0(J�)just asW s0 (a) andW s0 (J�) but using f� instead of f . By the proof of Theorem 3.1we may assume that are W s�;0(a) pairwise disjoint complex disks whose union isexactlyW s�;0(J�) for j� j < 2. We have that f�n� (fnh (W sh;0(a)))\Bna;� is containedin a vertical-like disk in Ba. By the construction of Ba there are dn locallyde�ned branches of f�n� mapping fnh (W sh;0(a)� fag) into Bna;� . These branchesdepend holomorphically on � . Let  a;�;n be the branch obtained by analyticcontinuation of  a;0;n = id. Then  a;�;n is well-de�ned on W sh;0(a), dependscontinuously on a and holomorphically on � . We may pass to the limit and de�ne a;� = limn!1  a;�;n. Now  a;� maps level sets of Gh to the corresponding levelsets of G� and  a;� maps W sh;0(a) into B1a;� . Hence Hurwitz's theorem impliesthat  a;� is a biholomorphism of W sh;0(a) onto W s�;0(a). Moreover,  a;� dependscontinuously on a and holomorphically on � . If we de�ne �� : W sh;0(J�) !W s�;0(J�) by �� (x) =  a;� (x) for x 2 W sh;0(a), then �� is a homeomorphismfor each � . We claim that �� conjugates fh to f . To see this, �x a 2 J� andnote that the two mappings g� := f� �  a;� and h� :=  f�(a);� � fh both mapW sh;0(a) onto W s�;0(f�(a)) as branched coverings, depend holomorphically on �and satisfy G� � g� = G� � h� = d � Gh. Hence there exists �� 2 C, dependingholomorphically on � , with j�� j = 1 and g� (��x) = h� (x). Thus �� is constantso since Gh = h0 we must have g� = h� for all � . This completes the proof.In fact, we may extend the conjugacy in Theorem 6.5 as follows. Namely,W sh;0(a) is a complex disk in Pk of the form fz = �~a; j�j > rag, where �(~a) = a,j~aj = 1 and ra > 0. By using the coordinate � on W sh;0(a) we may thereforeidentify the restriction of � to W sh;0(a) with a parameterization  a as above.This, and Proposition 6.4 imply the following result.Corollary 6.6. If f� is expanding on J�, then there is a closed subset Sh ofW sh(J�) and a conjugacy � between (fh;W sh(J�) � Sh) and (f;W s(J�) � S).The set Sh is a union of rays of the form fz = as; 1 � s � rg, where a 2 Ck,



REGULAR POLYNOMIAL ENDOMORPHISMS 137Gh(a) = 0 and r > 1. Further, � maps (��1(a)\Ah)�Sh conformally ontoWafor all a 2 J�.Using Corollary 6.6 we can make a more precise choice of the conjugacy	 in Proposition 6.4, at least in dimension k = 2. Namely, if k = 2, then therestriction of the tautological line bundle � : C2�f0g ! P1 to ��1(C�) is trivial.Further, the set W sh;0(J�) is a topological disk bundle over J� whose �bers aresubsets of the �bers of the bundle �. Also, C�\J� = ;, since f� is expanding onJ�, so there exists a homeomorphism 	0 : J� � (Ĉ� �D) ! W sh(J�) such that	0(a;1) = a and 	0 maps the disk fag�(Ĉ� �D) conformally onto ��1(a)\Ah.Let H = 	�10 (W sh(J�)�Sh) and 	 = ��	0, where Sh and � are as in Corollary6.6. Then H is a domain of the type (6.4) and 	 is a homeomorphism of H ontoW s(J�)� S. Further, f �	(a; �) = 	(f�(a); �a�d);where �a 2 S1 depends continuously on a. Hence we have.Theorem 6.7. If k = 2 and f� is expanding on J�, then there is an open setH in J� � (Ĉ � �D) of the type (6.4) and a homeomorphism 	 : H ! ~W s(J�)satisfying (6.5) with �a depending continuously on a.We give an example to show that we cannot always obtain �a = 1 in The-orem 6.7. Let f(z; w) = (w2; z2). Then J� is a circle on � and we can usecoordinates � = z=w; t = 1=w in a neighborhood of J�. In these coordinates fis given by (�; t) ! (1=�2; t2=�2), J� by j�j = 1; t = 0, and the Green functionby G = � log jtj. Hence f� is expanding on J� and H = J� � (Ĉ � �D). Itfollows that any B�ottcher coordinate is of the form 'a(�; t) = c(a)=t, where cis a self-map of the circle S1. The numbers �a associated with 'a are given by�a = c(1=a2)a2=c(a)2, so �a = 1 if and only if c(a)2 = c(1=a2)a2. The corre-sponding map 	 is continuous on J� � (Ĉ � �D) if and only if c is continuous.If this is the case, then c lifts to a continuous map C : R ! R such thatC(s + 1) = C(s) + n for some integer n and the equation c(a)2 = c(1=a2)a2 to2C(a) = C(�2a) + 2a +m for some m. Replacing a by a + 1 and subtractingthe old equation yields 2n = �2n+ 2, which is impossible.We end this section by discussing the particularly interesting case when thestable set of J� does not meet the critical set, i.e. W s(J�)\C = ;. Then S = ;,each stable disk Wa is properly embedded in A and Ha = Ĉ � �D for all a. Inthis case we may strengthen Theorem 6.3 as follows.Theorem 6.8. If f� is expanding on J� and W s(J�) \ C = ;, then for ��almost every a and any choice of harmonic conjugate G�a, the embedding  a :Ĉ� �D! Pk � J is proper.Proof. We have observed that if W s(J�) \ C = ;, then Wa is a topological diskproperly embedded in A. By Theorem 6.3, the radial limits limr!1  a(rei�) exist



138 ERIC BEDFORD AND MATTIAS JONSSONand belong to J for d� almost every � and �� almost every a. Further, for ��almost every a, Wa has �nite area as a subset of Pk. It follows from a Theoremof Alexander [A] (see also [Ro]) that  a : Ĉ� �D! Pk � J is proper.In dimension k = 2 we have a homeomorphism 	 : J��(Ĉ� �D)!W s(J�)satisfying the relation (6.5). Theorem 6.8 says that, in a measure theoretic sense,most of the disks Wa have their boundaries in J , but that does not imply that	 extends continuously to J��S1. We will return to this problem in Section 8.7. Axiom A and strong hyperbolicity in dimension 2.So far we have worked with fairly general regular polynomial endomorphisms ofCk, only assuming that f� is expanding on J�. This allowed us to understandthe dynamics in the set W s(J�). Thus, in dimension 2 we have a completedescription of the dynamics in A, because all points in A �W s(J�) are in thebasin of an attracting periodic point in �. However, the condition that f� isexpanding on J� does not rule out the possibility of very complicated dynamicsof f on K, even in dimension 2. For example, if p and q are any two monicpolynomial maps of C of degree d � 2 and f(z; w) = (p(z); q(w)), then themap f� is always given by f�(�) = �d, which is expanding on J�. Hence aregular polynomial endomorphism of C2 with f� expanding on J� can haveas complicated dynamics as any polynomial map of C. Moreover, Gavosto [G]has shown that a holomorphic endomorphism of P2 can have in�nitely manyattracting basins and her examples are in fact regular polynomial endomorphismsf of C2 with f� expanding on J�.In the next section we will need further assumptions on the dynamics on fin order to prove that the external rays land continuously on J , something whichallows us to describe J as a topological quotient of J� � S1. Here we digressand discuss hyperbolicity for regular polynomial endomorphisms. We restrictour attention to dimension 2.The literature on hyperbolic dynamics is vast, but most expositions consideronly di�eomorphisms. A regular polynomial endomorphism ofC2 of degree d � 2is not invertible, so the theory becomes di�erent. A general treatment of thedynamics of possibly non-invertible maps can be found in [Ru], but it is scarcewith details. For the convenience of the reader we give the de�nitions and resultswe need in Appendix A. More details can be found in [J2]. We also refer to [FS4],where the authors study hyperbolic endomorphisms of P2.Suppose that f is a regular polynomial endomorphism of C2; as usual weregard f as a holomorphic map of P2. Since f is not injective, we will often haveto work with histories of points instead of the points themselves. Precisely, ahistory of a point x 2 P2 is a sequence (xi)i�0 of points in P2 such that x0 = xand f(xi) = xi+1 for all i < 0. We will use the notation x̂ for a history (xi).Let L be a compact subset of P2 with f(L) = L. We refer to Appendix A fora de�nition of what it means for f to be hyperbolic on L. Let us only recall thatthe de�nition involves the set L̂ of histories in L. There is a natural projection



REGULAR POLYNOMIAL ENDOMORPHISMS 139� : L̂! L such that �(x̂) = x0. We say that L has unstable index i if the stablebundle Es has constant dimension 2� i on L. If L has unstable index 2, then fis said to be expanding on L (see Appendix A for an alternative de�nition). Iff is hyperbolic on L, then to every point in x 2 L and every history x̂ 2 L̂ thereis an associated local stable and unstable manifold respectively, de�ned byW s� (x) = fy 2 P2; d(f i(y); f i(x)) < � 8i � 0gW u� (x̂) = fy 2 P2; 9ŷ 2 cP2; �(ŷ) = y; d(yi; xi) < � 8i � 0g;for small � > 0. Then W s� (x) and W u� (x̂) are complex submanifolds of P2. Iff is expanding on L, then the local stable manifolds are empty and the localunstable manifold at x̂ is a neighborhood of x0 in P2.We also de�ne global stable manifolds by declaringW s(x) = fy 2 P2; d(f i(y); f i(x))! 0 as i!1gW u(x̂) = fy 2 P2; 9ŷ 2 cP2; �(ŷ) = y; d(yi; xi)! 0 as i! �1g:Note that if n � 0, y 2 L and fn(y) = fn(x), thenW s(x) containsW s� (y). Hencethe global stable manifolds are in general large and quite complicated objects(compare with Corollary 4.7; see also [FS4]). The unstable manifolds will also befairly complicated in general; we will have more to say about this in Section 8.All of this should be contrasted with the case of polynomial automorphims of C2,where the global stable and unstable manifolds are immersed copies of C [BS].We next discuss Axiom A regular polynomial endomorphisms of C2. Recallthat a point x 2 P2 is wandering if for every neighborhood V of x there existsan n � 1 such that fn(V )\V 6= ;. The non-wandering set 
 of f is the set of allnon-wandering points; it is a compact set. A regular polynomial endomorphismf of C2 is said to be Axiom A if the periodic points of f are dense in 
 and f ishyperbolic on 
. If f is Axiom A, then Smale's spectral decomposition theorem(Theorem A.9) asserts that 
 can be written in a unique way as a �nite unionof disjoint compact sets 
j , called basic sets, such that f(
j) = 
j and f j
j istransitive, i.e. has a dense orbit. Thus each basic set has a well-de�ned unstableindex.Let us investigate what the possible basic sets are for a Axiom A regularpolynomial endomorphism f of C2. To do this, we �rst observe that the foursets �, C2 �K, int(K) and @K are all completely invariant and see what basicsets each one of them may contain.To begin with, it is clear that 
(f)\� = 
(f�). Now f� is a rational mapand from one-dimensional dynamics we know that f� is Axiom A if and only iff� is expanding on J� (see [Mi]). Hence, if f is Axiom A, then the basic sets in� are J�, which is of unstable index 1, and a �nite union of attracting periodicpoints, all of whose unstable index is zero.All the points in the open set C2 �K are attracted to � so (C2 �K) \ 
is empty. It is clear that ffng is normal on the interior of K, so if f is Axiom



140 ERIC BEDFORD AND MATTIAS JONSSONA, then the only basic sets in int(K) are attracting periodic points, all of whoseunstable index are zero.The boundary of K contains the most complicated dynamics. Clearly, nobasic sets in @K can have unstable index 0. Let S2 and S1 be the union of thebasic sets in @K of index 2 and 1, respectively. We note that S1 can be empty,as in the example f(z; w) = (z2 + c; w2 + c), with c outside the Mandelbrot set.On the other hand, J is a basic set of unstable index 2 (see [FS2]), so J � S2.The question arises whether this inclusion is ever strict or, equivalently, whetherf can have repelling periodic points outside J . Hubbard and Papadopol [HP]have in fact given an example of a regular polynomial endomorphism of C2 witha repelling periodic point outside J but is seems di�cult to check whether theirmap can be made Axiom A.We say that f is strongly hyperbolic if it is Axiom A and f�1(S2) = S2.This is slightly weaker than the de�nition of strong hyperbolicity in [FS4]. Asmentioned above, it is not completely clear whether strong hyperbolicity is equiv-alent to Axiom A, but we do have the following.Lemma 7.1. Let f be an Axiom A regular polynomial endomorphism of C2.Then f is strongly hyperbolic if and only if S2 = J , i.e. if all repelling periodicpoints are contained in J .Remark. A proof is given in [FS4]. We give it here for the convenience of thereader.Proof. The \only if" part is trivial since f�1(J) = J , so suppose that f isAxiom A and f�1(S2) = S2 but S2 6= J . Let N be an open neighborhood ofJ such that f�1(N) � N and \n�0f�n(N) = J . Then N � J contains onlywandering points, so S2 � J is at a positive distance from J and is therefore acompletely invariant compact set. Let N 0 be an open neighborhood of S2 � Jdisjoint from J with f�1(N 0) � N 0. Then N 0 has positive capacity and if x 2 N 0then (fn)��x=d2n cannot converge to � as n!1. This contradicts Lemma 8.3in [FS3].Let f be a strongly hyperbolic regular polynomial endomorphism of C2. Itfollows from Corollary A.10 and the above discussion that any history of a pointC2 which is not an attracting periodic point must converge to either J or S1.We de�ne the unstable set of J to be the set of points in C2 all of whose historiesconverge to J , i.e.W u(J) = fx 2 C2; (x̂ 2 cC2; �(x̂) = x)) xi ! J as i! �1g:We note that this de�nition di�ers from the one in [FS4], whereW u(J) is de�nedas the set of points having at least one history converging to J . On the otherhand we de�ne the unstable set of S1 asW u(S1) = fx 2 C2; 9x̂ 2 cC2; �(x̂) = x; xi ! S1 as i! �1g:



REGULAR POLYNOMIAL ENDOMORPHISMS 141Let N be a neighborhood of J in C2 as in the proof of Lemma 7.1. ClearlyN � W u(J) and every point in C2 which is not an attracting periodic point iscontained in precisely one of the sets W u(J) and W u(S1).Lemma 7.2. If x 2 W u(J), then there exists an n � 0 such that f�n(x) � N .In particular, W u(J) is open in C2 and W u(S1) is closed in C2 except possiblyat some of the attracting periodic points.Proof. Let Z be the set of points y in C2 such that for all n � 0, there is a pointin f�n(y) outside N . It is clear that if y 2 Z, then y has at least one preimagein Z, so every point y 2 Z has a whole history inside Z. Such a history cannotconverge to J so it follows that Z \W u(J) = ;, which completes the proof.In the next section we will assume that f satis�es a slightly di�erent hyper-bolicity criterion, which we now discuss.De�nition 7.3. A regular polynomial endomorphism f ofC2 satis�es condition(y) if the following four properties hold:(y1) f� is expanding on J�.(y2) f is expanding on J .(y3) The nonwandering set of f in @K consists of J and a hyperbolic set S1 ofunstable index 1 with f(S1) = S1.(y4) W u(S1) = Sx̂2Ŝ1W u(x̂).Condition (y) is exactly the hyperbolicity assumption that we need for theproof of the main result in Section 8 (Theorem 8.2). It is a weaker conditionthan strong hyperbolicity:Proposition 7.4. Let f be a regular polynomial endomorphism of C2. If f isstrongly hyperbolic, then f satis�es condition (y).Proof. Suppose that f is strongly hyperbolic. From the above discussion weknow that f satis�es conditions (y1), (y2) and (y3). Finally (y4) follows fromCorollary A.10. 8. Landing of disks.In this section we consider a regular polynomial endomorphism f of C2 with f�expanding on J� and W s(J�) \ C = ;. We know from Section 6 that W s(J�)is laminated by complex disks Wa, a 2 J�, each of which is properly embeddedin A. Moreover, there exists a homeomorphism 	 : J� � (Ĉ � �D) ! W s(J�),whose restrictions  a = 	(a; �) maps Ĉ � �D conformally onto Wa. We haveG(	(a; �)) = log j�j and f(	(a; �)) = 	(f�(a); �a�d), where �a 2 S1 dependscontinuously on a.It is a natural question to ask whether the disks Wa land on J , i.e. if 	extends continuously to J��S1. Without any further assumptions, this need notbe the case. Indeed, if z2+c is a quadratic polynomial map of C with connected,



142 ERIC BEDFORD AND MATTIAS JONSSONbut not locally connected Julia set, then results from one-dimensional dynamics[CG] imply that f(z; w) = (z2 + c; w2 + c) is a counterexample.This shows that in order for 	 to extend it is necessary to impose additionalconditions on the dynamics of f . In dimension one, a su�cient (although notnecessary) one is for the map to be expanding on its Julia set (and that thecritical points have bounded orbits).In this section we give conditions on the dynamics of f which will ensurethat the map 	 does extend continuously to J��S1. The reason for working indimension 2 is that in the proof we will consider unstable manifolds, view theseas Riemann surfaces, and use the uniformization theorem. This strategy wouldfail dismally in dimension k > 2.De�nition 8.1. We say that a regular polynomial endomorphism f of C2 satis-�es condition (z) if f satis�es condition (y) de�ned in Section 7 andW s(J�)\C =;, i.e. if the following �ve properties hold:(z1) f� is expanding on J�.(z2) f is expanding on J .(z3) The nonwandering set of f in @K consists of J and a hyperbolic set S1 ofunstable index 1 with f(S1) = S1.(z4) We have W u(S1) = Sx̂2Ŝ1 W u(x̂).(z5) W s(J�) \ C = ;.It follows from Proposition 7.4 that if f is strongly hyperbolic and satis�es(z5), then f satis�es (z). It is proved in [J1] that perturbations of the mapf(z; w) = (zd; wd) satisfy (z).We say that a stable diskWa lands on J if  a extends continuously to Ĉ�Dand  a(S1) � J . It is our goal to prove the following result.Theorem 8.2. If the regular polynomial endomorphism f of C2 satis�es con-dition (z), then all the stable disks Wa land on J . More precisely, there existconstants C <1 and � > 0 such thatd( a(�);  a(� 0)) � Cd(�; � 0)�; (8:1)for all a 2 J� and all �; � 0 2 Ĉ �D. Furthermore, 	 extends to a continuousmap of J� � (Ĉ�D) into W s(J�) [ J .The main di�culty in proving Theorem 8.2 is to show that @Wa accumulatesonly at J for all a. To do this, we must show that there are no saddle connectionsbetween S1 and J�, i.e. that there is no complete orbit (xi)i2Z such that xi ! S1as i! �1 and xi ! J� as i!1.Lemma 8.3. If f satis�es condition (z), then W s(J�) \W u(S1) = ;.We postpone the proof of Lemma 8.3 for the moment and show instead howit implies Theorem 8.2.



REGULAR POLYNOMIAL ENDOMORPHISMS 143Proof of Theorem 8.2. The expansion of f on J implies that there exists aneighborhood N of J with f�1(N) � N , � > 1 and a metric equivalent to theEuclidean metric such that jDf(x)vj � �jvj for all x 2 N and all v 2 TxC2 withrespect to this metric. By Lemma 7.2 and Lemma 8.3 we know that the setW s(J�)\ f1 � G � dg is a compact subset of the open set W u(J) so by pullingback by f we see that there exists an R > 1 such that 	(J� � ( �DR � �D)) � N .Let � > 0 be so small that d� < �. We may assume that Rd�1d� < �. Recallthat  a satis�es  a(�) = g � f�(a) ��a�d�� ; (8:2)for j�j > 1, where g is a suitable, locally well-de�ned branch of f�1 and j�aj = 1.By di�erentiating (8.2) and using the estimates above we get, for 1 < j�j < Rd�1 ,jD a (�)j � ��1 ��D f�(a) ��a�d��� dj�jd�1: (8:3)De�ne m(r) = supa2J� supj�j=r jD a(�)j;for 1 < r � R. Then there exists a constant C 0 <1 such thatm(r) � C 0(r � 1)��1; (8:4)for Rd�1 � r � R. Using the estimate (8.3) we prove inductively that (8.4) holdsfor 1 < r � R. Integrating (8.4) we see that  a extends continuously to Ĉ�Dand that (8.1) holds. The continuity of 	 on J� � (Ĉ �D) follows from (8.1)and the fact that the restriction of 	 to J� � (Ĉ �Dr) is continuous for eachr > 1.We now turn to the proof of Lemma 8.3 and proceed in a number of steps.First we show that there is a dichotomy for the stable disks Wa expressed bythe following lemma. The dichotomy will be used on several occasions.Lemma 8.4. Let Wa be the stable disk of a point a 2 J�. Then either Wa \W u(S1) = ; or there exists a point x̂ 2 Ŝ1 such that W �a � W u(x̂), whereW �a =Wa � fag.The key observation in proving the dichotomy is the following.Lemma 8.5. If U is a simply connected open subset of a punctured stable diskW �a , then all branches of f�ijU for all i > 0 are well-de�ned and holomorphicon U and they form a normal family there.Proof. That the branches are well-de�ned follows from condition (z5). If Vis relatively compact in U then all branches of f�i on V map V into a �xedcompact subset of C2. Thus they form a normal family on U .



144 ERIC BEDFORD AND MATTIAS JONSSONProof of Lemma 8.4. Suppose that y 2 Wa \W u(S1). Then by condition (z4)there exists a point x̂ 2 Ŝ1 such that y 2 W u(x̂), i.e. y has a history ŷ suchthat d(yi; xi) ! 0 as i ! �1. Let U be any simply connected open subset ofW �a containing y and let gi be the unique sequence of branches of f�ijU suchthat gi(y) = yi. Then fgig is equicontinuous by Lemma 8.3, so there is a smallneighborhood V of y in U such that the maximal distance from gi(V ) to xiis uniformly small as i ! 1. Hence V � W u(x̂) and, by normality of fgig,U �W u(x̂). Since U was arbitrary it follows that W �a �W u(x̂).Corollary 8.6. Let J 0� be the set a 2 J� such that W �a �W u(S1). Then J 0� isclosed, f�(J 0�) = J 0� and J 0� 6= J�.Proof. If a =2 J 0�, then W �a \W u(S1) = ; by Lemma 8.4. Hence Wa \ fG = 1gis a compact subset of the open set W u(J) so by continuity there is an openneighborhood X of a in J� such that Wb \ fG = 1g �W u(J) for all b 2 X . ByLemma 8.4 it follows that X \ J 0� = ; and we conclude that J� � J 0� is open.That f�(J 0�) = J 0� follows from the fact that f(W u(S1)) =W u(S1).Finally suppose J 0� = J�. Then W s(J�) � J� [W u(S1), so W s(J�) doesnot intersect W u(J). This contradicts Theorem 6.3, because W u(J) contains aneighborhood of J = supp(�).Recall that we say that a stable disk Wb lands on J if  b extends continu-ously to S1 and  b(S1) � J .Lemma 8.7. There exists a dense set of b 2 J� such that Wb lands on J .Proof. Since periodic points are dense in J� and J��J 0� is open and nonempty,we can �nd a periodic point b0 2 J� � J 0�, say of period n. Furthermore, fis expanding on J , so there exists a neighborhood N of J and � > 1 withf�1(N) � N and jDfn(y)vj � �jvj; (8:5)for all y 2 N and all tangent vectors v (we may have to increase n). Now theannulus  b0( �D2 �D2d�n ) in Wb0 is a compact subset of W u(J), so the inverseimages under su�ciently high iterates of f of points in this annulus will be inN . In particular, since b0 is periodic, it follows that there exists an R > 1 suchthat  b0( �DR � �D) � N . Then, using the estimate (8.5) above, we may provethat  b0 extends to a H�older continuous map of Ĉ�D, mapping S1 into J . Theproof is very similar to the proof of the �rst part of Theorem 8.2 and is thereforeomitted.We conclude that Wb0 lands on J and so does Wb for all preimages b of b0under iterates of f . Such preimages are dense in J�.The picture below illustrates the e�ect of a saddle connection. Here W �a isin the unstable set of S1 whereas Wb lands on J . The stable disks in the middleare of the form Wbn , where bn are preimages of b converging to a. Note that the



REGULAR POLYNOMIAL ENDOMORPHISMS 145disks Wbn are very \bent" for large n. The idea in the proofs below is to showthat this is impossible.
K

A�
S1 J

WbWaa b
It follows from Lemma 8.4 that for each a 2 J 0� there exists a (not necessarilyunique) history bpa in S1 such that W �a � W u( bpa). In general, an unstablemanifold W u(q̂) of a history q̂ in S1 is a complicated object, but, as we will see,the information that W �a � W u( bpa) implies that W u( bpa) is in fact an algebraicsubvariety of C2. Recall that the image of a holomorphic map of a compactRiemann surface into P2 is an algebraic variety. The authors thank Je� Dillerfor useful conversations on the proof of the following result.Lemma 8.8. If J 0� 6= ;, then there exists an a 2 J 0� such that W u( bpa) is analgebraic subvariety of C2.Proof. Take any point a 2 J 0� and a complete orbit (ai)i2Z with a0 = a. Let(pi)i2Z be a complete orbit in S1 such that W �ai � W u((pi+j)j�0) for all i. Wewrite bpi for the history (pi+j)j�0. If � > 0 is small enough, then the local unstablemanifolds W u� (bpi) are complex disks for all i and there exist biholomorphisms�i : D�i !W u� (bpi) with jD�i(0)j = 1 and complex numbers �i 6= 0 such that�i(�i�1�) = f(�i�1(�)); (8:6)for all i and all j�j < �i�1. Since f is hyperbolic on S1, the numbers �i areuniformly bounded from below and �i�n � � ��i�1 ! 1 as n ! 1 for all i, so(8.6) allows us to extend �i to maps of C into W u(bpi) by de�ning�i(�i�n � � ��i�1�) = fn(�i�n(�));for n � 0.The maps �i are surjective by the de�nition of W u(bpi) but they need notbe injective. However, the global unstable manifolds W u(bpi) have a naturalstructure as abstract Riemann surfaces given by the maps �i. More precisely,for each i we de�ne a Riemann surface Xi as the quotient C= �, where z � wif there are open sets U 3 z and V 3 w such that �i(U) = �i(V ). Then the map�i factors as �i = �0i ��i, where �i : C! Xi is surjective, �0i : Xi ! C2 is locallyinjective and the set of points (z; w) 2 Xi �Xi with z 6= w and �0i(z) = �0i(w)is discrete. We will be sloppy and make no distinction between the unstable



146 ERIC BEDFORD AND MATTIAS JONSSONmanifold W u(bpi) and the Riemann surface Xi. Hence we will sometimes viewW u(bpi) as a subset of C2 and sometimes as an abstract Riemann surface. Theprecise meaning should be clear from the context.Now the Riemann surface W u(bpi) cannot be hyperbolic, because �i mapsC into it so W u(bpi) is biholomorphic to C�, C or P1. The last case cannotoccur, because then W u(bpi) would be an algebraic subvariety of P2, which isimpossible. Hence W u(bpi) is biholomorphic to C� or C for all i.Write Wi instead of Wai and note that W u(bpi) has an open subset biholo-morphic to W �i . Let �i be the Riemann surface obtained from W u(bpi) by �llingin the hole at ai. Then �i is biholomorphic to C or P1 for all i. If �i is bi-holomorphic to P1 for some i, then �i is an algebraic subvariety of P2 (in facta line) and we are done, so assume that �i is biholomorphic to C for all i.Suppose that (�i�Wi)\W s(J�) 6= ; for some i. Then (�i�Wi)\Wb 6= ;for some b 2 J�, b 6= ai. By the dichotomy given in Lemma 8.4 we then havethat W �b � (�i �Wi) so by �lling in the hole at b we see that the closure of �iin P2 is an algebraic subvariety of P2, which implies that W u(bpi) is algebraic inthis case too.Let us now suppose that �i is biholomorphic to C and that (�i �Wi) \W s(J�) = ; for all i. Then there exist unique biholomorphisms �i : C ! �isuch that �i(0) = ai and �i(�) =  i(1=�) + o(1) as � ! 0, where we write  iinstead of  ai . Note that f induces holomorphic maps of �i onto �i+1. Hencewe may de�ne entire maps hi by �i � hi = f � �i�1 for all i. The restriction off to Wi�1 is a branched covering of Wi of degree d, branched only at ai. Thisimplies that hi(�) = �d exp(ui(�)) where ui is entire. Moreover, the condition(�i �Wi)\W s(J�) = ; implies that the inverse image of Wi in �i�1 is exactlyWi�1. Therefore lim sup jhi(�)j > 0 as j�j ! 1 and this is only possible if ui isconstant. Hence we may write hi(�) = ci�d for some constants ci 6= 0.We claim that �i(�) =  i(1=�) on D for all i. To see this, let gi = G � �i.Then, for each i, gi � 0 is continuous and subharmonic on C� and harmonic ina punctured neighborhood of the origin. Recall that G( i(1=�)) = � log j�j forj�j < 1. Hence it follows from the de�nition of �i that gi(�) = � log j�j + o(1)as � ! 0. Now the equation G � f = dG translates into gi � hi = d gi�1,i.e. gi(ci�d) = d gi�1(�). Iterating this we see that gi(�) depends only on j�j.Since gi is harmonic in a punctured neighborhood of the origin it follows thatgi(�) = Ai log j�j + Bi for some constants Ai,Bi. But then the asymptoticformula above shows that Ai = �1 and Bi = 0, i.e. gi(�) = � log j�j near theorigin. We conclude from the equation gi � hi = d gi�1 that jcij = 1. Write'i for the B�ottcher coordinate on Wi, i.e. the inverse of  i. Then the function('i(�i(�)))�1 = � +O(�2) is holomorphic near the origin andlog j('i(�i(�)))�1j = �G(�i(�)) = �gi(�) = log j�j:Thus ('i(�i(�)))�1 = � near the origin, i.e. �i(�) =  i(1=�) near the origin sothe latter identity must hold on all of D.



REGULAR POLYNOMIAL ENDOMORPHISMS 147The equation gi(�) = G( i(1=�)) on j�j < 1 implies that gi = 0 on j�j = 1for all i. We saw above that gi(�) depends only on j�j, so for each i either gi = 0on j�j � 1 or there exists an Ri � 1 such that gi > 0 for j�j > Ri.If gi = 0 for j�j � 1, then �i maps C � �D into the bounded set K andmust therefore extend to a holomorphic map of P1 into P2. Hence W u(bpi) isalgebraic.If gi > 0 for j�j > Ri, then �i maps j�j > Ri into C2 � K, and by ourprevious assumption, the image does not intersect W s(J�) = supp(T A), so giis harmonic on j�j > Ri. Hence there exist constants Ai > 0 and Bi such thatgi(�) = Ai log j�j + Bi for j�j > Ri. Since G(x) = log jxj + O(1) as x ! �, thisimplies that j�i(�)j � Cj�jAi as � ! 1, so again �i extends to a holomorphicmap of P1 into P2. Hence W u(bpi) is algebraic, which completes the proof ofLemma 8.8.We are now in position to prove Lemma 8.3.Proof of Lemma 8.3. Suppose that W s(J�) \W u(S1) 6= ;. Then J 0� 6= ; soLemma 8.8 shows that there exist a 2 J�, a history bp in S1 and an irreduciblepolynomial P (z; w) such that W �a � W u(bp) = fP = 0g. Clearly W u(bp) \ J = ;so there exists an � > 0 such that jP j � 2� on J .By Lemma 8.7 there is a dense set of b's such that Wb lands on J . If wechoose b close enough to a, then by continuity Wb will intersect the open setjP j < �, so every component U of f� 2 D�; jP ( b(�))j < �g is relatively compactin D�. Then P is a holomorphic function without zeros on U , so � log jP jis harmonic on U . But jP j < � on U and jP j = � on @U , contradicting themaximum principle for � log jP j on U . This completes the proof of Lemma 8.3.Theorem 8.2 allows us to describe J as a topological quotient of J� � S1.Corollary 8.9. If f satis�es condition (z), then the restriction of  to J��S1maps J� � S1 continuously onto J .Proof. It follows from Theorem 8.2 that the restriction of 	 to J� � S1 mapsJ��S1 continuously into J . On the other hand, the push-forward of the measure��
 d�2� under this map is the measure � according to Theorem 6.3, so the mapmust be surjective.Corollary 8.10. If f satis�es condition (z) and J� is connected, then J isconnected. If J� is also locally connected, then so is J .Proof. If J� is connected (and locally connected) then J��S1 is connected (andlocally connected) so the statement to be proved follows from Corollary 8.9.Appendix A. Hyperbolicity for endomorphisms.In this appendix we present some basic results on hyperbolicity for smooth en-domorphisms. More details can be found in [J2]. Our main references are [Ru]



148 ERIC BEDFORD AND MATTIAS JONSSONand [PS], see also [FS4]. No proofs are given in this appendix; they can be foundin the above references.Let f be a C1 endomorphism of a �nite-dimensional Riemannian manifoldM . Let L be a compact subset of M with f(L) = L and de�neL̂ = f(xi)i�0;xi 2 L; f(xi) = xi+1g:Then L̂ is a closed subset of LN, hence compact. We will often use the notationx̂ for a point (xi)i�0 in L̂. The restriction f jL lifts to a homeomorphism f̂ of L̂given by f̂((xi)) = (xi+1). There is a natural projection � from L̂ to L sendingx̂ to x0 and the pullback under � of the restriction to L of the tangent bundleof M is a bundle on L̂ which we call the tangent bundle TL̂. Explicitly, a pointin TL̂ is of the form (x̂; v) where x̂ 2 L̂ and v is a tangent vector in Tx0M . Thederivative Df lifts to a map Df̂ of TL̂ in a natural way.Now f is said to be hyperbolic (or prehyperbolic) on L if there exists acontinuous splitting TL̂ = Eu � Es which is invariant under Df̂ and such thatDf̂ is expanding on Eu and contracting on Es. More precisely,Df̂(Eu=s) � Eu=sand there are constants c > 0 and � > 1 such that for all n � 1jDf̂n(v)j � c�njvj v 2 EujDf̂n(v)j � c�1��njvj v 2 Es:Remark. It is possible to make a smooth change of metric in a neighborhood ofL and obtain c = 1 in the equation above.Note that whereas the �ber of the unstable bundle Eu at a point x̂ 2 L̂depends on the whole history x̂ of x0, the �ber of Es at x̂ depends only on thepoint x0. Hence the dimension of the �ber of Eu at a point x̂ depends only onx0, so the dimensions of the �bers of the bundles Eu and Es are locally constant.As a special case of the above we say that f is expanding on L if the bundleEs is trivial. This means that there exist constants c > 0 and � > 1 such thatjDf̂n(x)vj � c�njvj for all x 2 L, v 2 TxM and all n � 1.Perhaps the most fundamental basic result in hyperbolic dynamics is thestable manifold theorem. For each point p in L and each history q̂ in L̂, wede�ne local stable and unstable manifolds byW s� (p) = fy 2M ; d(f i(y); f i(p)) < � 8i � 0gW u� (q̂) = fy 2M ; 9ŷ; �(ŷ) = y; d(yi; qi) < � 8i � 0g;for small � > 0.The following theorem asserts that the local (un)stable manifolds are indeednice objects. For a proof see [Ru] or [PS] ([Ru] contains an outline of a proof,whereas [PS] proves a more general theorem).



REGULAR POLYNOMIAL ENDOMORPHISMS 149Theorem A.1 (Stable Manifold Theorem). If � is small enough, then(i) For all p 2 L and all q̂ 2 L̂, W s� (p) and W u� (q̂) are embedded C1 submani-folds of M tangent to Es(p) and Eu(q̂) at p and q0, respectively.(ii) W s� (p) and W u� (q̂) depend continuously on p and q̂, respectively.(iii) If x 2 W s� (p), then d(fn(x); fn(p)) ! 0 exponentially fast as n ! 1.Similarly, every point x in W u(q̂) has a unique history x̂ such that xj 2W u(f̂ j(q̂)) for all j � 0 and d(xj ; qj)! 0 exponentially fast as j ! �1.If � is small enough, then by continuity W s� (p) and W u� (q̂) are almost at,i.e. C1 close to the tangents at p and q0, respectively for all p 2 L and all q 2 L̂.Therefore W s� (p) and W u� (q) intersect in at most one point.De�nition A.2. We say that L has local product structure if � can be chosenso that W s� (p) \W s� (q̂) � L for all p and q̂.If L has local product structure, p 2 L, q̂ 2 L̂ and if p,q0 are su�cientlyclose, then W s� (p) and W u� (q̂) intersect in exactly one point x 2 L and x has ahistory x̂ such that xj 2 W u� (f̂ j(q̂)) for all j � 0. It is not a priori clear thatx̂ 2 L̂, i.e. that xj 2 L for all j � 0. We therefore make another de�nition.De�nition A.3. We say that L̂ has local product structure if � can be chosen sothat if the intersection W s� (p) \W s� (q̂) is nonempty, then it consists of a uniquepoint x 2 L and the unique history x̂ of x with xj 2 W u� (f̂ j(q̂)) for all j � 0 iscontained in L̂.De�nition A.4. Let � > 0. An �-pseudoorbit in M is a sequence (xi)[t1;t2],where �1 � t1 < t2 � 1, such that d(f(xi); xi+1) < � for t1 � i < t2. An�-pseudoorbit (xi)[t1;t2] is �-shadowed by an orbit (yi)[t1;t2] if d(yi; xi) < � for alli 2 [t1; t2].For proofs of the remaining results in this appendix see [J2].Theorem A.5 (Shadowing Lemma). Suppose that L̂ has local productstructure. Then for each � > 0 there exists an � > 0 such that every �-pseudoorbit in L can be �-shadowed by an orbit in L.Using shadowing we control the orbits of f staying near L in positive ornegative time.Proposition A.6 (Fundamental Neighborhood). Let L be a hyperbolicset for a map f . Assume that L̂ has local product structure. Then L has aneighborhood U in M such that(i) If x 2 U and f j(x) 2 U for all j � 0, then x 2W s� (p) for some p 2 L.(ii) If x 2 U and x has a history x̂ with xi 2 U for all i � 0, then x 2 W u� (q̂)for some q̂ 2 L̂.(iii) If (xi)i2Z is a complete orbit in U then xi 2 L for all i.Next we consider Axiom A endomorphisms. A point x 2 M is wanderingif it has a neighborhood V such that fn(V ) \ V = ; for all n � 1; otherwise



150 ERIC BEDFORD AND MATTIAS JONSSONit is called non-wandering. The non-wandering set 
 of f is the set of all non-wandering points; it is a closed set.De�nition A.7. f is said to be Axiom A if its non-wandering set satis�es(i) 
 is compact.(ii) Periodic points are dense in 
.(iii) f is hyperbolic on 
.Remark. If 
 satis�es (i) and (ii), then f(
) = 
, so (iii) makes sense. Also, iff is Axiom A, then periodic points (under f̂) are dense in 
̂.The next proposition shows that the preceding results apply to open AxiomA endomorphisms.Proposition A.8. If f is Axiom A and open, then 
̂ has local product struc-ture.Theorem A.9 (Spectral decomposition). If f is an open Axiom A endomor-phism, then 
 can be written in a unique way as a disjoint union 
 = [li=1
i,where each 
i is compact, satis�es f(
i) = 
i and f is transitive on 
i. Thesets 
i are called the basic sets of f . Morover, each 
i can be further de-composed into a �nite disjoint union 
i = [1�j�ni
i;j , where 
i;j is compact,f(
i;j) = 
i;j+1 (
i;ni+1 = 
i;1) and fni is mixing on each 
i;j .Our �nal result in this appendix describes forward and backward orbits foran Axiom A endomorphism.Corollary A.10. Assume that f is Axiom A and M is compact.(i) If x 2 M , then there is a unique basic set 
i such that f j(x) ! 
i asj ! 1. Moreover, there is a (not necessarily unique) p 2 
i such thatd(f j(x); f j(p))! 0 as j !1.(ii) If x̂ 2 M̂ , then there is a unique basic set 
i such that xj ! 
i as j ! �1.Moreover, there is a (not necessarily unique) q̂ 2 c
i such that d(xj ; qj)! 0as j ! �1. References[A] H. Alexander, Gromov's method and Bennequin's problem. Invent. Math.125, 135{148 (1996).[B] D. Barrett, Holomorphic extension from boundaries with concentrated Leviform, Indiana U. Math. J., 44 (1995), 1075{1087.[BS1] E. Bedford, J. Smillie, Polynomial di�eomorphims of C2: currents, equilib-rium measure and hyperbolicity. Invent. Math. 103, 69{99 (1991).[BS2] E. Bedford, J. Smillie, Polynomial di�eomorphims of C2 V: Critical pointsand Lyaounov exponents. To appear in J. Geom. Anal.[BT] E. Bedford, B. A. Taylor, Plurisubharmonic functions with logarithmic sin-gularities. Ann. Inst. Fourier (Grenoble) 38, 133-171 (1988).[CG] L. Carleson, T. W. Gamelin, Complex dynamics. Springer-Verlag (1993).
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